
1 
 

A Study of the Dependence between Soil Moisture and 1 

Precipitation in different Ecoregions of the Northern 2 

Hemisphere 3 

 4 

Shouye Xuea and Guocan Wu a* 5 

 6 

a State Key Laboratory of Earth Surface Processes and Disaster Risk Reduction, 7 

Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China 8 

 9 

*Corresponding author: Guocan Wu, gcwu@bnu.edu.cn 10 

 11 

  12 

mailto:gcwu@bnu.edu.cn


2 
 

Abstract 13 

Soil moisture plays a critical role in the land–atmosphere coupling system. It is 14 

replenished by precipitation and transported back to the atmosphere through land 15 

surface evaporation and vegetation transpiration. Soil moisture is, therefore, 16 

influenced by both precipitation and evapotranspiration, with spatial heterogeneities 17 

and seasonal variations across different ecological zones. Recently, negative 18 

correlations between soil moisture and precipitation have been observed in Northern 19 

Hemisphere ecosystems. However, the driving mechanisms of these negative 20 

correlations, especially how soil moisture is influenced by precipitation and 21 

evapotranspiration, still remain unclear. This study analyzes the dependence between 22 

soil moisture and precipitation in different ecoregions to explore the driving 23 

mechanisms and regional patterns. The joint distributions of precipitation and soil 24 

moisture were analyzed at monthly and annual scales, using soil moisture and 25 

precipitation data from ERA5-Land and Global Precipitation Climatology Project, 26 

respectively. The nonlinear negative dependencies reached to 19.2%, 0.7%, and 2.3% 27 

at monthly scale, while were 3.0%, 4.0%, and 8.6% at annual scale, respectively, for 28 

the three soil layers. These negative dependencies were shown to be most prominent 29 

in temperate grasslands, savannas, shrublands, deserts, xeric shrublands, and tundra 30 

regions, where driven by the land surface temperature and by the air temperature–31 

gross primary production relationship at the monthly scale based on Ridge regression 32 

models and Bayesian models. Additionally, the negative dependence is also linked to 33 

freeze–thaw cycles, precipitation seasonality, and temperature fluctuations, which 34 

lead to asynchronous changes between soil moisture and precipitation at the seasonal 35 

scale. At the annual scale, the negative dependence was associated with long-term 36 

changes in precipitation and temperature that affect vegetation and surface properties, 37 

by altering soil water capacity. These findings enhance the understanding of land–38 

atmosphere interactions providing a valuable basis for future research on drought, 39 

hydrometeorology, and ecological conservation. 40 

Keywords: climate change, precipitation, soil moisture, ecoregions  41 
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1. Introduction 42 

Soil moisture is a critical source of water for vegetation growth, replenished by 43 

precipitation and groundwater, and returned to the atmosphere through 44 

evapotranspiration. It plays a key role in weather conditions, vegetation dynamics, 45 

and groundwater storage (Li et al., 2022; Qiao et al., 2023; Vereecken et al., 2008; 46 

Zhou et al., 2021), with significant implications for the global climate. Surface soil 47 

moisture regulates the distribution of available energy at the land surface and 48 

exchanges energy with the near-surface atmosphere through sensible and latent heat 49 

fluxes, thereby controlling the surface energy balance (Haghighi et al., 2018; McColl 50 

et al., 2017). In contrast, deep soil moisture is more directly influenced by vegetation 51 

growth, particularly by the development of plant roots, which play a crucial role in the 52 

vertical infiltration of precipitation into deeper soil layers (Szutu and Papuga, 2019; 53 

Xiao et al., 2024; Xue and Wu, 2024). 54 

Precipitation variability, which refers to the amplitude of precipitation 55 

fluctuations over different times, influences soil moisture and thereby land surface 56 

coupling (Koster et al., 2009; Taylor et al., 2012). Precipitation patterns are reported 57 

to have undergone significant changes in recent decades (Lv et al., 2023; Mao et al., 58 

2022; Wu et al., 2021), mainly manifested as anthropogenic amplification of 59 

precipitation variability (Zhang et al., 2024). The increase in the frequency of extreme 60 

precipitation events (Myhre et al., 2019; Wang et al., 2022) and decrease in the 61 

frequency of smaller precipitation events (Ma et al., 2015) amplify soil moisture 62 

fluctuations and prolong the moisture stress periods between consecutive precipitation 63 

events (Knapp et al., 2008). This can directly affect vegetation growth and soil 64 

moisture responses (Feldman et al., 2024; He et al., 2023), particularly through 65 

changes in the duration and intensity of soil evaporation and plant transpiration (Gu et 66 

al., 2021; Wullschleger and Hanson, 2006). Soil moisture has been shown to be 67 

negatively correlated with precipitation in certain regions, based on Pearson 68 

correlation analyses (Cook et al., 2006; Yang et al., 2018). The changes in soil 69 

moisture at different depths also show notable discrepancies (Shen et al., 2016; Zhu et 70 
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al., 2014). Surface soil moisture has been shown to respond to precipitation 71 

approximately a month earlier than deeper soil moisture, with a more pronounced 72 

positive correlation between precipitation and soil moisture occurring at depths 73 

greater than 50 cm (Zhang et al., 2020). 74 

Most current analyses of the relationship between soil moisture and precipitation 75 

assume a linear relationship (Sehler et al., 2019; Yang et al., 2018). In reality, the 76 

response of soil moisture to precipitation is extremely complex and often nonlinear 77 

(Drager et al., 2022). This kind of nonlinear and asymmetric correlation is generally 78 

referred to as “dependence”. The nonlinear dependence of soil moisture to 79 

precipitation is currently not well understood. Moreover, the factors driving this 80 

negative dependence between soil moisture and precipitation remain poorly 81 

understood due to the complicated land atmosphere coupling processes, particularly in 82 

the Northern Hemisphere where different types of vegetation coverage are present. 83 

