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Abstract 

Rates of subsurface rock alteration by reactive flows are often essentially independent of kinetic 

rates and governed solely by solute transport to and from reactive mineral surfaces.. This allows 

forenables a major simplification, making that makes models tractable ineven for complex kinetic 10 

systems through the widely applied local equilibrium assumption. Here, this assumption is applied 

to the Reactive Lauwerier Problem (RLP), which describes non-isothermal fluid injection into a 

confined aquifer, driving thermally induced solubility changes and reactions.leading to chemical 

disequilibrium. Specifically, depending on the thermal changes drive temperature-dependent 

solubility nature of a given mineral, the thermally induced solubility changes can leadvariations, 15 

leading to either undersaturation and dissolution or supersaturation and precipitation reactions. 

Using this framework, solutions for reaction rate and porosity evolution are developed and 

analyzed, leading toyielding a functional time-dependent criterion for their validity that 

incorporates time and thermal parameters. A key feature—the coalescence of thermal and reactive 

fronts—is then analyzed under various conditions. Finally, theused to explore their evolution over 20 

time in different settings. The applicability of the equilibrium model for important fluid-–rock 

interaction processes is then examined and discussed and examined, including sedimentary 

reservoir development,evolution and mineral carbonation in peridotite, and ore deposit 

formation.ultramafic rocks. Notably, the approach used here to extend thermal solutions for 

reactive processes suggests broader applicability. The findings also highlight that such thermally 25 

driven reactive fronts, particularly near equilibrium, often become essentially stationary after a 

relatively short period. As a result, their spatial evolution is governed solely by geological 

processes operating onover much longer timescales. 

1. Introduction 
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Natural and anthropogenic systems are often complex, involving intricate interactions between 30 

various processes, which makes developing a mechanistic understanding of the system 

challenging. However, the disparity in timescales between these processes often allows for 

significant simplification, as one process typically serves as the rate-limiting step that controls the 

systemsystem’s overall evolution. This simplification, in turn, enables the recovery of the 

systemsystem’s mechanistic behavior. Such systems range from climate science, where 35 

atmospheric and oceanic processes interact and operate at different timescales (Vallis, 

2017)(Vallis, 2017), to multi-step biochemical processes and enzyme kinetics (Cornish-Bowden, 

2013)(Cornish-Bowden, 2013), traffic flow analysis (Lighthill and Whitham, 1955)(Lighthill and 

Whitham, 1955), epidemiology and disease spread (Anderson, 1991)(Anderson, 1991), economics 

(Solow, 1956)(Solow, 1956) and crystal growth (Mullins and Sekerka, 1963)(Mullins and 40 

Sekerka, 1963). 

Similarly, in geothermal systems, hydro-thermo-hydro-chemical (THC) processes often involve 

complex interactions. In particular, geochemical kinetics can be highly intricate, involving 

multiple species and reactions of varying orders, which are influenced by flow and transport 

dynamics and thermal variations (Appelo and Postma, 2004; Kolditz et al., 2016; Phillips, 45 

2009)(Appelo and Postma, 2004; Kolditz et al., 2016; Phillips, 2009). This complexity hinders the 

understanding of system behaviors and their description using tractable models. However, in many 

cases, the rate of transport is much slower than the reaction kinetics, effectively controlling the 

overall reaction rate. These conditions, known as transport-controlled, occur when the transport of 

reactants or reaction products dictates the reaction rate (Deng et al., 2016; Roded et al., 2020; 50 

Steefel and Maher, 2009)(Deng et al., 2016; Roded et al., 2020; Steefel and Maher, 2009).  

Under transport-controlled conditions, the characteristic timescale of transport, tA, is much larger 

than that of the reaction, tR, (tA >>≫ tR) and the system is close to chemical equilibrium (i.e., quasi-

equilibrium). In such cases, the local equilibrium assumption is often invoked, and the assumption 

that the reaction rate depends solely on transport allowing to greatly simplify models (Andre and 55 

Rajaram, 2005; Lichtner et al., 1996; Molins and Knabner, 2019).allows one to greatly simplify 

models (Andre and Rajaram, 2005; Lichtner et al., 1996; Molins and Knabner, 2019). The validity 

of the equilibrium modelassumption is determined by a large timescale ratio and the Damköhler 

number, Da, which, assuming a first-order surface reaction, is given by    
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𝐷𝑎 =
𝑡A

𝑡R
=

𝑙𝐴s𝜆

𝑢A
> 1,                                                                                                                                   (1) 60 

where l is a local characteristic length scale, uA denotes characteristic Darcy flux [L T-1], As is the 

specific reactive area (L2 to L−3 of porous medium) and λ is the kinetic reaction rate coefficient [L 

T-1] (Lichtner et al., 1996; MacQuarrie and Mayer, 2005; Appendix A provides simple derivation 

of the condition in ).Eq. 1 for the thermally-driven reactive transport conditions considered in this 

study). 65 

Here, inIn this study, equilibrium model-approximated solutions for geothermal systems are 

derived, building on. These build upon and extend previous work (Roded et al., 2024b), in which 

thermally driven reactive transport solutions were developed within the framework of the 

Lauwerier solution (Lauwerier, 1955).(Lauwerier, 1955). The Lauwerier solution provides an 

analytical prediction of the thermal field development resulting from the injection of hot (or cold) 70 

fluid into a thin, non-reactive, confined layer system (Lauwerier, 1955; Stauffer et al., 

2014)(Lauwerier, 1955; Stauffer et al., 2014).  

The thermally-driven reactive transport solutions developed by Roded et al. (2024b) integrate 

temperature-dependent solubility into a reactive flow formulation while incorporating the thermal 

field based on the Lauwerier solution. Specifically, this setting, referred to as the Reactive 75 

Lauwerier Problem (RLP), accounts for thermal variations that drive the system out of 

geochemical equilibrium, thereby triggering chemical reactions. These disturbances stem from 

shifts in mineral solubility within groundwater, where thermal fluctuations can induce conditions 

of either supersaturation or undersaturation. Over time, these thermally-driven reactions lead to 

changes in rock porosity due to the precipitation, dissolution, or replacement of solid minerals and 80 

the associated volumetric changes (Phillips, 2009; Woods, 2015).  

Depending on the natural solubility of the minerals in the system, an increase in temperature can 

lead to either dissolution or precipitation. This occurs because mineral solubilities can either 

decrease with temperature (retrograde solubility) or increase with it (prograde solubility; Jamtveit 

and Yardley, 1996; Phillips, 2009).Jamtveit and Yardley, 1996; Phillips, 2009). A notable example 85 

includes the prograde solubility of silica, which commonly precipitates in geothermal systems 

from the cooling of fluids (Pandey et al., 2018; Rawal and Ghassemi, 2014; Taron and Elsworth, 

2009)(Pandey et al., 2018; Rawal and Ghassemi, 2014; Taron and Elsworth, 2009). In contrast, 
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carbonate minerals such as calcite and dolomite exhibit an inverse relationship with temperature 

and retrograde solubility, which is often pronounced and influenced by CO2 concentration. 90 

Depending on the conditions, either rapid dissolution or rapid precipitation can occur in the case 

of common carbonate minerals (Andre and Rajaram, 2005; Coudrain-Ribstein et al., 1998).(Andre 

and Rajaram, 2005; Coudrain-Ribstein et al., 1998).  

Fluid recharge or injection under constrained physical and chemical conditions, as in RLP settings, 

is common in both natural and engineered geothermal systems and aquifers (Hidalgo et al., 2012; 95 

Phillips, 2009; Stauffer et al., 2014). These include mineral carbonation in ultramafic rocks 

(Kelemen et al., 2019; Roded and Dalton, 2024) and ore deposit formation by hydrothermal flows 

(Ingebritsen & Appold, 2012), aquifer thermal storage, pumping or reinjection of geothermal 

water, and groundwater storage and recovery applications (Diaz et al., 2016; Fleuchaus et al., 2018; 

Maliva, 2019). (Phillips, 2009; Stauffer et al., 2014). These include aquifer thermal storage, 100 

pumping or reinjection of geothermal water, and groundwater storage and recovery applications 

(Diaz et al., 2016; Fleuchaus et al., 2018; Maliva, 2019), as well as implications for mineral 

carbonation in mafic or ultramafic rocks (Kelemen et al., 2019; Roded and Dalton, 2024). 

In this study,what follows, the settings and equations are first described, which then serve to derive 

the equilibrium-approximated solutions for the RLP are first derived for both radial and planar 105 

flows. Next, theseThese solutions are then compared to the reference solutions from Roded et al. 

(2024b) to validate them and discuss their limitations, along with the derivation of specific criteria 

for the RLP setup. ThenNext, the evolution of reactive fronts under quasi-equilibrium conditions 

is analyzed forin different scenariossettings. Interestingly, it is shown that under certain conditions, 

thermally driven reactive fronts cease to expand and become essentially stationary after a short 110 

timescale, remaining controlled by longer-term tectonic processes. This phenomenon is discussed 

in The applicability of the context of equilibrium model to key relevant processes, including 

thesedimentary aquifer alteration of sedimentary aquifers,and natural mineral carbonation, and the 

formation of ore deposits.    is discussed along with an outlook for further theoretical developments. 

