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Abstract 

Rates of subsurface rock alteration by reactive flows are often independent of kinetic rates and 

governed solely by solute transport. This enables a major simplification that makes models 

tractable even for complex kinetic systems through the widely applied local equilibrium 

assumption. Here, this assumption is applied to the Reactive Lauwerier Problem (RLP), which 

describes non-isothermal fluid injection into a confined aquifer, leading to chemical 

disequilibrium. Specifically, the thermal changes drive temperature-dependent solubility 

variations, leading to undersaturation and dissolution or supersaturation precipitation reactions. 

Using this framework, solutions for reaction rate and porosity evolution are developed and 

analyzed, yielding a time-dependent criterion for their validity that incorporates time and thermal 

parameters. A key feature—the coalescence of thermal and reactive fronts—is used to explore 

their evolution over time in different settings. The applicability of the equilibrium model for 

important fluid–rock interaction processes is then examined and discussed, including sedimentary 

reservoir evolution and mineral carbonation in ultramafic rocks. Notably, the approach used here 

to extend thermal solutions for reactive processes suggests broader applicability. The findings also 

highlight that thermally driven reactive fronts, particularly near equilibrium, often become 

stationary after a relatively short period. As a result, their spatial evolution is governed by 

geological processes operating over much longer timescales. 

1. Introduction 

Natural and anthropogenic systems are often complex, involving intricate interactions between 

various processes, which makes developing a mechanistic understanding of the system 

challenging. However, the disparity in timescales between these processes often allows for 

significant simplification, as one process typically serves as the rate-limiting step that controls the 
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system’s overall evolution. This simplification, in turn, enables the recovery of the system’s 

mechanistic behavior. Such systems range from climate science, where atmospheric and oceanic 

processes interact and operate at different timescales (Vallis, 2017), to multi-step biochemical 

processes and enzyme kinetics (Cornish-Bowden, 2013), traffic flow analysis (Lighthill and 

Whitham, 1955), epidemiology and disease spread (Anderson, 1991), economics (Solow, 1956) 

and crystal growth (Mullins and Sekerka, 1963). 

Similarly, in geothermal systems, thermo-hydro-chemical (THC) processes often involve complex 

interactions. In particular, geochemical kinetics can be highly intricate, involving multiple species 

and reactions of varying orders, which are influenced by flow and transport dynamics and thermal 

variations (Appelo and Postma, 2004; Kolditz et al., 2016; Phillips, 2009). This complexity hinders 

the understanding of system behaviors and their description using tractable models. However, in 

many cases, the rate of transport is much slower than the reaction kinetics, effectively controlling 

the overall reaction rate. These conditions, known as transport-controlled, occur when the transport 

of reactants or reaction products dictates the reaction rate (Deng et al., 2016; Roded et al., 2020; 

Steefel and Maher, 2009).  

Under transport-controlled conditions, the characteristic timescale of transport, tA, is much larger 

than that of the reaction, tR, (tA ≫ tR) and the system is close to chemical equilibrium (i.e., quasi-

equilibrium). In such cases, the local equilibrium assumption is often invoked, and the assumption 

that the reaction rate depends solely on transport allows one to greatly simplify models (Andre and 

Rajaram, 2005; Lichtner et al., 1996; Molins and Knabner, 2019). The validity of the equilibrium 

assumption is determined by a large timescale ratio and the Damköhler number, Da, which, 

assuming a first-order surface reaction, is given by    

𝐷𝑎 =
𝑡A

𝑡R
=

𝑙𝐴s𝜆

𝑢A
≫ 1,                                                                                                                                  (1) 

where l is a local characteristic length scale, uA denotes characteristic Darcy flux [L T-1], As is the 

specific reactive area (L2 to L−3 of porous medium) and λ is the kinetic reaction rate coefficient [L 

T-1] (Lichtner et al., 1996; MacQuarrie and Mayer, 2005). 

In this study, equilibrium-approximated solutions for geothermal systems are derived. These build 

upon and extend previous work (Roded et al., 2024b), in which thermally driven reactive transport 
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solutions were developed within the framework of the Lauwerier solution (Lauwerier, 1955). The 

Lauwerier solution provides an analytical prediction of the thermal field development resulting 

from the injection of hot (or cold) fluid into a thin, non-reactive, confined layer system (Lauwerier, 

1955; Stauffer et al., 2014).  

The thermally-driven reactive transport solutions developed by Roded et al. (2024b) integrate 

temperature-dependent solubility into a reactive flow formulation while incorporating the thermal 

field based on the Lauwerier solution. Specifically, this setting, referred to as the Reactive 

Lauwerier Problem (RLP), accounts for thermal variations that drive the system out of 

geochemical equilibrium, thereby triggering chemical reactions. These disturbances stem from 

shifts in mineral solubility within groundwater, where thermal fluctuations can induce conditions 

of either supersaturation or undersaturation. Over time, these thermally-driven reactions lead to 

changes in rock porosity due to the precipitation, dissolution, or replacement of solid minerals and 

the associated volumetric changes (Phillips, 2009; Woods, 2015).  

Depending on the natural solubility of the minerals in the system, an increase in temperature can 

lead to either dissolution or precipitation. This occurs because mineral solubilities can either 

decrease with temperature (retrograde solubility) or increase with it (prograde solubility; Jamtveit 

and Yardley, 1996; Phillips, 2009). A notable example includes the prograde solubility of silica, 

which commonly precipitates in geothermal systems from the cooling of fluids (Pandey et al., 

2018; Rawal and Ghassemi, 2014; Taron and Elsworth, 2009). In contrast, carbonate minerals such 

as calcite and dolomite exhibit an inverse relationship with temperature and retrograde solubility, 

which is often pronounced and influenced by CO2 concentration. Depending on the conditions, 

either rapid dissolution or rapid precipitation can occur in the case of common carbonate minerals 

(Andre and Rajaram, 2005; Coudrain-Ribstein et al., 1998).  

Fluid recharge or injection under constrained physical and chemical conditions, as in RLP settings, 

is common in both natural and engineered geothermal systems and aquifers (Phillips, 2009; 

Stauffer et al., 2014). These include aquifer thermal storage, reinjection of geothermal water, and 

groundwater storage and recovery applications (Diaz et al., 2016; Fleuchaus et al., 2018; Maliva, 

2019), as well as implications for mineral carbonation in mafic or ultramafic rocks (Kelemen et 

al., 2019; Roded and Dalton, 2024). 
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In what follows, the settings and equations are first described, which then serve to derive the 

equilibrium-approximated solutions for the RLP for both radial and planar flows. These solutions 

are then compared to the reference solutions from Roded et al. (2024b) to validate them and discuss 

their limitations, along with the derivation of specific criteria for the RLP setup. Next, a key feature 

of the coalescence of the thermal and reactive fronts under quasi-equilibrium conditions is used to 

examine their evolution. Interestingly, under certain conditions, thermally driven reactive fronts 

essentially cease to expand and become stationary after a short timescale, remaining governed by 

longer-term tectonic processes. The applicability of the equilibrium model to key processes, 

including sedimentary aquifer alteration and natural mineral carbonation, is discussed along with 

an outlook for further theoretical developments. 

2. Settings and the Equilibrium Model Equations 

This section describes the RLP under the equilibrium assumption and then outlines the specific 

settings and relevant governing equations. These equations provide the THC equilibrium model 

(Phillips, 2009; Wood and Hewett, 1982) used to drive the solutions in this work. A comprehensive 

review of the more general RLP framework and its main assumptions is provided in Roded et al. 

(2024b) and further revised in Appendix A of this work. 

2.1. The Equilibrium Reactive Lauwerier Scenario  

The Lauwerier problem describes the injection of a hot or cold fluid into a confined aquifer 

bounded by impermeable bedrock and caprock. Along the horizontal flow path downstream from 

the injection well, heat is transferred between the aquifer and the confining aquiclude layers, which 

conduct the heat (Lauwerier, 1955; Stauffer et al., 2014). The horizontal flow direction is described 

using the ξ coordinate, which can represent either the radial distance (r) in an axisymmetric 

configuration or the Cartesian coordinate (x) in planar configuration, i.e., ξ = r or x. These represent 

the two primary geometric settings considered in this study. A schematic overview of this system 

is provided in Fig. 1, with the nomenclature summarized in Appendix E.  

Within the aquifer, thermal variations influence mineral solubility (i.e., saturation concentration, 

cs(T)). These solubility changes, in turn, lead to undersaturation and dissolution reactions or, 

conversely, to supersaturation and precipitation reactions, which modify the aquifer porosity (θ). 
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Porosity changes, whether increases or decreases, depend on thermal changes (heating or cooling) 

and the solubility nature of the minerals (prograde or retrograde). 

 

Figure 1. Outline of the Reactive Lauwerier Problem (RLP) under the equilibrium assumption. 