Among the methods used to explore nonlinear relationships, the copula function is 84 

one of the most widely applied approaches for modeling the joint distributions of 85 

precipitation and soil moisture (Cammalleri et al., 2024). The copula is a stochastic 86 

model that can reveal nonlinear and asymmetric dependence structures, which are 87 

difficult to capture using traditional linear methods. It provides a flexible framework 88 

for modeling joint distributions of multiple variables, allowing for a more precise 89 

understanding of the evolving dependence of soil moisture on precipitation than that 90 

offered by traditional linear regression and correlation methods. 91 

In terms of the water cycle, soil moisture is replenished by precipitation and 92 

groundwater, while also being absorbed by plant roots and lost through 93 

evapotranspiration. Therefore, the change of soil moisture is actually simultaneously 94 

influenced by precipitation volume, frequency, and evapotranspiration. However, the 95 

response of soil moisture to precipitation and evapotranspiration varies across 96 

different time scales. The long-term effects of changes in evapotranspiration and 97 

precipitation on soil moisture are further shaped by seasonal transitions, with 98 

significant differences observed at different soil depths (Szutu and Papuga, 2019). 99 
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These differences are influenced by factors such as soil freeze–thaw processes and 100 

vegetation community structure. Therefore, the relative contributions of 101 

evapotranspiration, precipitation volume, and frequency to soil moisture changes 102 

should be quantified at different time scales. 103 

Although previous studies have identified the mechanisms of soil moisture 104 

variation across different time scales (shen et al., 2018; Vidana Gamage et al., 2020), 105 

the interaction among precipitation, evapotranspiration and soil water under climate 106 

change may have changed over different time scales. The dependence of soil moisture 107 

to precipitation and its interactions with evapotranspiration under conditions of 108 

climate change require further investigation. Accordingly, the ridge regression models 109 

for precipitation amount, precipitation frequency, evapotranspiration, and soil 110 

moisture can be used to quantify the relative influence of precipitation and 111 

evapotranspiration on soil moisture. As an improvement of the least squares 112 

estimation method, it can handle the multi-collinearity problems of the covariates, 113 

although it is usually biased. 114 

The aim of this study was to explore the nonlinear responses of soil moisture to 115 

precipitation at monthly and annual scales from 2000 to 2019, with a focus on the 116 

Northern Hemisphere where vegetation coverage is abundant. The joint distribution of 117 

precipitation and soil moisture was established to examine differences in soil moisture 118 

responses to precipitation and the varying influences of precipitation volume, 119 

frequency, and evapotranspiration on soil moisture at monthly and seasonal scales. 120 

The gross primary productivity (GPP), land surface temperature (LST), and near-121 

surface air temperature (Ta) were selected as key driving factors in a Bayesian model, 122 

since the dependence between precipitation and soil moisture is influenced by factors 123 

such as vegetation growth, temperature, and soil properties. The driving factors and 124 

regional characteristics of the negative correlation observed between precipitation and 125 

soil moisture in certain regions were identified. This study enhances the 126 

understanding of complex interactions between key meteorological factors such as 127 

precipitation, evapotranspiration, and soil moisture under climate change, and 128 
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provides a basis for future land–atmosphere coupling system modeling.  129 

2. Material and Method 130 

2.1 Material 131 

2.1.1 Soil moisture 132 

The soil moisture data used in this study were obtained from the fifth generation 133 

of reanalysis from the European Centre for Medium-Range Weather Forecasts 134 

(ECMWF), using atmospheric forcing to control the simulated land field variables and 135 

provide the land components (ERA5-Land) (Muñoz Sabater, 2019). ERA5-Land 136 

provides a consistent description of the evolution of the energy and water cycles over 137 

land, and therefore, has been widely used in various land surface applications such as 138 

flood or drought forecasting (Joaquín Muñoz-Sabater, 2021). The ERA5-Land soil 139 

moisture data are available for four layers, 0 to 7, 7 to 28, 28 to 100, and 100 to 289 140 

cm, at a 0.1° × 0.1° spatial and hourly temporal resolution from 1950 to present. The 141 

soil moisture from the first three soil layers during 2000 to 2019 were used. They 142 

were resampled to a 0.25° × 0.25° spatial resolution and averaged to daily, monthly, 143 

and yearly scales to be consistent with other variables in this study. 144 

2.1.2 Precipitation 145 

The Global Precipitation Climatology Project (GPCP) is a global precipitation 146 

project that integrates infrared and microwave data from multiple geostationary and 147 

polar-orbiting satellites, and corrected by many meteorological station observations 148 

(Adler et al., 2003; Huffman and Bolvin, 2013). It is an important component of the 149 

Global Energy and Water Cycle Experiment in the World Climate Research 150 

Programme. A daily precipitation field with a 1° × 1° resolution since 1996 was 151 

generated by integrating the satellite products and then adjusting the daily 152 

precipitation by monthly data observed from the ground to make it consistent with the 153 

meteorological observations. Daily precipitation was resampled to a 0.25° × 0.25° 154 

spatial resolution and then used to calculate the total precipitation volume and 155 
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precipitation frequency at the monthly, seasonal, and annual scale from 2000 to 2019. 156 

2.1.3 Covariate variables 157 

2.1.3.1 Gross primary production  158 

The gross primary production (GPP) dataset was from the Vegetation Optical 159 

Depth Climate Archive v2, which used microwave remote sensing estimates of 160 

vegetation optical depth to estimate the GPP at the global scale for the period 1988 to 161 

2020 (Wild et al., 2022). These GPP data were trained and evaluated against 162 

FLUXNET in-situ observations and compared with largely independent state-of-the-163 

art GPP datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS). 164 

The Vegetation Optical Depth Climate Archive v2 GPP dataset has a 0.25° × 0.25° 165 

spatial and half-monthly temporal resolution, covered from 2000 to 2019.  166 

2.1.3.2 Near surface air temperature 167 

The air temperature data (Ta) were obtained from the Climatic Research Unit 168 

gridded Time Series (CRU TS), which is one of the most widely used climate datasets 169 

and is produced by the National Centre for Atmospheric Sciences in the United 170 

