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Abstract

Rates of subsurface rock alteration by reactive flows are often essentially-independent of kinetic
rates and governed solely by solute transport-to-and-frem-reactive-mineral-surfaces.. This allows
ferenables a major simplification;-aking that makes models tractable inreven for complex kinetic
systems through the widely applied local equilibrium assumption. Here, this assumption is applied
to the Reactive Lauwerier Problem (RLP), which describes non-isothermal fluid injection into a

confined aquifer, driving-thermally-induced-selubilitychanges-and reaetions:leading to chemical
disequilibrium. Specifically, depending—on—the thermal changes drive temperature-dependent

solubility sebreeoebeeimnep b ethomn b adiecd e labilie —chone e e Loadvuriation s,
leading to-either undersaturation and dissolution or supersaturation and-precipitation_reactions.
Using this framework, solutions for reaction rate and porosity evolution are developed and

analyzed, leading—toyielding a funetional-time-dependent criterion for their validity that

incorporates time and thermal parameters. A key feature—the coalescence of thermal and reactive

fronts—is then-analyzedundervariousconditions—Finallytheused to explore their evolution over

time in different settings. The applicability of the equilibrium model for important fluid—rock

interaction processes is then examined and discussed—and-examined, including sedimentary

reservoir develepmentevolution and mineral carbonation in peridotite;—and—ore—deposit

formation-ultramafic rocks. Notably, the approach used here to extend thermal solutions for

reactive processes suggests broader applicability. The findings also highlight that sueh-thermally

driven reactive fronts, particularly near equilibrium, often become essentially-stationary after a
relatively short period. As a result, their spatial evolution is governed selely—by geological
processes operating enover much longer timescales.

1. Introduction
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Natural and anthropogenic systems are often complex, involving intricate interactions between
various processes, which makes developing a mechanistic understanding of the system
challenging. However, the disparity in timescales between these processes often allows for
significant simplification, as one process typically serves as the rate-limiting step that controls the
systemsystem’s overall evolution. This simplification, in turn, enables the recovery of the
systemsystem’s mechanistic behavior. Such systems range from climate science, where
atmospheric and oceanic processes interact and operate at different timescales (Vallis;
2047 (Vallis, 2017), to multi-step biochemical processes and enzyme kinetics (Cornish-Bewden;
2043)(Cornish-Bowden, 2013), traffic flow analysis (Lighthil-and-Whitham;1955)(Lighthill and
Whitham, 1955), epidemiology and disease spread {Andersen;+99H(Anderson, 1991), economics
Seltews—1956)(Solow, 1956) and crystal growth (Mullins—and—Sekerka;—1963)(Mullins and
Sekerka, 1963).

Similarly, in geothermal systems, hydro-thermo-hydro-chemical (THC) processes often involve
complex interactions. In particular, geochemical kinetics can be highly intricate, involving
multiple species and reactions of varying orders, which are influenced by flow and transport

dynamics and thermal variations (Appelo—andPostma;,—2004;Kelditz—et—al—2016:Phillips;
2009 (Appelo and Postma, 2004: Kolditz et al.. 2016 Phillips. 2009). This complexity hinders the

understanding of system behaviors and their description using tractable models. However, in many
cases, the rate of transport is much slower than the reaction kinetics, effectively controlling the
overall reaction rate. These conditions, known as transport-controlled, occur when the transport of

reactants or reaction products dictates the reaction rate (Peng-et-al2016:Rededet-al—2020;
Steefel and- Maher;2009)(Deng et al., 2016; Roded et al., 2020; Steefel and Maher, 2009).

Under transport-controlled conditions, the characteristic timescale of transport, ¢a, is much larger
than that of the reaction, tr, (fa >>>> tr) and the system is close to chemical equilibrium (i.e., quasi-
equilibrium). In such cases, the local equilibrium assumption is often invoked, and the assumption
that the reaction rate depends solely on transport allewingte-greatly-simplify-medels{(Andre-and

e i : i -allows one to greatly simplify

models (Andre and Rajaram, 2005; Lichtner et al., 1996; Molins and Knabner, 2019). The validity

of the equilibrium medelassumption is determined by a large timescale ratio and the Damkdhler

number, Da, which, assuming a first-order surface reaction, is given by
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where [ is a local characteristic length scale, ua denotes characteristic Darcy flux [L T™!], 4 is the
specific reactive area (L? to L™ of porous medium) and / is the kinetic reaction rate coefficient [L
T (Lichtner et al., 1996; MacQuarrie and Mayer, 2005:-AppendixA-providessimple-derivation

. lition-in) Ba—tF i " ] e Linthi
study)-

Here—inln this study, equilibrium—medel-approximated solutions for geothermal systems are
derived;-building-on. These build upon and extend previous work (Roded et al., 2024b), in which

thermally driven reactive transport solutions were developed within the framework of the
Lauwerier solution (avwerier—955)%(Lauwerier, 1955). The Lauwerier solution provides an

analytical prediction of the thermal field development resulting from the injection of hot (or cold)

fluid into a thin, non-reactive, confined layer system awwerier—1955: Stauffer—et—al;
2044y (Lauwerier, 1955; Stauffer et al., 2014).

The thermally-driven reactive transport solutions developed by Roded et al. (2024b) integrate
temperature-dependent solubility into a reactive flow formulation while incorporating the thermal
field based on the Lauwerier solution. Specifically, this setting, referred to as the Reactive
Lauwerier Problem (RLP), accounts for thermal variations that drive the system out of
geochemical equilibrium, thereby triggering chemical reactions. These disturbances stem from
shifts in mineral solubility within groundwater, where thermal fluctuations can induce conditions
of either supersaturation or undersaturation. Over time, these thermally-driven reactions lead to
changes in rock porosity due to the precipitation, dissolution, or replacement of solid minerals and

the associated volumetric changes (Phillips, 2009; Woods, 2015).

Depending on the natural solubility of the minerals in the system, an increase in temperature can
lead to either dissolution or precipitation. This occurs because mineral solubilities can either
decrease with temperature (retrograde solubility) or increase with it (prograde solubility; Jarmtveit
and-Yardley; 1996 Phillips; 2009).Jamtveit and Yardley, 1996; Phillips, 2009). A notable example
includes the prograde solubility of silica, which commonly precipitates in geothermal systems

from the cooling of fluids (Pandey-etal;2018: Rawal-and-Ghassemi; 2044; Taron-and Elsworth;
2009 (Pandey et al., 2018; Rawal and Ghassemi, 2014; Taron and Elsworth, 2009). In contrast,
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carbonate minerals such as calcite and dolomite exhibit an inverse relationship with temperature
and retrograde solubility, which is often pronounced and influenced by CO: concentration.
Depending on the conditions, either rapid dissolution or rapid precipitation can occur in the case

of common carbonate minerals (Andre-and Rajaram; 2005 Coudrain-Ribstein-et-al51998).(Andre
and Rajaram, 2005; Coudrain-Ribstein et al., 1998).

Fluid recharge or injection under constrained physical and chemical conditions, as in RLP settings,

is common in both natural and engineered geothermal systems and aquifers (Hidalse-et-al-2042:

Phillip ATATOR ar o 014 haca 1n de—1mine
VA" g 0

Pvas —(Phillips, 2009; Stauffer et al., 2014). These include aquifer thermal storage

pumping or reinjection of geothermal water, and groundwater storage and recovery applications

(Diaz et al., 2016; Fleuchaus et al., 2018; Maliva, 2019), as well as implications for mineral

carbonation in mafic or ultramafic rocks (Kelemen et al., 2019; Roded and Dalton, 2024).

In this-study;what follows, the settings and equations are first described, which then serve to derive
the equilibrium-approximated solutions for the RLP are-first-derived-for both radial and planar

flows. Next-theseThese solutions are_then compared to the reference solutions from Roded et al.
(2024b) to validate them and discuss their limitations, along with the derivation of specific criteria
for the RLP setup. FheaNext, the evolution of reactive fronts under quasi-equilibrium conditions
is analyzed forin different seenariessettings. Interestingly, it is shown that under certain conditions,
thermally driven reactive fronts cease to expand and become essentially stationary after a short
timescale, remaining controlled by longer-term tectonic processes. This-phenomeneon-is-discussed
in-The applicability of the eentext-of-cquilibrium model to key relevant-processes, including
thesedimentary aquifer alteration efsedimentary-agquifers;and natural mineral carbonation, and-the
formation-ofore-depesits—is discussed along with an outlook for further theoretical developments.

2. Settings and the Equilibrium Model Equations

This section describes the RLP under the equilibrium assumption and then outlines the specific

settings and relevant governing equations. These equations provide the THC equilibrium model
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(Phillips, 2009: Wood and Hewett, 1982) used to drive the solutions in this work. A comprehensive

review of the more general RLP framework and its main assumptions is provided in Roded et al.