Hot (or cold) fluid is injected into an aquifer, confined between impermeable bedrock and caprock, 

at a steady flow rate, Q, and temperature, Tin. The initial temperature is T0, and the aquifer thickness 

is H. Along the flow path, heat from the aquifer conducts through the confining layers. The 

resulting thermal variations (depicted by color gradients) alter mineral solubility, cs(T), driving 

chemical reactions that modify aquifer porosity from its initial value, θ0. High Damköhler number 

conditions and the equilibrium assumption are considered. Under these conditions, the reaction 

rate, Ω, is directly governed by variations in temperature-dependent mineral solubility, ∂cs(T)/∂ξ. 

Here, ξ denotes the horizontal coordinate, either the radial coordinate (r) or the Cartesian 

coordinate (x), while z denotes the vertical coordinate. The reference point for both ξ and z is the 

center of the injection well, which serves as the symmetry axis in the radial case (as shown in the 

sketch) or the symmetry plane in the Cartesian case (modified after Roded et al. (2024b)).  

In this study, the focus is on conditions where reaction kinetics are fast, the Damköhler number is 

large (Da > 1), and the local equilibrium assumption holds. Under these conditions, the reaction 

rate, Ω, as shown in the next section, can be directly calculated from the thermally driven solubility 

changes in the system; that is, Ω ∝ ∂cs(T)/∂ξ. Hence, such a solution is independent of the specific 

reaction kinetics involved.  

In terms of geometry and hydrogeological scenarios, the radial setting pertains to injection from a 

single well or accounts for naturally focused flow of deep-origin fluids through faulted or fractured 
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rock, discharging into a shallower aquifer (Craw, 2000; Micklethwaite and Cox, 2006; Roded et 

al., 2013, 2023; Tripp and Vearncombe, 2004). The planar setting describes injection from a row 

of wells arranged in a straight-line configuration, as initially formulated by Lauwerier (1955).  

2.2. The Equilibrium-Based Approach   

The steady-state, solute advection–reaction equation in the aquifer is:  

0 = −𝑢
𝜕𝑐

𝜕𝜉
− Ω(𝜉, 𝑡),                                                                                                                                   (2) 

where ξ is the horizontal coordinate (ξ = r or x), u is the Darcy flux, c is the solute concentration 

and Ω(ξ, t) is the reaction rate, which varies in space and time, t (Chaudhuri et al., 2013; Szymczak 

and Ladd, 2012). In Eq. 2, transient variations are neglected, and the quasi-static approach to 

reactive flow is applied (see Appendix A and Roded et al. (2024b)). 

Defining the solute disequilibrium, Λ, as the difference between the dissolved ion concentration, 

c, and the temperature-dependent solubility (i.e., saturation concentration), cs(T),  

Λ = 𝑐 − 𝑐s(𝑇),                                                                                                                                               (3) 

Eq. 2 can then be rewritten as: 

0 = −𝑢 [
𝜕Λ

𝜕𝜉
+

𝜕𝑐s

𝜕𝜉
] − Ω(𝜉, 𝑡).                                                                                                                   (4) 

Next, conditions of a high Da number are considered, where reaction rates significantly exceed 

the rate of advective transport. In this regime, local quasi-equilibrium is maintained along flow 

paths, and the solute disequilibrium magnitude remains small compared to the overall solubility 

variation. Specifically, Λ ≪ Δcs, where Δcs denotes the absolute solubility change in the system, 

∆cs = |cs(Tin) – cs(T0)|, that is, between solubility at the injection temperature, Tin, and at ambient 

conditions, T0.  

Under this assumption, the first advective term in Eq. 4 (u∂Λ/∂ξ) becomes negligible compared to 

the other terms. The governing equation can thus be approximated as (Andre and Rajaram, 2005; 

Phillips, 2009, p. 237): 
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Ω(𝜉, 𝑡) = −𝑢
𝜕𝑐s(𝑇)

𝜕𝜉
.                                                                                                                                  (5) 

The expression in Eq. 5 provides the THC equilibrium model and demonstrates that, under quasi-

equilibrium conditions, the solute concentration, c, closely follows the spatially varying solubility 

determined by the temperature field, cs(T). Notably, it shows that in this regime, the solution for 

the overall reaction rate, Ω(ξ, t), can be independent of the specific reaction kinetics involved and 

can be calculated from the solubility gradient. 

Lastly, it is noted that the current study focuses on the equilibrium assumption and solves the 

reduced form given in Eq. 5. This contrasts with the preceding work (Roded et al., 2024b), which 

focused on solving the full form of Eq. 2 (or Eq. 4) under the assumption of first-order kinetics. 

2.3. Initial and Boundary Conditions 

The thermal Lauwerier solution incorporates an initial condition of uniform temperature T₀ across 

the system, along with boundary conditions that specify a constant fluid injection rate at 

temperature Tᵢₙ at the injection point (ξ = 0). It is assumed that the thickness of the bedrock and 

caprock, as well as the extent of the aquifer, are infinite.  

With respect to the solute transport boundary conditions, the RLP problem is defined by a constant 

fluid injection rate at temperature Tin, with an initial solute disequilibrium of Λ = 0 (i.e., saturated 

fluid) at the inlet (Roded et al., 2024b). In contrast, the equilibrium-approximated solutions derived 

from Eq. 5 calculate the reaction rate under the assumption that it is proportional to the 

temperature-driven solubility gradient everywhere. Consequently, as will be shown in the next 

section, solute transport boundary conditions are not incorporated. This discrepancy is the focus 

of the analyses in Section 3.3. 

 

 

 

 



 

8 

 

3. Results: The Equilibrium Solutions and Their Applicability   

3.1. Derivation of the Equilibrium Solutions  

3.1.1. Axisymmetric (Radial) Flow 

Aquifer temperature 

The Lauwerier solutions for the temperature distribution in the aquifer (Lauwerier, 1955; Stauffer 

et al., 2014) serve as the basis for developing the equilibrium-approximated RLP solutions 

presented here. These solutions are derived by solving the advective heat transport equation in the 

aquifer, together with the corresponding conductive heat transfer equation in the confining bedrock 

and caprock (Eqs. A1–A3 and A6 in Appendix A). The solution for axisymmetric settings is given 

by: 

𝑇(𝑟, 𝑡) = 𝑇0 + ∆𝑇erfc[𝜁(𝑟, 𝑡)𝑟2],                                                                                                             (6) 

where erfc is the complementary error function, ΔT = Tin – T0 is the difference between injection 

and ambient aquifer temperatures, and ζ is defined as: 

𝜁(𝑟, 𝑡) =
𝜋√𝐾b𝐶pb

𝑄𝐶pf
√𝑡′

,                                                                                                                                     (7) 

where Q is the total volumetric flow rate, K is the thermal conductivity, and Cp is the volumetric 

heat capacity, with the subscripts b and f denoting bulk rock and fluid, respectively. The time 

variable is defined as t’ = t – tLg, where tLg = πr2HCpb/(CpfQ), with H denoting the aquifer thickness 

(see Fig. 1). Assuming flow is uniform across the vertical thickness (H), the fluid velocity can be 

calculated from the volumetric flow rate as u = Q/(2πrH). 

The solution of Eq. 6 is valid when t’ > 0 (Stauffer et al., 2014), and it is further assumed here that 

a sufficiently long time has passed such that t’ ≈ t. Specifically, the term tLg represents a thermal 

retardation time. It accounts for the delay in the arrival of the thermal front due to advective 

transport and the thermal energy required to heat the aquifer solid matrix along the flow path (for 

an analysis of the validity of this assumption, see Roded et al. (2024b)). 
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Additionally, for simplicity, it is assumed that the heat capacities of both the confining rocks and 

the aquifer are identical. To account for non-uniform heat capacities, an alternative definition of 

Eq. 6 can be applied (see Eqs. 3.122 and 3.131, along with the corresponding definitions in Stauffer 

et al. (2014)).  

Thermally Driven Solubility Changes 

The THC equilibrium model in Eq. 5 shows that the reaction rate, Ω(r, t), depends on the thermally 

driven solubility gradient, ∂cs(T)/∂r. Here, the temperature-dependent solubility is calculated 

using: 

𝑐s(𝑇) = 𝑐s(𝑇0) + 𝛽(𝑇 − 𝑇0),                                                                                                                     (8) 

where the parameter β = ∂cs/∂T. In Eq. 8, a linear relation between cs and T is assumed, with a 

constant proportionality factor β, which is positive for minerals of prograde solubility and negative 

for minerals of retrograde solubility (Corson and Pritchard, 2017; Woods, 2015).  

In Eq. 5, the derivative of the solubility can be expanded to ∂cs/∂r = (∂cs/∂T)(∂T/∂r) and by further 

substituting the definition β = ∂cs/∂T, it can be expressed as, 

Ω(𝑟, 𝑡) = −𝑢𝛽
𝜕𝑇

𝜕𝑟
.                                                                                                                                       (9) 

The temperature gradient ∂T/∂r is calculated by substituting the Lauwerier solution (Eq. 6) and 

performing differentiation, yielding: 

Ω(𝑟, 𝑡) = 4𝑢𝛽∆𝑇
𝜁𝑟

√𝜋
𝑒(−𝜁2𝑟4).                                                                                                                (10) 

which provides the solution for the reaction rate. The evolution of porosity, θ, is described by: 

𝜕𝜃

𝜕𝑡
= −

Ω(𝑟, 𝑡)

𝜈𝑐sol
,                                                                                                                                          (11) 

where csol is the concentration of soluble solid mineral and ν accounts for the stoichiometry of the 

reaction. Substituting the solution for the reaction rate, Ω (Eq. 10), into Eq. 11 and integrating over 

time yields the solution for the porosity change: 
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𝜃(𝑟, 𝑡) = 𝜃0 − 4𝑢∆𝑇
𝛽𝜁2𝑟3𝑡

𝜐𝑐sol√𝜋
Γ (−

1

2
, 𝜁2𝑟4),                                                                                     (12) 

where Γ is the incomplete gamma function.  