2. Settings and the Equilibrium Model Equations 115 

This section describes the RLP under the equilibrium assumption and then outlines the specific 

settings and relevant governing equations. These equations provide the THC equilibrium model 
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(Phillips, 2009; Wood and Hewett, 1982) used to drive the solutions in this work. A comprehensive 

review of the more general RLP framework and its main assumptions is provided in Roded et al. 

(2024b) and further revised in Appendix A of this work. 120 

2.1. The Equilibrium Reactive Lauwerier Scenario  

The Lauwerier problem describes the injection of a hot or cold fluid into a confined aquifer 

bounded by impermeable bedrock and caprock (Lauwerier, 1955; Stauffer et al., 2014).(Lauwerier, 

1955; Stauffer et al., 2014). The fluid flows horizontally along the ξ coordinate, which can 

represent either the radial distance (r) in an axisymmetric configuration or the Cartesian coordinate 125 

(x),) in planar configuration, i.e., ξ = r or x. These represent the two primary geometric settings 

considered in this study. A schematic representation of this system is provided in Fig. 1, with the 

nomenclature summarized in Appendix DE.  

Along the flow path downstream from the injection well, heat is transferred between the aquifer 

and the confining aquiclude layers, which conduct the heat. Within the aquifer, thermal variations 130 

influence mineral solubility (i.e., saturation concentration, cs(T)). These solubility changes, in turn, 

lead to undersaturation and dissolution reactions or, conversely, to supersaturation and 

precipitation reactions, which modify the aquifer porosity (θ). Whether the porosity decreases or 

increases, and the magnitude of thesePorosity changes, dependswhether increases or decreases, 

depend on both the temperature difference between the injected fluid and ambient 135 

conditions,thermal changes (heating or cooling) and the solubility characteristicsnature of the 

minerals involved (i.e., (prograde or retrograde behavior). As mentioned in the Introduction, this 

work further examines conditions where reaction kinetics are fast and the Damköhler number is 

large (Da > 1). ). 

 140 
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Figure 1. Outline of the Reactive Lauwerier Problem (RLP) for thermally driven reactive transport 

in geothermal systemsunder the equilibrium assumption. Hot (or cold) fluid is injected into an 

aquifer, confined between impermeable bedrock and caprock, at a steady flow rate, Q, and 145 

temperature, Tin. The initial temperature is T0, and the aquifer thickness is H. Along the flow path 

downstream, heat from the aquifer conducts through the confining layers. The resulting thermal 

variations (depicted by color gradients) alter mineral solubility, cs(T), driving the system out of 

equilibrium and triggering chemical reactions that modify the aquifer porosity from its initial 

value, θ0. In this work, it is further assumed that theHigh Damköhler number is large (Da > 150 

1)conditions and that the equilibrium assumption holds. The vertical coordinate is denoted by z, 

whileare considered. Under these conditions, the reaction rate, Ω, is directly governed by 

variations in mineral solubility, ∂cs(T)/∂ξ, where ξ denotes the horizontal coordinate, ξ, represents 

—either the radial coordinate, r, or the Cartesian coordinate, xcoordinates (i.e., ξ = r or x). The 

vertical coordinate is denoted by z. The reference point for both ξ and z is located at the center of 155 

the injection well, which exhibits axial symmetry (as shown in the sketch) or planar symmetry 

whenin the Cartesian geometry is assumedcase (modified after Roded et al. (2024b)).  
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In terms of geometry, the model considers two primary settings. The first is radial flow, which 

represents injection from a single well, or accounts for naturally focused flow of deep-origin 

through faulted or fractured rock, discharging into a shallower aquifer (Craw, 2000; Micklethwaite 160 

and Cox, 2006; Roded et al., 2013, 2023; Tripp and Vearncombe, 2004). The second is planar 

flow, which describes injection from a row of wells arranged in a straight-line configuration, as 

initially formulated by Lauwerier (1955). 

 

 165 

2.2. Main Model Assumptions 

The RLP conceptual model of Fig. 1 is formulated using conservation equations for heat and 

reactive transport supplemented by initial and boundary conditions. The original thermal 

Lauwerier solution and the reactive Lauwerier solutions involve several simplifying assumptions. 

Here, the main ones are repeated below. For a more comprehensive overview of the assumptions, 170 

the reader is referred to Roded et al. (2024b).  

Thermal assumptions include neglecting the initial geothermal gradient and assuming that the 

basal geothermal heat flow is small compared to the heat supplied by the injected fluid.In this 

study, the focus is on conditions where reaction kinetics are fast, the Damköhler number is large 

(Da > 1), and the local equilibrium assumption holds. Under these conditions, the reaction rate, Ω, 175 

as shown in the next section, can be directly calculated from the thermally driven solubility 

changes in the system; that is, Ω ∝ ∂cs(T)/∂ξ. Hence, such a solution is independent of the specific 

reaction kinetics involved.  

In terms of geometry and hydrogeological scenarios, the radial setting pertains to injection from a 

single well or accounts for naturally focused flow of deep-origin fluids through faulted or fractured 180 

rock, discharging into a shallower aquifer (Craw, 2000; Micklethwaite and Cox, 2006; Roded et 

al., 2013, 2023; Tripp and Vearncombe, 2004). The planar setting describes injection from a row 

of wells arranged in a straight-line configuration, as initially formulated by Lauwerier (1955).  

2.2. The Equilibrium-Based Approach   
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The steady-state, solute advection–reaction equation in the aquifer is:  185 

0 = −𝑢
𝜕𝑐

𝜕𝜉
− Ω(𝜉, 𝑡),                                                                                                                                   (2) 

where ξ is the horizontal coordinate (ξ = r or x), u is the Darcy flux, c is the solute concentration 

and Ω(ξ, t) is the reaction rate, which varies in space and time, t The aquifer is also assumed to be 

situated at depth, preventing heat from being transferred to the surface; otherwise, there would be 

greater heat exchange between the aquifer and the caprock. This assumption also depends on the 190 

timescale of interest: the thermal front, which rises over time, may not extend to the surface on a 

short timescale. However, over a longer period, it may transfer heat to the surface, which can be 

calculated using the characteristic timescale of conduction tC (tC = lC
2/αb, where l accounts for the 

characteristic length scales of conduction and αb is the thermal diffusivity).  

In the confining layers, heat is transferred solely through conduction in the vertical direction (z), 195 

while neglecting lateral (ξ) heat conduction. This assumption restricts the model applicability to 

cases with high injected fluid fluxes, where mild lateral temperature gradients evolve. To evaluate 

the validity of this assumption, a thermal Péclet number is employed, which compares heat 

advection in the aquifer to lateral heat conduction in the confirming layers: PeT = uAl/αb, where l 

is a length scale at which substantial temperature variation occurs (e.g., larger than 2 % from the 200 

total temperature change, ∆T). A posteriori inspection confirms that PeT >> 1 at all times at the 

conditions considered here. Moreover, after the initial moments, the length scale l should exceed 

the vertical dimension of the aquifer, H, where complete thermal mixing is assumed (l >> H). This 

assumption may not hold if a thick aquifer (i.e., large H) is considered, and significant vertical 

temperature gradients are expected to develop.  205 

Additionally, thermal and solute dispersions within the aquifer are neglected, as both thermal (PeT) 

and solute (Pes) Péclet numbers are assumed to be large. Properties of the fluid and solid phases, 

such as density and thermal conductivity, are assumed to be constant and temperature-independent. 

Last, it is assumed that Da > 1 and the equilibrium assumption is applied. As a result, reaction 

rates are independent of kinetics (λ) and the reactive surface area (As).  210 

2.3. The Basic Conservation Equations 
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Here, the basic conservation equations are presented, simplified using the assumptions considered, 

and then used to develop equilibrium solutions. For a more comprehensive overview, more general 

versions of the conservation equations are provided in the Supplementary Material (SM). In what 

follows, the radial case (ξ = r) is considered first, followed by planar flow case and Cartesian 215 

coordinates (ξ = x). 

Assuming that heat transfer in the radial direction, r, is negligible, the heat equation in the bedrock 

and caprock confining the aquifer is,  

 
𝜕𝑇

𝜕𝑡
= 𝛼b

𝜕2𝑇

𝜕𝑧2
,     for     {

𝑧 ≤ −
𝐻

2

𝑧 ≥
𝐻

2

,                                                                                                          (2) 

where T denotes temperature, t is time, z is the vertical coordinate originating at the center of the 220 

injection well and H denotes the aquifer thickness (see Fig. 1). The thermal diffusivity is given by 

αb = Kb/Cpb, where the subscript b denotes bulk rock, K is the thermal conductivity, and Cp is the 

volumetric heat capacity (Chen and Reddell, 1983; Stauffer et al., 2014). 

