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Abstract

Rates of subsurface rock alteration by reactive flows are often independent of kinetic rates and
governed solely by solute transport. This enables a major simplification that makes models
tractable even for complex kinetic systems through the widely applied local equilibrium
assumption. Here, this assumption is applied to the Reactive Lauwerier Problem (RLP), which
describes non-isothermal fluid injection into a confined aquifer, leading to chemical
disequilibrium. Specifically, the thermal changes drive temperature-dependent solubility
variations, leading to undersaturation and dissolution or supersaturation precipitation reactions.
Using this framework, solutions for reaction rate and porosity evolution are developed and
analyzed, yielding a time-dependent criterion for their validity that incorporates time and thermal
parameters. A key feature—the coalescence of thermal and reactive fronts—is used to explore
their evolution over time in different settings. The applicability of the equilibrium model for
important fluid—rock interaction processes is then examined and discussed, including sedimentary
reservoir evolution and mineral carbonation in ultramafic rocks. Notably, the approach used here
to extend thermal solutions for reactive processes suggests broader applicability. The findings also
highlight that thermally driven reactive fronts, particularly near equilibrium, often become
stationary after a relatively short period. As a result, their spatial evolution is governed by

geological processes operating over much longer timescales.

1. Introduction

Natural and anthropogenic systems are often complex, involving intricate interactions between
various processes, which makes developing a mechanistic understanding of the system
challenging. However, the disparity in timescales between these processes often allows for

significant simplification, as one process typically serves as the rate-limiting step that controls the



system’s overall evolution. This simplification, in turn, enables the recovery of the system’s
mechanistic behavior. Such systems range from climate science, where atmospheric and oceanic
processes interact and operate at different timescales (Vallis, 2017), to multi-step biochemical
processes and enzyme kinetics (Cornish-Bowden, 2013), traffic flow analysis (Lighthill and
Whitham, 1955), epidemiology and disease spread (Anderson, 1991), economics (Solow, 1956)
and crystal growth (Mullins and Sekerka, 1963).

Similarly, in geothermal systems, thermo-hydro-chemical (THC) processes often involve complex
interactions. In particular, geochemical kinetics can be highly intricate, involving multiple species
and reactions of varying orders, which are influenced by flow and transport dynamics and thermal
variations (Appelo and Postma, 2004; Kolditz et al., 2016; Phillips, 2009). This complexity hinders
the understanding of system behaviors and their description using tractable models. However, in
many cases, the rate of transport is much slower than the reaction kinetics, effectively controlling
the overall reaction rate. These conditions, known as transport-controlled, occur when the transport
of reactants or reaction products dictates the reaction rate (Deng et al., 2016; Roded et al., 2020;

Steefel and Maher, 2009).

Under transport-controlled conditions, the characteristic timescale of transport, za, is much larger
than that of the reaction, fr, (fa > fr) and the system is close to chemical equilibrium (i.e., quasi-
equilibrium). In such cases, the local equilibrium assumption is often invoked, and the assumption
that the reaction rate depends solely on transport allows one to greatly simplify models (Andre and
Rajaram, 2005; Lichtner et al., 1996; Molins and Knabner, 2019). The validity of the equilibrium
assumption is determined by a large timescale ratio and the Damkdhler number, Da, which,
assuming a first-order surface reaction, is given by
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where / is a local characteristic length scale, ua denotes characteristic Darcy flux [L T-'], 4 is the
specific reactive area (L? to L of porous medium) and 4 is the kinetic reaction rate coefficient [L

T'] (Lichtner et al., 1996; MacQuarrie and Mayer, 2005).

In this study, equilibrium-approximated solutions for geothermal systems are derived. These build

upon and extend previous work (Roded et al., 2024b), in which thermally driven reactive transport



solutions were developed within the framework of the Lauwerier solution (Lauwerier, 1955). The
Lauwerier solution provides an analytical prediction of the thermal field development resulting
from the injection of hot (or cold) fluid into a thin, non-reactive, confined layer system (Lauwerier,

1955; Stauffer et al., 2014).

The thermally-driven reactive transport solutions developed by Roded et al. (2024b) integrate
temperature-dependent solubility into a reactive flow formulation while incorporating the thermal
field based on the Lauwerier solution. Specifically, this setting, referred to as the Reactive
Lauwerier Problem (RLP), accounts for thermal variations that drive the system out of
geochemical equilibrium, thereby triggering chemical reactions. These disturbances stem from
shifts in mineral solubility within groundwater, where thermal fluctuations can induce conditions
of either supersaturation or undersaturation. Over time, these thermally-driven reactions lead to
changes in rock porosity due to the precipitation, dissolution, or replacement of solid minerals and

the associated volumetric changes (Phillips, 2009; Woods, 2015).

Depending on the natural solubility of the minerals in the system, an increase in temperature can
lead to either dissolution or precipitation. This occurs because mineral solubilities can either
decrease with temperature (retrograde solubility) or increase with it (prograde solubility; Jamtveit
and Yardley, 1996; Phillips, 2009). A notable example includes the prograde solubility of silica,
which commonly precipitates in geothermal systems from the cooling of fluids (Pandey et al.,
2018; Rawal and Ghassemi, 2014; Taron and Elsworth, 2009). In contrast, carbonate minerals such
as calcite and dolomite exhibit an inverse relationship with temperature and retrograde solubility,
which is often pronounced and influenced by CO2 concentration. Depending on the conditions,
either rapid dissolution or rapid precipitation can occur in the case of common carbonate minerals

(Andre and Rajaram, 2005; Coudrain-Ribstein et al., 1998).

Fluid recharge or injection under constrained physical and chemical conditions, as in RLP settings,
is common in both natural and engineered geothermal systems and aquifers (Phillips, 2009;
Stauffer et al., 2014). These include aquifer thermal storage, reinjection of geothermal water, and
groundwater storage and recovery applications (Diaz et al., 2016; Fleuchaus et al., 2018; Maliva,
2019), as well as implications for mineral carbonation in mafic or ultramafic rocks (Kelemen et

al., 2019; Roded and Dalton, 2024).



In what follows, the settings and equations are first described, which then serve to derive the
equilibrium-approximated solutions for the RLP for both radial and planar flows. These solutions
are then compared to the reference solutions from Roded et al. (2024b) to validate them and discuss
their limitations, along with the derivation of specific criteria for the RLP setup. Next, a key feature
of the coalescence of the thermal and reactive fronts under quasi-equilibrium conditions is used to
examine their evolution. Interestingly, under certain conditions, thermally driven reactive fronts
essentially cease to expand and become stationary after a short timescale, remaining governed by
longer-term tectonic processes. The applicability of the equilibrium model to key processes,
including sedimentary aquifer alteration and natural mineral carbonation, is discussed along with

an outlook for further theoretical developments.

2. Settings and the Equilibrium Model Equations

This section describes the RLP under the equilibrium assumption and then outlines the specific
settings and relevant governing equations. These equations provide the THC equilibrium model
(Phillips, 2009; Wood and Hewett, 1982) used to drive the solutions in this work. A comprehensive
review of the more general RLP framework and its main assumptions is provided in Roded et al.

(2024b) and further revised in Appendix A of this work.

2.1. The Equilibrium Reactive Lauwerier Scenario

The Lauwerier problem describes the injection of a hot or cold fluid into a confined aquifer
bounded by impermeable bedrock and caprock. Along the horizontal flow path downstream from
the injection well, heat is transferred between the aquifer and the confining aquiclude layers, which
conduct the heat (Lauwerier, 1955; Stauffer et al., 2014). The horizontal flow direction is described
using the ¢ coordinate, which can represent either the radial distance () in an axisymmetric
configuration or the Cartesian coordinate (x) in planar configuration, i.e., £ =r or x. These represent
the two primary geometric settings considered in this study. A schematic overview of this system

is provided in Fig. 1, with the nomenclature summarized in Appendix E.

Within the aquifer, thermal variations influence mineral solubility (i.e., saturation concentration,
cs(T)). These solubility changes, in turn, lead to undersaturation and dissolution reactions or,

conversely, to supersaturation and precipitation reactions, which modify the aquifer porosity (6).