(2024b) and further revised in Appendix A of this work.

2.1. The Equilibrium Reactive Lauwerier Scenario

The Lauwerier problem describes the injection of a hot or cold fluid into a confined aquifer

bounded by impermeable bedrock and caprock (Lawwerier; 1955: Staufferetal;2014)-(Lauwerier,
1955; Stauffer et al., 2014). The fluid flows horizontally along the ¢ coordinate, which can

represent either the radial distance (7) in an axisymmetric configuration or the Cartesian coordinate

(x)) in planar configuration, i.e., & = r or x._These represent the two primary geometric settings

considered in this study. A schematic representation of this system is provided in Fig. 1, with the

nomenclature summarized in Appendix BE.

Along the flow path downstream from the injection well, heat is transferred between the aquifer
and the confining aquiclude layers, which conduct the heat. Within the aquifer, thermal variations
influence mineral solubility (i.e., saturation concentration, ¢s(7)). These solubility changes, in turn,
lead to undersaturation and dissolution reactions or, conversely, to supersaturation and
precipitation reactions, which modify the aquifer porosity (). Whether-the-porosity-deereases-or
i s i Porosity changes, dependswhether increases or decreases,

depend on
conditions;thermal changes (heating or cooling) and the solubility eharaeteristiesnature of the

minerals invelved-(eo(prograde or retrograde-behavior)—As-mentioned-in-the Introduetion;-this
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Injection well

Injection well

Figure 1. Outline of the Reactive Lauwerier Problem (RLP) forthermally-drivenreactive transport
in-geothermal-systemsunder the equilibrium assumption. Hot (or cold) fluid is injected into an

aquifer, confined between impermeable bedrock and caprock, at a steady flow rate, O, and
temperature, Tin. The initial temperature is 7o, and the aquifer thickness is . Along the flow path
downstream, heat from the aquifer conducts through the confining layers. The resulting thermal
variations (depicted by color gradients) alter mineral solubility, cs(7), driving the-systemeut-of
equilibrivm-and-triggering-chemical reactions that modify the-aquifer porosity from its initial
value, Qo. Ia—this—work—it-is—further-assumed-that-theHigh Damkdhler number istarse{(Da—
Hconditions and that-the equilibrium assumption helds—Fhe-vertical coordinate-is-denoted-by=;
whileare considered. Under these conditions, the reaction rate, Q. is directly governed by
variations in mineral solubility, des(7)/0&, where & denotes the horizontal coordinate;<&represents
—either the radial coordinate;—+; or the-Cartesian eeerdinate;~xcoordinates (i.e., £ = r or x). The
vertical coordinate is denoted by z. The reference point for both & and z is-leeated at the center of
the injection well, which exhibits axial symmetry (as shown in the sketch) or planar symmetry
whenin the Cartesian geemetry-is-assumedcase (modified after Roded et al. (2024b)).
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study, the focus is on conditions where reaction kinetics are fast, the Damkdhler number is large

(Da > 1), and the local equilibrium assumption holds. Under these conditions, the reaction rate, Q.

as shown in the next section, can be directly calculated from the thermally driven solubility

changes in the system; that is, Q o dcs(7)/0&. Hence, such a solution is independent of the specific

reaction kinetics involved.

In terms of geometry and hydrogeological scenarios, the radial setting pertains to injection from a

single well or accounts for naturally focused flow of deep-origin fluids through faulted or fractured

rock, discharging into a shallower aquifer (Craw, 2000; Micklethwaite and Cox, 2006; Roded et

al., 2013, 2023; Tripp and Vearncombe, 2004). The planar setting describes injection from a row

of wells arranged in a straight-line configuration, as initially formulated by Lauwerier (1955).

2.2. The Equilibrium-Based Approach
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The steady-state, solute advection—reaction equation in the aquifer is:

dc

0= ~UgE Q@ D), (2)

where £ is the horizontal coordinate (&= r or x), u is the Darcy flux, ¢ is the solute concentration

and Q(¢, 1) is the reaction rate, which varies in space and time, =Fh

Lotk L1
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(Chaudhuri et al., 2013: Szymczak and Ladd, 2012). In Eq. 2. transient variations are neglected,

and the quasi-static approach to reactive flow is applied (see Appendix A and Roded et al.

(2024b)).

Defining the solute disequilibrium, A, as the difference between the dissolved ion concentration,

¢, and the temperature-dependent solubility (i.e., saturation concentration), ¢s(7)

A=c—cyT), 3)

Eq. €53

Szymezak-and-add;2042)2 can then be rewritten as:

0= JdA  Ocs 0 4
——u[¥+§]— @ 0). @)

Next, conditions of a high Da number are considered, where reaction rates significantly exceed the

rate of advective transport. In this regime, local quasi-equilibrium is maintained along flow paths,

and the solute disequilibrium magnitude remains small compared to the overall solubility variation.
Specifically, A << Acs, where Acs denotes the absolute solubility change in the system, Acs = |¢s(Tin)

— cs(To)], that is, between solubility at the injection temperature, 7in, and at ambient conditions, 7o.

Under this assumption, the first advective term in Eq. 4 (10A/0&) becomes negligible compared to

the other terms. The governing equation can thus be approximated as (Andre and Rajaram, 2005;

Phillips, 2009, p. 237):

9¢s(T)

Q1) = —u

10
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The expression in Eq. 5 provides the THC equilibrium model and demonstrates that, under quasi-

equilibrium conditions, the solute concentration, ¢, closely follows the spatially varying solubility

determined by the temperature field, ¢s(7). Notably, it shows that in this regime, the solution for

the overall reaction rate, Q(¢, #), can be independent of the specific reaction kinetics involved and

can be calculated from the solubility gradient.

Lastly, it is noted that the current study focuses on the equilibrium assumption and solves the

reduced form given in Eq. 5. This contrasts with the preceding work (Roded et al., 2024b), which

focused on solving the full form of Eq. 2 (or Eq. 4) under the assumption of first-order kinetics.

LT — (TN L PT T LON

A sU8) T PUT 8y =7

11
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2:4:2.3. _ Initial and Boundary Conditions

The thermal Lauwerier solution incorporates an initial eenditions-invelve-acondition of uniform
temperature;£o;_To across the system—TFhe, along with boundary conditions atthe-injection-welA(<E
=that specify a constant rate-of-fluid injection rate at temperature Zis;—with-an-initial-solate
disequilibrivm-of A—0-(E¢—7T,, at the injection point (£ = 0). It is assumed that the thickness of

the bedrock and caprock, as well as the extent of the aquifer, are infinite.

With respect to the solute transport boundary conditions, the RLP problem is defined by a constant

fluid injection rate at temperature 7in, with an initial solute disequilibrium of A =0 (i.e., saturated

fluid) at the inlet (Roded et al., 2024b). In contrast, the equilibrium-approximated solutions derived

from Eq. 5. calculate the reaction rate based on the assumption that it is proportional to the

temperature-driven solubility gradient. Consequently, as will be shown in the next section, solute

transport boundary conditions are not incorporated. This discrepancy is the focus of the analyses

in Section 3.3.

3. Results: The Equilibrium Solutions and Their Applicability

3.1. Derivation of the Equilibrium Solutions

12
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3.1.1. Axisymmetric (Radial) Flow

The Lauwerier solutions for the temperature distribution in the aquifer (Lauwerier, 1955; Stauffer

et al., 2014) serve as the basis for developing the equilibrium-approximated RLP solutions

presented here. These solutions are derived by solving the advective heat transport equation in the

aquifer, together with the corresponding conductive heat transfer equation in the confining bedrock

and caprock (Egs. A1-A3 in Appendix A). The solution for axisymmetric settings is given by:

T(r,t)
=T, + ATerfc[{(r, t)r?], &+ (6)

where erfc is the complementary error function, AT = Tin — 70 is the difference between injection

and ambient aquifer temperatures, and ('is defined as:

(e ty — N DPD 12
Lty - &)
gpfi

_ T /KoCpy

,t
{0 Q0

, Q)

where Q is the total volumetric flow rate, K is the thermal conductivity, and Cp is the volumetric

heat capacity, with the subscripts b and f denoting bulk rock and fluid, respectively. The time
variable is defined as ¢’ = t — 2rCpuACpar)and-thefL, where 11, = w”HCpu/(CprQ). with H
denoting the aquifer thickness (see Fig. 1). Assuming uniform flow along the vertical direction (z),

the fluid velocity can be calculated from the volumetric flow rate using u = O/(H2xr).

The solution of Eq. +16 is valid when ¢’ > 0 (Stauffer-et-al;2014)—Furthermore;(Stauffer et al.,
2014), and it is further assumed here that a sufficiently long time has passed andsuch that

conditions-satisfy-t ' = ¢. Specifically, the term 71, represents a thermal retardation time. It accounts

for the delay in the arrival of the thermal front due to advective transport and the thermal energy

13
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required to heat the aquifer solid matrix along the flow path (for an analysis of the validity of this

assumption, see Reded-et-al(2024b)Roded et al. (2024b)).