Assuming that heat transport in the aquifer is dominated by advection and that perfect mixing 

prevails in the transverse direction (z), a 'depth-averaged' heat transport equation can be derived 225 

for the aquifer domain:  

𝐶pb
𝐻

𝜕𝑇

𝜕𝑡
= −𝐶pf

𝐻
1

𝑟

𝜕(𝑟𝑢𝑇)

𝜕𝑟
− 𝒏 ∙ 𝚯(𝑟, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
,                                                  (3) 

where subscript f denotes fluid and u(r) is the Darcy flux, assumed to be uniform along the z 

direction and can be calculated from the total volumetric flow rate, Q, using u = Q/(H2πr) (Andre 

and Rajaram, 2005; Lauwerier, 1955) . The Θ function accounts for the heat exchange between 230 

the aquifer and the confining bedrock and caprock, calculated using Fourier’s law, assuming 

continuous temperature at the interfaces: 

𝚯 = −2𝛫b

𝜕𝑇

𝜕𝑧
|

𝑧=
𝐻
2,−

𝐻
2

.                                                                                                                                 (4) 

The factor of two accounts for both the bedrock and caprock (Stauffer et al., 2014). In Eq. 3, n 

represents a unit vector directed outward from the aquifer and perpendicular to the interface 235 
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between the aquifer and the bedrock or caprock. This orientation ensures that, e.g., in the case of 

a warmer aquifer, the upward and downward heat fluxes are negative.   

The solute advection-reaction equation in the aquifer is:  

0 = −𝑢
𝜕𝑐

𝜕𝑟
− Ω(𝑟, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
,                                                                                       

(Chaudhuri et al., 2013; Szymczak and Ladd, 2012). In Eq. 2, transient variations are neglected, 240 

and the quasi-static approach to reactive flow is applied (see Appendix A and Roded et al. 

(2024b)). 

Defining the solute disequilibrium, Λ, as the difference between the dissolved ion concentration, 

c, and the temperature-dependent solubility (i.e., saturation concentration), cs(T),  

Λ = 𝑐 − 𝑐s(𝑇),                                                                                                                                               (3) 245 

Eq.   (5) 

where c is the solute concentration [M L-3] and Ω is the reaction rate (Chaudhuri et al., 2013; 

Szymczak and Ladd, 2012)2 can then be rewritten as: 

0 = −𝑢 [
𝜕Λ

𝜕𝜉
+

𝜕𝑐s

𝜕𝜉
] − Ω(𝜉, 𝑡).                                                                                                                   (4) 

Next, conditions of a high Da number are considered, where reaction rates significantly exceed the 250 

rate of advective transport. In this regime, local quasi-equilibrium is maintained along flow paths, 

and the solute disequilibrium magnitude remains small compared to the overall solubility variation. 

Specifically, Λ ≪ Δcs, where Δcs denotes the absolute solubility change in the system, ∆cs = |cs(Tin) 

– cs(T0)|, that is, between solubility at the injection temperature, Tin, and at ambient conditions, T0.  

Under this assumption, the first advective term in Eq. 4 (u∂Λ/∂ξ) becomes negligible compared to 255 

the other terms. The governing equation can thus be approximated as (Andre and Rajaram, 2005; 

Phillips, 2009, p. 237): 

Ω(𝜉, 𝑡) = −𝑢
𝜕𝑐s(𝑇)

𝜕𝜉
.                                                                                                                                  (5) 
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The expression in Eq. 5 provides the THC equilibrium model and demonstrates that, under quasi-

equilibrium conditions, the solute concentration, c, closely follows the spatially varying solubility 260 

determined by the temperature field, cs(T). Notably, it shows that in this regime, the solution for 

the overall reaction rate, Ω(ξ, t), can be independent of the specific reaction kinetics involved and 

can be calculated from the solubility gradient. 

Lastly, it is noted that the current study focuses on the equilibrium assumption and solves the 

reduced form given in Eq. 5. This contrasts with the preceding work (Roded et al., 2024b), which 265 

focused on solving the full form of Eq. 2 (or Eq. 4) under the assumption of first-order kinetics. 

. Note that the transient and dispersivity terms in Eq. 5 are neglected, with the latter being omitted 

due to the assumption of Pes >> 1 (see SM). The justification for neglecting the transient term and 

invoking the quasi-static approximation in the derivation of Eq. 5, lies in the separation of 

timescales between the relaxation of solute concentration (tA), heat conduction (tC) in the confining 270 

rocks and mineral alteration (for in-depth analysis and discussion see Roded et al. (2024b) and as 

well, e.g., Bekri et al., 1995; Ladd and Szymczak, 2017; Lichtner, 1991; Roded et al., 2020). 

Assuming a surface-controlled reaction and first-order kinetics, the reaction rate can be 

calculated using: 

Ω = 𝐴s𝜆Λ,                                                                                                                                                       (6) 275 

where As is the specific reactive surface area (L−1) and λ is the kinetic rate coefficient [L T-1] 

(Dreybrodt et al., 2005; Steefel and Maher, 2009). Λ is defined here as the solute disequilibrium, 

comprising the difference between the concentration of dissolved ions and the saturation 

(equilibrium) concentration, cs,  

Λ = 𝑐 − 𝑐s(𝑇).                                                                                                                                               (7) 280 

Thus, the solute disequilibrium, Λ, is positive for supersaturation and negative for undersaturation. 

cs is calculated as:  

𝑐s(𝑇) = 𝑐s(𝑇0) + 𝛽(𝑇 − 𝑇0),                                                                                                                     (8) 
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where T0 denotes the initial temperature in the aquifer and the parameter β = ∂cs/∂T. In Eq. 8, a 

linear relation between cs and T is assumed, with a constant proportionality factor β, which is 285 

positive for minerals of prograde solubility and negative for minerals of retrograde solubility 

(Corson and Pritchard, 2017; Woods, 2015).  

Using the reaction rate from Eq. 6, the change in porosity, θ, can be calculated as: 

𝜕𝜃

𝜕𝑡
= −

Ω

𝜈𝑐sol
,     for     −

𝐻

2
≤ 𝑧 ≤

𝐻

2
.                                                                                                    (9) 

Here, csol represents the concentration of soluble solid mineral and ν accounts for the stoichiometry 290 

of the reaction. For planar flow and Cartesian coordinates, r can be substituted with x in the 

equations above, and Eq. 3 then takes the following form: 

𝐶pb
𝐻

𝜕𝑇

𝜕𝑡
= −𝑢𝐶pf

𝐻
𝜕𝑇

𝜕𝑥
− 𝒏 ∙ 𝚯(𝑥, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
.                                                        (10) 

2.4.2.3. Initial and Boundary Conditions 

The thermal Lauwerier solution incorporates an initial conditions involve acondition of uniform 295 

temperature, T0, T₀ across the system. The, along with boundary conditions at the injection well (ξ 

= 0)that specify a constant rate of fluid injection rate at temperature Tin, with an initial solute 

disequilibrium of Λ = 0 (Eq. 7Tᵢₙ at the injection point (ξ = 0). It is assumed that the thickness of 

the bedrock and caprock, as well as the extent of the aquifer, are infinite.  

With respect to the solute transport boundary conditions, the RLP problem is defined by a constant 300 

fluid injection rate at temperature Tin, with an initial solute disequilibrium of Λ = 0 (i.e., saturated 

fluid) at the inlet (Roded et al., 2024b). In contrast, the equilibrium-approximated solutions derived 

from Eq. 5, calculate the reaction rate based on the assumption that it is proportional to the 

temperature-driven solubility gradient. Consequently, as will be shown in the next section, solute 

transport boundary conditions are not incorporated. This discrepancy is the focus of the analyses 305 

in Section 3.3. 

3. Results: The Equilibrium Solutions and Their Applicability   

3.1. Derivation of the Equilibrium Solutions  
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3.1.1. Axisymmetric (Radial) Flow 

Aquifer temperature. The solution for the temperature distribution in the aquifer (known as the 310 

Lauwerier solution) derived from solving Eqs. 2 and 3 for axisymmetry is given by:  

The Lauwerier solutions for the temperature distribution in the aquifer (Lauwerier, 1955; Stauffer 

et al., 2014) serve as the basis for developing the equilibrium-approximated RLP solutions 

presented here. These solutions are derived by solving the advective heat transport equation in the 

aquifer, together with the corresponding conductive heat transfer equation in the confining bedrock 315 

and caprock (Eqs. A1–A3 in Appendix A). The solution for axisymmetric settings is given by: 

𝑇(𝑟, 𝑡)

= 𝑇0 + ∆𝑇erfc[𝜁(𝑟, 𝑡)𝑟2],                                                                                                          (11   (6) 

where erfc is the complementary error function, ΔT = Tin – T0 is the difference between injection 

and ambient aquifer temperatures, and ζ is defined as: 320 

𝜁(𝑟, 𝑡) =
𝜋√𝐾b𝐶pb

𝑄𝐶pf√𝑡′
.                                                                                                                                   (12) 

𝜁(𝑟, 𝑡) =
𝜋√𝐾b𝐶pb

𝑄𝐶pf√𝑡′
,                                                                                                                                     (7) 

where Q is the total volumetric flow rate, K is the thermal conductivity, and Cp is the volumetric 

heat capacity, with the subscripts b and f denoting bulk rock and fluid, respectively. The time 

variable is defined as t’ = t – 2rCpb/(Cpfu), and the tLg, where tLg = πr2HCpb/(CpfQ), with H 325 

denoting the aquifer thickness (see Fig. 1). Assuming uniform flow along the vertical direction (z), 

the fluid velocity can be calculated from the volumetric flow rate using u = Q/(H2πr). 

