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Abstract

Soil moisture plays a critical role in the land—atmosphere coupling system. It is
replenished by precipitation and transported back to the atmosphere through land
surface evaporation and vegetation transpiration. Soil moisture is, therefore,
influenced by both precipitation and evapotranspiration, with spatial heterogeneities
and seasonal variations across different ecological zones. Recently, negative
correlations between soil moisture and precipitation have been observed in Northern
Hemisphere ecosystems. However, the driving mechanisms of these negative
correlations, especially how soil moisture is influenced by precipitation and
evapotranspiration, still remain unclear. This study analyzes the dependence between
soil moisture and precipitation in different ecoregions to explore the driving
mechanisms and regional patterns. The joint distributions of precipitation and soil
moisture were analyzed at monthly and annual scales, using soil moisture and
precipitation data from ERAS5-Land and Global Precipitation Climatology Project,
respectively. The nonlinear negative dependencies reached to 19.2%, 0.7%, and 2.3%
at monthly scale, while were 3.0%, 4.0%, and 8.6% at annual scale, respectively, for
the three soil layers. These negative dependencies were shown to be most prominent
in temperate grasslands, savannas, shrublands, deserts, xeric shrublands, and tundra
regions, where driven by the land surface temperature and by the air temperature—
gross primary production relationship at the monthly scale based on Ridge regression
models and Bayesian models. Additionally, the negative dependence is also linked to
freeze—thaw cycles, precipitation seasonality, and temperature fluctuations, which
lead to asynchronous changes between soil moisture and precipitation at the seasonal
scale. At the annual scale, the negative dependence was associated with long-term
changes in precipitation and temperature that affect vegetation and surface properties,
by altering soil water capacity. These findings enhance the understanding of land—
atmosphere interactions providing a valuable basis for future research on drought,
hydrometeorology, and ecological conservation.

Keywords: climate change, precipitation, soil moisture, ecoregions
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1. Introduction

Soil moisture is a critical source of water for vegetation growth, replenished by
precipitation and groundwater, and returned to the atmosphere through
evapotranspiration. It plays a key role in weather conditions, vegetation dynamics,
and groundwater storage (Li et al. 2022; Qiao et al. 2023; Vereecken et al. 2008; Zhou
et al. 2021), with significant implications for the global climate. Surface soil moisture
regulates the distribution of available energy at the land surface and exchanges energy
with the near-surface atmosphere through sensible and latent heat fluxes, thereby
controlling the surface energy balance (Haghighi et al. 2018; McColl et al. 2017). In
contrast, deep soil moisture is more directly influenced by vegetation growth,
particularly by the development of plant roots, which play a crucial role in the vertical
infiltration of precipitation into deeper soil layers (Szutu and Papuga 2019; Xiao et al.
2024; Xue and Wu 2024).

Precipitation variability, which refers to the amplitude of precipitation
fluctuations over different times, influences soil moisture and thereby land surface
coupling (Koster et al. 2009; Taylor et al. 2012). Precipitation patterns are reported to
have undergone significant changes in recent decades (Lv et al. 2023; Mao et al.
2022; Wu et al. 2021), mainly manifested as anthropogenic amplification of
precipitation variability (Zhang et al. 2024). The increase in the frequency of extreme
precipitation events (Myhre et al. 2019; Wang et al. 2022) and decrease in the
frequency of smaller precipitation events (Ma et al. 2015) amplify soil moisture
fluctuations and prolong the moisture stress periods between consecutive precipitation
events (Knapp et al. 2008). This can directly affect vegetation growth and soil
moisture responses (Feldman et al. 2024; He et al. 2023), particularly through changes
in the duration and intensity of soil evaporation and plant transpiration (Gu et al.
2021; Wullschleger and Hanson 2006). Soil moisture has been shown to be negatively
correlated with precipitation in certain regions, based on Pearson correlation analyses
(Cook et al. 2006; Yang et al. 2018). The changes in soil moisture at different depths

also show notable discrepancies (Shen et al. 2016; Zhu et al. 2014). Surface soil
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moisture has been shown to respond to precipitation approximately a month earlier
than deeper soil moisture, with a more pronounced positive correlation between
precipitation and soil moisture occurring at depths greater than 50 cm (Zhang et al.
2020).

Most current analyses of the relationship between soil moisture and precipitation
assume a linear relationship. In reality, the response of soil moisture to precipitation is
extremely complex and often nonlinear (Drager et al. 2022). This kind of nonlinear
and asymmetric correlation is generally referred to as “dependence”. The nonlinear
dependence of soil moisture to precipitation is currently not well understood.
Moreover, the factors driving this negative dependence between soil moisture and
precipitation remain poorly understood due to the complicated land atmosphere
coupling processes, particularly in the Northern Hemisphere where different types of
vegetation coverage are present. Among the methods used to explore nonlinear
relationships, the copula function is one of the most widely applied approaches for
modeling the joint distributions of precipitation and soil moisture (Cammalleri et al.
2024). The copula is a stochastic model that can reveal nonlinear and asymmetric
dependence structures, which are difficult to capture using traditional linear methods.
It provides a flexible framework for modeling joint distributions of multiple variables,
allowing for a more precise understanding of the evolving dependence of soil
moisture on precipitation than that offered by traditional linear regression and
correlation methods.