Porosity changes, whether increases or decreases, depend on thermal changes (heating or cooling)

and the solubility nature of the minerals (prograde or retrograde).

Injection well

Figure 1. Outline of the Reactive Lauwerier Problem (RLP) under the equilibrium assumption.
Hot (or cold) fluid is injected into an aquifer, confined between impermeable bedrock and caprock,
at a steady flow rate, O, and temperature, 7in. The initial temperature is 70, and the aquifer thickness
is H. Along the flow path, heat from the aquifer conducts through the confining layers. The
resulting thermal variations (depicted by color gradients) alter mineral solubility, ¢s(7), driving
chemical reactions that modify aquifer porosity from its initial value, 6o. High Damkdhler number
conditions and the equilibrium assumption are considered. Under these conditions, the reaction
rate, Q, is directly governed by variations in temperature-dependent mineral solubility, dcs(7)/0¢.
Here, ¢ denotes the horizontal coordinate, either the radial coordinate () or the Cartesian
coordinate (x), while z denotes the vertical coordinate. The reference point for both & and z is the
center of the injection well, which serves as the symmetry axis in the radial case (as shown in the
sketch) or the symmetry plane in the Cartesian case (modified after Roded et al. (2024b)).

In this study, the focus is on conditions where reaction kinetics are fast, the Damkohler number is
large (Da > 1), and the local equilibrium assumption holds. Under these conditions, the reaction
rate, Q, as shown in the next section, can be directly calculated from the thermally driven solubility
changes in the system; that is, Q o dcs(7)/0&. Hence, such a solution is independent of the specific

reaction kinetics involved.

In terms of geometry and hydrogeological scenarios, the radial setting pertains to injection from a

single well or accounts for naturally focused flow of deep-origin fluids through faulted or fractured
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rock, discharging into a shallower aquifer (Craw, 2000; Micklethwaite and Cox, 2006; Roded et
al., 2013, 2023; Tripp and Vearncombe, 2004). The planar setting describes injection from a row

of wells arranged in a straight-line configuration, as initially formulated by Lauwerier (1955).

2.2. The Equilibrium-Based Approach

The steady-state, solute advection—reaction equation in the aquifer is:

0= —ug—f —Q(,b), (2)

where ¢ is the horizontal coordinate (¢ = r or x), u is the Darcy flux, c is the solute concentration
and Q(¢, ?) is the reaction rate, which varies in space and time, ¢ (Chaudhuri et al., 2013; Szymczak
and Ladd, 2012). In Eq. 2, transient variations are neglected, and the quasi-static approach to

reactive flow is applied (see Appendix A and Roded et al. (2024b)).

Defining the solute disequilibrium, A, as the difference between the dissolved ion concentration,

¢, and the temperature-dependent solubility (i.e., saturation concentration), cs(7),
A =c—c(T), (3)
Eq. 2 can then be rewritten as:

e oA aCS] & 1) 4)

Next, conditions of a high Da number are considered, where reaction rates significantly exceed
the rate of advective transport. In this regime, local quasi-equilibrium is maintained along flow
paths, and the solute disequilibrium magnitude remains small compared to the overall solubility
variation. Specifically, A << Acs, where Acs denotes the absolute solubility change in the system,
Acs = |es(Tin) — cs(T0)|, that is, between solubility at the injection temperature, 7in, and at ambient

conditions, 7.

Under this assumption, the first advective term in Eq. 4 («0A/0$) becomes negligible compared to

the other terms. The governing equation can thus be approximated as (Andre and Rajaram, 2005;

Phillips, 2009, p. 237):



dcs(T)
a¢

Q& t) =—u . (5)
The expression in Eq. 5 provides the THC equilibrium model and demonstrates that, under quasi-
equilibrium conditions, the solute concentration, ¢, closely follows the spatially varying solubility
determined by the temperature field, cs(7). Notably, it shows that in this regime, the solution for
the overall reaction rate, (¢, ¢), can be independent of the specific reaction kinetics involved and

can be calculated from the solubility gradient.

Lastly, it is noted that the current study focuses on the equilibrium assumption and solves the
reduced form given in Eq. 5. This contrasts with the preceding work (Roded et al., 2024b), which

focused on solving the full form of Eq. 2 (or Eq. 4) under the assumption of first-order kinetics.
2.3. Initial and Boundary Conditions

The thermal Lauwerier solution incorporates an initial condition of uniform temperature 7o across
the system, along with boundary conditions that specify a constant fluid injection rate at
temperature 7, at the injection point (& = 0). It is assumed that the thickness of the bedrock and

caprock, as well as the extent of the aquifer, are infinite.

With respect to the solute transport boundary conditions, the RLP problem is defined by a constant
fluid injection rate at temperature 7in, with an initial solute disequilibrium of A = 0 (i.e., saturated
fluid) at the inlet (Roded et al., 2024b). In contrast, the equilibrium-approximated solutions derived
from Eq. 5 calculate the reaction rate under the assumption that it is proportional to the
temperature-driven solubility gradient everywhere. Consequently, as will be shown in the next
section, solute transport boundary conditions are not incorporated. This discrepancy is the focus

of the analyses in Section 3.3.



3. Results: The Equilibrium Solutions and Their Applicability
3.1. Derivation of the Equilibrium Solutions

3.1.1. Axisymmetric (Radial) Flow

Aquifer temperature

The Lauwerier solutions for the temperature distribution in the aquifer (Lauwerier, 1955; Stauffer
et al., 2014) serve as the basis for developing the equilibrium-approximated RLP solutions
presented here. These solutions are derived by solving the advective heat transport equation in the
aquifer, together with the corresponding conductive heat transfer equation in the confining bedrock

and caprock (Eqgs. A1-A3 and A6 in Appendix A). The solution for axisymmetric settings is given
by:

T(r,t) = T, + ATerfc[{(r, t)r?], (6)

where erfc is the complementary error function, AT = Tin — To is the difference between injection

and ambient aquifer temperatures, and {"is defined as:

./ KbCpb

¢(r,t) = QT

(7)
where Q is the total volumetric flow rate, K is the thermal conductivity, and Cp is the volumetric
heat capacity, with the subscripts b and f denoting bulk rock and fluid, respectively. The time
variable is defined as ¢’ = 1 — fLg, where tLg = m°HCpwv/(CprQ), with H denoting the aquifer thickness
(see Fig. 1). Assuming flow is uniform across the vertical thickness (), the fluid velocity can be

calculated from the volumetric flow rate as u = Q/(2arH).

The solution of Eq. 6 is valid when ¢’ > 0 (Stauffer et al., 2014), and it is further assumed here that
a sufficiently long time has passed such that ¢’ = ¢. Specifically, the term 7.¢ represents a thermal
retardation time. It accounts for the delay in the arrival of the thermal front due to advective
transport and the thermal energy required to heat the aquifer solid matrix along the flow path (for

an analysis of the validity of this assumption, see Roded et al. (2024b)).



Additionally, for simplicity, it is assumed that the heat capacities of both the confining rocks and
the aquifer are identical. To account for non-uniform heat capacities, an alternative definition of
Eq. 6 can be applied (see Egs. 3.122 and 3.131, along with the corresponding definitions in Stauffer
et al. (2014)).

Thermally Driven Solubility Changes

The THC equilibrium model in Eq. 5 shows that the reaction rate, (7, f), depends on the thermally
driven solubility gradient, Ocs(7)/0Or. Here, the temperature-dependent solubility is calculated

using:

¢s(T) = cs(To) + B(T —To), (8)

where the parameter f = Ocs/0T. In Eq. 8, a linear relation between ¢s and T is assumed, with a
constant proportionality factor £, which is positive for minerals of prograde solubility and negative

for minerals of retrograde solubility (Corson and Pritchard, 2017; Woods, 2015).