The solution of Eq. 116 is valid when t’ > 0 (Stauffer et al., 2014). Furthermore,(Stauffer et al., 

2014), and it is further assumed here that a sufficiently long time has passed andsuch that 

conditions satisfy t’ ≈ t. Specifically, the term tLg represents a thermal retardation time. It accounts 330 

for the delay in the arrival of the thermal front due to advective transport and the thermal energy 
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required to heat the aquifer solid matrix along the flow path (for an analysis of the validity of this 

assumption, see Roded et al. (2024b)Roded et al. (2024b)).  

Additionally, for simplicity, it is assumed that the heat capacities of both the confining rocks and 

the aquifer are identical. To account for non-uniform heat capacities, an alternative definition of 335 

Eq. 116 can be applied (see Eqs. 3.122 and 3.131, along with the corresponding definitions in 

Stauffer et al. (2014)Stauffer et al. (2014)).  

Thermally Driven Solubility Changes 

The THC equilibrium model in Eq. 5 shows that the reaction rate, Ω(r, t), depends on the thermally 

driven solubility gradient, ∂cs(T)/∂r. Here, the temperature-dependent solubility is calculated 340 

using: 

𝑐s(𝑇) = 𝑐s(𝑇0) + 𝛽(𝑇 − 𝑇0),                                                                                                                     (8) 

Reactive solute transport. Rewriting Eq. 5 for the aquifer domain using the definition of Eq. 7 

results in, 

0 = −𝑢 [
𝜕Λ

𝜕𝑟
+

𝜕𝑐𝑠

𝜕𝑟
] − Ω(𝑟, 𝑡).                                                                                                                 (13) 345 

Assuming instantaneous reaction and that quasi-equilibrium prevails, Λ ≈ 0, so that Eq. 13 

becomes, 

Ω = 𝑢
𝜕𝑐𝑠(𝑇)

𝜕𝑟
.                                                                                                                                             (14) 

The where the parameter β = ∂cs/∂T. In Eq. 8, a linear relation between cs and T is assumed, with 

a constant proportionality factor β, which is positive for minerals of prograde solubility and 350 

negative for minerals of retrograde solubility (Corson and Pritchard, 2017; Woods, 2015).  

In Eq. 5, the derivative ∂cs/∂r can be obtained by differentiating the relationship given in Eq. 8, 

viz. ∂cs/∂r = β∂Tof the solubility can be expanded to ∂cs/∂r, = (∂cs/∂T)(∂T/∂r) and by further 

substituting the definition β = ∂cs/∂T, it can be expressed as, 
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Ω(𝑟, 𝑡) = −𝑢𝛽
𝜕𝑇

𝜕𝑟
.                                                                                                                                       (9) 355 

The temperature gradient ∂T/∂r is calculated by substituting the Lauwerier solution (Eq. 116) and 

differentiating, which yieldsperforming differentiation, yielding: 

𝛽𝜕𝑇

𝜕𝑟
= −4∆𝑇

𝛽𝜁𝑟

√𝜋
𝑒(−𝜁2𝑟4)Ω(𝑟, 𝑡)

= 4𝑢𝛽∆𝑇
𝜁𝑟

√𝜋
𝑒(−𝜁2𝑟4).                                                                                                                      (15)(10) 

The which provides the solution for the reaction rate is thus given. The evolution of porosity, θ, 360 

is described by: 

Ω(𝑟, 𝑡) = −𝑢4∆𝑇
𝛽𝜁𝑟

√𝜋
𝑒(−𝜁2𝑟4).                                                                                                               (16) 

𝜕𝜃

𝜕𝑡
= −

Ω(𝑟, 𝑡)

𝜈𝑐sol
,                                                                                                                                          (11) 

where csol is the concentration of soluble solid mineral and ν accounts for the stoichiometry of the 

reaction. Substituting the solution for the reaction rate, Ω (Eq. 1610), into Eq. 911 and integrating 365 

over time yields the solution for the porosity change: 

𝜃(𝑟, 𝑡)

= 𝜃0

− 4𝑢∆𝑇
𝛽𝜁2𝑟3𝑡

𝜐𝑐𝑠𝑜𝑙√𝜋

𝛽𝜁2𝑟3𝑡

𝜐𝑐sol√𝜋
Γ (−

1

2
, 𝜁2𝑟4),                                                                                     (1712) 

where Γ is the incomplete gamma function.  370 

3.1.2. Planar Flow 

For the Cartesian case, with injection occurring along a lineplane, the Lauwerier solution is: 

𝑇(𝑥, 𝑡)

= 𝑇0 + ∆𝑇erfc[𝜔(𝑥, 𝑡)𝑥],                                                                                                           (1813) 
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where ω is defined as: 375 

𝜔(𝑥, 𝑡)

=
√𝐾b𝐶pb

𝐻𝐶pf
𝑢√𝑡′

,                                                                                                                                 (1914) 

and t’ = t – tLg, where tLg = xCpb/(Cpfu). Similarly to the radial case, the solution applies atit is 

assumed here that a sufficiently long times, where time has passed such that the condition t’ ≈ t.  

applies. 380 

Following steps analogous to those in the radial case, the solutions are derived as:  

Ω(𝑥, 𝑡) = −

= 2𝑢∆𝑇
𝛽𝜔

√𝜋
𝑒(−𝜔2𝑥2),                                                                                                              (20   (15) 

and 

𝜃(𝑥, 𝑡)385 

= 𝜃0

− 2𝑢∆𝑇
𝛽𝜔2𝑥𝑡

𝜐𝑐𝑠𝑜𝑙√𝜋

𝛽𝜔2𝑥𝑡

𝜐𝑐sol√𝜋
Γ (−

1

2
, 𝜔2𝑥2).                                                                                    (2116) 

3.2. Applicability of the Equilibrium Approximation 

3.2.1.3.2.  Comparison to the Reference Solution Solutions (High-Da) 

In this section, the results of the equilibrium model solution for porosity solutions are compared 390 

with the more general solutions to the RLP model, which will henceforth be referred to as the 

'reference solutions.' These reference solutions account for far-from-equilibrium conditions and 

assume surface-controlled reactions and first-order kinetics. The case study considered in the 

comparison involves a typicalcommon scenario: dissolution of a fractured carbonate aquifer due 

to the injection of CO2-rich hot water and cooling-driven calcite dissolution. First, the results 395 

presented by Roded et al. (2024b) for the reference solutions are briefly summarized to facilitate 

the comparison with the equilibrium solutionsolutions. The reference solutions, along with the 

case study considered here, are detailed in Roded et al. (2024b). The reference solution equations 
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are further provided in Appendix B, and the parameter values used are provided in Appendix C.The 

reference solution equations are also provided in Appendix B, and the parameter values used are 400 

listed in Appendix D. These values are identical to those in Roded et al. (2024b), including the 

radial case flow rate (Q = 500 m³ day⁻¹). 

In Fig. 2, the results of CO2-CO₂-rich hot water injection are shown at successive times since the 

beginningstart of the injection are shown . These represent both engineering-relevant conditions (t 

= 0.2,25 yr) and longer geological timescales (t = 10 kyr and 100 kyr).), associated with natural 405 

processes such as focused deep-origin flow discharging into a shallower aquifer (Craw, 2000; 

Roded et al., 2023; Tripp and Vearncombe, 2004). The Lauwerier solution and reference solutions 

are shown by continuous lines (Eqs. 116 and B.1-3B2-B3), while the equilibrium solution for the 

porosity evolution is indicated by circle markers in Fig. 2c (Eq. 12).  

 410 

Figure 2. Reference solutions for a case study of carbonate aquifer dissolution by cooling hot 

water, presented for comparison with the equilibrium solution in a radial flow setting. Panels (a)–

(c) show temperature (T), solute disequilibrium (Λ), and porosity (θ) plotted as functions of radial 

position (r) at different times. The continuous lines represent the Lauwerier solution and the 
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reference solutions (Eqs. 17). 6 and B2–B3), while the circles in panel (c) denote the equilibrium 415 

solution (Eq. 12). Magnified panels show solute disequilibrium (Λ) and porosity (θ) near the inlet 

region. Λ is scaled by the total solubility variation in the system, Δcₛ. The equilibrium solution 

closely matches the reference solution except near the inlet (see magnified panel and text). Quasi-

equilibrium conditions are further supported by the small magnitude of Λ. 