Additionally, for simplicity, it is assumed that the heat capacities of both the confining rocks and
the aquifer are identical. To account for non-uniform heat capacities, an alternative definition of
Eq. H16 can be applied (see Eqs. 3.122 and 3.131, along with the corresponding definitions in
Staufferet-al(2014Stauffer et al. (2014)).

Thermally Driven Solubility Changes

The THC equilibrium model in Eq. 5 shows that the reaction rate, (7, ¢), depends on the thermally

driven solubility gradient, Ocs(7)/Or. Here, the temperature-dependent solubility is calculated

using:

¢s(T) = cs(To) + B(T —To), ®)

The-where the parameter f = dcs/0T. In Eq. 8, a linear relation between ¢s and 7' is assumed, with

a constant proportionality factor S, which is positive for minerals of prograde solubility and

negative for minerals of retrograde solubility (Corson and Pritchard, 2017; Woods, 2015).

In Eq. 5, the derivative ées/er
viz—eester—peFof the solubility can be expanded to Ocs/Or; = (Ocs/0T)(OT/0r) and by further
substituting the definition f = dcs/0T, it can be expressed as

14
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Q(r,t) = —uf s €)]

The temperature gradient 07/0r is calculated by substituting the Lauwerier solution (Eq. ++-6) and

differentiating-whieh-yieldsperforming differentiation, yielding:

= 4uﬁATZ—£e(‘5zr4). —(15)(10)

JTT

Fhe-which provides the solution for the reaction rate-is-thus-given. The evolution of porosity,

is described by:

Q@)= b B gty (463
E

00 Q(r, t

9 _ 9t (1)

Jat VCso1

where csol is the concentration of soluble solid mineral and v accounts for the stoichiometry of the

reaction. Substituting the solution for the reaction rate, Q (Eq. +610), into Eq. 911 and integrating

over time yields the solution for the porosity change:

6(r,t)
=6,

Y e WA

— 4uAT (3712)
BGS_QFVLE vcsol\/n

where 7" is the incomplete gamma function.
3.1.2. Planar Flow
For the Cartesian case, with injection occurring along a lineplane, the Lauwerier solution is:

T(x,t)
=T, + ATerfc[w(x, t)x], (#813)

15
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where w is defined as:

w(x,t)

_ Kol (1914)

HCpuyt”

and ¢’ =t — fLe, where 710 = xCpv/Cpsu). Similarly to the radial case, the-selution-applies-atit is
assumed here that a sufficiently long times;-where-time has passed such that the condition ¢’ = £

applies.

Following steps analogous to those in the radial case, the solutions are derived as:

Qx, t) =—
. 2uAT5—;e(‘“’2x2), @0 (15)
and
0(x,t)
2 2
_ qunr EEE B Xt_r(—l,wzxz). (2116)
wvcsol\/n 2

3.2 lieabilitv-of the Equilibri N
3.2.1:3.2. -Comparison to the-Reference Selutien-Solutions (High-Da)

In this section, the results of the equilibrium medel-selutionforporositysolutions are compared
with the more general solutions to the RLP_model, which will henceforth be referred to as the
‘reference solutions.' These reference solutions account for far-from-equilibrium conditions and
assume surface-controlled reactions and first-order kinetics. The case study considered in the
comparison involves a typiealcommon scenario: dissolution of a fractured carbonate aquifer due
to the injection of COz-rich hot water and cooling-driven calcite dissolution. First, the results
presented by Roded et al. (2024b) for the reference solutions are briefly summarized to facilitate

the comparison with the equilibrium selutiensolutions. The reference solutions, along with the

case study considered here, are detailed in Roded et al. (2024b). The reference-selution-equations

16



400 reference solution equations are also provided in Appendix B, and the parameter values used are

listed in Appendix D. These values are identical to those in Roded et al. (2024b). including the

radial case flow rate (Q = 500 m* day").

In Fig. 2, the results of €62-CO--rich hot water injection are shown at successive times since the
beginningstart of the-injection-are-shown-. These represent both engineering-relevant conditions (¢
405 =6:2;25 yr) and longer geological timescales (£ = 10 kyr and 100 kyr):), associated with natural

processes such as focused deep-origin flow discharging into a shallower aquifer (Craw, 2000;

Roded et al., 2023 Tripp and Vearncombe, 2004). The Lauwerier solution and reference solutions

are shown by continuous lines (Eqs. 116 and B-+-3B2-B3), while the equilibrium solution for the
porosity evolution is indicated by circle markers in Fig. 2¢ (Eq. 12).

(a) 60 () o X210 - (¢) 0.14
—1 =25 yr
t =10 kyr
50 ——1t =100 kyr|:
40 < ES
P ~
&~ <
30 -6
20

© o o o © ©o/0O0 OO0

100 10! 107 w1 e

410

Figure 2. Reference solutions for a case study of carbonate aquifer dissolution by cooling hot
water, presented for comparison with the equilibrium solution in a radial flow setting. Panels (a)—
(c) show temperature (7). solute disequilibrium (A), and porosity (6) plotted as functions of radial

position (r) at different times. The continuous lines represent the Lauwerier solution and the

17
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reference solutions (Egs. A6 and B2—-B3). while the circles in panel (c) denote the equilibrium
solution (Eqg. 12). Magnified panels show solute disequilibrium (A) and porosity (0) near the inlet

region. A is scaled by the total solubility variation in the system, Acs. The equilibrium solution

closely matches the reference solution except near the inlet (see magnified panel and text). Quasi-
equilibrium conditions are further supported by the small magnitude of A.

During the radial flow within the aquifer, the hot fluid cools by transferring heat into the confining
layers, which heat up with time, resulting in the gradual advancement of the thermal front
downstream (Fig. 2a). The cooling induces solute disequilibrium (A) associated with
undersaturation (note that A is negative for undersaturation and positive for supersaturation, see
Eq. 73). The magnitude of |A| in the aquifer is small compared to the absolute solubility change in
the system, A|A[/Acs K 1% (Acs = |es(Tin) — es(To)i-e5-between-es(Lin)-at-the-injectionpoint-to
estToyatambienteonditions (A Aes<<1%:)|; see Fig. 2b). The small magnitude of disequilibrium
is associated with relatively high PEO2CO» partial pressure considered (0.03 MPa) and rapid

kinetics under these conditions.

Despite its small magnitude, the disequilibrium, A, governs the alteration of the aquifer and the
evolution of its porosity. Notably, since the water at the inlet is hot and saturated with calcite, ¢ =
¢s(Tin), disequilibrium and the reaction rate are zero at the inlet, resulting in no change in porosity
(see Fig. 2b and 3ec, along with their magnified views). Disequilibrium (undersaturation) abruptly
develops downstream of the injection well, initially forming a small minimum (at » = 20 m) before

gradually diminishing to zero further downstream.

In accordance with the disequilibrium, the porosity profile sharply increases near the inlet and then
gradually decreases downstream (Fig. 2¢). Undersaturation and dissolution along the flow path are
governed by the interplay of three processes: (I) dissolution, which reduces undersaturation
(bringing A closer to zero), (II) progressive cooling, which enhances undersaturation, and (III)
advection, which transports reaction products (calcium ions) radially outward from the well,
sustaining undersaturation. Here, fluid velocity and advection decay with a distance, following a

1/r relationship._Particularly, the thermal changes are also reflected in the time evolution. At an

early time (¢ = 25 yr), disequilibrium and its gradients are relatively high. As the thermal front

advances and thermal gradients decrease, the disequilibrium curves flatten.

18
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he-equilibrium solution ferthe
N A

different-times—matches the reference

and is violated only elosely

near the inlet (» <20 m; Fig. 2¢). The agreement between the solutions and the existence of quasi-

equilibrium conditions is supported by the small magnitude of the disequilibrium in the reference
solution. This is because the equilibrium model assumes A = 0 (cf. Egs. (A)in-thereference
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solution—While the 4 and 5); therefore, a small A confirms the validity of this approximation.

Consequently, solute disequilibrium provides an effective metric for quantifying the spatial and

temporal extent to which the equilibrium assumption holds. This will be used next to further assess

the applicability of the equilibrium-approximated solutions (Section 3.3).

With respect to the discrepancy near the inlet between the solutions, the injection of hot, saturated

water does—netresultresults in no porosity ehanges—atchange in the inletreference solution. In

contrast, the equilibrium model, which appreximatesassumes the reaction rate baseddepends on
adveetive-and-cooling rates{Eq—14);the temperature gradient alone, does not capture this effect.