In Eq. 5, the derivative of the solubility can be expanded to dcs/0r = (Ocs/OT)(0T/0r) and by further
substituting the definition § = 0cs/07, it can be expressed as,

oT
Q(r,t) = —uf Fe €))

The temperature gradient 07/0r is calculated by substituting the Lauwerier solution (Eq. 6) and

performing differentiation, yielding:
T p(-crt)

Q(r,t) = 4upAT —e . (10)
Vi

which provides the solution for the reaction rate. The evolution of porosity, 6, is described by:

96 Q(r, t)
at veg

(11)

where csol is the concentration of soluble solid mineral and v accounts for the stoichiometry of the
reaction. Substituting the solution for the reaction rate, Q (Eq. 10), into Eq. 11 and integrating over

time yields the solution for the porosity change:



O(r,t) = 0y — 4ulAT

Be*rit r(

_1 2,4
chol\/E ,( ' )' (12)

2
where /" is the incomplete gamma function.
3.1.2. Planar Flow
For the Cartesian case, with injection occurring along a plane, the Lauwerier solution is:
T(x,t) = Ty + ATerfc[w(x, t)x], (13)

where w is defined as:

VKo Cpy

wx,t)=———F,
HCpfu\/?

(14)
and ¢’ =t — tLg, where tLg = xCpv/(Cpsu). Similarly to the radial case, it is assumed here that a
sufficiently long time has passed such that the condition ¢’ = ¢ applies.

Following steps analogous to those in the radial case, the solutions are derived as:

Bw

Qx,t) = ZuATﬁe("‘”zxz), (15)
and
0(x,t) = By — 2uAT ﬁw%r( L 2) (16)
x,t) =0, —2u ——, wx? .
0 chol\/E 2

3.2. Comparison to Reference Solutions (High-Da)

In this section, the results of the equilibrium solutions are compared with the more general
solutions to the RLP model, which will henceforth be referred to as the 'reference solutions.' These
reference solutions account for far-from-equilibrium conditions and assume surface-controlled
reactions and first-order kinetics. The case study considered in the comparison involves a common
scenario: dissolution of a fractured carbonate aquifer due to the injection of CO2-rich hot water

and cooling-driven calcite dissolution. First, the results presented by Roded et al. (2024b) for the
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reference solutions are briefly summarized to facilitate the comparison with the equilibrium
solutions. The reference solutions, along with the case study considered here, are detailed in Roded
et al. (2024b). The reference solution equations are also provided in Appendix B, and the parameter
values used are listed in Appendix D. These values are identical to those in Roded et al. (2024b),
including the radial case flow rate (Q = 500 m? day™").

(b) , x10-* (¢) 14

60 :
—1 =25 yr )
=10 kyr
50 ——1 =100 kyr
548 0.11
U- =<
9 40 < S8
i S
& < 0.08<
30 -6
20 i 0.05¢
0 1 2 3 0 1 2 3 0w
r (km) /@ r (km)
o x10" 0.14 :
@ ¢ o ©¢ o o o
= 0.11"
& -3
< SN
=
0.08 1
—6 @ 6 6 6 0 06/ 6 06010
e ] 0.05 - ¢ -
10° 10! 102 10° 10 102

r (m) r (m)

Figure 2. Reference solutions for a case study of carbonate aquifer dissolution by cooling hot
water, presented for comparison with the equilibrium solution in a radial flow setting. Panels (a)—
(c) show temperature (7), solute disequilibrium (A), and porosity () plotted as functions of radial
position (») at different times. The continuous lines represent the Lauwerier solution and the
reference solutions (Eqgs. 6 and B2-B3), while the circles in panel (c) denote the equilibrium
solution (Eq. 12). Magnified panels show solute disequilibrium (A) and porosity () near the inlet
region. A is scaled by the total solubility variation in the system, Acs. The equilibrium solution
closely matches the reference solution except near the inlet (see magnified panel and text). Quasi-
equilibrium conditions are further supported by the small magnitude of A.

In Fig. 2, the results of CO:-rich hot water injection are shown at successive times since the start

of injection. These represent both engineering-relevant conditions (=25 yr) and longer geological
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timescales (¢ = 10 kyr and 100 kyr), associated with natural processes such as focused deep-origin
flow discharging into a shallower aquifer (Craw, 2000; Roded et al., 2023; Tripp and Vearncombe,
2004). The Lauwerier solution and reference solutions are shown by continuous lines (Egs. 6 and
B2-B3), while the equilibrium solution for the porosity evolution is indicated by circle markers in

Fig. 2c (Eq. 12).

During the radial flow within the aquifer, the hot fluid cools by transferring heat into the confining
layers, which heat up with time, resulting in the gradual advancement of the thermal front
downstream (Fig. 2a). The cooling induces solute disequilibrium (A) associated with
undersaturation (note that A is negative for undersaturation and positive for supersaturation, see
Eq. 3). The magnitude of |A| in the aquifer is small compared to the absolute solubility change in
the system, |A|/Acs K 1% (Acs = |cs(Tin) — cs(T0)|; see Fig. 2b). The small magnitude of
disequilibrium is associated with relatively high COz partial pressure considered (0.03 MPa) and

rapid kinetics under these conditions.

Despite its small magnitude, the disequilibrium, A, governs the alteration of the aquifer and the
evolution of its porosity. Notably, since the water at the inlet is hot and saturated with calcite, ¢ =
¢s(Tin), disequilibrium and the reaction rate are zero at the inlet, resulting in no change in porosity
(see Fig. 2b and c, along with their magnified views). Disequilibrium (undersaturation) abruptly
develops downstream of the injection well, initially forming a small minimum (at » = 20 m) before

gradually diminishing to zero further downstream.

In accordance with the disequilibrium, the porosity profile sharply increases near the inlet and then
gradually decreases downstream (Fig. 2c). Undersaturation and dissolution along the flow path are
governed by the interplay of three processes: (I) dissolution, which reduces undersaturation
(bringing A closer to zero), (II) progressive cooling, which enhances undersaturation, and (III)
advection, which transports reaction products (calcium ions) radially outward from the well,
sustaining undersaturation. Here, fluid velocity and advection decay with distance, following a 1/
relationship. The transient thermal effect is also evident in the time evolution of the disequilibrium:
at early times (¢ = 25 yr), disequilibrium and its gradients are relatively high, but as the thermal

front advances and thermal gradients decrease, the disequilibrium curves flatten.
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The equilibrium solution matches the reference solution closely and is violated only near the inlet
(r <20 m; Fig. 2¢). The agreement between the solutions and the existence of quasi-equilibrium
conditions is supported by the small magnitude of the disequilibrium in the reference solution.
This is because the equilibrium model assumes A = 0 (cf. Egs. 4 and 5); therefore, a small A
confirms the validity of this approximation. Consequently, solute disequilibrium provides an
effective metric for quantifying the spatial and temporal extent to which the equilibrium
assumption holds. This will be used next to further assess the applicability of the equilibrium-

approximated solutions (Section 3.3).

With respect to the discrepancy near the inlet between the solutions, the injection of hot, saturated
water results in no porosity change in the reference solution. In contrast, the equilibrium model,
which assumes the reaction rate depends on the temperature gradient alone, does not capture this
effect. Particularly, the solute transport boundary condition of inlet saturation (A = 0) is not
incorporated into the equilibrium-approximated solutions, leading to this discrepancy (referred to

hereafter as the ‘inlet advective discrepancy’).

Under the conditions here, the deviation between the solutions is limited to a very narrow region
near the inlet. However, in some cases, locally reduced porosity and permeability can still
influence the overall estimation of aquifer permeability (Roded et al., 2024b). While the deviation
in these cases can be accounted for by assuming no reaction at the inlet, as will be shown in Section
3.3, this cannot capture advective effects that may become significant near the inlet under low Da
conditions. It is also noted that in most practical scenarios, the injected fluid is expected to cool
slightly during its descent in the well and may therefore already be reactive upon entering the

aquifer.