In terms of the water cycle, soil moisture is replenished by precipitation and
groundwater, while also being absorbed by plant roots and lost through
evapotranspiration. Therefore, the change of soil moisture is actually simultaneously
influenced by precipitation volume, frequency, and evapotranspiration. However, the
response of soil moisture to precipitation and evapotranspiration varies across
different time scales. The long-term effects of changes in evapotranspiration and
precipitation on soil moisture are further shaped by seasonal transitions, with

significant differences observed at different soil depths (Szutu and Papuga 2019).
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These differences are influenced by factors such as soil freeze—thaw processes and
vegetation community structure. Therefore, the relative contributions of
evapotranspiration, precipitation volume, and frequency to soil moisture changes
should be quantified at different time scales.

Although previous studies have identified the mechanisms of soil moisture
variation across different time scales (Shen et al. 2018; Vidana Gamage et al. 2020),
the interaction among precipitation, evapotranspiration and soil water under climate
change may have changed over different time scales. The dependence of soil moisture
to precipitation and its interactions with evapotranspiration under conditions of
climate change require further investigation. Accordingly, the ridge regression models
for precipitation amount, precipitation frequency, evapotranspiration, and soil
moisture can be used to quantify the relative influence of precipitation and
evapotranspiration on soil moisture. As an improvement of the least squares
estimation method, it can handle the multi-collinearity problems of the covariates,
although it is usually biased.

The aim of this study was to explore the nonlinear responses of soil moisture to
precipitation at monthly and annual scales from 2000 to 2019, with a focus on the
Northern Hemisphere where vegetation coverage is abundant. The joint distribution of
precipitation and soil moisture was established to examine differences in soil moisture
responses to precipitation and the varying influences of precipitation volume,
frequency, and evapotranspiration on soil moisture at monthly and seasonal scales.
The gross primary productivity (GPP), land surface temperature (LST), and near-
surface air temperature (T,) were selected as key driving factors in a Bayesian model,
since the dependence between precipitation and soil moisture is influenced by factors
such as vegetation growth, temperature, and soil properties. The driving factors and
regional characteristics of the negative correlation observed between precipitation and
soil moisture in certain regions were identified. This study enhances the
understanding of complex interactions between key meteorological factors such as

precipitation, evapotranspiration, and soil moisture under climate change, and
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provides a basis for future land—atmosphere coupling system modeling.

2. Material and Method

2.1 Material

2.1.1 Soil moisture

The soil moisture data used in this study were obtained from the fifth generation
of reanalysis from the European Centre for Medium-Range Weather Forecasts
(ECMWEF), using atmospheric forcing to control the simulated land field variables and
provide the land components (ERAS5-Land) (Mufioz Sabater 2019). ERAS5-Land
provides a consistent description of the evolution of the energy and water cycles over
land, and therefore, has been widely used in various land surface applications such as
flood or drought forecasting (Joaquin Munoz-Sabater 2021). The ERAS5-Land soil
moisture data are available for four layers, 0 to 7, 7 to 28, 28 to 100, and 100 to 289
cm, at a 0.1° x 0.1° spatial and hourly temporal resolution from 1950 to present. The
soil moisture from the first three soil layers during 2000 to 2019 were used. They
were resampled to a 0.25° x 0.25° spatial resolution and averaged to daily, monthly,

and yearly scales to be consistent with other variables in this study.

2.1.2 Precipitation

The Global Precipitation Climatology Project (GPCP) is a global precipitation
project that integrates infrared and microwave data from multiple geostationary and
polar-orbiting satellites, and corrected by many meteorological station observations
(Adler et al. 2003; Huffman and Bolvin 2013). It is an important component of the
Global Energy and Water Cycle Experiment in the World Climate Research
Programme. A daily precipitation field with a 1° x 1° resolution since 1996 was
generated by integrating the satellite products and then adjusting the daily
precipitation by monthly data observed from the ground to make it consistent with the
meteorological observations. Daily precipitation was resampled to a 0.25° x 0.25°

spatial resolution and then used to calculate the total precipitation volume and
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precipitation frequency at the monthly, seasonal, and annual scale from 2000 to 2019.

2.1.3 Covariate variables

2.1.3.1 Gross primary production

The gross primary production (GPP) dataset was from the Vegetation Optical
Depth Climate Archive v2, which used microwave remote sensing estimates of
vegetation optical depth to estimate the GPP at the global scale for the period 1988 to
2020 (Wild et al. 2022). These GPP data were trained and evaluated against
FLUXNET in-situ observations and compared with largely independent state-of-the-
art GPP datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS).
The Vegetation Optical Depth Climate Archive v2 GPP dataset has a 0.25° x (0.25°
spatial and half-monthly temporal resolution, covered from 2000 to 2019.
2.1.3.2 Near surface air temperature

The air temperature data (T,) were obtained from the Climatic Research Unit
gridded Time Series (CRU TS), which is one of the most widely used climate datasets
and is produced by the National Centre for Atmospheric Sciences in the United
Kingdom. CRU TS v4.07 was derived by the interpolation of monthly climate
anomalies from extensive networks of weather station observations (Harris et al.
2020). It provides monthly land surface data from 1901 to 2020 at a 0.5° x 0.5°
resolution worldwide. The mean temperatures at the monthly, seasonal, and annual
scales during 2000 to 2019 were calculated and resampled to a 0.25° x 0.25° spatial
resolution.
2.1.3.3 Land surface temperature

Land surface temperature (LST) data were accessed from the European Space
Agency Climate Change Initiative (CCI), which is funded by the European Space
Agency as part of the Agency’s CCI Program. It aims to significantly improve current
satellite LST data records to meet the challenging Global Climate Observing System
requirements for climate applications and realize the full potential of long-term LST
data for climate science (Hollmann et al. 2013). These data were the first global LST

climate data records of over 25 years at a 0.25° x 0.25° resolution and with an
7
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expected error within 1 K. The LST dataset included ascending and descending orbit
data, which were used to calculate the mean value of separate annual and monthly
averages during 2000 to 2019.