3.1.2. Planar Flow 

For the Cartesian case, with injection occurring along a plane, the Lauwerier solution is: 

𝑇(𝑥, 𝑡) = 𝑇0 + ∆𝑇erfc[𝜔(𝑥, 𝑡)𝑥],                                                                                                           (13) 

where ω is defined as: 

𝜔(𝑥, 𝑡) =
√𝐾b𝐶pb

𝐻𝐶pf
𝑢√𝑡′

,                                                                                                                                 (14) 

and t’ = t – tLg, where tLg = xCpb/(Cpfu). Similarly to the radial case, it is assumed here that a 

sufficiently long time has passed such that the condition t’ ≈ t applies. 

Following steps analogous to those in the radial case, the solutions are derived as:  

Ω(𝑥, 𝑡) = 2𝑢∆𝑇
𝛽𝜔

√𝜋
𝑒(−𝜔2𝑥2),                                                                                                                 (15) 

and 

𝜃(𝑥, 𝑡) = 𝜃0 − 2𝑢∆𝑇
𝛽𝜔2𝑥𝑡

𝜐𝑐sol√𝜋
Γ (−

1

2
, 𝜔2𝑥2).                                                                                    (16) 

3.2. Comparison to Reference Solutions (High-Da) 

In this section, the results of the equilibrium solutions are compared with the more general 

solutions to the RLP model, which will henceforth be referred to as the 'reference solutions.' These 

reference solutions account for far-from-equilibrium conditions and assume surface-controlled 

reactions and first-order kinetics. The case study considered in the comparison involves a common 

scenario: dissolution of a fractured carbonate aquifer due to the injection of CO2-rich hot water 

and cooling-driven calcite dissolution. First, the results presented by Roded et al. (2024b) for the 
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reference solutions are briefly summarized to facilitate the comparison with the equilibrium 

solutions. The reference solutions, along with the case study considered here, are detailed in Roded 

et al. (2024b). The reference solution equations are also provided in Appendix B, and the parameter 

values used are listed in Appendix D. These values are identical to those in Roded et al. (2024b), 

including the radial case flow rate (Q = 500 m³ day⁻¹). 

 
Figure 2. Reference solutions for a case study of carbonate aquifer dissolution by cooling hot 

water, presented for comparison with the equilibrium solution in a radial flow setting. Panels (a)–

(c) show temperature (T), solute disequilibrium (Λ), and porosity (θ) plotted as functions of radial 

position (r) at different times. The continuous lines represent the Lauwerier solution and the 

reference solutions (Eqs. 6 and B2–B3), while the circles in panel (c) denote the equilibrium 

solution (Eq. 12). Magnified panels show solute disequilibrium (Λ) and porosity (θ) near the inlet 

region. Λ is scaled by the total solubility variation in the system, Δcₛ. The equilibrium solution 

closely matches the reference solution except near the inlet (see magnified panel and text). Quasi-

equilibrium conditions are further supported by the small magnitude of Λ. 

In Fig. 2, the results of CO₂-rich hot water injection are shown at successive times since the start 

of injection. These represent both engineering-relevant conditions (t = 25 yr) and longer geological 
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timescales (t = 10 kyr and 100 kyr), associated with natural processes such as focused deep-origin 

flow discharging into a shallower aquifer (Craw, 2000; Roded et al., 2023; Tripp and Vearncombe, 

2004). The Lauwerier solution and reference solutions are shown by continuous lines (Eqs. 6 and 

B2-B3), while the equilibrium solution for the porosity evolution is indicated by circle markers in 

Fig. 2c (Eq. 12).  

During the radial flow within the aquifer, the hot fluid cools by transferring heat into the confining 

layers, which heat up with time, resulting in the gradual advancement of the thermal front 

downstream (Fig. 2a). The cooling induces solute disequilibrium (Λ) associated with 

undersaturation (note that Λ is negative for undersaturation and positive for supersaturation, see 

Eq. 3). The magnitude of |Λ| in the aquifer is small compared to the absolute solubility change in 

the system, |Λ|/∆cs ≪ 1% (∆cs = |cs(Tin) – cs(T0)|; see Fig. 2b). The small magnitude of 

disequilibrium is associated with relatively high CO2 partial pressure considered (0.03 MPa) and 

rapid kinetics under these conditions. 

Despite its small magnitude, the disequilibrium, Λ, governs the alteration of the aquifer and the 

evolution of its porosity. Notably, since the water at the inlet is hot and saturated with calcite, c = 

cs(Tin), disequilibrium and the reaction rate are zero at the inlet, resulting in no change in porosity 

(see Fig. 2b and c, along with their magnified views). Disequilibrium (undersaturation) abruptly 

develops downstream of the injection well, initially forming a small minimum (at r ≈ 20 m) before 

gradually diminishing to zero further downstream.  

In accordance with the disequilibrium, the porosity profile sharply increases near the inlet and then 

gradually decreases downstream (Fig. 2c). Undersaturation and dissolution along the flow path are 

governed by the interplay of three processes: (I) dissolution, which reduces undersaturation 

(bringing Λ closer to zero), (II) progressive cooling, which enhances undersaturation, and (III) 

advection, which transports reaction products (calcium ions) radially outward from the well, 

sustaining undersaturation. Here, fluid velocity and advection decay with distance, following a 1/r 

relationship. The transient thermal effect is also evident in the time evolution of the disequilibrium: 

at early times (t = 25 yr), disequilibrium and its gradients are relatively high, but as the thermal 

front advances and thermal gradients decrease, the disequilibrium curves flatten. 
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The equilibrium solution matches the reference solution closely and is violated only near the inlet 

(r < 20 m; Fig. 2c). The agreement between the solutions and the existence of quasi-equilibrium 

conditions is supported by the small magnitude of the disequilibrium in the reference solution. 

This is because the equilibrium model assumes Λ = 0 (cf. Eqs. 4 and 5); therefore, a small Λ 

confirms the validity of this approximation. Consequently, solute disequilibrium provides an 

effective metric for quantifying the spatial and temporal extent to which the equilibrium 

assumption holds. This will be used next to further assess the applicability of the equilibrium-

approximated solutions (Section 3.3). 

With respect to the discrepancy near the inlet between the solutions, the injection of hot, saturated 

water results in no porosity change in the reference solution. In contrast, the equilibrium model, 

which assumes the reaction rate depends on the temperature gradient alone, does not capture this 

effect. Particularly, the solute transport boundary condition of inlet saturation (Λ = 0) is not 

incorporated into the equilibrium-approximated solutions, leading to this discrepancy (referred to 

hereafter as the ‘inlet advective discrepancy’). 

Under the conditions here, the deviation between the solutions is limited to a very narrow region 

near the inlet. However, in some cases, locally reduced porosity and permeability can still 

influence the overall estimation of aquifer permeability (Roded et al., 2024b). While the deviation 

in these cases can be accounted for by assuming no reaction at the inlet, as will be shown in Section 

3.3, this cannot capture advective effects that may become significant near the inlet under low Da 

conditions. It is also noted that in most practical scenarios, the injected fluid is expected to cool 

slightly during its descent in the well and may therefore already be reactive upon entering the 

aquifer.  

For completeness, Fig. 3 presents results for the same case study shown in Fig. 2 under a planar 

flow setting, with a fluid velocity of u = 10-6 m s-1. Similar to the radial case, the equilibrium 

solution closely matches the reference solution, with deviation occurring only near the inlet 

(magnification not shown). A key difference from the radial case is that the aquifer is heated over 

significantly greater distances. This results from the uniform flow velocity and more efficient heat 

retention in the planar configuration. In contrast, radial flow involves velocity decay with distance, 

which increases residence time and enhances conductive heat loss to the surrounding rock.  
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Additionally, in the radial case, the heat source (e.g., an injection well) acts as a source from which 

hot fluid spreads outward radially. In contrast, the planar configuration can be conceptualized as 

injection from a distributed source (e.g., a row of wells), generating a uniform planar front. More 

precisely, under the perfect thermal mixing assumption, the radial case is treated mathematically 

as a point source, while the planar case is treated as a line source oriented out of the plane. Hence, 

in the radial case, heat conduction is multidirectional, whereas in the planar case, heat is conducted 

only in the vertical directions. These differences influence the shape of the temperature profile: in 

the radial case, effective heating near the injection well and subsequent rapid decay lead to a 

sigmoidal (or diffusive front-like) profile, whereas in the linear case there is a decaying profile (cf. 