For completeness, Fig. 3 presents results for the same case study shown in Fig. 2 under a planar
flow setting, with a fluid velocity of # = 10° m s’!. Similar to the radial case, the equilibrium
solution closely matches the reference solution, with deviation occurring only near the inlet
(magnification not shown). A key difference from the radial case is that the aquifer is heated over
significantly greater distances. This results from the uniform flow velocity and more efficient heat
retention in the planar configuration. In contrast, radial flow involves velocity decay with distance,

which increases residence time and enhances conductive heat loss to the surrounding rock.
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Additionally, in the radial case, the heat source (e.g., an injection well) acts as a source from which
hot fluid spreads outward radially. In contrast, the planar configuration can be conceptualized as
injection from a distributed source (e.g., a row of wells), generating a uniform planar front. More
precisely, under the perfect thermal mixing assumption, the radial case is treated mathematically
as a point source, while the planar case is treated as a line source oriented out of the plane. Hence,
in the radial case, heat conduction is multidirectional, whereas in the planar case, heat is conducted
only in the vertical directions. These differences influence the shape of the temperature profile: in
the radial case, effective heating near the injection well and subsequent rapid decay lead to a
sigmoidal (or diffusive front-like) profile, whereas in the linear case there is a decaying profile (cf.

Figs. 2a and 3a). These differences are further quantified in Section 3.4.
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Figure 3. Reference solutions for a case study of carbonate aquifer dissolution by cooling hot
water, presented for comparison with the equilibrium solution in a planar flow setting. Panels (a)—
(c) show temperature (7), solute disequilibrium (A), and porosity () as functions of position (x)
at different times. The continuous lines represent the thermal Lauwerier solution and the reference
solutions (Egs. 13 and B5-B6), while the circles in panel (c¢) denote the equilibrium solution (Eq.
16). A is scaled by the total solubility variation in the system, Acs. Similar to the radial case, the
equilibrium solution closely matches the reference solution except near the inlet. This is also
supported by the small magnitude of A.

With respect to the results in Figs. 2 and 3, recall that the solutions in Section 3.1 rely on the
fundamental assumption of spatial uniformity and symmetry in the reactive flow. However, in
practical scenarios, dissolution channels (wormholes) may develop at the reaction front (Chadam

et al., 1986; Furui et al., 2022; Roded et al., 2021). These wormholes localize reactive flow,

creating heterogeneous flow fields that deviate from the assumed symmetry and uniformity.
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Consequently, the results in Figs. 2 and 3 represent only an average solution and do not capture

local flow variations accurately.

Furthermore, the equilibrium solutions were also found to be applicable to the injection of hot,
silica-rich water into a sandstone aquifer, where cooling induces supersaturation, silica
precipitation, and porosity reduction, as discussed in Roded et al. (2024b) (not presented). In
summary, this section validates the equilibrium solutions against the reference solutions and
highlights the inlet advective discrepancy, examined next (Section 3.3). These findings also
demonstrate the broader applicability of the equilibrium solutions across a range of characteristic

conditions in natural and applied systems, as further elaborated in the Discussion section.

3.3. Applicability of the RLP Equilibrium Solutions

This section further examines the applicability of equilibrium-approximated solutions, focusing
on the inlet advective discrepancy. This is done by considering lower Da, conditions farther from
equilibrium, and changes in the system state over time. Accordingly, a scenario of relatively slow
precipitation (5 > 0) 1s considered, using a kinetic rate coefficient nearly four orders of magnitude
lower (A = 5-107'° m/s), while all other conditions remain consistent with Section 3.2. This setup
is representative, for example, of carbonate mineral precipitation from water of alkaline
composition originating in carbonate or mafic rock aquifers (e.g., basaltic formations). Upon
reinjection and subsequent heating, the solubility of carbonate phases decreases, promoting CO2
mineralization through precipitation reactions (Etiope, 2015; Plummer et al., 1978; Steefel and

Lichtner, 1998).

Figure 4a presents the results for the reaction rate, Q, for the reference solution (solid lines; Eq.
B3) and the equilibrium solution (dashed lines with circle markers; Eq. 10). The slower kinetics
and reduced Da result in a significantly larger deviation compared to the case shown in Figs. 2¢
and 3c. Note that the results in Figs. 2c and 3c, rather, present the porosity evolution, which reflects

the time-integrated behavior of Q (see Eq. 11).

Significantly, the peak of the reaction rate curve in Fig. 4a is reached further downstream, rather
than occurring immediately near the inlet as observed in Figs. 2 and 3. This shift reflects a much
more dominant advective effect but still preserves the same general behavior: advection of

saturated fluid from the inlet and the progressive buildup of disequilibrium and elevated Q occur
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downstream of the injection well. However, in this case, the effect extends over a much greater

distance.

Another prominent effect visible in Fig. 4a is the reduction in deviation between the solutions over
time. This trend is quantified in Fig. 4b, which shows the weighted local error, defined as the
difference between the two solutions and multiplied by the radial perimeter, Err = (Qref - QEqu)27t7,

where the subscripts Ref and Equ denote the reference and equilibrium solutions, respectively.

Lot —Ref, t=0.2 kyr
* -e-Equ,t = 0.2 kyr
\ Ref, ¢t = 10 kyr
| o Equ,t =10 kyr
1 ¢ —Ref, t =100 kyr
-e-Equ,t =100 kyr

=)

—

Err/Errpa
-

r (km)

Figure 4. Comparison of the reference and equilibrium solutions over time under low Da
conditions. (a) Reaction rate, Q, as a function of radial position (r) at different times. The
continuous lines represent the reference solution (Eq. B3), and dashed lines with circle markers
represent the equilibrium solution (Eq. 10), denoted as 'Ref' and 'Equ' in the legend, respectively.
(b) The deviation between the solutions, shown using the local error, Err, is visualized as a shaded
region. Err is defined as the radially weighted difference between the solutions (see text for
details). Q and Err are normalized by their maximum values at £ = 0.2 kyr, where Qmax refers to
the reference solution.

The Err shaded regions show a progressive decrease and flattening over time. This reduction in

Err and the closer approach to equilibrium are attributed to the downstream advancement of the
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thermal front. As the thermal front advances and extends, the temperature gradients near the inlet
become milder (see Fig. 2a). This leads to a decrease in the reaction rate in this region, and the
inlet advective discrepancy of the equilibrium model becomes less pronounced (the Supplementary

Material (SM) presents results for the planar case, which exhibits the same effects).

As noted in the Introduction, the applicability of the equilibrium model is governed by Da, with
quasi-equilibrium conditions expected when Da > 1 (Eq. 1). In the THC equilibrium model and
RLP settings, the deviation of the equilibrium solutions, mainly from the local inlet effect, evolves
over time and is influenced by thermal dynamics. This observation motivated the derivation of a
more specific applicability criterion, presented in Appendix C. This analysis is based on a key
feature of quasi-equilibrium behavior: the close alignment of the thermal and reactive fronts in the
aquifer, which occurs when Da is high (cf. Fig. 2a and b). This behavior is leveraged to establish
a criterion for when the fronts coincide and equilibrium conditions may be assumed. This

functional relation, which applies to both planar and radial settings, is given by:

2 /1 KnCp
1> ( ) b, 17
\/ﬁ A A < HCpf > A7)

In accordance with the results in Fig. 4, the criterion shows that the system approaches equilibrium
as time progresses (with a proportionality of #!2). The second term in the brackets represents the
characteristic reaction timescale, fr = 1/4s4, which, in agreement with the high Da condition,
indicates that a smaller #r leads to faster approach to equilibrium. The final term in the brackets
captures the ratio of thermal parameters and accounts for the evolution of the temperature
gradients. When the confining rock’s thermal conductivity (Kb) and heat capacity (Cpb) are low,
the thermal front advances downstream more rapidly, promoting mild temperature gradients and
equilibrium. Similarly, a large product of aquifer thickness and fluid heat capacity (HCyr) also

facilitates faster thermal front advancement and equilibrium.

Notably, the fluid velocity does not appear in the criterion of Eq. 17. This is attributed to the fact
that solute advection enhances disequilibrium (in accordance with the Da criterion), while thermal
advection promotes equilibrium by extending and stretching the thermal front. By introducing the
characteristic fluid velocity, ua, into the expression, the criterion in Eq. 17 reproduces the

Damkohler number criterion (Eq. 1):
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[(t)A A T upHC
()—S>> 1, where l(t)=£ut1/2.

(18)
Ua ANES Cpy

Thus, this RLP-specific Da criterion incorporates a definition of the local characteristic length
scale, /, in terms of time and thermal parameters (dynamic Da). Recall that the length scale /
denotes the distance over which substantial temperature variation occurs (e.g., 2% of the total

change) and captures the influence of the thermal field on reactive transport.