2.1.3.4 Evapotranspiration

Evapotranspiration data were accessed from the Global Land Evaporation
Amsterdam Model (GLEAM) v3.8a, which provides data of the different components
of land evapotranspiration, including transpiration, bare-soil evaporation, interception
loss, open-water evaporation, and sublimation, in addition to other related variables
such as surface and root-zone soil moisture, sensible heat flux, potential evaporation,
and evaporative stress conditions (Miralles et al. 2011). The monthly, seasonal, and
annual averages during 2000 to 2019 were calculated based on a 0.25° x 0.25° spatial
resolution.
2.1.3.5 Terrestrial ecoregions

Data on terrestrial ecoregions around the globe were accessed from the
Conservation Biology Institute (Olson et al. 2001). These ecoregions are relatively
large units of land containing distinct assemblages of natural communities and
species, with boundaries that approximate the original extent of natural communities
prior to major land-use changes. The delineations were completed based on hundreds
of previous biogeographical studies and were refined and synthesized using existing
information in regional workshops over the course of 10 years to assemble the global
dataset (Olson et al., 2001). An ecological layer file encompassing 16 major
categories was downloaded.

In this study, the ecoregion boundaries rather than Kdppen climate zones were
used to investigate the spatial patterns of precipitation—soil moisture feedbacks.
Ecoregions are divided based on a combination of factors including vegetation types,
soil characteristics, substrate, and climate conditions. This multi-factor approach
allows ecoregions to better reflect ecological and hydrological processes than
classifications based solely on climate variables. Since soil moisture dynamics and

their feedbacks with precipitation are strongly influenced by vegetation structure, root
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systems, and edaphic properties, the ecoregions can provide a more mechanistic and
spatially relevant framework for our analysis. All of the T,, LST, GPP, soil moisture,
and precipitation datasets were masked by these 16 terrestrial ecoregions (Fig. 1) in a
0.25° grid, and monthly, seasonal, or annual mean values in the regions were

calculated separately.

180° 0° 180°
i
60°N 60°N
30°N 30°N
\ h ¥ \‘1 ki v \ ’ \:!bas‘ ®  Ecri FAD, NOAA, USGS
180° 0° 180°
Terrestrial Ecoregions of the World
Tropical and Temperate Tropical and Flooded Mediterranean
[ Subtropical Moist Broadleaf and subtropical Grasslands and — Forests,
Broadleaf Forests Mixed Forests grasslands, Savannas Woodlands, and
Tropical and Temperate savannas, and Montane Scrub
Subtropical Dry Coniferous Forests shrublands Grasslands and Deserts and Xeric
Broadleaf Forests Boreal Forests/ Temperate Shrublands Shrublands
Tropical and Taiga (‘irasslands. Tundra Il Mangroves
Subtropical ;?V‘"‘S]‘ms& and Liikes
~oniferous Forests hrublands
Coniferous Forests Rockand 16
Fig. 1 The 16 Terrestrial Ecoregions of the Northern Hemisphere.
2.2 Method

2.2.1 Joint distribution

In this study, the joint distribution between precipitation and soil moisture from
depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, using the copula function at both
the monthly and annual scales was established. A copula function links multivariate
distribution functions with their one-dimensional marginal distributions, and is used
for the examination of dependencies between multiple variables. It captures nonlinear
dependence structures through joint and marginal probabilities of a pair of variables in
complex multivariate systems (Nelsen 2005). In this study, the copula function was
used to explore the nonlinear dependence between precipitation and soil moisture

(Equation 1):

FP,SM(xry) = C(FP(x):FSM(.V))» (1)

where Fp(x) and Fsy(y) denote the marginal distribution of precipitation and soil

9
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moisture, respectively, and C(u,v) is the copula function linking these two variables.
The process for establishing the joint distribution was as follows: (1) The marginal
distributions of precipitation and soil moisture were fitted using an automatic
optimization function. (2) The most suitable copula function was selected based on
the Akaike Information Criterion (AIC) values at the grid level, including Gaussian
copula, Student’s t copula, Clayton copula, and 37 other copula functions. Different
copula functions may be selected for different grid cells. (3) The chosen copula
function was then used to compute the corresponding Kendall’s tau (t), upper tail
dependence (Ay), and lower tail dependence (Ar).

The statistic T measures the correlation between two variables to determine the
presence of a monotonic relationship. Ay and A represent the likelihood that, when
one variable reaches extreme high or low values, the other variable also reaches
extreme values. The calculations of 1, Ay, and Ay are based on the dependence
parameters of the joint distribution of precipitation and soil moisture, and depends on
the selected copula function using the AIC method. Taking the Tawn copula function

as an example, the calculation of t, Ay, and Ay are based on the following equations.

r=1-2L 4 20 @)
h=(1-28)- (22", 3)

and
A= 8-(2-2"), 4

where 0 is the dependence parameter of the Tawn copula, and o represents the
asymmetry parameter. For some copula functions, such as Clayton copula, the
Kendall’s t values get the priority over the upper and lower tail dependencies in the
estimation process. All the calculations were performed using R v4.3.3 with the
VineCopula and copula packages, for which detailed calculation methods for 1, Ay,
and Ay for all copulas are provided. To address the potential delayed response of soil
moisture to precipitation, lagged correlation analysis was conducted. For each grid
cell, the AIC value was calculated to select copula function (Fig. S1), as shown in the

supplementary file. Then the Kendall‘s tau correlation was calculated between
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precipitation and soil moisture with time lags ranging from 0 to 12 months (Fig. S2).
The lag corresponding to the maximum absolute correlation was identified as the

optimal lag.