AltheughParticularly, the solute transport boundary condition of inlet saturation (A = 0) is not

incorporated into the equilibrium-approximated solutions, leading to this discrepancy (referred to

hereafter as the ‘inlet advective discrepancy’).

Under the conditions here, the deviation between the solutions is limited to a smalinarrow region;
itmay-stil-be-signifieant near the inlet. However, in the-ease-of disselution;assome cases, locally
lewreduced porosity and permeability values-can impaetstill influence the overall estimation of
aquifer permeability (Roded et al., 2024b). Iln—particular,—everestimation—of peresity—and
permeability-While the deviation in these cases can be accounted for by assuming no reaction at

the inlet, as will be shown in Section 3.3, this cannot capture advective effects that may become

significant near the inlet eanleadto—an—overestimation—of the-aquifereffectivepermeability:

sible—Furthermeore;-under low Da conditions.

It is also noted that in most practical scenarios, the injected fluid is expected to cool slightly as-it

flows-dewn-during its descent in the well; and may therefore;—it-may already be reactive upon

entering the aquifer.
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Figure 3. Reference solutions for a case study of carbonate aquifer dissolution by cooling hot
water, presented for comparison with the equilibrium solution in a planar flow setting. Panels (a)—
(¢) show temperature (7)., solute disequilibrium (A), and porosity (6) as functions of position (x)
at different times. The continuous lines represent the thermal Lauwerier solution and the reference
solutions (Egs. 13 and B5-B6), while the circles in panel (¢) denote the equilibrium solution (Eq.

16). A is scaled by the total solubility variation in the system, Ac;. Similar to the radial case, the

equilibrium solution closely matches the reference solution except near the inlet. This is also
supported by the small magnitude of A.

For completeness, Fig. 3 presents results for the same case study shown in Fig. 2 under a planar

flow setting, with a fluid velocity of # = 10° m s™. Similar to the radial case, the equilibrium

solution closely matches the reference solution, with deviation occurring only near the inlet

(magnification not shown). A key difference from the radial case is that the aquifer is heated over

significantly greater distances. This results from the uniform flow velocity and more efficient heat

retention in the planar configuration. In contrast, radial flow involves velocity decay with distance

which increases residence time and enhances conductive heat loss to the surrounding rock.

Additionally, in the radial case, the heat source (e.g., an injection well) acts as a source from which

hot fluid spreads outward radially. In contrast, the planar configuration can be conceptualized as

injection from a distributed source (e.g., a row of wells) generating a uniform planar front. More

precisely, under the perfect thermal mixing assumption, the radial case is treated mathematically

as a point source, while the planar case is treated as a line source. Hence, in the radial case, heat

conduction is multidirectional, whereas in the planar case, heat is conducted only in vertical

directions. These differences influence the temperature profile shape. In the radial case, effective

heating near the injection well and later quick decay lead to a sigmoidal (or diffusive front-like)
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profile, whereas in the linear case there is a decaying profile (cf. Figs. Hisneted-that2 and 3).

These differences are further quantified in Section 3.4.

With respect to the results in Figs. 2 and 3. recall that the solutions in Section 3.1 and-theresults

shown-in-Fig—2-rely on the fundamental assumption of spatial uniformity and symmetry in the
reactive flow. However, in practical scenarios, dissolution channels (wormholes) may develop at
the reaction front (Chadam et al., 1986; Furui et al., 2022; Roded et al., 2021). These wormholes
localize reactive flow, creating heterogeneous flow fields that deviate from the assumed symmetry
and uniformity. Consequently, the results in FigFigs. 2 and 3 represent only an average solution

and do not capture local flow variations accurately.

AdditionallyFurthermore, the medel—-was—equilibrium solutions were also found to applybe

applicable to the injection of hot, silica-rich water into a sandstone aquifer, where cooling leads

teinduces supersaturation, silica precipitation, and porosity reduction, as discussed in Reded-et-ak

2024 Roded et al. (2024b) (not presented). In summary, the results in this section validate the

equilibrium solutions against the reference solutions: and highlight the inlet advective discrepancy,

examined next (Section 3.3). These results also demonstrate their everalbroader applicability

across a bread-range of characteristic conditions in natural and applied systems, as further

diseussedelaborated in the Discussion section.

3.3. Fisure 3aApplicability of the RLP Equilibrium Solutions

This section further examines the applicability of equilibrium-approximated solutions, focusing

on the inlet advective discrepancy. This is done by considering lower Da, conditions farther from

equilibrium, and changes in the system state over time. Accordingly, a scenario of relatively slow
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precipitation (# > 0) is considered, using a kinetic rate coefficient nearly four orders of magnitude

lower (A = 5-10"'° m/s), while all other conditions remain consistent with Section 3.2. This setup

is representative, for example, of carbonate mineral precipitation from water of alkaline

composition originating in carbonate or mafic rock aquifers (e.g., basaltic formations). Upon

reinjection and subsequent heating, the solubility of carbonate phases decreases, promoting CO»

mineralization through precipitation reactions (Etiope, 2015; Plummer et al., 1978; Steefel and

Lichtner, 1998).
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Figure 4. Comparison of the reference and equilibrium solutions over time under low Da
conditions. (a) Reaction rate, Q, as a function of radial position (#) at different times. The
continuous lines represent the reference solution (Eq. B3), and the circles represent the equilibrium
solution (Eq. 10), denoted as 'Ref' and 'Equ' in the legend, respectively. (b) The deviation between

the solutions, shown using the local error, Err, is visualized as a shaded region. Err is calculated

as the radial integral of the difference between the solutions (see text for details). Q and Err are
n

ormalized by their maximum values at = 0.2 kyr, where Qmax refers to the reference solution.

Figure 4a presents the results for the reaction rate, Q, for the reference solution (solid lines;; Eq.

B3-Egs=B-1and3) and the equilibrium solution (dashed lines with circle markers;; Eq. +610). The
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lowerreactionratesslower kinetics and reduced Damkoéhlernumber;-Da; result in a significantly

larger disequilibrinm-magnitude A -and-greater-deviation compared to the case presented-inFig:
2-Additteonalbyshown in Figs. 2¢ and 3c. Note that the results in Figs. 2¢ and 3c, rather, present

the porosity evolution, which reflects the time-integrated behavior of Q (see Eq. 11).

Significantly, the peak magnitude—ofdisequilibrivmof the reaction rate curve in Fig. 4a is

attainedreached further downstream-, rather than occurring immediately near the inlet as observed

in Figs. 2 and 3. This shift reflects a much more dominant advective effect but still preserves the

same general behavior: advection of saturated fluid from the inlet and the progressive buildup of

disequilibrium and elevated 2 occur downstream of the injection well. However, in this case, the

effect extends over a much greater distance.

NetablyAnother prominent effect visible in Fig. 3a;4a is the reduction in deviation between the

solutions deereases-asover time-pregresses. This trend is alse-tHustratedquantified in Fig. 3b4b,

which shows the weighted local error, Err, calculated asfrom the difference between the two

solutions-integrated-in-theradial-direction, Err = (Qref - QEqu)27rd#21r, where the subscripts Ref
and Equ denote the reference and equilibrium solutions, respectively. Fig-—3b-presents-only—the

The-Err-eurves show a progressive decrease and flattening over time. This reduction in Err and
the closer approach to guasi-equilibrium are attributed to the thermal-frontadvaneing-downstream-

advancement of the thermal front. As the thermal front advances and extends, the temperature

gradients near the inlet become milder;teading. This leads to a decrease in the reaction rate in this

iHustrated-bythe inlet advective discrepancy of the blaek—eurve,~which-shows-cquilibrium model

becomes less pronounced (the trend-of H-Pa-withSupplementary Material presents results for the
radial-distancefromplanar case, which exhibits the #let-same effects).
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As noted in the Introduction, the applicability of the equilibrium model is determinedgoverned by

the- Damkohler number-Da, with quasi-equilibrium conditions prevailingexpected when Da > 1

(Eq. 1+4Eg—1). In thissectionthefactors prometing quasi-equiibrivmin-the specific settings of

25



600

605

610

615

620

analysis-enables, the deviation associated with the equilibrium solutions, which primarily arises

from the local inlet effect, evolves over time and is influenced by thermal dynamics. This

observation motivated the derivation of thefunetionalrelationship—betweenkeyparameters;
variables;and-the-system-equilibrivm-state—Aa more specific applicability criterion, presented in

Appendix C. This analysis is based on a key feature of quasi-equilibrium isbehavior: the close

alignment of the thermal and reactive fronts in the aquifer{see-, which occurs when Da is high (cf.