The functional criterion in Egs. 17 and 18, consistent with the results in Fig. 4, indicates that the
equilibrium solutions are not applicable as # — 0 and are less accurate during the initial stages.
Nevertheless, as shown in Fig. 2, the equilibrium-approximated solutions may remain fully valid
even at relatively early times. Such behavior is observed under common conditions involving
fractured carbonate aquifers and silica precipitation, where the validity extends to timescales of

engineering relevance (e.g., ¢ <25 yr).

It should also be recalled that several inherent assumptions in the Lauwerier solution reduce its
accuracy during the initial stages (see Appendix A). In addition, for the reactive Lauwerier
solution, the assumption of negligible thermal retardation time (7Lg) and the approximation ¢’ = ¢
further affect the accuracy at early times (see Egs. 6 and 13). This assumption, which is particularly
relevant for the radial case, contributes to the reduced accuracy at early times (e.g., t < 10 years;

see Appendix C in Roded et al. (2024b)).
3.4. Development of Coalesced Fronts

As mentioned in the previous section, a key feature of quasi-equilibrium behavior is the close
alignment of the thermal and reactive fronts in the aquifer, which occurs when the Da is high and
reactions dominate over transport. Under these conditions, any disequilibrium induced by thermal
changes diminishes rapidly and essentially does not extend downstream of the thermal front,
resulting in the coalescence of the fronts. This property is leveraged to infer in a simple manner
the spatial distribution and temporal advancement of the coalesced fronts using the thermal

Lauwerier solutions.

First, we define the thermal fronts’ outer-end positions, {r(?), as the furthest distances of thermal

perturbation due to the injection at a given time. The thermal perturbation is quantified by ¢ =
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(T(&r)-To)/AT, where ¢ is a prescribed small value (¢ < 1); here, ¢ = 0.01. This threshold uniquely

determines the position r(f) at which the temperature perturbation is considered negligible.

Next, rearranging and substituting the definition of ¢ corresponding to the conditions at the fronts’

outer-end positions into the Lauwerier solutions (Egs. 6 and 13) yields:

2 _
¢ = erfc(a), where a= {i(g:g)EF’ gg; g ; ; (19)

Here, a is a constant determined by ¢, and for e =0.01, a = 1.8. Then, the fronts’ outer-end positions

can be expressed as:

a
e(t) = |==—=, and xp(t) =

Ok (20)

a
w(®)
Finally, substituting the definitions of (and w (Eqgs. 7 and 14) into Eq. 20 gives explicit expressions

for the advancement of the coalesced fronts under quasi-equilibrium conditions:

aQC 1 aHC, u 1
QLo t4, and xp(t) = B ¢2, 21D

1T,/ Kb Cpb Kb Cpb

1R(t) =

These relations provide a simple way to estimate the spatial positions of the coalesced fronts as a

function of time using the thermal solutions alone.

To demonstrate the fronts’ advancement, Eqs. 21 are used to plot xr and rr for three different
velocities (1) and flow rates (Q), presented in Fig. 5a and b. This illustrates the decay of the
advancement rate over time in both cases: the hot fluid heats the confining rocks as it flows, and
the thermal fronts gradually advance downstream. However, front extension overall enhances heat

loss to the confining layers, reducing the advancement rate over time and distance.

The key difference between the radial and planar cases, as noted in Section 3.2, is clearly reflected
in Egs. 21 and the results shown in Fig. 5a and b. The planar case exhibits significantly greater
heat retention and a higher advancement rate. This is demonstrated by the green dashed lines in

Fig. 5a and b, which indicate that half of the final calculated extent, 1/2xFinal, is reached in one

19



quarter of the final time, while in the radial case, 1/2rFina is approached after one sixteenth of the
time. Alternatively, differentiating Eqs. 21 with respect to time yields ore/0t « t* in the radial

case, compared to Oxr/0t « 2 in the planar case.

(a) Planar case (b) Radial case
XFinal FFinal
(560 km) (7 km)
0=10°m’d?
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= Exl-'inal = Erl-inal
& <
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Figure 5. Advancement of the coalesced thermal and reactive fronts over time, xr(¢) and r¢(¢), for
different velocities («#) and flow rates (Q), respectively. Panels (a)—(b) show results for high flow
rates, while panels (¢)—(d) illustrate the low-flow-rate limit. (a)—(b) xr and rr are calculated using
Egs. 21. The green dashed lines illustrate the difference between the radial and planar cases and
highlight the greater advancement of the front in the planar case: half of the final extents (1/2xFinal
and 1/2rrinal) are reached at 1/4 and 1/16 of the final time, respectively. (c)—(d) The low-flow-rate
limit refers to the radial case where conduction effectively distributes heat. This is analyzed using
solution for conduction-only, representing the limit Q — 0 (analytical, black lines), and results for
low flow rates of Q=1 and 5 m3/day (numerical, red and orange, respectively). Panel (c) shows ¢
for these cases, while (d) displays the temperature profiles as a function of radial position, ». The
black line in (d) represents the conduction-only quasi-steady-state profile, and the colored dashed
and continues lines indicate early and later times, respectively, for each flow rate. The close
alignment of the lines demonstrates that the thermal field remains nearly unchanged after the initial
stage. For further details on the calculations, refer to the text.
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Another case considered here, shown in Fig. 5¢ and d, is the low-flow-rate limit in radial geometry,
where conduction dominates and effectively distributes heat. This is illustrated using two different
approaches: (I) the analytical conduction-only solution, representing the limit Q — 0 (black lines),

and (IT) numerical results for low flow rates (O =1 and 5 m*/day, red and orange curves).

The analytical solution describes a sphere at constant temperature in an infinite medium, modeling
heat conducted from the sphere into the surrounding medium. This time-dependent solution
converges to a quasi-steady-state temperature profile that remains essentially unchanged over time
(Stauffer et al., 2014; see details in the SM). The numerical simulations for low flow rates use
equations and settings identical to those of the Lauwerier solution but with an important
distinction: they do not assume negligible radial conduction. This simplification makes the
Lauwerier solution inadequate under conditions of low flow rates and sharp lateral geothermal

gradients (see Appendix A). Further details of the numerical calculations are given in Roded et al.

(2023).

Figure 5c shows rr for the conduction-only case and for O = 1 and 5 m?/day (other parameter values
are consistent with Appendix D). Unlike the high-flow-rate planar and radial cases in Fig. 5a and
b, the low-flow-rate cases exhibit a more pronounced decrease in the advancement rate over time,
reflected in the flattening of the curves. This effect is especially pronounced for the lower flow
rate (Q =1 m3/day), which exhibits behavior closer to the conduction-only case, in which the

advancement rate essentially levels off as the system approaches quasi-steady-state.

This is more clearly shown in Fig. 5d, which presents the temperature profiles for these cases as a
function of radial position, ». It includes the analytical quasi-steady-state temperature profile
(conduction-only case) and numerical profiles at low flow rates shown for two consecutive times.
The close alignment of the dashed (early time) and continuous (later time) lines, and their near
overlap, demonstrates that the temperature profiles change very little after the early stage. The
profiles become nearly stationary over tens to hundreds of years, which is a very brief geological
timescale. Hence, even though the front’s outer position in the low-flow-rate cases continues to
advance slowly, the temperature profile does not change meaningfully. This contrasts with the

high-flow-rate cases shown in Figs. 2a and 3a over the long timescale considered.
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The results also show effective heat distribution by conduction, with nearly complete cooling
occurring within 10-100 m from the inlet, depending on the flow rate. Overall, both the analytical
solution for the limit Q — 0 and the numerical solutions at low flow rates demonstrate similar heat-
transport behavior under these conditions. This low-flow-rate scenario is particularly relevant to
natural conditions, which often involve low flow rates and can manifest on the surface as low-

flow-rate thermal springs (Garven, 1995; Klimchouk et al., 2017; Roded et al., 2013).

These findings have important implications, suggesting that thermally driven reactive fronts can
also become nearly stationary, as will be further discussed in the Discussion section. Lastly, it is
important to note that the solutions assume an infinite caprock thickness. However, if the thermal
front reaches the surface, greater heat exchange between the aquifer and the caprock is expected,

reducing the thermal front’s advancement rate and extent (see also Appendix A).