Figs. 2a and 3a). These differences are further quantified in Section 3.4. 

 
Figure 3. Reference solutions for a case study of carbonate aquifer dissolution by cooling hot 

water, presented for comparison with the equilibrium solution in a planar flow setting. Panels (a)–

(c) show temperature (T), solute disequilibrium (Λ), and porosity (θ) as functions of position (x) 

at different times. The continuous lines represent the thermal Lauwerier solution and the reference 

solutions (Eqs. 13 and B5–B6), while the circles in panel (c) denote the equilibrium solution (Eq. 

16). Λ is scaled by the total solubility variation in the system, Δcₛ. Similar to the radial case, the 

equilibrium solution closely matches the reference solution except near the inlet. This is also 

supported by the small magnitude of Λ. 

With respect to the results in Figs. 2 and 3, recall that the solutions in Section 3.1 rely on the 

fundamental assumption of spatial uniformity and symmetry in the reactive flow. However, in 

practical scenarios, dissolution channels (wormholes) may develop at the reaction front (Chadam 

et al., 1986; Furui et al., 2022; Roded et al., 2021). These wormholes localize reactive flow, 

creating heterogeneous flow fields that deviate from the assumed symmetry and uniformity. 
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Consequently, the results in Figs. 2 and 3 represent only an average solution and do not capture 

local flow variations accurately.  

Furthermore, the equilibrium solutions were also found to be applicable to the injection of hot, 

silica-rich water into a sandstone aquifer, where cooling induces supersaturation, silica 

precipitation, and porosity reduction, as discussed in Roded et al. (2024b) (not presented). In 

summary, this section validates the equilibrium solutions against the reference solutions and 

highlights the inlet advective discrepancy, examined next (Section 3.3). These findings also 

demonstrate the broader applicability of the equilibrium solutions across a range of characteristic 

conditions in natural and applied systems, as further elaborated in the Discussion section. 

3.3. Applicability of the RLP Equilibrium Solutions   

This section further examines the applicability of equilibrium-approximated solutions, focusing 

on the inlet advective discrepancy. This is done by considering lower Da, conditions farther from 

equilibrium, and changes in the system state over time. Accordingly, a scenario of relatively slow 

precipitation (β > 0) is considered, using a kinetic rate coefficient nearly four orders of magnitude 

lower (λ = 5·10⁻10 m/s), while all other conditions remain consistent with Section 3.2. This setup 

is representative, for example, of carbonate mineral precipitation from water of alkaline 

composition originating in carbonate or mafic rock aquifers (e.g., basaltic formations). Upon 

reinjection and subsequent heating, the solubility of carbonate phases decreases, promoting CO2 

mineralization through precipitation reactions (Etiope, 2015; Plummer et al., 1978; Steefel and 

Lichtner, 1998).  

Figure 4a presents the results for the reaction rate, Ω, for the reference solution (solid lines; Eq. 

B3) and the equilibrium solution (dashed lines with circle markers; Eq. 10). The slower kinetics 

and reduced Da result in a significantly larger deviation compared to the case shown in Figs. 2c 

and 3c. Note that the results in Figs. 2c and 3c, rather, present the porosity evolution, which reflects 

the time-integrated behavior of Ω (see Eq. 11).  

Significantly, the peak of the reaction rate curve in Fig. 4a is reached further downstream, rather 

than occurring immediately near the inlet as observed in Figs. 2 and 3. This shift reflects a much 

more dominant advective effect but still preserves the same general behavior: advection of 

saturated fluid from the inlet and the progressive buildup of disequilibrium and elevated Ω occur 
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downstream of the injection well. However, in this case, the effect extends over a much greater 

distance. 

Another prominent effect visible in Fig. 4a is the reduction in deviation between the solutions over 

time. This trend is quantified in Fig. 4b, which shows the weighted local error, defined as the 

difference between the two solutions and multiplied by the radial perimeter, Err = (ΩRef - ΩEqu)2πr, 

where the subscripts Ref and Equ denote the reference and equilibrium solutions, respectively.   

  

Figure 4. Comparison of the reference and equilibrium solutions over time under low Da 

conditions. (a) Reaction rate, Ω, as a function of radial position (r) at different times. The 

continuous lines represent the reference solution (Eq. B3), and dashed lines with circle markers 

represent the equilibrium solution (Eq. 10), denoted as 'Ref' and 'Equ' in the legend, respectively. 

(b) The deviation between the solutions, shown using the local error, Err, is visualized as a shaded 

region. Err is defined as the radially weighted difference between the solutions (see text for 

details). Ω and Err are normalized by their maximum values at t = 0.2 kyr, where Ωmax refers to 

the reference solution. 

The Err shaded regions show a progressive decrease and flattening over time. This reduction in 

Err and the closer approach to equilibrium are attributed to the downstream advancement of the 
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thermal front. As the thermal front advances and extends, the temperature gradients near the inlet 

become milder (see Fig. 2a). This leads to a decrease in the reaction rate in this region, and the 

inlet advective discrepancy of the equilibrium model becomes less pronounced (the Supplementary 

Material (SM) presents results for the planar case, which exhibits the same effects). 

As noted in the Introduction, the applicability of the equilibrium model is governed by Da, with 

quasi-equilibrium conditions expected when Da > 1 (Eq. 1). In the THC equilibrium model and 

RLP settings, the deviation of the equilibrium solutions, mainly from the local inlet effect, evolves 

over time and is influenced by thermal dynamics. This observation motivated the derivation of a 

more specific applicability criterion, presented in Appendix C. This analysis is based on a key 

feature of quasi-equilibrium behavior: the close alignment of the thermal and reactive fronts in the 

aquifer, which occurs when Da is high (cf. Fig. 2a and b). This behavior is leveraged to establish 

a criterion for when the fronts coincide and equilibrium conditions may be assumed. This 

functional relation, which applies to both planar and radial settings, is given by: 

1 ≫
2

√𝜋𝑡
(

1

𝐴s𝜆
) (

√𝐾b𝐶pb

𝐻𝐶pf

).                                                                                                                    (17) 

In accordance with the results in Fig. 4, the criterion shows that the system approaches equilibrium 

as time progresses (with a proportionality of t-1/2). The second term in the brackets represents the 

characteristic reaction timescale, tR = 1/Asλ, which, in agreement with the high Da condition, 

indicates that a smaller tR leads to faster approach to equilibrium. The final term in the brackets 

captures the ratio of thermal parameters and accounts for the evolution of the temperature 

gradients. When the confining rock’s thermal conductivity (Kb) and heat capacity (Cpb) are low, 

the thermal front advances downstream more rapidly, promoting mild temperature gradients and 

equilibrium. Similarly, a large product of aquifer thickness and fluid heat capacity (HCpf) also 

facilitates faster thermal front advancement and equilibrium.  

Notably, the fluid velocity does not appear in the criterion of Eq. 17. This is attributed to the fact 

that solute advection enhances disequilibrium (in accordance with the Da criterion), while thermal 

advection promotes equilibrium by extending and stretching the thermal front. By introducing the 

characteristic fluid velocity, uA, into the expression, the criterion in Eq. 17 reproduces the 

Damköhler number criterion (Eq. 1): 
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𝑙(𝑡)𝐴s𝜆

𝑢A
≫ 1,     where     𝑙(𝑡) =

√𝜋

2

𝑢A𝐻𝐶pf

√𝐾b𝐶pb

𝑡1/2.                                                                             (18) 

Thus, this RLP-specific Da criterion incorporates a definition of the local characteristic length 

scale, l, in terms of time and thermal parameters (dynamic Da). Recall that the length scale l 

denotes the distance over which substantial temperature variation occurs (e.g., 2% of the total 

change) and captures the influence of the thermal field on reactive transport. 

The functional criterion in Eqs. 17 and 18, consistent with the results in Fig. 4, indicates that the 

equilibrium solutions are not applicable as t → 0 and are less accurate during the initial stages. 

Nevertheless, as shown in Fig. 2, the equilibrium-approximated solutions may remain fully valid 

even at relatively early times. Such behavior is observed under common conditions involving 

fractured carbonate aquifers and silica precipitation, where the validity extends to timescales of 

engineering relevance (e.g., t < 25 yr).  

It should also be recalled that several inherent assumptions in the Lauwerier solution reduce its 

accuracy during the initial stages (see Appendix A). In addition, for the reactive Lauwerier 

solution, the assumption of negligible thermal retardation time (tLg) and the approximation t′ ≈ t 

further affect the accuracy at early times (see Eqs. 6 and 13). This assumption, which is particularly 

relevant for the radial case, contributes to the reduced accuracy at early times (e.g., t < 10 years; 

see Appendix C in Roded et al. (2024b)). 

3.4. Development of Coalesced Fronts  

As mentioned in the previous section, a key feature of quasi-equilibrium behavior is the close 

alignment of the thermal and reactive fronts in the aquifer, which occurs when the Da is high and 

reactions dominate over transport. Under these conditions, any disequilibrium induced by thermal 

changes diminishes rapidly and essentially does not extend downstream of the thermal front, 

resulting in the coalescence of the fronts. This property is leveraged to infer in a simple manner 

the spatial distribution and temporal advancement of the coalesced fronts using the thermal 

Lauwerier solutions. 