Kingdom. CRU TS v4.07 was derived by the interpolation of monthly climate 171 

anomalies from extensive networks of weather station observations (Harris et al., 172 

2020). It provides monthly land surface data from 1901 to 2020 at a 0.5° × 0.5° 173 

resolution worldwide. The mean temperatures at the monthly, seasonal, and annual 174 

scales during 2000 to 2019 were calculated and resampled to a 0.25° × 0.25° spatial 175 

resolution.  176 

2.1.3.3 Land surface temperature 177 

Land surface temperature (LST) data were accessed from the European Space 178 

Agency Climate Change Initiative (CCI), which is funded by the European Space 179 

Agency as part of the Agency’s CCI Program. It aims to significantly improve current 180 

satellite LST data records to meet the challenging Global Climate Observing System 181 

requirements for climate applications and realize the full potential of long-term LST 182 

data for climate science (Hollmann et al., 2013). These data were the first global LST 183 

climate data records of over 25 years at a 0.25° × 0.25° resolution and with an 184 
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expected error within 1 K. The LST dataset included ascending and descending orbit 185 

data, which were used to calculate the mean value of separate annual and monthly 186 

averages during 2000 to 2019.  187 

2.1.3.4 Evapotranspiration 188 

Evapotranspiration data were accessed from the Global Land Evaporation 189 

Amsterdam Model (GLEAM) v3.8a, which provides data of the different components 190 

of land evapotranspiration, including transpiration, bare-soil evaporation, interception 191 

loss, open-water evaporation, and sublimation, in addition to other related variables 192 

such as surface and root-zone soil moisture, sensible heat flux, potential evaporation, 193 

and evaporative stress conditions (Miralles et al., 2011). The monthly, seasonal, and 194 

annual averages during 2000 to 2019 were calculated based on a 0.25° × 0.25° spatial 195 

resolution. 196 

2.1.3.5 Terrestrial ecoregions 197 

Data on terrestrial ecoregions around the globe were accessed from the 198 

Conservation Biology Institute (Olson et al., 2001). These ecoregions are relatively 199 

large units of land containing distinct assemblages of natural communities and 200 

species, with boundaries that approximate the original extent of natural communities 201 

prior to major land-use changes. The delineations were completed based on hundreds 202 

of previous biogeographical studies and were refined and synthesized using existing 203 

information in regional workshops over the course of 10 years to assemble the global 204 

dataset (Olson et al., 2001). An ecological layer file encompassing 16 major 205 

categories was downloaded. 206 

Although the Köppen climate classification provides a standardized framework 207 

based on temperature and precipitation, it may perform not well in accounting for 208 

critical biophysical factors, particularly for vegetation. Alternatively, the ecoregion 209 

divisions integrate both climatic and ecological factors, offering a more 210 

comprehensive understanding of the spatial heterogeneity in vegetation types and 211 

hydrological processes (Gerken et al., 2019; Olson et al., 2001). This makes it 212 

particularly advantageous for studying land–atmosphere interactions, since vegetation 213 
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plays a central role in regulating energy and water fluxes. Therefore, this study adopts 214 

ecoregion boundaries to better capture the vegetation related variability in 215 

precipitation–soil moisture relationship. Since soil moisture dynamics and their 216 

feedbacks with precipitation are strongly influenced by vegetation structure, root 217 

systems, and edaphic properties, the ecoregions can provide a more mechanistic and 218 

spatially relevant framework for our analysis. All of the Ta, LST, GPP, soil moisture, 219 

and precipitation datasets were masked by these 16 terrestrial ecoregions (Fig. 1) in a 220 

0.25° grid, and monthly, seasonal, or annual mean values in the regions were 221 

calculated separately. 222 

 223 

Fig. 1 The 16 Terrestrial Ecoregions of the Northern Hemisphere. 224 

2.2 Method 225 

2.2.1 Joint distribution 226 

In this study, the joint distribution between precipitation and soil moisture from 227 

depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, using the copula function at both 228 

the monthly and annual scales was established. A copula function links multivariate 229 

distribution functions with their one-dimensional marginal distributions, and is used 230 

for the examination of dependencies between multiple variables. It captures nonlinear 231 

dependence structures through joint and marginal probabilities of a pair of variables in 232 

complex multivariate systems (Nelsen, 2005). In this study, the copula function was 233 
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used to explore the nonlinear dependence between precipitation and soil moisture 234 

(Equation 1): 235 

𝐹𝑃,𝑆𝑀(𝑥, 𝑦) = 𝐶(𝐹𝑃(𝑥), 𝐹𝑆𝑀(𝑦)),                                     (1) 236 

where FP(x) and FSM(y) denote the marginal distribution of precipitation and soil 237 

moisture, respectively, and C(u,v) is the copula function linking these two variables. 238 

The process for establishing the joint distribution was as follows: (1) The marginal 239 

distributions of precipitation and soil moisture were fitted using an automatic 240 

optimization function. (2) The most suitable copula function was selected based on 241 

the Akaike Information Criterion (AIC) values at the grid level, including Gaussian 242 

copula, Student’s t copula, Clayton copula, and 37 other copula functions. Different 243 

copula functions may be selected for different grid cells. (3) The chosen copula 244 

function was then used to compute the corresponding Kendall’s tau (τ), upper tail 245 

dependence (λU), and lower tail dependence (λL). 246 

The statistic τ measures the correlation between two variables to determine the 247 

presence of a monotonic relationship. λU and λL represent the likelihood that, when 248 

one variable reaches extreme high or low values, the other variable also reaches 249 

extreme values. The calculations of τ, λU, and λL are based on the dependence 250 

parameters of the joint distribution of precipitation and soil moisture, and depends on 251 

the selected copula function using the AIC method. Taking the Tawn copula function 252 

as an example, the calculation of τ, λU, and λL are based on the following equations. 253 