Fig. 2a and b). This featarebehavior is leveraged to establish a criterion for when these-frents

dittons—can-be-assumed- Ppe R ite-Ro - hatoeep-ndhen-the

Forexample-fore—=0-0ta~1-8be assumed. This functional relation, which applies to both planar

and radial settings, is given by:
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inFig3;-the-eriterion-demeonstratesIn accordance with the results in Fig. 4, the criterion shows

that the system approaches equilibrium as time progresses (with a proportionality of ¢'"2). The
second term in the brackets represents the characteristic reaction timescale-ef-thereaction, fr =
1/4sA, which, in aecerdaneeagreement with the high Da condition, indieatingindicates that whena
smaller fr is-small;-the-system-approachesleads to faster approach to equilibrium-mererapidhy-.
The final term in the brackets representscaptures the ratio betweenof thermal parameters;-showing
that-when. When the confining reckparameters-ofheatrock’s thermal conductivity (Kv) and heat
capacity (Cpb) are smallow, the thermal front advances downstream more guieklyrapidly,
promoting equilibrium. Cenversely—when-the-Similarly, a large product of aquifer thickness and
fluid heat capacity (HCpristargethe) also facilitates faster thermal front alse-advanees—quiekly
dewnstream;,faeilitatingadvancement and equilibrium.

Notably, the velumetrie flowrate(@)fluid velocity does not appear in the criterion of Eq. 26;-as17.
This is attributed to the fact that solute advection enhances disequilibrium (in accordance with the

Da criterion), while thermal advection promotes equilibrium by extending and stretching the

thermal front. By introducing the fluid velocity, u, and the characteristic length scale, /, into the

expression, the criterion in Eq. 17 can be reformulated in terms of two functions:

(s eritorionof Ba_26.can b8 o
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The first function, fi#r} can be referred to as a dynamic Da number that-changes-with-the pesition

of#p-and describes the relative effect of reaction versus advective transport-versus—reaetion:. The
second function g(##5)), accounts for the evolution and advancement of the thermal front withover

time.

The functional criterion in Egs. 17 and 18, in accordance with the results in Fig. 4, demonstrates

that the equilibrium solutions are not applicable as f — 0 and become less accurate at initial stages.

However, as demonstrated in Fig. 2. the equilibrium-approximated solutions may remain fully

valid even at relatively early times. This behavior is observed under common conditions involving

fractures carbonate aquifers and silica precipitation, where the validity extends to timescales

relevant to engineering applications (e.g.. t <25 yr).

It is recalled here that several inherent assumptions in the Lauwerier solution reduce its accuracy

during initial stages (see Appendix A). Moreover, the assumption taken here of negligible thermal

retardation time (fL¢) and the approximation ¢’ = ¢ employed in the Lauwerier solution affect the

accuracy at early times (see Egs. 6 and 13). This assumption, which is particularly relevant for the

radial case, leads to reduced accuracy at early times (e.g., < 10 years; see Appendix C in Roded

et al. (2024b)).

3.4. Development of Coalesced Fronts

28



675

680

685

690

*¥p{t)—=As mentioned in the previous section, a key feature of quasi-equilibrium behavior is the

close alignment of the thermal and reactive fronts in the aquifer, which occurs when the Da is high

and reactions dominate over transport. Under these conditions, any disequilibrium induced by

thermal changes diminishes rapidly and essentially does not extend downstream of the thermal

front, resulting in the coalescence of the fronts. This property is leveraged to infer in a simple

manner the spatial distribution and temporal advancement of the coalesced fronts using the thermal

Lauwerier solutions.

First, we define the thermal fronts’ outer-end positions, &r(¢), as the furthest distances of thermal

perturbation due to the injection at a given time. The thermal perturbation is quantified by ¢ =

(T(&r)-To)/AT, where ¢ is a prescribed small value (¢ < 1); here, ¢ = 0.01. This threshold uniquely

determines the position &r(¢) at which the temperature perturbation is considered negligible.

Next, rearranging and substituting the definition of ¢ corresponding to the conditions at the fronts’

outer-end positions into the Lauwerier solutions (Egs. 6 and 13) yields:

{(O)rg?, for E=71

w(t)xg, for &=x (20)

e =erfc(a), where a= {

Here, a is a constant determined by ¢, and for ¢ = 0.01, a = 1.8. Then, the fronts’ outer-end positions

can be expressed as:

a a
Tp(t) = m, and .X'F(t) = @ (21)

Finally, substituting the definitions of Cand w (Eqgs. 7 and 14) into Eq. 21 gives explicit expressions

for the advancement of the coalesced fronts under quasi-equilibrium conditions:
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These relations provide a simple way to estimate the spatial positions of the coalesced fronts as a

function of time using the thermal solutions alone.

700  To demonstrate the fronts’ advancement, Egs. 22 are used to plot xr and 7r for three different

velocities (u#) and flow rates (Q). presented in Fig. 5a and b. This illustrates the decay of the

advancement rate over time in both cases: the hot fluid heats the confining rocks as it flows, and

the thermal fronts gradually advance downstream. However, due to continuous heat transfer to the

confining layers along the flow path, the advancement rate decreases over time and distance.

705  The key difference between the radial and planar cases, as noted in Section 3.2, is clearly reflected

in Egs. 22 and the results shown in Fig. 5a and b. The planar case exhibits significantly greater

heat retention and a higher advancement rate. This is demonstrated by the green dashed lines in

Fig. 5a and b, which indicate that half of the final calculated extent, 1/2xFinal, iS reached in one

quarter of the final time, while in the radial case, 1/2rFinal is approached after one sixteenth of the

710  time. Alternatively, this can be shown by differentiating Egs. 22 with respect to time, yielding

t-1/2

Ore/ot o< 3" in the radial case, compared to Oxr/df o< 2 in the planar case.

Another case considered here, shown in Fig. 5¢ and d, is the low-flow-rate limit in radial geometry,

where conduction dominates and effectively distributes heat. This is illustrated using two different
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approaches: (I) the analytical conduction-only solution, representing the limit O — 0 (black lines

and (II) numerical results for low flow rates (O =1 and 5 m®/day, red and orange curves).

(a) Planar case (b) Radial case
TFinal T'Final
(560 km) (7km)
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Figure 4-Elongation5. Advancement of the coalesced thermal and reactive fronts over time, xr(f)
and rr-evertime(r), for different velocitiess- (u;) and flow rates;- _(Q )., respectively. Panels (a;-)—
(by);and-thetow-) show results for hlgh ﬂow i rates, while

panels (c)- 2 and#")(d) illustrate the
low-ﬂow-rate limit. (a)—(b) xr and rr are calculated using Egs. 22. Green dashed lines illustrate the

difference between the radial and planar cases: half of the final extents (1/2xFinal and 1/27Final) are

reached at 1/4 and 1/16 of the final time, respectlvely—éEq—LLQ)—and—hene%th%ﬁa%%eﬁeleﬂgaﬁeﬂ

&&&M&M&%ﬁ%—%pﬂ%%ﬂ&dﬁh@%ﬁ%&h@éﬂ%%ﬁm
fatrendinlons e Lo b penen e o LLE o b e ol e o (O e e
rate—timit—is—shown—using—the—)—(d) The low-flow-rate limit refers to the radial case where

conduction effectively distributes heat. This is analyzed using solution for conduction-only,
representing the limit O — 0 (analytical, black lines), and results for low flow rates of Q=1 and
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5 m?/day (numerical, red and orange, respectively). Panel (c) shows 7r for these cases, while (d)
displays the temperature profiles as a function of radial position, ». The black line in (d) represents

the conduction-only quasi-steady-state profile, and the colored dashed and continues lines indicate
early and later times, respectively, for each flow rate. The close alignment of the lines demonstrates
that the thermal field is essentially stationary already at early times. For further details on the
calculations, refer to the text.

The analytical solution fereconduection-fromdescribes a peintseureesphere at constant temperature

in an infinite space-The innerinsetand-the orangecurve display-the temperature profile;medium

modeling heat conducted from the sphere into the surrounding medium. This time-dependent

solution converges to a quasi-steady-state temperature profile that remains essentially unchanged

over time (Stauffer et al., 2014; see details in the SM). The numerical simulations for low flow

rates use equations and settings identical to those of the Lauwerier solution but with the-dashed

line-showing-that-an important distinction: they do not assume negligible radial conduction. This

simplification makes the Lauwerier solution inadequate under conditions of low flow rates and

sharp lateral geothermal gradients (see Appendix A). Further details of the numerical calculations

are given in Roded et al. (2023).

Figure 5¢ shows rr for the conduction-only case and for O = 1 and 5 m?/day (other parameter values

are consistent with Appendix D). Unlike the high-flow-rate planar and radial cases in Fig. 5a and

b, rr_and the advancement rate essentially level off under these conditions. In particular, r¢
increases with O but also levels off over time, showing similar behavior to the conduction-only

case. This is more clearly shown in Fig. 5d that shows temperature profiles for these cases as a

function of radial position, r. It includes the analytical quasi-steady-state temperature profile

(conduction-only case) and numerical profiles at low flow rates shown for two consecutive times,

with dashed and continues lines indicating early and later times, respectively. The close alignment

of the dashed (early time) and continues (later time) lines, and their almost overlap, demonstrate

that the temperature profiles change very little after early times. The profiles become nearly

stationary over tens to hundreds of years, which is a very brief geological timescale.