2.2.2 Ridge regression

Ridge regression is designed to address collinear data, although it is a biased
estimation method. It is an improved least squares estimation used to generate more
reliable regression coefficients at the cost of unbiasedness. Ridge regression
outperforms the traditional least squares method when fitting ill-conditioned data
(McDonald 2009). Due to the large uncertainty in precipitation and soil moisture data,
ridge regression models were applied for three soil layers, and for both monthly and
seasonal scales. Spring was defined as from March to May, summer from June to
August, autumn from September to November, and winter from December to
February of the following year. Precipitation frequency, volume, and
evapotranspiration were treated as predictor variables, with T, as a control variable
and soil moisture as the response variable.

To clearly differentiate the influence of variables, the regression coefficients for
precipitation volume, frequency, and evapotranspiration were normalized using
Equation (5) and then assigned to the three primary colors. This approach resulted in a

gridded ternary phase diagram.

Vi

3
Zi=1 'Ui,

where v; (v4,V,,V3) represent precipitation frequency, precipitation volume, and

Wi=1_

)

evapotranspiration (ET), respectively, and W; refers to the adjusted weight of v;.

2.2.3 Bayesian generalized non-linear multivariate multilevel models

The Bayesian generalized non-linear multivariate multilevel model integrates
Bayesian inference, generalized linear models, non-linear modeling, multivariate
analysis, and hierarchical structures, making it well-suited for complex hierarchical

data. It can effectively capture non-linear dependencies among multiple response
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variables (Browne and Draper 2006; Biirkner 2017). The model parameters are treated
as random variables with prior distributions under the Bayesian framework. Posterior
distributions of the parameters are obtained by combining the likelihood function and
prior distributions. The Markov Chain Monte Carlo (MCMC) algorithm is then used
to resample from the posterior distribution and estimate the posterior means of the
parameters to represent the optimal results. Given the hierarchical and multivariate
nature of the data, a multilevel structure and multivariate analysis was introduced to
model the mixed effects of variables and to capture the relationships among multiple
related response variables. Random effects were also incorporated to account for
heterogeneity among individuals and reflect the varying effects of univariate or
multivariate mixtures on the response variables, thereby improving the accuracy of
estimates.

Since the impact approaches of GPP, LST, and T, on precipitation (P) and soil
moisture (SM) are often unknown, the Gaussian distribution was specified as the prior
distribution for these variables in the Bayesian model. To investigate how GPP, LST,
and T, influence the precipitation—soil moisture coupling relationship, both
precipitation and soil moisture were treated as response variables. Bayesian non-linear
multivariate multilevel models were developed at both the monthly and seasonal
scales, with independent models for 16 ecological zones (Equation 6):

Posterior estimates = bf(P ~ T, + GPP + LST + T,:GPP + T,:LST + GPP:LST + T,:GPP:LST) +
bf(SM ~ T, + GPP + LST + T,:GPP + T,:.LST + GPP:LST + T,:GPP:LST),  (6)
where the colon represents multivariate mixed effects of different variables; bf stands
for Bayesian formula, used to specify each part of the model for P and SM separately;
and the “+” combines P and SM into a multivariate model. The model was
implemented in R 4.3.3 using the brms package, which performs diagnostic checks on
the sampling results using indicators such as the Gelman—Rubin diagnostic (Rhat
statistic) and the effective sample size (ESS). To ensure stability and convergence,
four MCMC chains were used for iterative sampling, with each chain running 4,000

iterations, including 2,000 warm-up iterations. A maximum tree depth of 10 was set.
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Estimate values of all ecoregions were classified into different clusters using the K-

means method in R 4.3.3.

3. Results

3.1 Estimation from the copula function

(a1) Layer 1, lower tail dependence (b1) Layer 2, lower tail dependence (c1) Layer 3, lower tail dependence
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60°N - : R . A
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(a2) Layer 1, Kendall's tau (b2) Layer 2, Kendall's tau (c2) Layer 3, Kendall’'s tau
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Longitude

Fig. 2 Spatial distribution of Kendall’s tau (z), the upper tail dependence (Ay), and the lower tail
dependence (Ar) on the 0.25° x 0.25° grids between monthly precipitation volume and soil moisture
during 2000 to 2019. The three columns are for the soil moisture from depths of 0 to 7 cm, 7 to 28 cm,

and 28 to 100 cm, respectively.

The copula analysis of monthly average soil moisture and total monthly
precipitation volume revealed a clear negative dependence at all three soil depths
(Fig. 2(a2, b2, c2)). The percentages of grid cells exhibiting negative dependence at
these depths were 19.2%, 0.7%, and 2.3%, respectively. The negative dependence
between precipitation and soil moisture is more prevalent in the surface soil layer,
where the grid cells exhibiting are more widespread. In contrast, at the middle and
deep soil layers, these negative dependence patterns are primarily confined to the
margins of the Sahara desert, the montane grasslands and shrublands, and parts of the
deserts and xeric shrublands regions. In the surface layer, the negatively dependent
grid patches are more spatially scattered, mainly distributed across the tundra,

montane grasslands and shrublands, deserts and xeric shrublands, as well as the
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tropical and subtropical moist broadleaf forests.