𝜏 = 1 −
2𝛿

𝜃+1
+

2𝛿2

2𝜃+1
,                                                   (2) 254 

λU = (1 − δ) ⋅ (2−21/θ),                                              (3) 255 

and  256 

λL = δ⋅(2−21/θ),                                                  (4) 257 

where θ is the dependence parameter of the Tawn copula, and δ represents the 258 

asymmetry parameter. For some copula functions, such as Clayton copula, the 259 

Kendall’s τ values get the priority over the upper and lower tail dependencies in the 260 

estimation process. All the calculations were performed using R v4.3.3 with the 261 

VineCopula and copula packages, for which detailed calculation methods for τ, λU, 262 
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and λL for all copulas are provided. To address the potential delayed response of soil 263 

moisture to precipitation, lagged correlation analysis was conducted. For each grid 264 

cell, the AIC value was calculated to select copula function (Fig. S1), as shown in the 265 

supplementary file. Then the Kendall‘s tau correlation was calculated between 266 

precipitation and soil moisture with time lags ranging from 0 to 12 months (Fig. S2). 267 

The lag corresponding to the maximum absolute correlation was identified as the 268 

optimal lag. 269 

2.2.2 Ridge regression 270 

Ridge regression is designed to address collinear data, although it is a biased 271 

estimation method. It is an improved least squares estimation used to generate more 272 

reliable regression coefficients at the cost of unbiasedness. Ridge regression 273 

outperforms the traditional least squares method when fitting ill-conditioned data 274 

(McDonald, 2009). Due to the large uncertainty in precipitation and soil moisture 275 

data, ridge regression models were applied for three soil layers, and for both monthly 276 

and seasonal scales. Spring was defined as from March to May, summer from June to 277 

August, autumn from September to November, and winter from December to 278 

February of the following year. Precipitation frequency, volume, and 279 

evapotranspiration were treated as predictor variables, with Ta as a control variable 280 

and soil moisture as the response variable.  281 

To clearly differentiate the influence of variables, the regression coefficients for 282 

precipitation volume, frequency, and evapotranspiration were normalized using 283 

Equation (5) and then assigned to the three primary colors. This approach resulted in a 284 

gridded ternary phase diagram. 285 

𝑊𝑖 = 1 −
𝑣𝑖

∑ 𝑣𝑖
3

𝑖=1

,                                                      (5) 286 

where 𝑣𝑖 ( 𝑣1, 𝑣2, 𝑣3 ) represent precipitation frequency, precipitation volume, and 287 

evapotranspiration (ET), respectively, and 𝑊𝑖 refers to the adjusted weight of 𝑣𝑖. 288 
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2.2.3 Bayesian generalized non-linear multivariate multilevel models 289 

The Bayesian generalized non-linear multivariate multilevel model integrates 290 

Bayesian inference, generalized linear models, non-linear modeling, multivariate 291 

analysis, and hierarchical structures, making it well-suited for complex hierarchical 292 

data. It can effectively capture non-linear dependencies among multiple response 293 

variables (Browne and Draper, 2006; Bürkner, 2017). The model parameters are 294 

treated as random variables with prior distributions under the Bayesian framework. 295 

Posterior distributions of the parameters are obtained by combining the likelihood 296 

function and prior distributions. The Markov Chain Monte Carlo (MCMC) algorithm 297 

is then used to resample from the posterior distribution and estimate the posterior 298 

means of the parameters to represent the optimal results. Given the hierarchical and 299 

multivariate nature of the data, a multilevel structure and multivariate analysis was 300 

introduced to model the mixed effects of variables and to capture the relationships 301 

among multiple related response variables. Random effects were also incorporated to 302 

account for heterogeneity among individuals and reflect the varying effects of 303 

univariate or multivariate mixtures on the response variables, thereby improving the 304 

accuracy of estimates. 305 

Since the impact approaches of GPP, LST, and Ta on precipitation (P) and soil 306 

moisture (SM) are often unknown, the Gaussian distribution was specified as the prior 307 

distribution for these variables in the Bayesian model. To investigate how GPP, LST, 308 

and Ta influence the precipitation–soil moisture coupling relationship, both 309 

precipitation and soil moisture were treated as response variables. Bayesian non-linear 310 

multivariate multilevel models were developed at both the monthly and seasonal 311 

scales, with independent models for 16 ecological zones (Equation 6): 312 

Posterior estimates = bf(P ~ Ta + GPP + LST + Ta:GPP + Ta:LST + GPP:LST + Ta:GPP:LST) + 313 

 bf(SM ~ Ta + GPP + LST + Ta:GPP + Ta:LST + GPP:LST + Ta:GPP:LST),      (6) 314 

where the colon represents multivariate mixed effects of different variables; bf stands 315 

for Bayesian formula, used to specify each part of the model for P and SM separately; 316 

and the “+” combines P and SM into a multivariate model. The model was 317 
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implemented in R 4.3.3 using the brms package, which performs diagnostic checks on 318 

the sampling results using indicators such as the Gelman–Rubin diagnostic (Rhat 319 

statistic) and the effective sample size (ESS). To ensure stability and convergence, 320 

four MCMC chains were used for iterative sampling, with each chain running 4,000 321 

iterations, including 2,000 warm-up iterations. A maximum tree depth of 10 was set. 322 

Estimate values of all ecoregions were classified into different clusters using the K-323 

means method in R 4.3.3. 324 

3. Results 325 

3.1 Estimation from the copula function 326 

 327 

 328 

Fig. 2 Spatial distribution of Kendall’s tau (τ), the upper tail dependence (λU), and the lower tail 329 

dependence (λL) on the 0.25° × 0.25° grids between monthly precipitation volume and soil moisture 330 

during 2000 to 2019. The three columns are for the soil moisture from depths of 0 to 7 cm, 7 to 28 cm, 331 

and 28 to 100 cm, respectively. 332 

 333 

The copula analysis of monthly average soil moisture and total monthly 334 

precipitation volume revealed a clear negative dependence at all three soil depths 335 