First, we define the thermal fronts’ outer-end positions, ξF(t), as the furthest distances of thermal 

perturbation due to the injection at a given time. The thermal perturbation is quantified by ε = 
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(T(ξF)-T0)/ΔT, where ε is a prescribed small value (ε ≪ 1); here, ε = 0.01. This threshold uniquely 

determines the position ξF(t) at which the temperature perturbation is considered negligible. 

Next, rearranging and substituting the definition of ε corresponding to the conditions at the fronts’ 

outer-end positions into the Lauwerier solutions (Eqs. 6 and 13) yields: 

𝜀 = erfc(𝑎),     where     𝑎 = {
𝜁(𝑡)𝑟F

2,   for   𝜉 = 𝑟

𝜔(𝑡)𝑥F,   for   𝜉 = 𝑥
.                                                                          (19) 

Here, a is a constant determined by ε, and for ε = 0.01, a ≈ 1.8. Then, the fronts’ outer-end positions 

can be expressed as: 

𝑟F(𝑡) = √
𝑎

𝜁(𝑡)
,     and     𝑥F(𝑡) =

𝑎

𝜔(𝑡)
.                                                                                               (20) 

Finally, substituting the definitions of ζ and ω (Eqs. 7 and 14) into Eq. 20 gives explicit expressions 

for the advancement of the coalesced fronts under quasi-equilibrium conditions: 

𝑟F(𝑡) = √
𝑎𝑄𝐶pf

𝜋√𝐾b𝐶pb

𝑡
1
4,     and     𝑥F(𝑡) =

𝑎𝐻𝐶pf
𝑢

√𝐾b𝐶pb

𝑡
1
2.                                                                       (21) 

These relations provide a simple way to estimate the spatial positions of the coalesced fronts as a 

function of time using the thermal solutions alone. 

To demonstrate the fronts’ advancement, Eqs. 21 are used to plot xF and rF for three different 

velocities (u) and flow rates (Q), presented in Fig. 5a and b. This illustrates the decay of the 

advancement rate over time in both cases: the hot fluid heats the confining rocks as it flows, and 

the thermal fronts gradually advance downstream. However, front extension overall enhances heat 

loss to the confining layers, reducing the advancement rate over time and distance. 

The key difference between the radial and planar cases, as noted in Section 3.2, is clearly reflected 

in Eqs. 21 and the results shown in Fig. 5a and b. The planar case exhibits significantly greater 

heat retention and a higher advancement rate. This is demonstrated by the green dashed lines in 

Fig. 5a and b, which indicate that half of the final calculated extent, 1/2xFinal, is reached in one 
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quarter of the final time, while in the radial case, 1/2rFinal is approached after one sixteenth of the 

time. Alternatively, differentiating Eqs. 21 with respect to time yields ∂rF/∂t ∝ t-3/4 in the radial 

case, compared to ∂xF/∂t ∝ t-1/2 in the planar case. 

 
Figure 5. Advancement of the coalesced thermal and reactive fronts over time, xF(t) and rF(t), for 

different velocities (u) and flow rates (Q), respectively. Panels (a)–(b) show results for high flow 

rates, while panels (c)–(d) illustrate the low-flow-rate limit. (a)–(b) xF and rF are calculated using 

Eqs. 21. The green dashed lines illustrate the difference between the radial and planar cases and 

highlight the greater advancement of the front in the planar case: half of the final extents (1/2xFinal 

and 1/2rFinal) are reached at 1/4 and 1/16 of the final time, respectively. (c)–(d) The low-flow-rate 

limit refers to the radial case where conduction effectively distributes heat. This is analyzed using 

solution for conduction-only, representing the limit Q → 0 (analytical, black lines), and results for 

low flow rates of Q = 1 and 5 m³/day (numerical, red and orange, respectively). Panel (c) shows rF 

for these cases, while (d) displays the temperature profiles as a function of radial position, r. The 

black line in (d) represents the conduction-only quasi-steady-state profile, and the colored dashed 

and continues lines indicate early and later times, respectively, for each flow rate. The close 

alignment of the lines demonstrates that the thermal field remains nearly unchanged after the initial 

stage. For further details on the calculations, refer to the text. 
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Another case considered here, shown in Fig. 5c and d, is the low-flow-rate limit in radial geometry, 

where conduction dominates and effectively distributes heat. This is illustrated using two different 

approaches: (I) the analytical conduction-only solution, representing the limit Q → 0 (black lines), 

and (II) numerical results for low flow rates (Q = 1 and 5 m³/day, red and orange curves). 

The analytical solution describes a sphere at constant temperature in an infinite medium, modeling 

heat conducted from the sphere into the surrounding medium. This time-dependent solution 

converges to a quasi-steady-state temperature profile that remains essentially unchanged over time 

(Stauffer et al., 2014; see details in the SM). The numerical simulations for low flow rates use 

equations and settings identical to those of the Lauwerier solution but with an important 

distinction: they do not assume negligible radial conduction. This simplification makes the 

Lauwerier solution inadequate under conditions of low flow rates and sharp lateral geothermal 

gradients (see Appendix A). Further details of the numerical calculations are given in Roded et al. 

(2023).   

Figure 5c shows rF for the conduction-only case and for Q = 1 and 5 m³/day (other parameter values 

are consistent with Appendix D). Unlike the high-flow-rate planar and radial cases in Fig. 5a and 

b, the low-flow-rate cases exhibit a more pronounced decrease in the advancement rate over time, 

reflected in the flattening of the curves. This effect is especially pronounced for the lower flow 

rate (Q =1 m³/day), which exhibits behavior closer to the conduction-only case, in which the 

advancement rate essentially levels off as the system approaches quasi-steady-state. 

This is more clearly shown in Fig. 5d, which presents the temperature profiles for these cases as a 

function of radial position, r. It includes the analytical quasi-steady-state temperature profile 

(conduction-only case) and numerical profiles at low flow rates shown for two consecutive times. 

The close alignment of the dashed (early time) and continuous (later time) lines, and their near 

overlap, demonstrates that the temperature profiles change very little after the early stage. The 

profiles become nearly stationary over tens to hundreds of years, which is a very brief geological 

timescale. Hence, even though the front’s outer position in the low-flow-rate cases continues to 

advance slowly, the temperature profile does not change meaningfully. This contrasts with the 

high-flow-rate cases shown in Figs. 2a and 3a over the long timescale considered. 
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The results also show effective heat distribution by conduction, with nearly complete cooling 

occurring within 10-100 m from the inlet, depending on the flow rate. Overall, both the analytical 

solution for the limit Q → 0 and the numerical solutions at low flow rates demonstrate similar heat-

transport behavior under these conditions. This low-flow-rate scenario is particularly relevant to 

natural conditions, which often involve low flow rates and can manifest on the surface as low-

flow-rate thermal springs (Garven, 1995; Klimchouk et al., 2017; Roded et al., 2013). 

These findings have important implications, suggesting that thermally driven reactive fronts can 

also become nearly stationary, as will be further discussed in the Discussion section. Lastly, it is 

important to note that the solutions assume an infinite caprock thickness. However, if the thermal 

front reaches the surface, greater heat exchange between the aquifer and the caprock is expected, 

reducing the thermal front’s advancement rate and extent (see also Appendix A). 

4. Discussion and Outlook 

4.1. Equilibrium Model Applicability to Hydrothermal Systems  

Figure 6 presents an illustrative phase diagram distinguishing between conditions where the THC 

equilibrium model (Eq. 5) is applicable and those far from equilibrium. The diagram is based on 

the Damköhler number, which represents the ratio between the characteristic timescales of 

transport and reaction, Da = tA/tR. The diagonal line marking the transition at Da ≫ 1 (Dacr) and 

hotter colors denote higher Da values and conditions closer to equilibrium. As reactivity (1/tR) 

increases, the equilibrium model becomes applicable over a wider range of flow velocities, u, or 

smaller characteristic length scales, l, represented as 1/tA = u/l. Here, l represents the local 

characteristic length scale of thermal and solubility variations and accounts for the thermal field 

effect on reactive transport, which may vary with time (see Section 3.3). Equation 1, which 

assumes first-order kinetics and presents Da = lλAs/u, is useful for quantifying different fluid–rock 

interactions that can be approximated by first-order kinetics.  

Several notable fluid–rock interaction processes are shown on the diagram, positioned according 

to their characteristic reactivity. At the top are common carbonates, i.e., limestone and dolomite, 

which typically exhibit high reaction rates and are highly prone to alteration (with values of λ 

typically ranging from 10⁻⁸ to 10⁻⁴ m/s under engineering applications; Dreybrodt et al., 2005; 

Peng et al., 2015; Plummer et al., 1978).  
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Figure 6. A schematic diagram illustrating the applicability of the THC equilibrium model and the 

positioning of several notable fluid–rock interaction processes according to their typical reactivity. 