During the radial flow within the aquifer, the hot fluid cools by transferring heat into the confining 420 

layers, which heat up with time, resulting in the gradual advancement of the thermal front 

downstream (Fig. 2a). The cooling induces solute disequilibrium (Λ) associated with 

undersaturation (note that Λ is negative for undersaturation and positive for supersaturation, see 

Eq. 73). The magnitude of |Λ| in the aquifer is small compared to the absolute solubility change in 

the system, ∆|Λ|/∆cs ≪ 1% (∆cs = |cs(Tin) – cs(T0)|, i.e., between cs(Tin) at the injection point to 425 

cs(T0) at ambient conditions (|Λ|/∆cs << 1%,)|; see Fig. 2b). The small magnitude of disequilibrium 

is associated with relatively high PCO2CO2 partial pressure considered (0.03 MPa) and rapid 

kinetics under these conditions. 

Despite its small magnitude, the disequilibrium, Λ, governs the alteration of the aquifer and the 

evolution of its porosity. Notably, since the water at the inlet is hot and saturated with calcite, c = 430 

cs(Tin), disequilibrium and the reaction rate are zero at the inlet, resulting in no change in porosity 

(see Fig. 2b and 3cc, along with their magnified views). Disequilibrium (undersaturation) abruptly 

develops downstream of the injection well, initially forming a small minimum (at r ≈ 20 m) before 

gradually diminishing to zero further downstream.  

In accordance with the disequilibrium, the porosity profile sharply increases near the inlet and then 435 

gradually decreases downstream (Fig. 2c). Undersaturation and dissolution along the flow path are 

governed by the interplay of three processes: (I) dissolution, which reduces undersaturation 

(bringing Λ closer to zero), (II) progressive cooling, which enhances undersaturation, and (III) 

advection, which transports reaction products (calcium ions) radially outward from the well, 

sustaining undersaturation. Here, fluid velocity and advection decay with a distance, following a 440 

1/r relationship. Particularly, the thermal changes are also reflected in the time evolution. At an 

early time (t = 25 yr), disequilibrium and its gradients are relatively high. As the thermal front 

advances and thermal gradients decrease, the disequilibrium curves flatten. 
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The Figure 2. Comparison between the reference solutions and the equilibrium solution for the 445 

case study of carbonate aquifer dissolution by cooling hot water. Temperature (T) solute 

disequilibrium (Λ) and porosity (θ) in the aquifer are plotted as functions of radial position (r) at 

different times. matches the reference The continuous lines represent the Lauwerier solution and 

the reference solutions (Eqs. 11 and B.1-3 from Appendix B), while the circles in panel (c) denote 

the equilibrium solution (Eq. 17). (a) The hot flow cools as it flows, the confining rocks heat up, 450 

and the thermal front advances downstream. (b) Cooling induces undersaturation (negative 

disequilibrium, Λ, see Eq. 7). Λ is scaled by the total solubility variation in the system, ∆cs, (refer 

to the text for the definition of ∆cs). At the inlet, the water is hot and saturated, with c = cs(Tin). 

Undersaturation sharply forms near the inlet (r ≈ 20 m, as shown in the magnified panel of the 

region near the inlet) and gradually decreases along the flow path due to dissolution reactions, with 455 

Λ approaching zero. As the thermal front advances downstream and the thermal gradients become 

milder, the Λ curves also flatten. (c) In accordance with the Λ profile, a porosity profile evolves 

over time. The equilibrium solution closely agrees with the reference solution, except adjacent to 

the inlet (see magnified panel and text). Quasi-equilibrium conditions are also evident from the 

small magnitude of Λ, which results from the relatively rapid kinetics (high Da). 460 

The equilibrium model solution matches closely the reference solution and is violated only closely 

near the inlet (r < 20 m; Fig. 2c). The agreement between the solutions and the existence of quasi-

equilibrium conditions is supported by the small magnitude of the disequilibrium in the reference 

solution. This is because the equilibrium model assumes Λ = 0 (cf. Eqs. (Λ) in the reference 
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solution. While the 4 and 5); therefore, a small Λ confirms the validity of this approximation. 465 

Consequently, solute disequilibrium provides an effective metric for quantifying the spatial and 

temporal extent to which the equilibrium assumption holds. This will be used next to further assess 

the applicability of the equilibrium-approximated solutions (Section 3.3). 

With respect to the discrepancy near the inlet between the solutions, the injection of hot, saturated 

water does not resultresults in no porosity changes atchange in the inletreference solution. In 470 

contrast, the equilibrium model, which approximatesassumes the reaction rate baseddepends on 

advective and cooling rates (Eq. 14),the temperature gradient alone, does not capture this effect. 

AlthoughParticularly, the solute transport boundary condition of inlet saturation (Λ = 0) is not 

incorporated into the equilibrium-approximated solutions, leading to this discrepancy (referred to 

hereafter as the ‘inlet advective discrepancy’). 475 

Under the conditions here, the deviation between the solutions is limited to a smallnarrow region, 

it may still be significant near the inlet. However, in the case of dissolution, assome cases, locally 

lowreduced porosity and permeability values can impactstill influence the overall estimation of 

aquifer permeability (Roded et al., 2024b). In particular, overestimation of porosity and 

permeability While the deviation in these cases can be accounted for by assuming no reaction at 480 

the inlet, as will be shown in Section 3.3, this cannot capture advective effects that may become 

significant near the inlet can lead to an overestimation of the aquifer effective permeability. 

However, in other cases, this deviation may be negligible. Furthermore, under low Da conditions. 

It is also noted that in most practical scenarios, the injected fluid is expected to cool slightly as it 

flows down during its descent in the well, and may therefore, it may already be reactive upon 485 

entering the aquifer.  
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Figure 3. Reference solutions for a case study of carbonate aquifer dissolution by cooling hot 

water, presented for comparison with the equilibrium solution in a planar flow setting. Panels (a)–

(c) show temperature (T), solute disequilibrium (Λ), and porosity (θ) as functions of position (x) 490 

at different times. The continuous lines represent the thermal Lauwerier solution and the reference 

solutions (Eqs. 13 and B5–B6), while the circles in panel (c) denote the equilibrium solution (Eq. 

16). Λ is scaled by the total solubility variation in the system, Δcₛ. Similar to the radial case, the 

equilibrium solution closely matches the reference solution except near the inlet. This is also 

supported by the small magnitude of Λ. 495 

For completeness, Fig. 3 presents results for the same case study shown in Fig. 2 under a planar 

flow setting, with a fluid velocity of u = 10-6 m s-1. Similar to the radial case, the equilibrium 

solution closely matches the reference solution, with deviation occurring only near the inlet 

(magnification not shown). A key difference from the radial case is that the aquifer is heated over 

significantly greater distances. This results from the uniform flow velocity and more efficient heat 500 

retention in the planar configuration. In contrast, radial flow involves velocity decay with distance, 

which increases residence time and enhances conductive heat loss to the surrounding rock.  

Additionally, in the radial case, the heat source (e.g., an injection well) acts as a source from which 

hot fluid spreads outward radially. In contrast, the planar configuration can be conceptualized as 

injection from a distributed source (e.g., a row of wells) generating a uniform planar front. More 505 

precisely, under the perfect thermal mixing assumption, the radial case is treated mathematically 

as a point source, while the planar case is treated as a line source. Hence, in the radial case, heat 

conduction is multidirectional, whereas in the planar case, heat is conducted only in vertical 

directions. These differences influence the temperature profile shape. In the radial case, effective 

heating near the injection well and later quick decay lead to a sigmoidal (or diffusive front-like) 510 
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profile, whereas in the linear case there is a decaying profile (cf. Figs. It is noted that 2 and 3). 

These differences are further quantified in Section 3.4. 

With respect to the results in Figs. 2 and 3, recall that the solutions in Section 3.1 and the results 

shown in Fig. 2 rely on the fundamental assumption of spatial uniformity and symmetry in the 

reactive flow. However, in practical scenarios, dissolution channels (wormholes) may develop at 515 

the reaction front (Chadam et al., 1986; Furui et al., 2022; Roded et al., 2021). These wormholes 

localize reactive flow, creating heterogeneous flow fields that deviate from the assumed symmetry 

and uniformity. Consequently, the results in FigFigs. 2 and 3 represent only an average solution 

and do not capture local flow variations accurately.  

AdditionallyFurthermore, the model was equilibrium solutions were also found to applybe 520 

applicable to the injection of hot, silica-rich water into a sandstone aquifer, where cooling leads 

toinduces supersaturation, silica precipitation, and porosity reduction, as discussed in Roded et al. 

(2024b)Roded et al. (2024b) (not presented). In summary, the results in this section validate the 

equilibrium solutions against the reference solutions. and highlight the inlet advective discrepancy, 

examined next (Section 3.3). These results also demonstrate their overallbroader applicability 525 

across a broad range of characteristic conditions in natural and applied systems, as further 

discussedelaborated in the Discussion section.  