(Fig. 2(a2, b2, c2)). The percentages of grid cells exhibiting negative dependence at 336 

these depths were 19.2%, 0.7%, and 2.3%, respectively. The negative dependence 337 

between precipitation and soil moisture is more prevalent in the surface soil layer, 338 
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where the grid cells exhibiting are more widespread. In contrast, at the middle and 339 

deep soil layers, these negative dependence patterns are primarily confined to the 340 

margins of the Sahara desert, the montane grasslands and shrublands, and parts of the 341 

deserts and xeric shrublands regions. In the surface layer, the negatively dependent 342 

grid patches are more spatially scattered, mainly distributed across the tundra, 343 

montane grasslands and shrublands, deserts and xeric shrublands, as well as the 344 

tropical and subtropical moist broadleaf forests. 345 

Regions exhibiting high λL values were primarily located in the deserts and xeric 346 

Shrublands, as well as in parts of India, where λL reached values as high as 0.99 (Fig. 347 

2(a1, b1, c1)). With increasing soil depth, λL values gradually increased across the 348 

Eurasian continent. Similarly, λU exhibited a clear reduction in spatial extent with 349 

increasing soil depth, with the majority of these regions located in the temperate 350 

broadleaf and mixed forests and the southern margin of the Sahara desert. With 351 

increasing soil depth, λU values consistently decreased, resulting in a lack of clear 352 

correspondence between these regions and specific ecological zones (Fig. 2(a3, b3, 353 

c3)). This decreasing trend likely reflects the weakening of extreme precipitation–soil 354 

moisture coupling in deeper soil layers, except for arid regions where vegetation is 355 

sparse or absent. 356 

From the annual scale copula results (Fig. 3), precipitation and soil moisture 357 

generally exhibited positive dependencies across the entire soil profile. However, 358 

negative dependencies were observed in regions such as the southern Sahara Desert, 359 

Mongolia, and the Elizabeth Islands, reaching 3.0%, 4.0%, and 8.6%, respectively 360 

(Fig. 3(a2, b2, c2)). It revealed that the negative correlation was kept between 361 

precipitation-soil moisture in long-term scale over arid regions. The negative 362 

dependencies in these areas expanded outward, primarily concentrated in the montane 363 

grasslands and shrublands region. Both the λL and the λU displayed scattered, patchy 364 

distributions, with average values for each soil layer ranging from 0.4 to 0.6. 365 

 366 
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 367 

Fig. 3 Spatial distributions of the τ, λU, and λL on the 0.25° × 0.25° grids between annual 368 

precipitation volume and soil moisture during 2000 to 2019. The three columns are for the soil 369 

moisture from depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, respectively. 370 

3.2 Control of soil moisture by precipitation and evapotranspiration 371 

 372 

Fig. 4 Ternary map of factors controlling soil moisture, monthly, for the period 2000 to 2019. The 373 

bottom-left histogram in the subgraph represents the proportion of grid cells where one variable exerts 374 

strong univariate control (with a regression coefficient greater than 75% of the total sum of the three 375 

variables), suggesting that soil moisture was predominantly controlled by that specific variable. 376 

 377 

On the monthly scale, precipitation exerted the strongest control over soil 378 

moisture (Fig. 4), with regions most influenced by precipitation accounting for more 379 

than 40% of the variation. These areas were primarily located in the boreal 380 

forest/taiga, temperate grasslands, savannas, shrublands, and the eastern part of North 381 
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America. In contrast, regions where evapotranspiration predominated were found in 382 

Alaska–Northwest Canada, the western United States, the Sahara Desert, and the 383 

Middle East. High-latitude regions, especially northern Canada, were primarily 384 

influenced by precipitation frequency. Areas where precipitation volume, frequency, 385 

and evapotranspiration had similar levels of control were mainly found in Eastern 386 

Europe and Russia. 387 

The results from ridge regression revealed more distinct patterns at the seasonal 388 

scale compared to the monthly scale (Fig. 5). Soil moisture in spring and summer was 389 

mainly controlled by evapotranspiration, which influenced over 40% of grid cells, 390 

particularly in the middle soil layers, where it dominated nearly 80%. In contrast, 391 

precipitation volume had a greater influence during autumn and winter, particularly in 392 

the continental United States, southern Sahara Desert, coastal India, and eastern 393 

China. Additionally, as soil depth increased, the influence of evapotranspiration and 394 

precipitation frequency gradually intensified. However, in summer, as soil depth 395 

increased, the area primarily controlled by precipitation volume expanded (indicated 396 

by an increase in the intensity of magenta color in the figures) especially in the 397 

eastern United States, Europe, and South Asia. These regions remained strongly 398 

influenced by precipitation volume even as evapotranspiration control increased with 399 

increasing soil depth during autumn. Northern Russia, Canada, Greenland, and 400 

northern Alaska were notably influenced by both precipitation frequency and 401 

precipitation volume, with this effect being more pronounced during the non-growing 402 

season. In winter, the area controlled by precipitation frequency was larger than that 403 

in spring. 404 

 405 
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 406 

Fig. 5 Ternary map of factors controlling soil moisture, seasonally, for the period 2000 to 2019. 407 

The bottom-left histogram in the subgraph represents the proportion of the grid cells where one 408 

variable exerts strong univariate control (with a regression coefficient greater than 75% of the total sum 409 

of the three variables), suggesting that soil moisture was predominantly controlled by that specific 410 

variable. 411 

 412 

At the annual scale, precipitation amount exerts a dominant influence across all 413 

three soil depth layers, accounting for more than 40% of the total area (Fig. 6). The 414 

spatial extent of areas dominated by precipitation amount, precipitation frequency, 415 

and evapotranspiration remains largely consistent with that observed at the monthly 416 

scale. The regions dominated by precipitation frequency are still primarily located in 417 

high-latitude areas, particularly in Greenland and the northern parts of Canada, 418 

although no distinct ecological zone patterns are observed in these areas. Regions 419 

dominated by precipitation amount are mainly distributed across boreal forests, 420 

temperate grasslands, savannas and shrublands, temperate broadleaf and mixed 421 

forests, as well as tropical and subtropical moist broadleaf forests. In temperate 422 

regions, soil moisture is primarily controlled by precipitation amount due to moderate 423 

temperatures and limited rainfall, making substantial precipitation is essential for soil 424 

moisture replenishment. In contrast, tropical and subtropical regions experience high 425 

temperatures and intense evapotranspiration, requiring substantial precipitation to 426 
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maintain a water balance. 427 