The results show effective heat distribution by conduction, with nearly complete cooling
oceursoccurring within 10-m—In-this-casethe-front-becomes-guasi-stationary-on-a-timeseale-of
tens—of —years—This—seenarto—100 m, depending on the flow rate. Overall, both the analytical

solution for the limit O — 0 and the numerical solutions at low flow rates demonstrate similar heat
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transport behavior under these conditions. This scenario of low flow rates is particularly relevant
underto natural conditions, demenstrating—that-thewhich often involve low flow rates and can
manifest on the surface as low-flow-rate thermal springs (Garven, 1995: Klimchouk et al., 2017;
Roded et al., 2013).

These findings have important implications, suggesting that thermally driven reactive front

mayfronts can also become essentiallynearly stationary-(see-, as will be further discussed in the
Discussion section)—Parametervalues-used-areasin-Seetion3-2-+. Lastly, it is important to note
that the solutions assume an infinite caprock thickness. However, if the thermal front reaches the
surface, greater heat exchange between the aquifer and Appendix—C—andflowthe caprock is
expected, which would reduce the thermal front’s advancement rate and veloeity—values—are

Fdietted-intheFereextent

Lomdmentionran sk o e s o e e e s Ll e Lo el sl
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4. Discussion and Outlook

4.1. Equilibrium Model Applicability to Hydrothermal Systems
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Fisure SFigure 6 presents aan illustrative phase diagram distinguishing between conditions where
the THC equilibrium model (Eq. 5) is applicable and those far from equilibrium. The diagram is
based on the Damkohler number—P«—, which represents the ratio between the characteristic
timescales of transport and reaction, Da = ta/tR—=+4As/)-and-Eg—-with-the. The diagonal line
marking the transition at Da > 1 (Dac—Hetter) and hotter colors denote higher Da values and

conditions closer to equilibrium. As reactivity (1/¢r) increases, the equilibrium model becomes
applicable over a wider range of flow velocities, u, or smaller characteristic length scales, /,
represented as 1/¢ta = u/l. -Here, [ represents the local characteristic length scale of thermal and

solubility variations {see—Appendix—Aj-and accounts for the thermal field effect on reactive

transport. Equation 1 assumes first-order Kinetics and presents Da = [AAs/u, which is useful for

quantifying different fluid—rock interactions that can be approximated as following first-order

kinetics.

l/t“ (S_l)

Non—equilibrium

Increasing reactivity —

1/ts (s~ )
Increasing flow velocity —

Figure 6. A schematic diagram illustrating the applicability of the THC equilibrium model and the
positioning of several notable fluid—rock interaction processes according to their typical reactivity.

The diagram is plotted based on the characteristic timescales of reaction and transport that define

Da, and shows 1/tr versus 1/ta (Da = ta/tr). The equilibrium model can be assumed when Da >
Dacr, with Dacr defined as a threshold where Dacr > 1. Dacr is represented by the diagonal black
line on the diagram, with hot colors indicating high Da values and proximity to equilibrium.

Several notable fluid-rock interaction processes are shown on the diagram, positioned according

to their characteristic reactivity. At the top are common carbonates, i.c., limestone and dolomite,
which typically exhibit high reaction rates and are highly prone to alteration (with values of A
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typically ranging from 10°® to 10 m/s under engineering applications; Dreybrodt et al., 2005;
Peng et al., 2015; Plummer et al., 1978).

Silica precipitation is also prevalent in hydrothermal settings (e.g., quartz vein formation and

mineral scaling; Glassley, 2014; Huenges and Ledru, 2011; Oliver and Bons, 2001 -A+thetep-are

ar > a7 pHtato o—prey ASIaS; a

5 : 5 =St 5 and is characterized by
relatively high reactivity, with a typical rate constant of A = 5-:10"'® m/s (Rimstidt and Barnes,
1980). In contrast, while non-crystalline silica (amorphous) precipitates relatively quickly, quartz
dissolution is typically slower by several orders of magnitude (Rimstidt and Barnes, 1980). An
additional interesting behavior associated with quartz occurs at much higher temperatures (e.g., T’
> 300 °C), which can prevail near magmatic intrusions. At these high temperatures, quartz exhibits
retrograde solubility, which switches to prograde solubility upon cooling (Glassley, 2014; Scott
and Driesner, 2018).

prec. and diss. (i)
. (i)

onate veins in peridotite (iii

Da t
Da,

osits (iv)

Increasing reactivity —
1t (s7)

Non — equilibrium

Uty (s7)
Increasing flow velocity —
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Additional-impertant-settings—in-whieh-Importantly, the specific reactive surface area, 4s, (L2 to

L of porous medium) may vary widely across different rock lithologies. and its effect on the

applicability of the equilibrium model is comparable to that of kinetics. Specifically, 4s can vary

e.g.. from 10" m! in fractured rock (Deng and Spycher, 2019; Pacheco and Van der Weijden,

2014) to above 10° m™! for porous medium (Noiriel et al., 2012; Seigneur et al., 2019) and can also

evolve during reactive flow (Noiriel, 2015; Seigneur et al., 2019).

The position of these processes on the diagram, supported by calculations in Section 3.2,

demonstrates the applicability of the equilibrium model even at relatively high flow rates. This is

especially significant, as high flow rates are characteristic of applications such as groundwater

storage and recovery, aquifer thermal storage, and geothermal reinjection (Diaz et al., 2016;

Fleuchaus et al., 2018; Maliva, 2019).
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Additional important settings where thermally driven reactions may play a significant role

inehadeinvolve mineral carbonation. In particular, this includes the formation of carbonate veins

in ultramafic rocks, such as peridotites, by ascending €62-CO.-rich hydrothermal flow (Kelemen

et al., 2011; Menzel et al., 2024). The CO»-rich fluids first dissolve the rock minerals, primarily
olivine. Then, as the pH rises and cation enrichment occurs, carbonate precipitation, primarily
magnesite, takes place further along the upward flow path. Cemmenty-theThe rate-limiting step
in the mineral carbonation process is the-commonly suggested to be the relatively slower kinetics

of dissolution (kelemen-etal;2019; Kelemen-et-al; 204 H-—compared to precipitation (Hanchen
et al., 2006: Kaszuba et al., 2013; Kelemen et al., 2019).

The solubility of olivine is retrograde, as evidenced by the exothermic nature of the reaction
(Kaszuba et al., 2013; Prigiobbe et al., 2009). Under thesesuch conditions,~the ascending flow

along a decreasing geothermal gradient is expected to promote undersaturation—enhanee—the

dissolution—reaction—(Kelemen—et—al;—2013),—and faeilitate. This continued renewal of

undersaturation facilitates the development of an extended-reaetive, thermally driven dissolution

front. Considering the typically low rates of ascending hydrothermal flow (e.g., u < 107 m/s;
Garven, 1995), along with the—relatively—rapidcharacteristic high reaction rates of olivine
dissolution kineties-andat high rate-constant(Rimstidt; 2015 Rimstidt-et-al5-2042)temperatures (7
> 150 °C; Rimstidt, 2015; Rimstidt et al., 2012), it suggests that Da iscan be large. Consequently,

mineral carbonation and vein formation eeceurunderquasi-equilibrinvm-conditions;-makingcan be

controlled by thermally driven solubility changes and described by the THC equilibrium model
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The quasi-

equilibrium conditions, characterized by the thermal front’s control over the reactive front and

their coalescence, allowed examination of their evolution in different settings in Section3.4. A

particularly interesting finding is that in radial (or similar) settings, and at relatively low flow rates,

a quasi-steady state develops over brief timescales of tens to hundreds of years. Such a cooling

process can also produce very steep thermal gradients, as shown in the temperature profile in

Fig. 5d, and can cause localized, thermally driven reactive effects. These thermal gradients may

be up to two orders of magnitude greater than the typical geothermal gradient resulting from
Earth’s heat flow (e.g., ~0.025 °C/m; Turcotte and Schubert, 2014).

A relevant example includes hypogenic karst cave formation driven by upwelling hydrothermal

flow through a conduit pathway within a fault. This flow discharges and spreads radially in a

confined aquifer while cooling rapidly, promoting localized carbonate dissolution around the water

inlet (Roded et al., 2023, 2024a). In this case, the results in Fig. 5d suggest that the cave system or

alteration front may reach approximately constant final dimensions. These settings may also apply

to additional alterations by hypogenic flows and thermal seepages.

Additional relevant settings that can involve coalesced fronts are ascending hydrothermal flow

along a decreasing geothermal gradient, leading to cooling and thermally driven reactions.