3.2.2. System Shift Over Time 

This section analyzes the system state change over time and its evolution toward quasi-

equilibrium, as reflected by the differences in predicted reaction rates between the solutions, as 530 

functions of time. Conditions of precipitation (β > 0) are considered with a kinetic rate coefficient 

nearly four orders of magnitude lower (λ = 5 ·10⁻10 m/s), while keeping the rest of the parameters 

the same as in Section 3.2.1. This scenario corresponds, for example, to calcite precipitation under 

neutral conditions (Plummer et al., 1978).  

3.3. Figure 3aApplicability of the RLP Equilibrium Solutions   535 

This section further examines the applicability of equilibrium-approximated solutions, focusing 

on the inlet advective discrepancy. This is done by considering lower Da, conditions farther from 

equilibrium, and changes in the system state over time. Accordingly, a scenario of relatively slow 
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precipitation (β > 0) is considered, using a kinetic rate coefficient nearly four orders of magnitude 

lower (λ = 5·10⁻¹⁰ m/s), while all other conditions remain consistent with Section 3.2. This setup 540 

is representative, for example, of carbonate mineral precipitation from water of alkaline 

composition originating in carbonate or mafic rock aquifers (e.g., basaltic formations). Upon 

reinjection and subsequent heating, the solubility of carbonate phases decreases, promoting CO₂ 

mineralization through precipitation reactions (Etiope, 2015; Plummer et al., 1978; Steefel and 

Lichtner, 1998).  545 

  

Figure 4. Comparison of the reference and equilibrium solutions over time under low Da 

conditions. (a) Reaction rate, Ω, as a function of radial position (r) at different times. The 

continuous lines represent the reference solution (Eq. B3), and the circles represent the equilibrium 

solution (Eq. 10), denoted as 'Ref' and 'Equ' in the legend, respectively. (b) The deviation between 550 

the solutions, shown using the local error, Err, is visualized as a shaded region. Err is calculated 

as the radial integral of the difference between the solutions (see text for details). Ω and Err are 

normalized by their maximum values at t = 0.2 kyr, where Ωmax refers to the reference solution. 

Figure 4a presents the results for the reaction rate, Ω, for the reference solution (solid lines,; Eq. 

B3 Eqs. B.1 and 3) and the equilibrium solution (dashed lines with circle markers,; Eq. 1610). The 555 
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lower reaction ratesslower kinetics and reduced Damköhler number, Da, result in a significantly 

larger disequilibrium magnitude, Λ, and greater deviation compared to the case presented in Fig. 

2. Additionallyshown in Figs. 2c and 3c. Note that the results in Figs. 2c and 3c, rather, present 

the porosity evolution, which reflects the time-integrated behavior of Ω (see Eq. 11).  

Significantly, the peak magnitude of disequilibriumof the reaction rate curve in Fig. 4a is 560 

attainedreached further downstream. , rather than occurring immediately near the inlet as observed 

in Figs. 2 and 3. This shift reflects a much more dominant advective effect but still preserves the 

same general behavior: advection of saturated fluid from the inlet and the progressive buildup of 

disequilibrium and elevated Ω occur downstream of the injection well. However, in this case, the 

effect extends over a much greater distance. 565 

Notably,Another prominent effect visible in Fig. 3a,4a is the reduction in deviation between the 

solutions decreases asover time progresses. This trend is also illustratedquantified in Fig. 3b4b, 

which shows the weighted local error, Err, calculated asfrom the difference between the two 

solutions integrated in the radial direction, Err = (ΩRef - ΩEqu)2πrdr2πr, where the subscripts Ref 

and Equ denote the reference and equilibrium solutions, respectively. Fig. 3b presents only the 570 

positive values of  

The Err as the coloredshaded regions (the magnitude of the negative values being equal due to 

solute conservation in the solutions). 

The Err curves show a progressive decrease and flattening over time. This reduction in Err and 

the closer approach to quasi-equilibrium are attributed to the thermal front advancing downstream. 575 

advancement of the thermal front. As the thermal front advances and extends, the temperature 

gradients near the inlet become milder, leading. This leads to a decrease in the reaction rate in this 

region. The temperature gradients also reach further downstream to regions with lower flow 

velocity, and higher local Da, causing the deviation between the solutions to diminish. This is 

illustrated bythe inlet advective discrepancy of the black curve, which shows equilibrium model 580 

becomes less pronounced (the trend of 1/Da withSupplementary Material presents results for the 

radial distance fromplanar case, which exhibits the inlet.same effects). 
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Figure 3. Shift in system state over time and the evolution of distance to equilibrium at low Da 585 

conditions. (a) Reaction rate, Ω, for the equilibrium solution (Eq. 16) and the reference solution 

(Eq. B.3) as functions of radial position (r) at different times. 'Equ' and 'Ref' in the legend denote 

the equilibrium and reference solutions, respectively. Notably, the deviation between the solutions 

decreases as time progresses. (b) This is also illustrated by the plots of the error, Err, shown as 

colored region. Err is calculated as the radial integral of the difference between the solutions in (a) 590 

(refer to text). The Err progressively decreases and flattens over time, reflecting the system 

approach to quasi-equilibrium as the thermal front advances downstream. As the front stretches, 

temperature gradients near the inlet become milder and extend into areas with lower flow velocity 

and higher local Da. The trend of 1/Da with radial distance from the inlet is shown by the black 

curve.  595 

3.3. Equilibrium Criterion Derivation  

As noted in the Introduction, the applicability of the equilibrium model is determinedgoverned by 

the Damköhler number, Da, with quasi-equilibrium conditions prevailingexpected when Da > 1 

(Eq. 1 (Eq. 1). In this section, the factors promoting quasi-equilibrium in the specific settings of 
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the RLP are analyzed, with particular focus on the influence of thermal parameters and time. This 600 

analysis enables, the deviation associated with the equilibrium solutions, which primarily arises 

from the local inlet effect, evolves over time and is influenced by thermal dynamics. This 

observation motivated the derivation of the functional relationship between key parameters, 

variables, and the system equilibrium state. Aa more specific applicability criterion, presented in 

Appendix C. This analysis is based on a key feature of quasi-equilibrium isbehavior: the close 605 

alignment of the thermal and reactive fronts in the aquifer (see , which occurs when Da is high (cf. 

Fig. 2a and b). This featurebehavior is leveraged to establish a criterion for when these fronts 

coincide, and equilibrium conditions can be assumed. It is important to note that even when the 

fronts coincide, far-from- and equilibrium conditions may still persist upstream. Nonetheless, the 

derived functional relationships offer useful guidance. 610 

First, the thermal front end location, rF, is defined as the position where the temperature deviates 

slightly from the ambient value, ε = (T(rF)-T0)/ΔT, where ε << 1. Substituting this definition into 

Eq. 11 leads to 

𝜀 = erfc(𝑎),     where     𝑎 = 𝜁(𝑡)𝑟F
2.                                                                                                   (22) 

For example, for ε = 0.01 a ≈ 1.8.be assumed. This functional relation, which applies to both planar 615 

and radial settings, is given by: 

 Then, rF can be expressed as, 

𝑟F = √
𝑎

𝜁(𝑡)
.                                                                                                                                                 (23) 

Next, an approximate form of the reference solution for disequilibrium is used, assuming quasi-

equilibrium and the coalescence of the thermal and reactive fronts (Eq. B.3 in Appendix B; Roded 620 

et al., 2024b). In this solution, by substituting the front-end location, rF, and the condition ε ≥  

Λ/Δcs, we obtain: 

ε ≥
∆𝑇

∆𝑐s
 

𝛽

√𝜋
𝑒(−𝜂𝑟2) (

e(𝜂𝑟𝐹
2−𝜁2𝑟𝐹

4
)

𝜂
2𝜁

− 𝜁𝑟𝐹
2

−
2𝜁

𝜂
).                                                                                            (24) 
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Substituting the definition from Eq. 23, neglecting early times, and assuming high Da and η >> ζ, 

Eq. 24 finally becomes: 625 

ε ≥
∆𝑇

∆𝑐𝑠
 

𝛽

√𝜋

2𝜁

𝜂
.                                                                                                                                           (25) 

Noting that β = Δcs/ΔT and explicitly substituting the parameters using Eq. 12 and η = HπAsλ/Q, 

Eq. 25 becomes,  

1

≫
2

√𝜋𝑡
(

1

𝐴s𝜆
) (

√𝐾b𝐶pb

𝐻𝐶pf

).                                                                                                                    (2617) 630 

Equation 26 defines the conditions under which the thermal and reactive fronts coincide and 

provides a functional relationship to the state of equilibrium. As shown in the previous section and 

in Fig. 3, the criterion demonstratesIn accordance with the results in Fig. 4, the criterion shows 

that the system approaches equilibrium as time progresses (with a proportionality of t-1/2). The 

second term in the brackets represents the characteristic reaction timescale of the reaction, tR = 635 

1/Asλ, which, in accordanceagreement with the high Da condition, indicatingindicates that whena 

smaller tR is small, the system approachesleads to faster approach to equilibrium more rapidly.. 