Regions exhibiting high AL values were primarily located in the deserts and xeric
Shrublands, as well as in parts of India, where AL reached values as high as 0.99 (Fig.
2(al, bl, cl)). With increasing soil depth, AL values gradually increased across the
Eurasian continent. Similarly, Ay exhibited a clear reduction in spatial extent with
increasing soil depth, with the majority of these regions located in the temperate
broadleaf and mixed forests and the southern margin of the Sahara desert. With
increasing soil depth, AU values consistently decreased, resulting in a lack of clear
correspondence between these regions and specific ecological zones (Fig. 2(a3, b3,
c3)).

From the annual scale copula results (Fig. 3), precipitation and soil moisture
generally exhibited positive dependencies across the entire soil profile. However,
negative dependencies were observed in regions such as the southern Sahara Desert,
Mongolia, and the Elizabeth Islands, reaching 3.0%, 4.0%, and 8.6%, respectively
(Fig. 3(a2, b2, c2)). The negative dependencies in these areas expanded outward,
primarily concentrated in the montane grasslands and shrublands region. Both the A
and the Ay displayed scattered, patchy distributions, with average values for each soil

layer ranging from 0.4 to 0.6.

(a1) Layer 1, lower tail dependence (b1) Layer 2, lower tail dependence (c1) Layer 3, lower tail dependence
80°N - - 7 08
60°N 1 755
40°N A 06
20°N A - - -
Phe L Vi, W 04
(b2) Layer 2, Kendall's tau (c2) Layer 3, Kendall’s
& 80°N - J— JRE , 0.2
'g 60°N - = = *"i?: g "
-:é 40°N - ; v
] 20°N - . o N ) v 0.2
A (‘w’% » dal
(c3) Layer 3, upper tail dependence 04
80°N - : 4 ; s
60°N - % 0.6
0] - :,’
2o | sy
100°W 0° 100°E 0° 100°E
Longitude

Fig. 3 Spatial distributions of the 7, Ay, and AL on the 0.25° x 0.25° grids between annual
precipitation volume and soil moisture during 2000 to 2019. The three columns are for the soil

moisture from depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, respectively.
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3.2 Control of soil moisture by precipitation and evapotranspiration
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Fig. 4 Ternary map of factors controlling soil moisture, monthly, for the period 2000 to 2019. The
bottom-left histogram in the subgraph represents the proportion of grid cells where one variable exerts
strong univariate control (with a regression coefficient greater than 75% of the total sum of the three

variables), suggesting that soil moisture was predominantly controlled by that specific variable.

On the monthly scale, precipitation exerted the strongest control over soil
moisture (Fig. 4), with regions most influenced by precipitation accounting for more
than 40% of the variation. These areas were primarily located in the boreal
forest/taiga, temperate grasslands, savannas, shrublands, and the eastern part of North
America. In contrast, regions where evapotranspiration predominated were found in
Alaska—Northwest Canada, the western United States, the Sahara Desert, and the
Middle East. High-latitude regions, especially northern Canada, were primarily
influenced by precipitation frequency. Areas where precipitation volume, frequency,
and evapotranspiration had similar levels of control were mainly found in Eastern
Europe and Russia.

The results from ridge regression revealed more distinct patterns at the seasonal
scale compared to the monthly scale (Fig. 5). Soil moisture in spring and summer was
mainly controlled by evapotranspiration, which influenced over 40% of grid cells,
particularly in the middle soil layers, where it dominated nearly 80%. In contrast,

precipitation volume had a greater influence during autumn and winter, particularly in
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the continental United States, southern Sahara Desert, coastal India, and eastern
China. Additionally, as soil depth increased, the influence of evapotranspiration and
precipitation frequency gradually intensified. However, in summer, as soil depth
increased, the area primarily controlled by precipitation volume expanded (indicated
by an increase in the intensity of magenta color in the figures) especially in the
eastern United States, Europe, and South Asia. These regions remained strongly
influenced by precipitation volume even as evapotranspiration control increased with
increasing soil depth during autumn. Northern Russia, Canada, Greenland, and
northern Alaska were notably influenced by both precipitation frequency and
precipitation volume, with this effect being more pronounced during the non-growing
season. In winter, the area controlled by precipitation frequency was larger than that

in spring.
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Fig. 5 Ternary map of factors controlling soil moisture, seasonally, for the period 2000 to 2019.
The bottom-left histogram in the subgraph represents the proportion of the grid cells where one
variable exerts strong univariate control (with a regression coefficient greater than 75% of the total sum
of the three variables), suggesting that soil moisture was predominantly controlled by that specific

variable.

At the annual scale, precipitation amount exerts a dominant influence across all

three soil depth layers, accounting for more than 40% of the total area (Fig. 6). The
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spatial extent of areas dominated by precipitation amount, precipitation frequency,
and evapotranspiration remains largely consistent with that observed at the monthly
scale. The regions dominated by precipitation frequency are still primarily located in
high-latitude areas, particularly in Greenland and the northern parts of Canada,
although no distinct ecological zone patterns are observed in these areas. Regions
dominated by precipitation amount are mainly distributed across boreal forests,
temperate grasslands, savannas and shrublands, temperate broadleaf and mixed
forests, as well as tropical and subtropical moist broadleaf forests. In temperate
regions, soil moisture is primarily controlled by precipitation amount due to moderate
temperatures and limited rainfall, making substantial precipitation is essential for soil
moisture replenishment. In contrast, tropical and subtropical regions experience high
temperatures and intense evapotranspiration, requiring substantial precipitation to

maintain a water balance.