Particularly, as mentioned above (Section 4.1), this may induce olivine dissolution followed by

mineral carbonation in veins in ultramafic rocks. Alternatively, quartz vein formation dominantly

occurs due to cooling along the flow path (Bons, 2000; Sibson et al., 1975). In these settings,

coalesced fronts may become stationary as the hot ascending flow alters the background

geothermal gradient, producing a modified steady vertical thermal profile (Person et al., 1996;

Roded et al., 2013).

In these cases, where the coalesced, thermally driven reactive front remains stationary over
geological timescales, spatial alterations—will-depend-on-thesealteration of the front depends on
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slower tectonic processes. These tectonic timescales—TFhese-tectonic-timeseales are associated with

processes such isestasy—due—toas erosion, subduction, erand orogenic activity. A well-known
example is the alteration of the geothermal gradient caused by surface erosion or sediment
deposition (Haenel-et-al; 2012 Turcotte-and-Sehubert; 2002).(Haenel et al., 2012; Turcotte and
Schubert, 2014). In response to tectonic changes, the slowly varying subsurface thermal
distributionfield drives the gradual migration of the reactive front.

4.3. 4 Theoretical Modeling Outlook

Finally, this study and Roded et al. (2024b) demonstrate the extension of established heat transport

solutions to THC-coupled solutions. For future work, the possibility of extending these solutions

and approaches in several directions should be investigated. Specifically, it should be examined

how the solutions developed can be further extended to address more realistic and complex

scenarios. In particular, this includes consideration of more complex kinetic systems involving

multiple species and additional or more intricate couplings between variables and parameters.

In such cases, semi-analytical approaches could be especially useful. Due to the quasi-static

assumption of reactive flow, the set of equations for reaction rate (Eqgs. 10 and 15) or solute

disequilibrium (Egs. B3 and B6) could potentially be implemented in a semi-analytical, coupled,

and iterative manner.

Furthermore, the approach taken here and in Roded et al. (2024b) can be adapted to extend

additional thermal solutions to significant thermally driven reactive transport scenarios. Notably,

this may be especially practical and feasible under the equilibrium assumption, where thermally

driven reactions depend solely on the thermal gradients.

5. Summary and Conclusions

In this work, the equilibrium assumption iswas used to derive thermally driven reactive transport
solutions for the RLP (reaetiveReactive Lauwerier problemProblem) in-beth Cartesian and radial
coordinates. Thesolution-forporesityevelationisThe solutions were then validated and analyzed
against areference selutionsolutions and-a case study-of CO--rich-hot-waterinjectionfroma-single
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radial settingsas-the-studies involving thermally driven reactions of carbonates. In particular, the

shortcoming of the equilibrium-approximated solutions associated with the advective boundary

condition is analyzed. It was found that as the thermal front advances-dewnstreaminto-regions

diminishes:, inlet temperature gradients become milder and the advective discrepancy less

pronounced. This finding—metivatesalso motivated the derivation of a specific eriterion—and
functional relatienshipcriterion to guidedescribe quasi-equilibrium conditions in the RLP,

Next—theFollowing this, a unique feature of the-thermal-front-controllingthe reactive—frontand
theirquasi-equilibrium conditions—the coalescence under—quasi-equilibrivm—eonditions—of the
thermal and reactive fronts—is used to explore their evolution over time. This is examined in both
planar and radial settings, as-well-as-afunetion-of flowrate—The-growthrate-inthe radial-case
deereases-much-mererapidly,—and-it-isshownthat—n-and under the low-flow-rate limit_where

conduction effectively distributes heat. The advancement rate in the radial case decays much more

rapidly, and., notably, in the low-flow-rate limit, the front can become essentially stationary

inwithin a relativelyvery short period. Additionally, under these conditions, very sharp temperature

gradients are created near the inlet, which can induce localized fluid-rock interactions.

The applicability of the THC equilibrium model for impertantnotable fluid—rock interaction

processes is then discussed

processes-examined-. These include sedimentary reservoir evolution; through reactions involving

silica and calcite, as well as natural mineral carbonation in peridetite;and-ore-depeosit-formation
by-hydrothermal-flows-ultramafic rocks. These processes are positioned on a phase diagram based

on the Damkohler number, illustrating the applicability of the equilibrium model.
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Notably, it is suggested that the theoretical approach used here to extend established heat transport

solutions to thermally driven reactive transport may be applicable to other important scenarios in

Earth systems. Finally, it is emphasized that since thermally driven reactive fronts nearequitibrivm
often eease-to-expand-afterthe-early-stages—Instead;theyremainbecome stationary;-with within a
short period, their evolution is governed by geological processes. These processes, such as

tectonics or surface erosion and deposition, eeeuroperate on much longer timescales.

Appendix A: Da-Cenditionfor-ApplicabilityUnderlying Assumptions and Equations of the
Equilibrium MedelRLP

This appendix describes the main assumptions of the RLP under the equilibrium assumption. It

follows the main presentation from Roded et al. (2024b) and extends it to account for the quasi-

equilibrium conditions considered in this study. First, the main assumptions are detailed, followed

by a comprehensive overview of the basic conservation equations.

A.1. Main Model Assumptions

The thermal Lauwerier (Lauwerier, 1955) solution involves several simplifying assumptions.

These include neglecting the initial geothermal gradient and assuming that the basal geothermal
heat flux is negligible compared to the heat supplied by the injected fluid. The aquifer is also
assumed to be situated at depth, preventing heat from being transferred to the surface; otherwise,
there would be greater heat exchange between the aquifer and the caprock. This assumption also
depends on the timescale of interest: the thermal front, which rises over time, may not extend to
the surface on a short timescale. However, over a longer period, it may transfer heat to the surface,
which can be calculated using the characteristic timescale of conduction ¢ (tc = Ic*/av, where [
accounts for the characteristic length scales of conduction and a» is the thermal diffusivity).

In the confining layers, heat is transferred solely through conduction in the vertical direction (z),
while neglecting lateral (¢) heat conduction. This assumption restricts the model’s applicability to

cases with high injected fluid fluxes, where mild lateral temperature gradients evolve. To evaluate

the validity of this assumption, a thermal Péclet number is employed, which compares heat

advection in the aquifer to lateral heat conduction in the confining layers: Per = ual/ab, where /is

a length scale at which substantial temperature variation occurs (e.g., larger than 2% from the total
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temperature change, AT). 4 posteriori inspection confirms that Per > 1 beyond the initial moments

under all conditions considered here. Moreover, after a very short initial phase, the length scale /

should exceed the vertical dimension of the aquifer, A, where complete thermal mixing is assumed

vertical temperature gradients are expected to develop.

Additionally, thermal and solute dispersions within the aquifer are neglected, as both thermal (Per)
and solute (Pes) Péclet numbers are assumed to be large. Properties of the fluid and solid phases,
such as density and thermal conductivity, are assumed to be constant and temperature-independent.
Finally, it is assumed that Da > 1, making the equilibrium assumption applicable. As a result,

reaction rates are essentially independent of kinetics and reactive surface area, as demonstrated in

Section 2.2 of the main text.

A.2. The Basic Conservation Equations

Heat Transport:

Here, the basic conservation equations that underlie the Lauwerier solutions (Egs. 6 and 13) and

the THC equilibrium model (Eq. 5) are presented. More general versions of the conservation

equations are provided in Roded et al. (2024b). In what follows, the radial case (&= r) is considered

first, followed by the planar flow case and Cartesian coordinates (& = x).

Assuming that heat transfer in the radial direction, r, is negligible, the heat equation in the bedrock
and caprock confining the aquifer is,

H

aT 02T -5
E = abﬁ, for H’ (A]-)

225

where T denotes temperature,  is time, z is the vertical coordinate originating at the center of the

injection well and A denotes the aquifer thickness (see Fig. 1). The thermal diffusivity is given by

ov = Ku/Cpb, where the subscript b denotes bulk rock, K is the thermal conductivity, and Cp is the
volumetric heat capacity (Chen and Reddell, 1983; Stauffer et al., 2014).
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Assuming that heat transport in the aquifer is dominated by advection and that perfect mixing
prevails in the transverse direction (z), a 'depth-averaged' heat transport equation can be derived
for the aquifer domain:

oT 10(ruT)
= _—C.H _
ot

G P ar

PbH

n-0(rt), for —=<z<

i A2
5' ( )

where subscript f denotes fluid and u is the Darcy flux, assumed to be uniform along the z direction

and calculated from the total volumetric flow rate, O, using u(r) = Q/(H2zr) (Andre and Rajaram,
2005:; Lauwerier, 1955). The @ function accounts for the heat exchange between the aquifer and
the confining bedrock and caprock, calculated using Fourier’s law, assuming continuous
temperature at the interfaces:

- T
0=k , 4 (43)
-2 2

The factor of two accounts for both the bedrock and caprock (Stauffer et al., 2014). In Eq. A2, n

represents a unit vector directed outward from the aquifer and perpendicular to the interface
between the aquifer and the bedrock or caprock. This orientation ensures that, e.g., in the case of
a warmer aquifer, the upward and downward heat fluxes constitute a heat sink.