The final term in the brackets representscaptures the ratio betweenof thermal parameters, showing 

that when. When the confining rock parameters of heat rock’s thermal conductivity (Kb) and heat 

capacity (Cpb) are smalllow, the thermal front advances downstream more quicklyrapidly, 640 

promoting equilibrium. Conversely, when the Similarly, a large product of aquifer thickness and 

fluid heat capacity (HCpf is large, the) also facilitates faster thermal front also advances quickly 

downstream, facilitatingadvancement and equilibrium.  

Notably, the volumetric flow rate (Q)fluid velocity does not appear in the criterion of Eq. 26, as17. 

This is attributed to the fact that solute advection enhances disequilibrium (in accordance with the 645 

Da criterion), while thermal advection promotes equilibrium by extending and stretching the 

thermal front. By introducing the fluid velocity, u, and the characteristic length scale, l, into the 

expression, the criterion in Eq. 17 can be reformulated in terms of two functions: 

This criterion of Eq. 26 can be further rewritten in terms of two functions, 
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1 ≫ 𝑓(𝑟F)𝑔(𝑡, 𝑟F),                                                                                                                                      (27) 650 

1 ≫ 𝑓−1𝑔(𝑡),                                                                                                                                              (18) 

where 

 𝑓(𝑟F) =
𝑙𝑢(𝑟F)

𝐴s𝜆
=

𝑙𝐴s𝜆

𝑢
     and     𝑔(𝑡, 𝑟F) =

2

√𝜋𝑡

√𝐾b𝐶pb

𝑙𝑢(𝑟F)𝐻𝐶pf

(𝑡)

=
2

√𝜋𝑡

𝑙√𝐾b𝐶pb

𝑢𝐻𝐶pf

.                                                                      (28)                      (19) 

The first function, f(rF) can be referred to as a dynamic Da number that changes with the position 655 

of rF and describes the relative effect of reaction versus advective transport versus reaction.. The 

second function g(t,rF)), accounts for the evolution and advancement of the thermal front withover 

time.  

 

The functional criterion in Eqs. 17 and 18, in accordance with the results in Fig. 4, demonstrates 660 

that the equilibrium solutions are not applicable as t → 0 and become less accurate at initial stages. 

However, as demonstrated in Fig. 2, the equilibrium-approximated solutions may remain fully 

valid even at relatively early times. This behavior is observed under common conditions involving 

fractures carbonate aquifers and silica precipitation, where the validity extends to timescales 

relevant to engineering applications (e.g., t < 25 yr).  665 

It is recalled here that several inherent assumptions in the Lauwerier solution reduce its accuracy 

during initial stages (see Appendix A). Moreover, the assumption taken here of negligible thermal 

retardation time (tLg) and the approximation t′ ≈ t employed in the Lauwerier solution affect the 

accuracy at early times (see Eqs. 6 and 13). This assumption, which is particularly relevant for the 

radial case, leads to reduced accuracy at early times (e.g., t < 10 years; see Appendix C in Roded 670 

et al. (2024b)). 

3.4. Development of Coalesced Fronts  
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Equation 23, along with one that applies to the planar case, can be used to infer the coalesced 

thermal and reactive front extensions, xF and rF, under quasi-equilibrium conditions. These 

provide: 675 

𝑥F(𝑡) =As mentioned in the previous section, a key feature of quasi-equilibrium behavior is the 

close alignment of the thermal and reactive fronts in the aquifer, which occurs when the Da is high 

and reactions dominate over transport. Under these conditions, any disequilibrium induced by 

thermal changes diminishes rapidly and essentially does not extend downstream of the thermal 

front, resulting in the coalescence of the fronts. This property is leveraged to infer in a simple 680 

manner the spatial distribution and temporal advancement of the coalesced fronts using the thermal 

Lauwerier solutions. 

First, we define the thermal fronts’ outer-end positions, ξF(t), as the furthest distances of thermal 

perturbation due to the injection at a given time. The thermal perturbation is quantified by ε = 

(T(ξF)-T0)/ΔT, where ε is a prescribed small value (ε ≪ 1); here, ε = 0.01. This threshold uniquely 685 

determines the position ξF(t) at which the temperature perturbation is considered negligible. 

Next, rearranging and substituting the definition of ε corresponding to the conditions at the fronts’ 

outer-end positions into the Lauwerier solutions (Eqs. 6 and 13) yields: 

𝜀 = erfc(𝑎),     where     𝑎 = {
𝜁(𝑡)𝑟F

2,   for   𝜉 = 𝑟

𝜔(𝑡)𝑥F,   for   𝜉 = 𝑥
.                                                                          (20) 

Here, a is a constant determined by ε, and for ε = 0.01, a ≈ 1.8. Then, the fronts’ outer-end positions 690 

can be expressed as: 

𝑟F(𝑡) = √
𝑎

𝜁(𝑡)
,     and     𝑥F(𝑡) =

𝑎

𝜔(𝑡)
.                                                                                               (21) 

Finally, substituting the definitions of ζ and ω (Eqs. 7 and 14) into Eq. 21 gives explicit expressions 

for the advancement of the coalesced fronts under quasi-equilibrium conditions: 
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𝑎𝐻𝐶pf
𝑢

√𝐾b𝐶pb

𝑡
1
2,     and     𝑟F(𝑡) = √

𝑎𝑄𝐶pf

𝜋√𝐾b𝐶pb

𝑡
1
4,     and     𝑥F(𝑡)695 

=
𝑎𝐻𝐶pf

𝑢

√𝐾b𝐶pb

𝑡
1
2.                                                                       (29).                                                                       (22) 

 

These relations provide a simple way to estimate the spatial positions of the coalesced fronts as a 

function of time using the thermal solutions alone. 

To demonstrate the fronts’ advancement, Eqs. 22 are used to plot xF and rF for three different 700 

velocities (u) and flow rates (Q), presented in Fig. 5a and b. This illustrates the decay of the 

advancement rate over time in both cases: the hot fluid heats the confining rocks as it flows, and 

the thermal fronts gradually advance downstream. However, due to continuous heat transfer to the 

confining layers along the flow path, the advancement rate decreases over time and distance.  

The key difference between the radial and planar cases, as noted in Section 3.2, is clearly reflected 705 

in Eqs. 22 and the results shown in Fig. 5a and b. The planar case exhibits significantly greater 

heat retention and a higher advancement rate. This is demonstrated by the green dashed lines in 

Fig. 5a and b, which indicate that half of the final calculated extent, 1/2xFinal, is reached in one 

quarter of the final time, while in the radial case, 1/2rFinal is approached after one sixteenth of the 

time. Alternatively, this can be shown by differentiating Eqs. 22 with respect to time, yielding 710 

∂rF/∂t ∝ t-3/4 in the radial case, compared to ∂xF/∂t ∝ t-1/2 in the planar case. 

Another case considered here, shown in Fig. 5c and d, is the low-flow-rate limit in radial geometry, 

where conduction dominates and effectively distributes heat. This is illustrated using two different 
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approaches: (I) the analytical conduction-only solution, representing the limit Q → 0 (black lines), 

and (II) numerical results for low flow rates (Q = 1 and 5 m³/day, red and orange curves). 715 

 

Figure 4. Elongation5. Advancement of the coalesced thermal and reactive fronts over time, xF(t) 

and rF, over time(t), for different velocities,  (u,) and flow rates,  (Q,), respectively. Panels (a, )–

(b), and the low-) show results for high flow-rate limit assuming conduction only rates, while 

panels (c). (a, b) The fronts elongation over time is proportional to t1/2 and t1)–(d) illustrate the 720 

low-flow-rate limit. (a)–(b) xF and rF are calculated using Eqs. 22. Green dashed lines illustrate the 

difference between the radial and planar cases: half of the final extents (1/2xFinal and 1/2rFinal) are 

reached at 1/4 and 1/16 of the final time, respectively, (Eq. 29), and hence the rate of elongation 

decreases substantially faster for the radial case and at lower flow rates. To illustrate this, half of 

the final calculated extension, 1/2XF is marked and shown to be reached in 1/4 of the time, while 725 

in the radial case, 1/2RF is approached after 1/16 of the time (see dashed lines).. (c) The low-flow-

rate limit is shown using the )–(d) The low-flow-rate limit refers to the radial case where 

conduction effectively distributes heat. This is analyzed using solution for conduction-only, 

representing the limit Q → 0 (analytical, black lines), and results for low flow rates of Q = 1 and 
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5 m³/day (numerical, red and orange, respectively). Panel (c) shows rF for these cases, while (d) 730 

displays the temperature profiles as a function of radial position, r. The black line in (d) represents 

the conduction-only quasi-steady-state profile, and the colored dashed and continues lines indicate 

early and later times, respectively, for each flow rate. The close alignment of the lines demonstrates 

that the thermal field is essentially stationary already at early times. For further details on the 

calculations, refer to the text. 735 

The analytical solution for conduction fromdescribes a point sourcesphere at constant temperature 

in an infinite space. The inner inset and the orange curve display the temperature profile, medium, 

modeling heat conducted from the sphere into the surrounding medium. This time-dependent 

solution converges to a quasi-steady-state temperature profile that remains essentially unchanged 

over time (Stauffer et al., 2014; see details in the SM). The numerical simulations for low flow 740 

rates use equations and settings identical to those of the Lauwerier solution but with the dashed 

line showing that an important distinction: they do not assume negligible radial conduction. This 

simplification makes the Lauwerier solution inadequate under conditions of low flow rates and 

sharp lateral geothermal gradients (see Appendix A). Further details of the numerical calculations 

are given in Roded et al. (2023).   745 

Figure 5c shows rF for the conduction-only case and for Q = 1 and 5 m³/day (other parameter values 

are consistent with Appendix D). Unlike the high-flow-rate planar and radial cases in Fig. 5a and 

b, rF and the advancement rate essentially level off under these conditions. In particular, rF 

increases with Q but also levels off over time, showing similar behavior to the conduction-only 

case. This is more clearly shown in Fig. 5d that shows temperature profiles for these cases as a 750 

function of radial position, r. It includes the analytical quasi-steady-state temperature profile 

(conduction-only case) and numerical profiles at low flow rates shown for two consecutive times, 

with dashed and continues lines indicating early and later times, respectively. The close alignment 

of the dashed (early time) and continues (later time) lines, and their almost overlap, demonstrate 

that the temperature profiles change very little after early times. The profiles become nearly 755 

stationary over tens to hundreds of years, which is a very brief geological timescale. 