4. Discussion and Outlook

4.1. Equilibrium Model Applicability to Hydrothermal Systems

Figure 6 presents an illustrative phase diagram distinguishing between conditions where the THC
equilibrium model (Eq. 5) is applicable and those far from equilibrium. The diagram is based on
the Damkdhler number, which represents the ratio between the characteristic timescales of
transport and reaction, Da = ta/fr. The diagonal line marking the transition at Da > 1 (Dacr) and
hotter colors denote higher Da values and conditions closer to equilibrium. As reactivity (1/fr)
increases, the equilibrium model becomes applicable over a wider range of flow velocities, u, or
smaller characteristic length scales, /, represented as 1/ta = u/l. Here, [ represents the local
characteristic length scale of thermal and solubility variations and accounts for the thermal field
effect on reactive transport, which may vary with time (see Section 3.3). Equation 1, which
assumes first-order kinetics and presents Da = [A4s/u, is useful for quantifying different fluid—rock

interactions that can be approximated by first-order kinetics.

Several notable fluid—rock interaction processes are shown on the diagram, positioned according
to their characteristic reactivity. At the top are common carbonates, i.e., limestone and dolomite,
which typically exhibit high reaction rates and are highly prone to alteration (with values of A
typically ranging from 10~* to 10~*m/s under engineering applications; Dreybrodt et al., 2005;
Peng et al., 2015; Plummer et al., 1978).
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Figure 6. A schematic diagram illustrating the applicability of the THC equilibrium model and the
positioning of several notable fluid—rock interaction processes according to their typical reactivity.
The diagram is plotted based on the characteristic timescales of reaction and transport that define
Da, and shows 1/tr versus 1/ta (Da = ta/tr). The equilibrium model can be assumed when Da >
Dacr, with Dacr defined as a threshold where Dacr >> 1. Dacr is represented by the diagonal black
line on the diagram, with hot colors indicating high Da values and proximity to equilibrium.

Silica precipitation is also prevalent in hydrothermal settings (e.g., quartz vein formation and
mineral scaling; Glassley, 2014; Huenges and Ledru, 2011; Oliver and Bons, 2001) and is
characterized by relatively high reactivity, with a typical rate constant of 1 = 5-10"1" m/s (Rimstidt
and Barnes, 1980). In contrast, while non-crystalline silica (amorphous) precipitates relatively
quickly, quartz dissolution is typically slower by several orders of magnitude (Rimstidt and
Barnes, 1980). An additional interesting behavior associated with quartz occurs at much higher
temperatures (e.g., 7 > 300 °C), which can prevail near magmatic intrusions. At these high
temperatures, quartz exhibits retrograde solubility, which switches to prograde solubility upon

cooling (Glassley, 2014; Scott and Driesner, 2018).

Importantly, the specific reactive surface area, 4s, (L? to L™ of porous medium) may vary widely
across different rock lithologies, and its effect on the applicability of the equilibrium model is
comparable to that of kinetics. Specifically, 4s can vary, e.g., from 10" m™! in fractured rock (Deng

and Spycher, 2019; Pacheco and Van der Weijden, 2014) to above 10° m™ for porous medium
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(Noiriel et al., 2012; Seigneur et al., 2019) and can also evolve during reactive flow (Noiriel, 2015;

Seigneur et al., 2019).

The position of these processes on the diagram, supported by calculations in Section 3.2,
demonstrates the applicability of the equilibrium model even at relatively high flow rates. This is
especially significant, as high flow rates are characteristic of applications such as groundwater
storage and recovery, aquifer thermal storage, and geothermal reinjection (Diaz et al., 2016;

Fleuchaus et al., 2018; Maliva, 2019).

Additional important settings where thermally driven reactions may play a significant role involve
mineral carbonation. In particular, this includes the formation of carbonate veins in ultramafic
rocks, such as peridotites, by ascending CO.-rich hydrothermal flow (Kelemen et al., 2011; Menzel
et al., 2024). The COz-rich fluids first dissolve the rock minerals, primarily olivine. Then, as the
pH rises and cation enrichment occurs, carbonate precipitation, primarily magnesite, takes place
further along the upward flow path. The rate-limiting step in the mineral carbonation process is
commonly suggested to be the relatively slower kinetics of dissolution compared to precipitation

(Hénchen et al., 2006; Kaszuba et al., 2013; Kelemen et al., 2019).

The solubility of olivine is retrograde, as evidenced by the exothermic nature of the reaction
(Kaszuba et al., 2013; Prigiobbe et al., 2009). Under such conditions, ascending flow along a
decreasing geothermal gradient is expected to promote undersaturation. This continued renewal of
undersaturation in turn may facilitate the development of an extended, thermally driven
dissolution-precipitation front. Considering the typically low rates of ascending hydrothermal flow
(e.g., u < 107 m/s; Garven, 1995), along with characteristic high reaction rates of olivine
dissolution at high temperatures (7 > 150 °C; (Rimstidt, 2015; Rimstidt et al., 2012), it suggests
that Da can be large. Consequently, mineral carbonation and vein formation can be controlled by

thermally driven solubility changes and described by the THC equilibrium model.

4.2. Development of Thermally Driven Reactive Fronts in Earth Systems

The quasi-equilibrium conditions, characterized by the thermal front’s control over the reactive
front and their coalescence, allowed examination of their evolution in different settings in
Section 3.4. A particularly interesting finding is that in radial (or similar) settings, and at relatively

low flow rates, a quasi-steady state develops over brief timescales of tens to hundreds of years.

24



Such a cooling process can also produce very steep thermal gradients, as shown in the temperature
profile in Fig. 5d, and can cause localized, thermally driven reactive effects. These thermal
gradients may be up to two orders of magnitude greater than the typical geothermal gradient

resulting from Earth’s heat flow (e.g., ~0.025 °C/m; Turcotte and Schubert, 2014).

A relevant example includes hypogenic karst cave formation driven by upwelling hydrothermal
flow through a conduit pathway within a fault. This flow discharges and spreads radially in a
confined aquifer while cooling rapidly, promoting localized carbonate dissolution around the water
inlet (Roded et al., 2023, 2024a). In this case, the results in Fig. 5d suggest that the cave system or
alteration front may reach approximately constant final dimensions. These settings may also apply

to additional alterations by hypogenic flows and thermal seepages.

Additional relevant settings that can involve coalesced fronts are ascending hydrothermal flow
along a decreasing geothermal gradient, leading to cooling and thermally driven reactions.
Particularly, as mentioned above (Section 4.1), this may induce olivine dissolution followed by
mineral carbonation in veins in ultramafic rocks. Alternatively, quartz vein formation dominantly
occurs due to cooling along the flow path (Bons, 2000; Sibson et al., 1975). In these settings,
coalesced fronts may become stationary as the hot ascending flow alters the background
geothermal gradient, producing a modified steady vertical thermal profile (Person et al., 1996;

Roded et al., 2013).

In these cases, where the coalesced, thermally driven reactive front remains stationary over
geological timescales, spatial alteration of the front depends on slower tectonic processes. These
tectonic timescales are associated with processes such as erosion, subduction, and orogenic
activity. A well-known example is the alteration of the geothermal gradient caused by surface
erosion or sediment deposition (Haenel et al., 2012; Turcotte and Schubert, 2014). In response to
tectonic changes, the slowly varying subsurface thermal field drives the gradual migration of the

reactive front.

4.3. Theoretical Modeling Outlook

Finally, this study and Roded et al. (2024b) demonstrate the extension of established heat transport
solutions to THC-coupled solutions. For future work, the possibility of extending these solutions

and approaches in several directions should be investigated. Specifically, it should be examined
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how the solutions developed can be further extended to address more realistic and complex
scenarios. In particular, this includes consideration of more complex kinetic systems involving

multiple species and additional or more intricate couplings between variables and parameters.

In such cases, semi-analytical approaches could be especially useful. Due to the quasi-static
assumption of reactive flow, the set of equations for reaction rate (Eqs. 10 and 15) or solute
disequilibrium (Egs. B3 and B6) could potentially be implemented in a semi-analytical, coupled,

and iterative manner.