The diagram is plotted based on the characteristic timescales of reaction and transport that define 

Da, and shows 1/tR versus 1/tA (Da = tA/tR). The equilibrium model can be assumed when Da > 

Dacr, with Dacr defined as a threshold where Dacr ≫ 1. Dacr is represented by the diagonal black 

line on the diagram, with hot colors indicating high Da values and proximity to equilibrium.  

Silica precipitation is also prevalent in hydrothermal settings (e.g., quartz vein formation and 

mineral scaling; Glassley, 2014; Huenges and Ledru, 2011; Oliver and Bons, 2001) and is 

characterized by relatively high reactivity, with a typical rate constant of λ = 5ꞏ10-10 m/s (Rimstidt 

and Barnes, 1980). In contrast, while non-crystalline silica (amorphous) precipitates relatively 

quickly, quartz dissolution is typically slower by several orders of magnitude (Rimstidt and 

Barnes, 1980). An additional interesting behavior associated with quartz occurs at much higher 

temperatures (e.g., T > 300 °C), which can prevail near magmatic intrusions. At these high 

temperatures, quartz exhibits retrograde solubility, which switches to prograde solubility upon 

cooling (Glassley, 2014; Scott and Driesner, 2018).  

Importantly, the specific reactive surface area, As, (L2 to L−3 of porous medium) may vary widely 

across different rock lithologies, and its effect on the applicability of the equilibrium model is 

comparable to that of kinetics. Specifically, As can vary, e.g., from 10-1 m-1 in fractured rock (Deng 

and Spycher, 2019; Pacheco and Van der Weijden, 2014) to above 105 m-1 for porous medium 
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(Noiriel et al., 2012; Seigneur et al., 2019) and can also evolve during reactive flow (Noiriel, 2015; 

Seigneur et al., 2019). 

The position of these processes on the diagram, supported by calculations in Section 3.2, 

demonstrates the applicability of the equilibrium model even at relatively high flow rates. This is 

especially significant, as high flow rates are characteristic of applications such as groundwater 

storage and recovery, aquifer thermal storage, and geothermal reinjection  (Diaz et al., 2016; 

Fleuchaus et al., 2018; Maliva, 2019).  

Additional important settings where thermally driven reactions may play a significant role involve 

mineral carbonation. In particular, this includes the formation of carbonate veins in ultramafic 

rocks, such as peridotites, by ascending CO₂-rich hydrothermal flow (Kelemen et al., 2011; Menzel 

et al., 2024). The CO₂-rich fluids first dissolve the rock minerals, primarily olivine. Then, as the 

pH rises and cation enrichment occurs, carbonate precipitation, primarily magnesite, takes place 

further along the upward flow path. The rate-limiting step in the mineral carbonation process is 

commonly suggested to be the relatively slower kinetics of dissolution compared to precipitation 

(Hänchen et al., 2006; Kaszuba et al., 2013; Kelemen et al., 2019).  

The solubility of olivine is retrograde, as evidenced by the exothermic nature of the reaction 

(Kaszuba et al., 2013; Prigiobbe et al., 2009). Under such conditions, ascending flow along a 

decreasing geothermal gradient is expected to promote undersaturation. This continued renewal of 

undersaturation in turn may facilitate the development of an extended, thermally driven 

dissolution-precipitation front. Considering the typically low rates of ascending hydrothermal flow 

(e.g., u < 10-7 m/s; Garven, 1995), along with characteristic high reaction rates of olivine 

dissolution at high temperatures (T > 150 °C; (Rimstidt, 2015; Rimstidt et al., 2012), it suggests 

that Da can be large. Consequently, mineral carbonation and vein formation can be controlled by 

thermally driven solubility changes and described by the THC equilibrium model.   

4.2. Development of Thermally Driven Reactive Fronts in Earth Systems 

The quasi-equilibrium conditions, characterized by the thermal front’s control over the reactive 

front and their coalescence, allowed examination of their evolution in different settings in 

Section 3.4. A particularly interesting finding is that in radial (or similar) settings, and at relatively 

low flow rates, a quasi-steady state develops over brief timescales of tens to hundreds of years. 
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Such a cooling process can also produce very steep thermal gradients, as shown in the temperature 

profile in Fig. 5d, and can cause localized, thermally driven reactive effects. These thermal 

gradients may be up to two orders of magnitude greater than the typical geothermal gradient 

resulting from Earth’s heat flow (e.g., ~0.025 °C/m; Turcotte and Schubert, 2014). 

A relevant example includes hypogenic karst cave formation driven by upwelling hydrothermal 

flow through a conduit pathway within a fault. This flow discharges and spreads radially in a 

confined aquifer while cooling rapidly, promoting localized carbonate dissolution around the water 

inlet (Roded et al., 2023, 2024a). In this case, the results in Fig. 5d suggest that the cave system or 

alteration front may reach approximately constant final dimensions. These settings may also apply 

to additional alterations by hypogenic flows and thermal seepages. 

Additional relevant settings that can involve coalesced fronts are ascending hydrothermal flow 

along a decreasing geothermal gradient, leading to cooling and thermally driven reactions. 

Particularly, as mentioned above (Section 4.1), this may induce olivine dissolution followed by 

mineral carbonation in veins in ultramafic rocks. Alternatively, quartz vein formation dominantly 

occurs due to cooling along the flow path (Bons, 2000; Sibson et al., 1975). In these settings, 

coalesced fronts may become stationary as the hot ascending flow alters the background 

geothermal gradient, producing a modified steady vertical thermal profile (Person et al., 1996; 

Roded et al., 2013).  

In these cases, where the coalesced, thermally driven reactive front remains stationary over 

geological timescales, spatial alteration of the front depends on slower tectonic processes. These 

tectonic timescales are associated with processes such as erosion, subduction, and orogenic 

activity. A well-known example is the alteration of the geothermal gradient caused by surface 

erosion or sediment deposition (Haenel et al., 2012; Turcotte and Schubert, 2014). In response to 

tectonic changes, the slowly varying subsurface thermal field drives the gradual migration of the 

reactive front. 

4.3. Theoretical Modeling Outlook 

Finally, this study and Roded et al. (2024b) demonstrate the extension of established heat transport 

solutions to THC-coupled solutions. For future work, the possibility of extending these solutions 

and approaches in several directions should be investigated. Specifically, it should be examined 
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how the solutions developed can be further extended to address more realistic and complex 

scenarios. In particular, this includes consideration of more complex kinetic systems involving 

multiple species and additional or more intricate couplings between variables and parameters.  

In such cases, semi-analytical approaches could be especially useful. Due to the quasi-static 

assumption of reactive flow, the set of equations for reaction rate (Eqs. 10 and 15) or solute 

disequilibrium (Eqs. B3 and B6) could potentially be implemented in a semi-analytical, coupled, 

and iterative manner. 

Furthermore, the approach taken here and in Roded et al. (2024b) can be adapted to extend 

additional thermal solutions to significant thermally driven reactive transport scenarios. Notably, 

this may be especially practical and feasible under the equilibrium assumption, where thermally 

driven reactions depend solely on the thermal gradients. 

5. Summary and Conclusions 

In this work, the equilibrium assumption was used to derive thermally driven reactive transport 

solutions for the RLP (Reactive Lauwerier Problem) in Cartesian and radial coordinates. The 

solutions were then validated and analyzed against reference solutions and case studies involving 

thermally driven reactions of carbonates. In particular, the shortcoming of the equilibrium-

approximated solutions associated with the advective boundary condition is analyzed. It was found 

that as the thermal front advances, inlet temperature gradients become milder and the advective 

discrepancy less pronounced. This also motivated the derivation of a functional criterion for quasi-

equilibrium conditions in the RLP, which reduces to the Damköhler criterion (dynamic Da). The 

criterion incorporates time and thermal parameters and supports this interpretation. 

Following this, a unique feature of quasi-equilibrium conditions—the coalescence of the thermal 

and reactive fronts—is used to explore their evolution over time. This is examined in both planar 

and radial settings, and under the low-flow-rate limit where conduction effectively distributes heat. 

The advancement rate in the radial case decays much more rapidly, and, notably, in the low-flow-

rate limit, the front can become essentially stationary within a very short period. Additionally, 

under these conditions, very sharp temperature gradients are created near the inlet, which can 

induce localized fluid-rock interactions. 
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The applicability of the THC equilibrium model for notable fluid–rock interaction processes is 

then discussed. These include sedimentary reservoir evolution through reactions involving silica 

and carbonates, as well as natural mineral carbonation in ultramafic rocks. These processes are 

positioned on a phase diagram based on the Damköhler number, illustrating the applicability of 

the equilibrium model. 

Notably, the theoretical approach used here—extending established heat-transport solutions to 

thermally driven reactive transport—may also be applicable to other important Earth system 

scenarios. Finally, it is emphasized that since thermally driven reactive fronts often become 

essentially stationary within a short period, their evolution is governed by geological processes. 