 428 

 429 

Fig. 6 Ternary map of factors controlling soil moisture at annual scale, for the period 2000 to 430 

2019. The bottom-left histogram in the subgraph represents the proportion of grid cells where one 431 

variable exerts strong univariate control (with a regression coefficient greater than 75% of the total sum 432 

of the three variables), suggesting that soil moisture was predominantly controlled by that specific 433 

variable. 434 

3.3 Drivers of negative dependencies between soil moisture and 435 

precipitation 436 

For each model in this study, four MCMC chains were used for iterative 437 

sampling. The sampling results demonstrated that the chains for both the monthly and 438 

annual scales were well-distributed in the parameter space, with no noticeable trends 439 

or drifts, indicating convergence to the target posterior distribution. The convergence 440 

was considered satisfactory, with all models yielding a Rhat value below 1.05 (Figs. 441 

S3, S4). 442 

 443 
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 444 

Fig. 7 Posterior estimates of the covariate variables of the Bayesian generalized non-linear 445 

multivariate multilevel model, built using monthly data. The columns represent soil depths of 0 to 7 446 

cm, 7 to 28 cm, and 28 to 100 cm. Red lines indicate linear regressions of precipitation and soil 447 

moisture across all ecoregions, with cluster groups represented by three circles. The data point of each 448 

ecoregion belongs to a single and non-overlapping cluster. 449 

 450 

The negative dependence in the surface layer across the Northern Hemisphere 451 

was primarily driven by the interactions between GPP:LST and Ta:GPP (Fig. 7). It 452 

shows that the regression trend line crosses quadrants II and IV. The negative 453 

relationship driven by GPP:LST was predominantly concentrated in quadrant IV, 454 

where increased precipitation lead to decreased soil moisture in the boreal forest, 455 

tundra, temperate coniferous forest, and temperate broadleaf mixed forest. The 456 
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negative dependence driven by Ta:GPP was mainly found in quadrant II, with 457 

distributions in deserts and xeric shrublands, boreal forests, montane grasslands and 458 

shrublands, temperate broadleaf mixed forests, and tundra. For the middle soil layer, 459 

GPP:LST drove a negative dependence in tropical and subtropical grasslands, 460 

savannas, shrublands, and tropical and subtropical coniferous forests. Ta and Ta:GPP 461 

drove in Mediterranean forests, woodlands, and scrub, as well as in temperate 462 

grasslands, savannas, and shrublands. The mixed effects of Ta:GPP:LST and Ta:LST 463 

had minimal impact across all ecological zones, with all estimates concentrated near 464 

the origin and only two clusters observed. 465 

 466 

Fig. 8 Posterior estimates of the covariate variables of the Bayesian generalized non-linear 467 

multivariate multilevel model, built using annual data. The columns represent soil depths of 0 to 7 cm, 468 
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7 to 28 cm, and 28 to 100 cm. Red lines indicate linear regression of precipitation and soil moisture 469 

across all ecoregions, with cluster groups represented by three circles. The data point of each ecoregion 470 

belongs to a single and non-overlapping cluster. 471 

 472 

Interannual negative dependence was primarily observed in the montane 473 

grasslands and shrublands region, where GPP:LST drove this pattern across all three 474 

soil layers. All other variables lead to positive dependence (Fig. 8). The long-term 475 

trend in the annual-scale Bayesian model revealed strong patterns, with the most 476 

significant difference compared to the monthly scale being the influence of 477 

Ta:GPP:LST and Ta:LST, where different ecological zones exhibited substantial 478 

variation. Among the multiple variables, Ta drove the most negative dependence, with 479 

the greatest differences observed between ecological zones. In the surface layer, LST 480 

alone drove the negative dependence in the mangrove, rock, and ice regions. Ta drove 481 

the negative dependence in tropical and subtropical coniferous forests, lakes, and rock 482 

and ice regions. In the middle soil layers, the negative dependence driven by Ta was in 483 

temperate forests, arid shrublands, and flooded grasslands and savannas, while it 484 

driven by Ta:GPP was in tropical and subtropical moist broadleaf forests. The 485 

negative dependence driven by Ta:LST was fully distributed in quadrant IV. This 486 

pattern was observed in regions such as the montane grasslands and shrublands, 487 

tropical and subtropical coniferous forests, tropical and subtropical grasslands, 488 

savannas, and shrublands; and rock and ice regions. The strongest drivers of negative 489 

dependence in the deep layers were GPP:LST and Ta. The negative dependence driven 490 

by GPP:LST was found in the rock and ice regions, Mediterranean forests, 491 

woodlands, and scrub, as well as tundra and temperate coniferous forests in quadrant 492 

II. The negative dependence driven by Ta was observed in rock and ice regions, lakes, 493 

and temperate coniferous forests in quadrant II, and flooded grasslands and savannas 494 

in quadrant IV. 495 
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4. Discussion 496 

4.1 Characteristics of negative dependence areas 497 

In this study, joint distributions of precipitation and soil moisture were 498 

constructed using Kendall’s τ to characterize the nonlinear relationship. Consistent 499 

with previous findings, we observed a negative dependence between precipitation and 500 

soil moisture, particularly in arid and semi-arid regions (Qing et al., 2023; Yang et al., 501 

2018). At the monthly scale, τ values in surface layer were stronger, indicating that 502 

seasonal dynamics—such as intermittent rainfall events followed by rapid soil 503 

moisture loss through evapotranspiration—likely drive the observed negative 504 

correlation. While negative dependence generally decreases with depth, the middle 505 

layer shows an unexpectedly low percentage. This layer often corresponds to the main 506 

root zone, where stable plant water uptake reduces soil moisture variability and 507 

weakens the feedback signal, leading to a few grid cells with significant negative 508 

dependence (Thompson et al., 2010). In contrast, the deep soil layers may retain some 509 

long-term memory of moisture deficits, especially under prolonged dry conditions, 510 

which could contribute to stronger negative dependence than in the more buffered 511 

middle layer. On the annual scale, the negative dependence may instead reflect long-512 

term climate feedbacks. In high-latitude regions, for example, Arctic amplification 513 

and permafrost thawing can decouple precipitation inputs from effective soil moisture 514 

retention, leading to persistent moisture deficits despite increasing precipitation 515 

trends. Regions showing negative dependence between precipitation and soil moisture 516 

are primarily distributed in arid, semi-arid and cold high-latitude climates. 517 