(a) Layer 1 (b) Layer 2

Latitude

Frequency Volume

Longitude

Fig. 6 Ternary map of factors controlling soil moisture at annual scale, for the period 2000 to
2019. The bottom-left histogram in the subgraph represents the proportion of grid cells where one
variable exerts strong univariate control (with a regression coefficient greater than 75% of the total sum
of the three variables), suggesting that soil moisture was predominantly controlled by that specific

variable.

3.3 Drivers of negative dependencies between soil moisture and
precipitation

For each model in this study, four MCMC chains were used for iterative

sampling. The sampling results demonstrated that the chains for both the monthly and
17



428

429

430

431

432
433

434

435

436

437

438

439

annual scales were well-distributed in the parameter space, with no noticeable trends
or drifts, indicating convergence to the target posterior distribution. The convergence
was considered satisfactory, with all models yielding a Rhat value below 1.05 (Figs.

S3, S4).
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Fig. 7 Posterior estimates of the covariate variables of the Bayesian generalized non-linear
multivariate multilevel model, built using monthly data. The columns represent soil depths of 0 to 7
cm, 7 to 28 cm, and 28 to 100 cm. Red lines indicate linear regressions of precipitation and soil

moisture across all ecoregions, with cluster groups represented by three circles.

The negative dependence in the surface layer across the Northern Hemisphere

was primarily driven by the interactions between GPP:LST and T,:GPP (Fig. 7). It
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shows that the regression trend line crosses quadrants II and IV. The negative
relationship driven by GPP:LST was predominantly concentrated in quadrant IV,
where increased precipitation lead to decreased soil moisture in the boreal forest,
tundra, temperate coniferous forest, and temperate broadleaf mixed forest. The
negative dependence driven by T,:GPP was mainly found in quadrant II, with
distributions in deserts and xeric shrublands, boreal forests, montane grasslands and
shrublands, temperate broadleaf mixed forests, and tundra. For the middle soil layer,
GPP:LST drove a negative dependence in tropical and subtropical grasslands,
savannas, shrublands, and tropical and subtropical coniferous forests. T, and T,:GPP
drove in Mediterranean forests, woodlands, and scrub, as well as in temperate
grasslands, savannas, and shrublands. The mixed effects of T,:GPP:LST and T,:LST
had minimal impact across all ecological zones, with all estimates concentrated near

the origin and only two clusters observed.
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Fig. 8 Posterior estimates of the covariate variables of the Bayesian generalized non-linear
multivariate multilevel model, built using annual data. The columns represent soil depths of 0 to 7 cm,
7 to 28 cm, and 28 to 100 cm. Red lines indicate linear regression of precipitation and soil moisture

across all ecoregions, with cluster groups represented by three circles.

Interannual negative dependence was primarily observed in the montane
grasslands and shrublands region, where GPP:LST drove this pattern across all three
soil layers. All other variables lead to positive dependence (Fig. 8). The long-term
trend in the annual-scale Bayesian model revealed strong patterns, with the most
significant difference compared to the monthly scale being the influence of
T,:GPP:LST and T,:LST, where different ecological zones exhibited substantial
variation. Among the multiple variables, T, drove the most negative dependence, with
the greatest differences observed between ecological zones. In the surface layer, LST
alone drove the negative dependence in the mangrove, rock, and ice regions. T, drove
the negative dependence in tropical and subtropical coniferous forests, lakes, and rock
and ice regions. In the middle soil layers, the negative dependence driven by T, was in
temperate forests, arid shrublands, and flooded grasslands and savannas, while it
driven by T,:GPP was in tropical and subtropical moist broadleaf forests. The
negative dependence driven by T,:LST was fully distributed in quadrant IV. This
pattern was observed in regions such as the montane grasslands and shrublands,
tropical and subtropical coniferous forests, tropical and subtropical grasslands,
savannas, and shrublands; and rock and ice regions. The strongest drivers of negative
dependence in the deep layers were GPP:LST and T,. The negative dependence driven
by GPP:LST was found in the rock and ice regions, Mediterranean forests,
woodlands, and scrub, as well as tundra and temperate coniferous forests in quadrant
II. The negative dependence driven by T, was observed in rock and ice regions, lakes,
and temperate coniferous forests in quadrant II, and flooded grasslands and savannas

in quadrant I'V.
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4. Discussion

4.1 Characteristics of negative dependence areas

In this study, joint distributions of precipitation and soil moisture were
constructed using Kendall’s t to characterize the nonlinear relationship. Consistent
with previous findings, we observed a negative dependence between precipitation and
soil moisture, particularly in arid and semi-arid regions (Qing et al. 2023; Yang et al.
2018). At the monthly scale, t values in surface layer were stronger, indicating that
seasonal dynamics—such as intermittent rainfall events followed by rapid soil
moisture loss through evapotranspiration—Ilikely drive the observed negative
correlation. On the annual scale, the negative dependence may instead reflect long-
term climate feedbacks. In high-latitude regions, for example, Arctic amplification
and permafrost thawing can decouple precipitation inputs from effective soil moisture
retention, leading to persistent moisture deficits despite increasing precipitation
trends. Regions showing negative dependence between precipitation and soil moisture
are primarily distributed in arid, semi-arid and cold high-latitude -climates.
Representative ecosystems include deserts and xeric shrublands, montane grasslands
and shrublands, and Arctic tundra. Despite their climatic differences, these
ecosystems share key ecohydrological traits, including limited precipitation input,
strong evapotranspiration demand, sparse vegetation cover, and low soil moisture
retention capacity.