Furthermore, the approach taken here and in Roded et al. (2024b) can be adapted to extend
additional thermal solutions to significant thermally driven reactive transport scenarios. Notably,
this may be especially practical and feasible under the equilibrium assumption, where thermally

driven reactions depend solely on the thermal gradients.

5. Summary and Conclusions

In this work, the equilibrium assumption was used to derive thermally driven reactive transport
solutions for the RLP (Reactive Lauwerier Problem) in Cartesian and radial coordinates. The
solutions were then validated and analyzed against reference solutions and case studies involving
thermally driven reactions of carbonates. In particular, the shortcoming of the equilibrium-
approximated solutions associated with the advective boundary condition is analyzed. It was found
that as the thermal front advances, inlet temperature gradients become milder and the advective
discrepancy less pronounced. This also motivated the derivation of a functional criterion for quasi-
equilibrium conditions in the RLP, which reduces to the Damkoéhler criterion (dynamic Da). The

criterion incorporates time and thermal parameters and supports this interpretation.

Following this, a unique feature of quasi-equilibrium conditions—the coalescence of the thermal
and reactive fronts—is used to explore their evolution over time. This is examined in both planar
and radial settings, and under the low-flow-rate limit where conduction effectively distributes heat.
The advancement rate in the radial case decays much more rapidly, and, notably, in the low-flow-
rate limit, the front can become essentially stationary within a very short period. Additionally,
under these conditions, very sharp temperature gradients are created near the inlet, which can

induce localized fluid-rock interactions.
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The applicability of the THC equilibrium model for notable fluid—rock interaction processes is
then discussed. These include sedimentary reservoir evolution through reactions involving silica
and carbonates, as well as natural mineral carbonation in ultramafic rocks. These processes are
positioned on a phase diagram based on the Damkohler number, illustrating the applicability of

the equilibrium model.

Notably, the theoretical approach used here—extending established heat-transport solutions to
thermally driven reactive transport—may also be applicable to other important Earth system
scenarios. Finally, it is emphasized that since thermally driven reactive fronts often become
essentially stationary within a short period, their evolution is governed by geological processes.
These processes, such as tectonics or surface erosion and deposition, operate on much longer

timescales.
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Appendix A: Underlying Assumptions and Equations of the Equilibrium RLP

This appendix describes the main assumptions of the RLP under the equilibrium assumption. It
follows the main presentation from Roded et al. (2024b) and extends it to account for the quasi-
equilibrium conditions considered in this study. First, the main assumptions are detailed, followed

by a comprehensive overview of the basic conservation equations.
A.1. Main Model Assumptions

The thermal Lauwerier (Lauwerier, 1955) solution involves several simplifying assumptions.
These include neglecting the initial geothermal gradient and assuming that the basal geothermal
heat flux is negligible compared to the heat supplied by the injected fluid. The aquifer is also
assumed to be situated at depth, preventing heat from being transferred to the surface; otherwise,
there would be greater heat exchange between the aquifer and the caprock. This assumption also
depends on the timescale of interest: the thermal front, which rises over time, may not extend to
the surface on a short timescale. However, over a longer period, it may transfer heat to the surface,
which can be calculated using the characteristic timescale of conduction fc (tc = Ic*/ab, where [

accounts for the characteristic length scale of conduction and a» is the thermal diffusivity).

In the confining layers, heat is transferred solely through conduction in the vertical direction (z),
while neglecting lateral () heat conduction. This assumption restricts the model’s applicability to
cases with high injected fluid fluxes, where mild lateral temperature gradients evolve. To evaluate
the validity of this assumption, a thermal Péclet number is employed, which compares heat
advection in the aquifer to lateral heat conduction in the confining layers: Per = ual/a», where /s
a length scale at which substantial temperature variation occurs (e.g., the distance corresponding
to 2% of the total temperature change, AT). A posteriori inspection confirms that Per > 1 beyond
the initial moments under all conditions considered here. Moreover, after a very short initial phase,
the length scale / should exceed the vertical dimension of the aquifer, H, where complete thermal
mixing is assumed (/ > H). This assumption may not hold if a thick aquifer (i.e., large H) is

considered, and significant vertical temperature gradients are expected to develop.

Additionally, thermal and solute dispersions within the aquifer are neglected, as both thermal (Per)

and solute (Pes) Péclet numbers are assumed to be large. Properties of the fluid and solid phases,
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such as density and thermal conductivity, are assumed to be constant and temperature-independent.
Finally, it is assumed that Da > 1, making the equilibrium assumption applicable. As a result,
reaction rates are essentially independent of kinetics and reactive surface area, as demonstrated in

Section 2.2 of the main text.

A.2. The Basic Conservation Equations

Heat Transport:

Here, the basic conservation equations that underlie the Lauwerier solutions (Egs. 6 and 13) and
the THC equilibrium model (Eq. 5) are presented. More general versions of the conservation
equations are provided in Roded et al. (2024b). In what follows, the radial case (¢ =r) is considered

first, followed by the planar flow case and Cartesian coordinates (¢ = x).

Assuming that heat transfer in the radial direction, r, is negligible, the heat equation in the bedrock

and caprock confining the aquifer is,

H
oT 02T Zs -5
ZZE

where T denotes temperature, ¢ is time, z is the vertical coordinate originating at the center of the
injection well and H denotes the aquifer thickness (see Fig. 1). The thermal diffusivity is given by
ob = Kv/Cpb, where the subscript b denotes bulk rock, K is the thermal conductivity, and Cp is the
volumetric heat capacity (Chen and Reddell, 1983; Stauffer et al., 2014).

Assuming that heat transport in the aquifer is dominated by advection and that perfect mixing
prevails in the transverse direction (z), a 'depth-averaged' heat transport equation can be derived

for the aquifer domain:

HGT_ c Hla(ruT)
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Cp n-0(rt), for ——<z<-—, (A2)

where subscript f denotes fluid and u is the Darcy flux, assumed to be uniform along the z direction,
and calculated from the total volumetric flow rate, O, using u(r) = Q/(H2zr) (Andre and Rajaram,

2005; Lauwerier, 1955). The function ® accounts for the heat exchange between the aquifer and
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the confining bedrock and caprock, calculated using Fourier’s law, assuming continuous

temperature at the interfaces:

oT

0 = —2K,—— (43)

The factor of two accounts for both the bedrock and caprock (Stauffer et al., 2014). In Eq. A2, n
represents a unit vector directed outward from the aquifer and perpendicular to the interface
between the aquifer and the bedrock or caprock. This orientation ensures that, e.g., in the case of

a warmer aquifer, the upward and downward heat fluxes constitute a heat sink.
Reactive Transport:

The solute advection-reaction equation in the aquifer is:

0= _a@o, f .,
= —u— r,t), for S Szs3,

(44)
where c is the solute concentration and € is the reaction rate (Chaudhuri et al., 2013; Szymczak
and Ladd, 2012). Note that the transient and dispersivity terms in Eq. A4 are neglected, with the
latter being omitted due to the assumption of Pes >> 1. The justification for neglecting the transient
term and invoking the quasi-static approximation in the derivation of Eq. A4, lies in the separation
of timescales between the relaxation of solute concentration (#a), heat conduction (fc) in the
confining rocks and mineral alteration (for in-depth analysis and discussion see Roded et al.

(2024b) and as well, e.g., Bekri et al., 1995; Ladd and Szymczak, 2017; Lichtner, 1991; Roded et
al., 2020).

Using the reaction rate, the change in porosity, €, can be calculated as:

for —=<z<

a6 Q H
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Here, csol represents the concentration of soluble solid mineral and v accounts for the stoichiometry
of the reaction. For planar flow and Cartesian coordinates, » can be substituted with x in the

equations above, while Eq. A2 takes the following form:

T H H
> (46)

oT
Cpra_t = —uCpra— n-0(x,t), for -— £l <z<
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The above set of heat transport equations underlies the development of the thermal Lauwerier
solutions presented in Section 3.1 (Egs. 6 and 13). Section 2.2 of the main text provides the
derivation of the equilibrium-approximated form of Eq. A4, which is used to obtain the

equilibrium-approximated solutions developed in this study.
Appendix B: RLP Solutions
B.1. Radial Case

The solution to the RLP for solute disequilibrium in the radial case is given by,

A= AT,Be(%_nrz) (erf [{rz — 277—(] + erf [%]), (B1)

where 1 = tHAsA/Q and the definition of {"is given in Eq. 7.