Representative ecosystems include deserts and xeric shrublands, montane grasslands 518 

and shrublands, and Arctic tundra. Despite their climatic differences, these 519 

ecosystems share key ecohydrological traits, including limited precipitation input, 520 

strong evapotranspiration demand, sparse vegetation cover, and low soil moisture 521 

retention capacity. 522 

Different from monthly scale, the negative dependence at annual scale is 523 
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primarily generated in regions such as deserts, xeric shrublands, montane grasslands 524 

and shrublands. These ecosystems are specifically characterized by arid conditions, 525 

and particularly sensitive to environmental changes, making them much responsive to 526 

long-term climatic variability. In deserts and xeric shrublands, annual precipitation 527 

typically falls below 250 mm, while evaporation consistently exceeds rainfall 528 

(Lockwood et al., 2006). Vegetation in these regions is dominated by shallow-rooted 529 

shrubs, which offer minimal resistance to post-rainfall moisture loss. As a result, soil 530 

moisture often declines rapidly following precipitation events, leading to a 531 

counterintuitive negative relationship between rainfall and moisture storage. Montane 532 

grasslands and shrublands, despite occurring in more topographically complex 533 

terrains, also experience dry climatic conditions characterized by low precipitation, 534 

high temperatures, and elevated VPD (Olson and Dinerstein, 1998). These factors 535 

enhance evapotranspiration, limiting the effectiveness of rainfall in replenishing soil 536 

moisture. Consequently, increases in precipitation may coincide with soil moisture 537 

decline due to enhanced moisture loss. In contrast, Arctic tundra ecosystems—such as 538 

those found in northern North America and Eurasia—are defined by cold 539 

temperatures, continuous permafrost, and moderate but ineffective precipitation. 540 

Frozen soils impede infiltration, causing much of the precipitation to be lost as surface 541 

runoff rather than retained in the soil profile. Dominant vegetation includes mosses, 542 

sedges, and dwarf shrubs with shallow root systems, further limiting water uptake and 543 

storage (Olson and Dinerstein, 1998; Xue et al., 2021). 544 

4.2 Mechanism of negative dependence between precipitation and soil 545 

moisture 546 

4.2.1 Energy-Driven Mechanism: LST and Ta-Driven ET Dominance 547 

Negative dependence between precipitation and soil moisture was observed 548 

across several dry and cold ecoregions, including deserts and xeric shrublands, 549 

montane grasslands and shrublands, tundra. These regions are generally characterized 550 

by low precipitation and GPP, limiting vegetation’s ability to retain or utilize moisture 551 
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effectively (Olson and Dinerstein, 1998; Xue and Wu, 2023). In arid ecosystems, 552 

shallow-rooted vegetation and high temperatures result in rapid soil moisture loss 553 

following rainfall. In montane environments, stronger warming trends (Pepin et al., 554 

2022) and shallow-rooted vegetation (Stocker et al., 2023) further limit precipitation 555 

use, despite increased GPP under warming. Besides, the surface soil induced upward 556 

movement of soil water from the middle layer due to the osmotic and matric potential, 557 

further contributing to moisture depletion. In semi-arid grasslands, the interaction 558 

between soil texture and precipitation patterns further reinforces negative dependence. 559 

Brief rainfall events primarily moisten upper clay layers where grass roots concentrate 560 

(Sala and Lauenroth, 1985), while well-developed clay horizons restrict deep water 561 

percolation and shrub root expansion (Buxbaum and Vanderbilt, 2007). This physical 562 

confinement exacerbates water loss when increased GPP and LST enhance 563 

evapotranspiration from the shallow moistened zone, intensifying the precipitation-564 

soil moisture decoupling. High temperatures can lead to surface soil sealing, 565 

preventing rainfall from effectively entering the root zone. Model simulations confirm 566 

that in flat arid regions (Koukoula et al., 2021), such soil barriers promote the “dry 567 

soil advantage”—where precipitation triggers runoff rather than infiltration. 568 

The boreal forest and tundra ecosystems, often with permafrost, are temperature-569 

limited systems. Precipitation often falls as snow, which accumulates on the surface. 570 

Then, a low LST can cause soil freezing, and the presence of surface withered litter 571 

may further insulate the soil, preventing timely moisture replenishment. Permafrost in 572 

these regions can lead to surface runoff of some precipitation, preventing effective 573 

infiltration into the soil. The geological conditions, such as Karst landforms can also 574 

influence the relationship between precipitation and soil moisture. 575 

4.2.2 Biotic-Driven Mechanism: Vegetation Water Use and GPP Dominance  576 

High-altitude ecosystems, especially in the Arctic and Qinghai–Tibetan Plateau, 577 

are increasingly affected by warming and variable precipitation (Lamprecht et al., 578 

2018). These changes lead to reduced species abundance and increased GPP (Berauer 579 

et al., 2019). In montane grasslands and shrublands, species abundance negatively 580 
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correlates with soil nutrients and microbial functions (Graham Emily et al., 2024). 581 