In deserts and xeric shrublands, annual precipitation typically falls below 250
mm, while evaporation consistently exceeds rainfall (Lockwood et al. 2006). .
Vegetation in these regions is dominated by shallow-rooted shrubs, which offer
minimal resistance to post-rainfall moisture loss. As a result, soil moisture often
declines rapidly following precipitation events, leading to a counterintuitive negative
relationship between rainfall and moisture storage. Montane grasslands and
shrublands, despite occurring in more topographically complex terrains, also

experience dry climatic conditions characterized by low precipitation, high
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temperatures, and elevated VPD (Olson and Dinerstein 1998). These factors enhance
evapotranspiration, limiting the effectiveness of rainfall in replenishing soil moisture.
Consequently, increases in precipitation may coincide with soil moisture decline due
to enhanced moisture loss. In contrast, Arctic tundra ecosystems—such as those found
in northern North America and Eurasia—are defined by cold temperatures, continuous
permafrost, and moderate but ineffective precipitation. Frozen soils impede
infiltration, causing much of the precipitation to be lost as surface runoff rather than
retained in the soil profile. Dominant vegetation includes mosses, sedges, and dwarf
shrubs with shallow root systems, further limiting water uptake and storage (Olson

and Dinerstein 1998; Xue et al. 2021).

4.2 Mechanism of negative dependence between precipitation and soil
moisture

4.2.1 Energy-Driven Mechanism: LST and Ta-Driven ET Dominance

Negative dependence between precipitation and soil moisture was observed
across several dry and cold ecoregions, including deserts and xeric shrublands,
montane grasslands and shrublands, tundra. These regions are generally characterized
by low precipitation and GPP, limiting vegetation’s ability to retain or utilize moisture
effectively (Olson and Dinerstein 1998; Xue and Wu 2023). In arid ecosystems,
shallow-rooted vegetation and high temperatures result in rapid soil moisture loss
following rainfall. In montane environments, stronger warming trends (Pepin et al.
2022) and shallow-rooted vegetation (Stocker et al. 2023) further limit precipitation
use, despite increased GPP under warming. Besides, the surface soil induced upward
movement of soil water from the middle layer due to the osmotic and matric potential,
further contributing to moisture depletion. In semi-arid grasslands, the interaction
between soil texture and precipitation patterns further reinforces negative dependence.
Brief rainfall events primarily moisten upper clay layers where grass roots concentrate

(Sala and Lauenroth 1985), while well-developed clay horizons restrict deep water
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percolation and shrub root expansion (Buxbaum and Vanderbilt 2007). This physical
confinement exacerbates water loss when increased GPP and LST enhance
evapotranspiration from the shallow moistened zone, intensifying the precipitation-
soil moisture decoupling. High temperatures can lead to surface soil sealing,
preventing rainfall from effectively entering the root zone. Model simulations confirm
that in flat arid regions (Koukoula et al. 2021), such soil barriers promote the “dry soil
advantage”—where precipitation triggers runoff rather than infiltration.

The boreal forest and tundra ecosystems, often with permafrost, are temperature-
limited systems. Precipitation often falls as snow, which accumulates on the surface.
Then, a low LST can cause soil freezing, and the presence of surface withered litter
may further insulate the soil, preventing timely moisture replenishment. Permafrost in
these regions can lead to surface runoft of some precipitation, preventing effective
infiltration into the soil. The geological conditions, such as Karst landforms can also
influence the relationship between precipitation and soil moisture.

4.2.2 Biotic-Driven Mechanism: Vegetation Water Use and GPP Dominance

High-altitude ecosystems, especially in the Arctic and Qinghai—Tibetan Plateau,
are increasingly affected by warming and variable precipitation (Lamprecht et al.
2018). These changes lead to reduced species abundance and increased GPP (Berauer
et al. 2019). In montane grasslands and shrublands, species abundance negatively
correlates with soil nutrients and microbial functions (Graham Emily et al. 2024).
Rising LST and extreme precipitation reduce microbial biomass and release soil
minerals (Siebielec et al. 2020), intensifying light competition and lowering
ecosystem stability. Biodiversity loss decreases soil water capacity, with some of
these regions at high risk of water erosion (Straffelini et al. 2024).

Soil moisture reduction in the surface and middle layer is mainly driven by root
water uptake under high LST and GPP. Roots shift absorption to deeper layers during
droughts (Yadav Brijesh et al. 2009). In dry seasons, plants in grasslands and
shrublands retain leaves to support evaporative cooling (Prior et al. 1997), this

strategy also seen in deserts and xeric shrublands, where winter precipitation and
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freezing reduce surface moisture. Even during rainfall, soil moisture may decline due
to evapotranspiration, runoff, and plant uptake (Tomlinson et al. 2013), creating a
negative precipitation—soil moisture relationship. Canopy interception also limits
infiltration (Zhong et al. 2022). However, in high-latitude ecosystems like boreal
forests and tundra, warming mitigates cold limitations, allowing precipitation to
increase soil moisture, shifting the relationship to positive.

Negative dependence in mid-to-deep soil layers can occur when a single factor
dominates, limiting ecosystem compensation (Jarvis 2011; Taylor and Klepper 1979).
In contrast, positive dependence may arise from synergistic interactions between GPP
and LST. Higher GPP can reflect deeper root systems or improved water-use
efficiency, while increased LST may enhance soil moisture release and promote water
availability together (Wang et al. 2008). This interaction may strengthen ecosystem
feedbacks—e.g., higher GPP can improve soil structure through biomass and organic
matter, boosting water retention (Chen et al. 2025). Such synergy can offset LST-
driven evapotranspiration and enhance ecosystem resilience, particularly through

freeze—thaw processes in cold regions.