Reactive Transport:

The solute advection-reaction equation in the aquifer is:

0= oc Q(r,t), f H< <H A4
= uar (r,t), for 2_2_2, (A4)

where c¢ is the solute concentration and Q is the reaction rate (Chaudhuri et al., 2013; Szymczak

and Ladd, 2012). Note that the transient and dispersivity terms in Eq. A4 are neglected, with the
latter being omitted due to the assumption of Pes > 1. The justification for neglecting the transient
term and invoking the quasi-static approximation in the derivation of Eq. A4, lies in the separation
of timescales between the relaxation of solute concentration (za), heat conduction (fc) in the
confining rocks and mineral alteration (for in-depth analysis and discussion see Roded et al.

(2024b) and as well, e.g., Bekri et al., 1995; Ladd and Szymczak, 2017; Lichtner, 1991; Roded et
al., 2020).

Using the reaction rate, the change in porosity, 6, can be calculated as:
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for —

a0 Q H 45)
ot ves 2

Here, csol represents the concentration of soluble solid mineral and v accounts for the stoichiomet:
of the reaction. For planar flow and Cartesian coordinates,  can be substituted with x in the

equations above, and Eq. A2 then takes the following form:

oT aT H
CPbHE = —uCpra -n-0(x,t), for -— ;SZ<
> Assuming-quasi-equilibrium-conditions-and-equating-the
. L 6 and felds,
% st 3~ A e e (T 1
H— AsA{e—es(T) ) Ly

Aesele—est)>t-Eg-—A-l-can-berearranged-to-give;

(46)

The above set of heat transport equations underlies the development of the thermal Lauwerier

solutions presented in Section 3.1 (Egs. 6 and 13). Section 2.2 of the main text provides the

derivation of the equilibrium-approximated form of Eq. A4, which is used to obtain the

equilibrium-approximated solutions developed in this study.
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Appendix B: RLP Solutions
.1. Radial REP-SelutiensCase
The REP-solution to the RLP for the-solute disequilibrium in the radial case is given by,
A
() ,
= ATBe\%¢ (erf [{rz -—
2¢
n
fl—|)-
+ertlze])

where 17 = tHAsA/Q and the definition of ('is given in Eq. 7.

o
[
H=

A closed-form expression for the temporal and spatial evolution of porosity, 6, is given by,

2t AAGAT 1 _4r2
O(r,t) =6 + 4{—5—13 —en/4(<2 o ) (erf[(rz ~ 24 erf[lD + e
7’2 VCsol 2( 2( (.\/T[

+ erf[{r?](1 —nr?) — et 4 nr?
{Vm

- 1). B2 (B2)

solution-of Eq—B-1For efficient computation and preventing integer overflow, an approximate

solution of Eq. B1 is developed using the first-order asymptotic expansion of erfc,

T2—€27"4
p =28 ey (£
T z — Zrz

2
- (B-3 (B3)

B.2. Planar Case

For the planar case, the corresponding solutions are given by,
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A= ATﬁe(%_gx) (erf [wx - %] + erf [%D (B4)

and
w?t AAGATB o/4(Zy-1) o o o
— — msm R 2 N . o~ 0X
0(x,t) =6 +4—3 e < e’ o (erf[wx Zw] + erf[zw]) + a)\/rre
+ erflwx](1 — ox) — T _ e +ox — 1). (B5)
W\

An approximate expression for Eq. B4 is given by

A = AT ey (€7 20

(B6)

Here, 0 = AsA/u and the definition of w is given in Eq. 14.

To prevent integer overflow errors, Eq—B3—is—Eqs. B3 and B6 are used to calculate the

undersaturation and-profiles shown in Figs. 2b and 3b, and the reaction rate profiles in Fig. 4a.
These expressions are Eigs=2b-and 3a;respeetively—ttis-also used to-iterativelysolve numerically
in the iterative numerical solution to obtain the porosity prefileprofiles at later times, as shown in

Fig-Figs. 2¢ and 3¢ (¢ = 100 kyr). Fhe-aceuracy-of the-approximationinEqB3-was-validated by

Additienally;Prior validation confirmed the accuracy of Eq—C3-and-the-iterativesolutions—was

the fall-selution-inEq-—B2for+—=10-kyrapproximate solutions (Egs. B3 and B6; (Roded et al.,
2024b).

Appendix C: Derivation of the Applicability Criterion

In this appendix, the derivation of the applicability criterion shown in Section 3.3 is presented.

This criterion provides a functional relationship between key parameters, variables, and the system

equilibrium state in RLP settings. The derivation of the criterion leverages a key feature of the

quasi-equilibrium regime: the coalescence of the thermal and reactive fronts in the aquifer, which

occurs when Da is high (compare the curves in Fig. 2a and b). In this regime, reactions dominate

over transport, and thermally induced disequilibrium dissipates rapidly, essentially not extending

downstream of the thermal front.
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It is noted that even when the fronts coincide downstream, far-from-equilibrium conditions may

still persist upstream. This is observed in the results of Fig. 4, where the equilibrium solution
(which aligns with the thermal front) and the reference solution closely match downstream at later
times, but diverge upstream. Nonetheless, the derived functional relationships offer useful
guidance.

First, the thermal front’s outer-end position, &(7), is defined as the furthest distance of thermal

perturbation due to the injection at a given time. The thermal perturbation is quantified by ¢ =

(T(&r)-To)/AT, where ¢ is a prescribed small value (¢ < 1); here, ¢ = 0.01. Below, we consider the

radial case (&F = rr), though applying the same steps to the planar case equations yields the same

result.

Rearranging and substituting the definition of ¢ into the Lauwerier solution (Eq. 6) yields:

¢ = erfc(a), where a = (t)rs?, (c1)

where « is a constant, and for e = 0.01, a = 1.8. Then, rr can be expressed as,

a

F = m ((:2)

Next, an approximate form of the reference solution for disequilibrium is used (Eq. B3 in Appendix

B: Roded et al., 2024b). The reasoning for using a far-from-equilibrium-based solution, even

though the equilibrium model strictly assumes A = 0 (cf. Egs. 4 and 5), is that a small A confirms

the validity of this approximation. Therefore, solute disequilibrium serves as a metric to quantify

the spatial and temporal extent over which the equilibrium assumption is valid.

Assuming quasi-equilibrium at the front’s outer-end position, 7r, and applying the condition & >
A/Acs, where Acs denotes the solubility change in the system, Acs = ¢s(7in) — ¢s(70), which here

may be positive or negative, Eq. B3 becomes:

&> £ ﬁ_e(—nrﬁ)

e(mi=*rs)  2¢
= ACS \/T[ 21’]_( _ CTFZ 77 .

(€3)
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Next, applying a few more steps by substituting the definition from Eq. C2, neglecting early times,

and assuming high Da and # > £, Eq. C3 can be simplified to:

> — == (C4)

Eq. C4 becomes,

1> L—<L) <\/L—Cpb>, (€5)

A2\ HC,,

Jmt

where 4 is the specific reactive area [L '] and 1 is the kinetic reaction rate coefficient of the first-

order reaction [L T"']. Equation C5 defines the conditions under which the thermal and reactive

fronts coincide and provides a functional relationship to the equilibrium state in RLP settings.

Appendix D: Parameter Values

Table 1. Parameter values used in the simulation in Section 3.2.

Aquifer thickness H=4m

Initial porosity 6o =0.05

Total volumetric flow rate' 0 =500 m*/s_day!
Fluid velocity u=10"ms’"

Initial aquifer temperature? To=20°C

Injection temperature? Tin=60°C

Fluid volumetric heat capacity? Cpr=4.2-10°J m3 °C!
Rock volumetric heat capacity? Cpp = 3.12-10° J/m® m= °Cy!
Rock thermal conductivity? Ky =3 Wm'°C!
Calcite rate coefficient’ L=10°m/s

Fractured carbonates specific reactive surface area’ As=10m™

Calcite mineral concentration® Csol=2.7-10*mol&w* m™
Solubility change parameter calcite’ B =-0.075 mol m3°C!
Stoichiometry coefficient’* v=1

1-Glassley-(2014)Glassley (2014); 2-Huenges and Ledru (2011); 3-Palmer (1991); 4-Rimstidt and Barnes (1980); 5-
see textSection 4.1; 6-Hussaini and Dvorkin (2021) and Lai et al. (2015); 7-Roded et al. (2023).
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Table 2. List of Symbols.
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