Rising LST and extreme precipitation reduce microbial biomass and release soil 582 

minerals (Siebielec et al., 2020), intensifying light competition and lowering 583 

ecosystem stability. Biodiversity loss decreases soil water capacity, with some of 584 

these regions at high risk of water erosion (Straffelini et al., 2024).  585 

Soil moisture reduction in the surface and middle layer is mainly driven by root 586 

water uptake under high LST and GPP. Roots shift absorption to deeper layers during 587 

droughts (Yadav Brijesh et al., 2009). In dry seasons, plants in grasslands and 588 

shrublands retain leaves to support evaporative cooling (Prior et al., 1997), this 589 

strategy also seen in deserts and xeric shrublands, where winter precipitation and 590 

freezing reduce surface moisture. Even during rainfall, soil moisture may decline due 591 

to evapotranspiration, runoff, and plant uptake (Tomlinson et al., 2013), creating a 592 

negative precipitation–soil moisture relationship. Canopy interception also limits 593 

infiltration (Zhong et al., 2022). However, in high-latitude ecosystems like boreal 594 

forests and tundra, warming mitigates cold limitations, allowing precipitation to 595 

increase soil moisture, shifting the relationship to positive. 596 

Negative dependence in mid-to-deep soil layers can occur when a single factor 597 

dominates, limiting ecosystem compensation (Jarvis, 2011; Taylor and Klepper, 598 

1979). In contrast, positive dependence may arise from synergistic interactions 599 

between GPP and LST. Higher GPP can reflect deeper root systems or improved 600 

water-use efficiency, while increased LST may enhance soil moisture release and 601 

promote water availability together (Wang et al., 2008). This interaction may 602 

strengthen ecosystem feedbacks—e.g., higher GPP can improve soil structure through 603 

biomass and organic matter, boosting water retention (Chen et al., 2025). Such 604 

synergy can offset LST-driven evapotranspiration and enhance ecosystem resilience, 605 

particularly through freeze–thaw processes in cold regions. 606 

4.3 Data reliability 607 

In this study, multiple observational datasets were employed to reduce model-608 

driven uncertainty and enhance data reliability. CRU TS, ESA CCI, and GPCP were 609 
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selected due to their direct reliance on ground-based or satellite observations, in 610 

contrast to the model-based ERA5-Land product. Although ERA5 does offer a wide 611 

range of meteorological variables, it can introduce model uncertainties. Therefore, the 612 

datasets used in this study have independent source, which can avoid the potential 613 

false relationships between soil moisture and precipitation that may be caused by the 614 

same model architecture and input parameters. To investigate spatial heterogeneity, all 615 

data were spatially aggregated by ecoregion boundaries from the Conservation 616 

Biology Institute. These boundaries may introduce regional biases, which should be 617 

considered when interpreting the results. 618 

The copula method can access the dependence between different time series, 619 

after removing influences of the conditional means and variances as well as marginal 620 

distributions (Durante et al., 2025; Neumeyer et al., 2019). In this study, although 621 

precipitation–soil moisture dependence was assessed across different time scales, the 622 

monthly series were not de-seasonalized. As a result, the residual seasonal signals 623 

may influence short-term dependence structures. This limitation will be addressed in 624 

future work through seasonal adjustment. In the Bayesian modeling, GPP, LST, and 625 

air temperature were examined as drivers of negative dependence. Evapotranspiration 626 

was excluded due to its dependence on both soil moisture and temperature. We 627 

acknowledge that additional factors—such as wind, topography, and soil physical 628 

properties—may also modulate precipitation–soil moisture coupling but were not in 629 

the scope of this analysis. Future research incorporating these variables would provide 630 

a more comprehensive understanding of the underlying mechanisms. 631 

5. Conclusion 632 

This study explored the dependence relationships between precipitation and soil 633 

moisture at depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm from 2000 to 2019, by 634 

examining the control effect of precipitation volume, precipitation frequency, and 635 

evapotranspiration on soil moisture. Bayesian models were used to analyze the 636 

driving factors in the dependence of soil moisture to precipitation in different 637 

ecoregions of the Northern Hemisphere. The results suggest that, the negative 638 
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dependence proportion reached 19.2%, 0.7%, and 2.3% at monthly scale, while it was 639 

3.0%, 4.0%, and 8.6% at annual scale, respectively, for the three soil layers. 640 

Precipitation volume predominantly controlled soil moisture in the Boreal forest/taiga, 641 

temperate grasslands, savannas, and shrublands, while precipitation frequency 642 

primarily controlled soil moisture in the high-latitude regions of the Northern 643 

Hemisphere. The combined influence of evapotranspiration and precipitation 644 

exhibited clear seasonal patterns. Evapotranspiration was the dominant driver of soil 645 

moisture dynamics during the growing season, with a regression coefficient 646 

proportion greater than 75%. In contrast, precipitation volume played a more 647 

significant role in the surface and middle layer of non-growing season, with areas 648 

under strong univariate control accounting for over 40% of the total area. 649 

Additionally, the influence of precipitation frequency on soil moisture increased with 650 

latitude, the proportion of the regression coefficient averaging from 36.5% to 91.3%, 651 

highlighting a shift in controlling factors across climatic gradients. 652 

In regions such as temperate grasslands, savannas, shrublands, deserts, xeric 653 

shrublands, and tundra, negative dependencies between precipitation and soil 654 

moisture, driven by LST and Ta:GPP interactions, were observed. These negative 655 

dependencies were mainly attributed to the seasonality of precipitation in arid and 656 

semi-arid areas and the freeze–thaw processes in the soil, which hinder effective 657 

moisture replenishment, especially during winter when soil freezing prevents 658 

rainwater infiltration. In the intermediate and deep soil layers, negative dependencies 659 

were primarily driven by single variables, whereas positive dependencies resulted 660 

from multivariate interactions, likely due to the lack of compensatory mechanisms 661 

when a single variable dominated, or the enhancement of ecosystem feedbacks when 662 

both GPP and LST interacted. Additionally, when the ecosystem is simultaneously 663 

driven by GPP and LST, greater resilience may be exhibited. 664 

At the annual scale, the area of negative dependence increased with soil depth, 665 

with the most pronounced negative dependencies occurring in the montane grasslands 666 

and shrublands region. In this region, negative dependencies at all three soil depths 667 
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were driven by the GPP:LST interaction. A possible explanation is the long-term 668 

variability in precipitation and temperature, which may have influenced 669 

geomorphology, vegetation structure, and soil water retention capacity. 670 

 671 
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