A closed-form expression for the temporal and spatial evolution of porosity, 6, is given by,

2
O(r,t) = 0y + {nzt A?/CM;’B <— n/4((_2_4r (erf [{r — |+ erf [2(]) + —e -nr?
+ erf[{r?](1 — nr?) — (L\/Ee‘(zr4 +nr? — 1>. (B2)

For efficient computation and preventing integer overflow, an approximate solution of Eq. B1 is

developed using the first-order asymptotic expansion of erfc,

TZ—{ZTA-)
ATE (-nr2) —e(" _E), (B3)
e ( — {r? n

B.2. Planar Case
For the planar case, the corresponding solutions are given by,
0.2
_ 207 % _2 7
A= ATﬁe(‘HO ) (erf [a)x Zw] + erf [Za) ), (B4)
and
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An approximate expression for Eq. B4 is given by

ATB elox-w?x?) o
A = —e(_o-x) —_—_— (B6)
ol .
™ - 0r C

Here, 0 = As//u and the definition of  is given in Eq. 14.

To prevent integer overflow errors, Eqs. B3 and B6 are used to calculate the undersaturation
profiles shown in Figs. 2b and 3b, and the reaction rate profiles in Fig. 4a. These expressions are
also employed in the iterative numerical solution to obtain the porosity profiles at t = 100 kyr,
shown in Figs. 2¢ and 3c. Prior validation confirmed the accuracy of the approximate solutions

(Egs. B3 and B6; (Roded et al., 2024b).
Appendix C: Derivation of the Applicability Criterion

In this appendix, the derivation of the applicability criterion shown in Section 3.3 is presented.
This criterion provides a functional relationship between key parameters, variables, and the system
equilibrium state in RLP settings. The derivation of the criterion leverages a key feature of the
quasi-equilibrium regime: the coalescence of the thermal and reactive fronts in the aquifer, which
occurs when Da is high (compare the curves in Fig. 2a and b). In this regime, reactions dominate
over transport, and thermally induced disequilibrium dissipates rapidly, essentially not extending

downstream of the thermal front.

It is noted that even when the fronts coincide downstream, far-from-equilibrium conditions may
still persist upstream. This is observed in the results of Fig. 4, where the equilibrium solution
(which aligns with the thermal front) and the reference solution closely match downstream at later
times, but diverge upstream. Nonetheless, the derived functional relationships offer useful

guidance.

First, the thermal front’s outer-end position, {r(?), is defined as the furthest distance of thermal

perturbation due to the injection at a given time. The thermal perturbation is quantified by ¢ =
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(T(&r)-To)/AT, where ¢ is a prescribed small value (¢ «< 1); here, e = 0.01. Below, we consider the
radial case (¢ = rr), though applying the same steps to the planar case equations yields the same

result.
Rearranging and substituting the definition of ¢ into the Lauwerier solution (Eq. 6) yields:
e = erfc(a), where a = J(t)rg?, (C1)

where a is a constant, and for ¢ = 0.01, a = 1.8. Then, rr can be expressed as,

= |— c2
IO} (€C2)

Next, an approximate form of the reference solution for disequilibrium is used (Eq. B3 in Appendix
B; Roded et al., 2024b). The reasoning for using a far-from-equilibrium-based solution, even
though the equilibrium model strictly assumes A =0 (cf. Egs. 4 and 5), is that a small A confirms
the validity of this approximation. Therefore, solute disequilibrium serves as a metric to quantify

the spatial and temporal extent over which the equilibrium assumption is valid.

Assuming quasi-equilibrium at the front’s outer-end position, rr, and applying the condition ¢ >
N/Acs, where Acs denotes the solubility change in the system, Acs = ¢s(Tin) — ¢s(70), which here

may be positive or negative, Eq. B3 becomes:

(-¢ri)
e AT B (T2 260

3
Acs v 21(_%2 1 (€3)

Next, applying a few more steps by substituting the definition from Eq. C2, neglecting early times,
and assuming high Da and 5 > {, Eq. C3 can be simplified to:

AT B 2¢
SZA—CS\/—ET. (C4-)

Noting that f = Acs/AT and explicitly substituting the parameters using Eq. 7 and = nHAsA/Q,
Eq. C4 becomes,
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where A is the specific reactive area [L™!] and / is the kinetic reaction rate coefficient of the first-
order reaction [L T!]. Equation C5 defines the conditions under which the thermal and reactive
fronts coincide and provides a functional relationship to the equilibrium state in RLP settings. As
shown in the main text, this criterion reduces to the Da criterion (Eq. 1) but further defines the
local characteristic length scale, /, through time and thermal parameters (dynamic Da) in RLP

settings.

Appendix D: Parameter Values

Table 1. Parameter values used in the simulation in Section 3.2.

Aquifer thickness H=4m

Initial porosity 6o =0.05

Total volumetric flow rate' 0 =500 m* day!
Fluid velocity u=10°ms’!

Initial aquifer temperature? To=20°C

Injection temperature? Tin =160 °C

Fluid volumetric heat capacity? Cpr=4.2-10°J m3°C!
Rock volumetric heat capacity? Cpp=3.12-10°J m3°C!
Rock thermal conductivity? K,=3Wm'°C!
Calcite rate coefficient® A=10°ms!
Fractured carbonates specific reactive surface area’ As=10m™!

Calcite mineral concentration? Cso1=2.7-10*mol m?
Solubility change parameter calcite’ B=-0.075 mol m3°C’!
Stoichiometry coefficient®* v=1

1-Glassley (2014); 2-Huenges and Ledru (2011); 3-Palmer (1991); 4-Rimstidt and Barnes (1980); 5- see Section 4.1;
6-Hussaini and Dvorkin (2021) and Lai et al. (2015); 7-Roded et al. (2023).
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Appendix E: Nomenclature

Table 2. List of Symbols.

a
As

c

Cs
Csol
Cp
Da
Da;
erf
erfc
Err

=

lc

Pes
P er
0

r

a3
T'Final
t

e
7N
fc
tig
IR
T

Ua

Roman

Error function argument

Specific reactive surface area, m?> m-
Solute concentration, mol m™

Solubility (saturation concentration), mol m
Concentration of soluble solid, mol m-
Volumetric heat capacity, J m=°C-!
Damkohler number

Critical Damkdéhler number

Error function

Complementary error function
Weighted local error, mol m?s!
Aquifer thickness, m

Thermal conductivity, W m™! °C"!

Local characteristic length scale, m
Characteristic length scale of conduction, m
Unit vector

Fluid pressure, Pa

Solute Péclet number

Thermal Péclet number

Total volumetric flow rate, m* day"!
Coordinate, m

Front’s outer-end position, radial case, m
7 final extent, radial case, m

Time, s

Time parameter, s

Characteristic timescale of advection, s
Characteristic timescale of conduction, s
Thermal retardation time, s
Characteristic timescale of reaction, s
Temperature, °C

Fluid velocity, m s™!

Characteristic fluid velocity, m s™!

X Coordinate, m

XF Front’s outer-end position, planar case, m
xrinal  Xr final extent, planar case, m

y Coordinate, m

z Coordinate, m

Greek

a Thermal diffusivity, m? s™!

B Solubility change parameter, mol m- °C’!
r Gamma function

A Total difference

& Number much smaller than one
¢ Parameter group, m™

n Parameter group, m™

0 Porosity

0 Heat exchange term, W m™

A Reaction rate coefficient, m s’
A Solute disequilibrium, mol m?
7 Fluid viscosity, Pas

v Stoichiometric coefficient

¢ Lateral coordinate, £=r or x, m
& Front’s outer-end position, &= r¢ or xg, m
o Parameter group, m!

1) Parameter group, m!

Q Reaction rate, mol m3s™!
Subscripts

b Bulk rock

Equ  Equilibrium solution

f Fluid

in Inlet

max Max

Ref  Reference solution

0 Initial average quantity
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