These processes, such as tectonics or surface erosion and deposition, operate on much longer 

timescales. 
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Appendix A: Underlying Assumptions and Equations of the Equilibrium RLP 

This appendix describes the main assumptions of the RLP under the equilibrium assumption. It 

follows the main presentation from Roded et al. (2024b) and extends it to account for the quasi-

equilibrium conditions considered in this study. First, the main assumptions are detailed, followed 

by a comprehensive overview of the basic conservation equations. 

A.1.  Main Model Assumptions 

The thermal Lauwerier (Lauwerier, 1955) solution involves several simplifying assumptions. 

These include neglecting the initial geothermal gradient and assuming that the basal geothermal 

heat flux is negligible compared to the heat supplied by the injected fluid. The aquifer is also 

assumed to be situated at depth, preventing heat from being transferred to the surface; otherwise, 

there would be greater heat exchange between the aquifer and the caprock. This assumption also 

depends on the timescale of interest: the thermal front, which rises over time, may not extend to 

the surface on a short timescale. However, over a longer period, it may transfer heat to the surface, 

which can be calculated using the characteristic timescale of conduction tC (tC = lC
2/αb, where l 

accounts for the characteristic length scale of conduction and αb is the thermal diffusivity).  

In the confining layers, heat is transferred solely through conduction in the vertical direction (z), 

while neglecting lateral (ξ) heat conduction. This assumption restricts the model’s applicability to 

cases with high injected fluid fluxes, where mild lateral temperature gradients evolve. To evaluate 

the validity of this assumption, a thermal Péclet number is employed, which compares heat 

advection in the aquifer to lateral heat conduction in the confining layers: PeT = uAl/αb, where l is 

a length scale at which substantial temperature variation occurs (e.g., the distance corresponding 

to 2% of the total temperature change, ∆T). A posteriori inspection confirms that PeT ≫ 1 beyond 

the initial moments under all conditions considered here. Moreover, after a very short initial phase, 

the length scale l should exceed the vertical dimension of the aquifer, H, where complete thermal 

mixing is assumed (l ≫ H). This assumption may not hold if a thick aquifer (i.e., large H) is 

considered, and significant vertical temperature gradients are expected to develop.  

Additionally, thermal and solute dispersions within the aquifer are neglected, as both thermal (PeT) 

and solute (Pes) Péclet numbers are assumed to be large. Properties of the fluid and solid phases, 
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such as density and thermal conductivity, are assumed to be constant and temperature-independent. 

Finally, it is assumed that Da > 1, making the equilibrium assumption applicable. As a result, 

reaction rates are essentially independent of kinetics and reactive surface area, as demonstrated in 

Section 2.2 of the main text.  

A.2.  The Basic Conservation Equations 

Heat Transport: 

Here, the basic conservation equations that underlie the Lauwerier solutions (Eqs. 6 and 13) and 

the THC equilibrium model (Eq. 5) are presented. More general versions of the conservation 

equations are provided in  Roded et al. (2024b). In what follows, the radial case (ξ = r) is considered 

first, followed by the planar flow case and Cartesian coordinates (ξ = x). 

Assuming that heat transfer in the radial direction, r, is negligible, the heat equation in the bedrock 

and caprock confining the aquifer is,  

 
𝜕𝑇

𝜕𝑡
= 𝛼b

𝜕2𝑇

𝜕𝑧2
,     for     {

𝑧 ≤ −
𝐻

2

𝑧 ≥
𝐻

2

,                                                                                                       (𝐴1) 

where T denotes temperature, t is time, z is the vertical coordinate originating at the center of the 

injection well and H denotes the aquifer thickness (see Fig. 1). The thermal diffusivity is given by 

αb = Kb/Cpb, where the subscript b denotes bulk rock, K is the thermal conductivity, and Cp is the 

volumetric heat capacity (Chen and Reddell, 1983; Stauffer et al., 2014). 

Assuming that heat transport in the aquifer is dominated by advection and that perfect mixing 

prevails in the transverse direction (z), a 'depth-averaged' heat transport equation can be derived 

for the aquifer domain:  

𝐶pb
𝐻

𝜕𝑇

𝜕𝑡
= −𝐶pf

𝐻
1

𝑟

𝜕(𝑟𝑢𝑇)

𝜕𝑟
− 𝒏 ∙ 𝚯(𝑟, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
,                                               (𝐴2) 

where subscript f denotes fluid and u is the Darcy flux, assumed to be uniform along the z direction, 

and calculated from the total volumetric flow rate, Q, using u(r) = Q/(H2πr) (Andre and Rajaram, 

2005; Lauwerier, 1955). The function Θ accounts for the heat exchange between the aquifer and 
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the confining bedrock and caprock, calculated using Fourier’s law, assuming continuous 

temperature at the interfaces: 

𝚯 = −2𝛫b

𝜕𝑇

𝜕𝑧
|

𝑧=
𝐻
2

,−
𝐻
2

.                                                                                                                              (𝐴3) 

The factor of two accounts for both the bedrock and caprock (Stauffer et al., 2014). In Eq. A2, n 

represents a unit vector directed outward from the aquifer and perpendicular to the interface 

between the aquifer and the bedrock or caprock. This orientation ensures that, e.g., in the case of 

a warmer aquifer, the upward and downward heat fluxes constitute a heat sink.  

Reactive Transport: 

The solute advection-reaction equation in the aquifer is:  

0 = −𝑢
𝜕𝑐

𝜕𝑟
− Ω(𝑟, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
,                                                                                      (𝐴4) 

where c is the solute concentration and Ω is the reaction rate (Chaudhuri et al., 2013; Szymczak 

and Ladd, 2012). Note that the transient and dispersivity terms in Eq. A4 are neglected, with the 

latter being omitted due to the assumption of Pes ≫ 1. The justification for neglecting the transient 

term and invoking the quasi-static approximation in the derivation of Eq. A4, lies in the separation 

of timescales between the relaxation of solute concentration (tA), heat conduction (tC) in the 

confining rocks and mineral alteration (for in-depth analysis and discussion see Roded et al. 

(2024b) and as well, e.g., Bekri et al., 1995; Ladd and Szymczak, 2017; Lichtner, 1991; Roded et 

al., 2020). 

Using the reaction rate, the change in porosity, θ, can be calculated as: 

𝜕𝜃

𝜕𝑡
= −

Ω

𝜈𝑐sol
,     for     −

𝐻

2
≤ 𝑧 ≤

𝐻

2
.                                                                                                  (𝐴5) 

Here, csol represents the concentration of soluble solid mineral and ν accounts for the stoichiometry 

of the reaction. For planar flow and Cartesian coordinates, r can be substituted with x in the 

equations above, while Eq. A2 takes the following form: 

𝐶pb
𝐻

𝜕𝑇

𝜕𝑡
= −𝑢𝐶pf

𝐻
𝜕𝑇

𝜕𝑥
− 𝒏 ∙ 𝚯(𝑥, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
.                                                        (𝐴6) 



 

31 

 

The above set of heat transport equations underlies the development of the thermal Lauwerier 

solutions presented in Section 3.1 (Eqs. 6 and 13). Section 2.2 of the main text provides the 

derivation of the equilibrium-approximated form of Eq. A4, which is used to obtain the 

equilibrium-approximated solutions developed in this study. 

Appendix B: RLP Solutions 

B.1.  Radial Case 

The solution to the RLP for solute disequilibrium in the radial case is given by, 

Λ = ∆𝑇𝛽𝑒
(

𝜂2

4𝜁2−𝜂𝑟2)
(erf [𝜁𝑟2 −

𝜂

2𝜁
] + erf [

𝜂

2𝜁
]),                                                                              (𝐵1) 

where η = πHAsλ/Q and the definition of ζ is given in Eq. 7. 

A closed-form expression for the temporal and spatial evolution of porosity, θ, is given by, 

𝜃(𝑟, 𝑡) = 𝜃0 + 4
𝜁2𝑡

𝜂2

𝜆𝐴s∆𝑇𝛽

𝜈𝑐sol
(−𝑒

𝜂/4(
𝜂

𝜁2−4𝑟2)
(erf [𝜁𝑟2 −

𝜂

2𝜁
] + erf [

𝜂

2𝜁
]) +

𝜂

𝜁√𝜋
𝑒−𝜂𝑟2

+ erf[𝜁𝑟2](1 − 𝜂𝑟2) −
𝜂

𝜁√𝜋
𝑒−𝜁2𝑟4

+ 𝜂𝑟2 − 1).                                                   (𝐵2) 

For efficient computation and preventing integer overflow, an approximate solution of Eq. B1 is 

developed using the first-order asymptotic expansion of erfc,  

Λ =  
∆𝑇𝛽

√𝜋
𝑒(−𝜂𝑟2) (

e(𝜂𝑟2−𝜁2𝑟4)

𝜂
2𝜁

− 𝜁𝑟2
−

2𝜁

𝜂
).                                                                                               (𝐵3) 

B.2.  Planar Case 

For the planar case, the corresponding solutions are given by, 

Λ = ∆𝑇𝛽𝑒
(

𝜎2

4𝜔2−𝜎𝑥)
(erf [𝜔𝑥 −

𝜎

2𝜔
] + erf [

𝜎

2𝜔
]),                                                                             (𝐵4) 

and 
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𝜃(𝑥, 𝑡) = 𝜃0 + 4
𝜔2𝑡

𝜎2

𝜆𝐴s∆𝑇𝛽

𝜈𝑐sol
(−𝑒

𝜎/4(
𝜎

𝜔2−4𝑥)
(erf [𝜔𝑥 −

𝜎

2𝜔
] + erf [

𝜎

2𝜔
]) +

𝜎

𝜔√𝜋
𝑒−𝜎𝑥

+ erf[𝜔𝑥](1 − 𝜎𝑥) −
𝜎

𝜔√𝜋
𝑒−𝜔2𝑥2

+ 𝜎𝑥 − 1).                                                     (𝐵5) 

An approximate expression for Eq. B4 is given by 

Λ =  
∆𝑇𝛽

√𝜋
𝑒(−𝜎𝑥) (

e(𝜎𝑥−𝜔2𝑥2)

𝜎
2𝜔

− 𝜔𝑥
−

2𝜔

𝜎
).                                                                                                (𝐵6) 

Here, σ = Asλ/u and the definition of ω is given in Eq. 14.  