4.3 Data reliability

The CRU TS dataset used in this study is based on ground-based meteorological
station observations, while the ESA CCI dataset is derived from satellite-based
surface temperature measurements. The GPCP dataset combines both ground-based
observations and satellite data, which are directly based on actual observational data.
In contrast, the ERAS5-Land dataset is generated using ERAS as the forcing data.
While ERAS provides a comprehensive range of meteorological data and is widely
used, it relies on numerical weather prediction models, which are based on principles
of atmospheric physics. These models use observational data to calibrate their
outputs, and using ERAS meteorological data, uncertainties inherent in the model are
introduced. Consequently, different sources of meteorological data were selected for
this study.

All data were clipped according to the boundaries of Terrestrial Ecoregions,
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which were integrated from multiple studies by the Conservation Biology Institute.
These ecoregions are based on different criteria across regions and are widely
accepted, although they may be controversial in some areas. Therefore, discussing the
driving factors of the negative dependence between precipitation and soil moisture in
these regions may involve potential biases and uncertainties.

In the Bayesian models, the discussion focused on GPP, temperature, and LST as
driving factors. Since temperature and soil moisture are input variables for
evapotranspiration calculations, evapotranspiration was excluded from the analysis as
a negative dependence driver. Additionally, other variables such as wind patterns and
topography may also influence the negative dependence between precipitation and
soil moisture. Soil properties—such as texture, organic matter content, and hydraulic
conductivity—represent another set of important controls that were not explicitly
included in the current Bayesian models. While this study provides a foundational
analysis of the negative dependencies across different ecoregions, future research
should explore these additional environmental factors to gain a more comprehensive

understanding of the mechanisms underlying precipitation—soil moisture interactions.

5. Conclusion

This study explored the dependence relationships between precipitation and soil
moisture at depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm from 2000 to 2019, by
examining the control effect of precipitation volume, precipitation frequency, and
evapotranspiration on soil moisture. Bayesian models were used to analyze the
driving factors in the dependence of soil moisture to precipitation in different
ecoregions of the Northern Hemisphere. The results suggest that, the negative
dependence proportion reached 19.2%, 0.7%, and 2.3% at monthly scale, while it was
3.0%, 4.0%, and 8.6% at annual scale, respectively, for the three soil layers.
Precipitation volume predominantly controlled soil moisture in the Boreal forest/taiga,
temperate grasslands, savannas, and shrublands, while precipitation frequency
primarily controlled soil moisture in the high-latitude regions of the Northern

Hemisphere. The combined influence of evapotranspiration and precipitation
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exhibited clear seasonal patterns. Evapotranspiration was the dominant driver of soil
moisture dynamics during the growing season, with a regression coefficient
proportion greater than 75%. In contrast, precipitation volume played a more
significant role in the surface and middle layer of non-growing season, with areas
under strong univariate control accounting for over 40% of the total area.
Additionally, the influence of precipitation frequency on soil moisture increased with
latitude, the proportion of the regression coefficient averaging from 36.5% to 91.3%,
highlighting a shift in controlling factors across climatic gradients.

In regions such as temperate grasslands, savannas, shrublands, deserts, xeric
shrublands, and tundra, negative dependencies between precipitation and soil
moisture, driven by LST and T,:GPP interactions, were observed. These negative
dependencies were mainly attributed to the seasonality of precipitation in arid and
semi-arid areas and the freeze—thaw processes in the soil, which hinder effective
moisture replenishment, especially during winter when soil freezing prevents
rainwater infiltration. In the intermediate and deep soil layers, negative dependencies
were primarily driven by single variables, whereas positive dependencies resulted
from multivariate interactions, likely due to the lack of compensatory mechanisms
when a single variable dominated, or the enhancement of ecosystem feedbacks when
both GPP and LST interacted. Additionally, when the ecosystem is simultaneously
driven by GPP and LST, greater resilience may be exhibited.

At the annual scale, the area of negative dependence increased with soil depth,
with the most pronounced negative dependencies occurring in the montane grasslands
and shrublands region. In this region, negative dependencies at all three soil depths
were driven by the GPP:LST interaction. A possible explanation is the long-term
variability in precipitation and temperature, which may have influenced

geomorphology, vegetation structure, and soil water retention capacity.
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Data availability

The ERAS5-Land soil moisture dataset (DOI: https://doi.org/10.1175/1525-
7541(2001)002<0036:GPAODD>2.0.CO;2) was obtained from the Copernicus
Climate Data Store (accessed on 18 March 2024). The GPCP precipitation dataset
(DOL: https://doi.org/10.7289/V56971M6.) was obtained from the NOAA National
Centers for Environmental Information (accessed on 11 March 2024). The Gross
primary production dataset (https://doi.org/10.5194/essd-14-1063-2022) was obtained
from TU Wien Research Data Repository (accessed on 23 October 2023). The CRU
TS v4.07 air temperature dataset (https://doi.org/10.1038/s41597-020-0453-3) was
obtained from the Climatic Research Unit (accessed on 20 August 2023). The ESA
CCI Land Surface Temperature dataset
(https://dx.doi.org/10.5285/a7e811fe11d34df5abac6f18c920bbeb) was obtained from
the Centre for Environmental Data Analysis (accessed on 27 August 2024). GLEAM
Evapotranspiration data (https://doi.org/10.5194/gmd-10-1903-2017) was obtained
from the GLEAM project (accessed on 19 March 2024). Terrestrial Ecoregions
dataset (https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2) was
obtained from the World Wildlife Fund (accessed on 5 September 2024).
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