To prevent integer overflow errors, Eqs. B3 and B6 are used to calculate the undersaturation 

profiles shown in Figs. 2b and 3b, and the reaction rate profiles in Fig. 4a. These expressions are 

also employed in the iterative numerical solution to obtain the porosity profiles at t = 100 kyr, 

shown in Figs. 2c and 3c. Prior validation confirmed the accuracy of the approximate solutions 

(Eqs. B3 and B6; (Roded et al., 2024b).  

Appendix C: Derivation of the Applicability Criterion 

In this appendix, the derivation of the applicability criterion shown in Section 3.3 is presented. 

This criterion provides a functional relationship between key parameters, variables, and the system 

equilibrium state in RLP settings. The derivation of the criterion leverages a key feature of the 

quasi-equilibrium regime: the coalescence of the thermal and reactive fronts in the aquifer, which 

occurs when Da is high (compare the curves in Fig. 2a and b). In this regime, reactions dominate 

over transport, and thermally induced disequilibrium dissipates rapidly, essentially not extending 

downstream of the thermal front.  

It is noted that even when the fronts coincide downstream, far-from-equilibrium conditions may 

still persist upstream. This is observed in the results of Fig. 4, where the equilibrium solution 

(which aligns with the thermal front) and the reference solution closely match downstream at later 

times, but diverge upstream. Nonetheless, the derived functional relationships offer useful 

guidance. 

First, the thermal front’s outer-end position, ξF(t), is defined as the furthest distance of thermal 

perturbation due to the injection at a given time. The thermal perturbation is quantified by ε = 
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(T(ξF)-T0)/ΔT, where ε is a prescribed small value (ε ≪ 1); here, ε = 0.01. Below, we consider the 

radial case (ξF = rF), though applying the same steps to the planar case equations yields the same 

result.  

Rearranging and substituting the definition of ε into the Lauwerier solution (Eq. 6) yields: 

𝜀 = erfc(𝑎),     where     𝑎 = 𝜁(𝑡)𝑟F
2,                                                                                                   (𝐶1) 

where a is a constant, and for ε = 0.01, a ≈ 1.8. Then, rF can be expressed as, 

𝑟F = √
𝑎

𝜁(𝑡)
.                                                                                                                                                 (𝐶2) 

Next, an approximate form of the reference solution for disequilibrium is used (Eq. B3 in Appendix 

B; Roded et al., 2024b). The reasoning for using a far-from-equilibrium-based solution, even 

though the equilibrium model strictly assumes Λ = 0 (cf. Eqs. 4 and 5), is that a small Λ confirms 

the validity of this approximation. Therefore, solute disequilibrium serves as a metric to quantify 

the spatial and temporal extent over which the equilibrium assumption is valid. 

Assuming quasi-equilibrium at the front’s outer-end position, rF, and applying the condition ε ≥ 

Λ/Δcs, where Δcs denotes the solubility change in the system, ∆cs = cs(Tin) – cs(T0), which here 

may be positive or negative, Eq. B3 becomes: 

ε ≥
∆𝑇

∆𝑐s
 

𝛽

√𝜋
𝑒(−𝜂𝑟F

2) (
e(𝜂𝑟F

2−𝜁2𝑟F
4)

𝜂
2𝜁

− 𝜁𝑟F
2

−
2𝜁

𝜂
).                                                                                            (𝐶3) 

Next, applying a few more steps by substituting the definition from Eq. C2, neglecting early times, 

and assuming high Da and η ≫ ζ, Eq. C3 can be simplified to:  

ε ≥
∆𝑇

∆𝑐s
 

𝛽

√𝜋

2𝜁

𝜂
.                                                                                                                                          (𝐶4) 

Noting that β = Δcs/ΔT and explicitly substituting the parameters using Eq. 7 and η = πHAsλ/Q, 

Eq. C4 becomes,  
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1 ≫
2

√𝜋𝑡
(

1

𝐴s𝜆
) (

√𝐾b𝐶pb

𝐻𝐶pf

),                                                                                                                    (𝐶5) 

where As is the specific reactive area [L−1] and λ is the kinetic reaction rate coefficient of the first-

order reaction [L T-1]. Equation C5 defines the conditions under which the thermal and reactive 

fronts coincide and provides a functional relationship to the equilibrium state in RLP settings. As 

shown in the main text, this criterion reduces to the Da criterion (Eq. 1) but further defines the 

local characteristic length scale, l, through time and thermal parameters (dynamic Da) in RLP 

settings. 

Appendix D: Parameter Values 

Table 1.  Parameter values used in the simulation in Section 3.2. 

Aquifer thickness H = 4 m 

Initial porosity θ0 = 0.05  

Total volumetric flow rate1 Q = 500 m3 day-1 

Fluid velocity u = 10-6 m s-1 

Initial aquifer temperature2  T0 = 20 °C 

Injection temperature2 Tin = 60 °C 

Fluid volumetric heat capacity2 Cpf = 4.2⸱106 J m-3 °C-1   

Rock volumetric heat capacity2 Cpb = 3.12⸱106 J m-3 °C-1   

Rock thermal conductivity2 Kb = 3 W m-1 °C-1    

Calcite rate coefficient3  λ = 10-6 m s−1 

Fractured carbonates specific reactive surface area5 As = 10 m−1 

Calcite mineral concentration3 csol = 2.7·104 mol m-3 

Solubility change parameter calcite7 β = -0.075 mol m-3 °C-1    

Stoichiometry coefficient3,4 ν = 1 

1-Glassley (2014); 2-Huenges and Ledru (2011); 3-Palmer (1991); 4-Rimstidt and Barnes (1980); 5- see Section 4.1; 

6-Hussaini and Dvorkin (2021) and Lai et al. (2015); 7-Roded et al. (2023). 
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Appendix E: Nomenclature 

 

Table 2. List of Symbols.    

Roman  x Coordinate, m 

a Error function argument xF Front’s outer-end position, planar case, m 

As Specific reactive surface area, m2 m-3 xFinal xF final extent, planar case, m 

c Solute concentration, mol m-3 y Coordinate, m 

cs Solubility (saturation concentration), mol m-3 z Coordinate, m 

csol Concentration of soluble solid, mol m-3 Greek 

Cp Volumetric heat capacity, J m-3 °C-1  α Thermal diffusivity, m2 s-1 

Da Damkӧhler number β Solubility change parameter, mol m-3
 °C-1 

Dacr Critical Damkӧhler number Γ Gamma function 

erf Error function ∆ Total difference 

erfc Complementary error function ε Number much smaller than one  

Err Weighted local error, mol m-2 s-1 ζ Parameter group, m-2 

H Aquifer thickness, m η Parameter group, m-2 

K Thermal conductivity, W m-1 °C-1   θ Porosity 

l Local characteristic length scale, m Θ Heat exchange term, W m-2 

lC Characteristic length scale of conduction, m λ Reaction rate coefficient, m s-1 

n Unit vector Λ  Solute disequilibrium, mol m-3  

p Fluid pressure, Pa μ Fluid viscosity, Pa s 

Pes Solute Péclet number ν Stoichiometric coefficient 

PeT Thermal Péclet number ξ Lateral coordinate, ξ = r or x, m 

Q Total volumetric flow rate, m3 day-1 ξF Front’s outer-end position, ξ = rF or xF, m 

r Coordinate, m σ Parameter group, m-1 

rF Front’s outer-end position, radial case, m ω Parameter group, m-1 

rFinal rF final extent, radial case, m Ω Reaction rate, mol m-3 s-1 

t Time, s Subscripts 

t’ Time parameter, s b Bulk rock 

tA Characteristic timescale of advection, s Equ Equilibrium solution 

tC Characteristic timescale of conduction, s f Fluid 

tLg Thermal retardation time, s in Inlet 

tR Characteristic timescale of reaction, s max Max 

T Temperature, °C Ref Reference solution 

u Fluid velocity, m s-1 0 Initial average quantity 

uA Characteristic fluid velocity, m s-1   
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