The results show effective heat distribution by conduction, with nearly complete cooling 

occursoccurring within 10 m. In this case, the front becomes quasi-stationary on a timescale of 

tens of years. This scenario–100 m, depending on the flow rate. Overall, both the analytical 

solution for the limit Q → 0 and the numerical solutions at low flow rates demonstrate similar heat 760 
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transport behavior under these conditions. This scenario of low flow rates is particularly relevant 

underto natural conditions, demonstrating that thewhich often involve low flow rates and can 

manifest on the surface as low-flow-rate thermal springs (Garven, 1995; Klimchouk et al., 2017; 

Roded et al., 2013). 

These findings have important implications, suggesting that thermally driven reactive front 765 

mayfronts can also become essentiallynearly stationary (see , as will be further discussed in the 

Discussion section). Parameter values used are as in Section 3.2.1. Lastly, it is important to note 

that the solutions assume an infinite caprock thickness. However, if the thermal front reaches the 

surface, greater heat exchange between the aquifer and Appendix C, and flowthe caprock is 

expected, which would reduce the thermal front’s advancement rate and velocity values are 770 

indicated in the figure.extent.   

For demonstration, panels a-b of Fig. 4 show xF and rF plotted for three different velocities, u, and 

flow rates, Q. This illustrates the advancement rate of the front decays substantially faster for the 

radial case (the decay and the derivative of rF is proportional to t-3/4, compared to the planar case, 

where it follows t-1/2). Additionally, in Fig. 4c is shown rF for conduction only from a point source 775 

in an infinite space, demonstrating the low-flow-rate limit. The inset presents a quasi-steady-state 

solution of the temperature profile (Stauffer et al., 2014). This scenario is particularly relevant to 

natural conditions which are often associated with low flow rates (Garven, 1995; Klimchouk et 

al., 2017).  

In this case, the front can becomes quasi-stationary on a timescale of tens of years (Roded et al., 780 

2023) and the reactive front can become nearly stationary, as will be further discussed in the 

Discussion section below. Lastly, it is recalled that while the solutions assume an infinite caprock 

thickness, if the thermal front reaches the surface, a greater heat exchange between the aquifer and 

the caprock is expected, which would reduce the thermal front advancement rate and extension.   

4. Discussion 785 

Case Studies and Applicability of the  

4. Discussion and Outlook 

4.1. Equilibrium Model Applicability to Hydrothermal Systems  
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Figure 5Figure 6 presents aan illustrative phase diagram distinguishing between conditions where 

the THC equilibrium model (Eq. 5) is applicable and those far from equilibrium. The diagram is 790 

based on the Damköhler number (Da , which represents the ratio between the characteristic 

timescales of transport and reaction, Da = tA/tR = lλAs/u) and Eq. 1, with the. The diagonal line 

marking the transition at Da > 1 (Dacr). Hotter) and hotter colors denote higher Da values and 

conditions closer to equilibrium. As reactivity (1/tR) increases, the equilibrium model becomes 

applicable over a wider range of flow velocities, u, or smaller characteristic length scales, l, 795 

represented as 1/tA = u/l.  Here, l represents the local characteristic length scale of thermal and 

solubility variations (see Appendix A).and accounts for the thermal field effect on reactive 

transport. Equation 1 assumes first-order kinetics and presents Da = lλAs/u, which is useful for 

quantifying different fluid–rock interactions that can be approximated as following first-order 

kinetics.  800 

The diagram also positions key fluid-rock interaction processes according to their characteristic 

reactivity.  

Figure 6. A schematic diagram illustrating the applicability of the THC equilibrium model and the 

positioning of several notable fluid–rock interaction processes according to their typical reactivity. 

The diagram is plotted based on the characteristic timescales of reaction and transport that define 805 

Da, and shows 1/tR versus 1/tA (Da = tA/tR). The equilibrium model can be assumed when Da > 

Dacr, with Dacr defined as a threshold where Dacr > 1. Dacr is represented by the diagonal black 

line on the diagram, with hot colors indicating high Da values and proximity to equilibrium.  

Several notable fluid–rock interaction processes are shown on the diagram, positioned according 

to their characteristic reactivity. At the top are common carbonates, i.e., limestone and dolomite, 810 

which typically exhibit high reaction rates and are highly prone to alteration (with values of λ 
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typically ranging from 10⁻⁸ to 10⁻⁴ m/s under engineering applications; Dreybrodt et al., 2005; 

Peng et al., 2015; Plummer et al., 1978).  

Silica precipitation is also prevalent in hydrothermal settings (e.g., quartz vein formation and 

mineral scaling; Glassley, 2014; Huenges and Ledru, 2011; Oliver and Bons, 2001) At the top are 815 

common carbonates, i.e., limestone and dolomite, which typically exhibit high reaction rates and 

are highly prone to alteration (with λ typically ranging from 10-8 to 10-4 m/s; Dreybrodt et al., 2005; 

Peng et al., 2015; Plummer et al., 1978). Silica precipitation is also prevalent in hydrothermal 

settings (Glassley, 2014; Huenges and Ledru, 2011; Sibson et al., 1975) and is characterized by 

relatively high reactivity, with a typical rate constant of λ = 5ꞏ10-10 m/s (Rimstidt and Barnes, 820 

1980). In contrast, while non-crystalline silica (amorphous) precipitates relatively quickly, quartz 

dissolution is typically slower by several orders of magnitude (Rimstidt and Barnes, 1980). An 

additional interesting behavior associated with quartz occurs at much higher temperatures (e.g., T 

> 300 °C), which can prevail near magmatic intrusions. At these high temperatures, quartz exhibits 

retrograde solubility, which switches to prograde solubility upon cooling (Glassley, 2014; Scott 825 

and Driesner, 2018).  
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Figure 5. A diagram illustrating the applicability of the equilibrium model and highlighting 

important fluid-rock interaction processes. The Damköhler number is used to differentiate between 830 

far-from-equilibrium conditions and quasi-equilibrium, where the equilibrium model can be 

assumed when Da > Dacr, with Dacr defined as a threshold where Dacr > 1. Dacr is represented by 

the diagonal black line on the diagram, with hot colors indicating high Da values and proximity to 

equilibrium. The diagram is based on Eq. 1 and plots 1/tR versus 1/tA (where 1/tR = λAs and 1/tA = 

u/l). Main fluid-rock interaction processes are indicated on the diagram according to their typical 835 

reactivity: (i) carbonate dissolution or precipitation, (ii) silica precipitation, (iii) carbonate vein 

formation in peridotites, and (iv) hydrothermal ore deposits. In higher reactivity systems, the 

equilibrium model is applicable under higher flow velocities, and/or small l and relatively large 

thermal variations, i.e., shorter tA.  

The position of these processes on the diagram, as also demonstrated in Section 3.2.1, indicates 840 

the applicability of the equilibrium model even at relatively high flow rates. This is especially 

significant, as high flow rates are characteristic of applications such as groundwater storage and 

recovery, aquifer thermal storage, and geothermal reinjection  (Diaz et al., 2016; Fleuchaus et al., 

2018; Maliva, 2019). It is noted that the range of reactivity typically spans several orders of 

magnitude and is associated with kinetics and large variability in reactive surface area, especially 845 

between fractured and porous media (Deng and Spycher, 2019; Maher et al., 2006; Pacheco and 

Alencoão, 2006; Seigneur et al., 2019).  

Additional important settings in which Importantly, the specific reactive surface area, As, (L2 to 

L−3 of porous medium) may vary widely across different rock lithologies, and its effect on the 

applicability of the equilibrium model is comparable to that of kinetics. Specifically, As can vary, 850 

e.g., from 10-1 m-1 in fractured rock (Deng and Spycher, 2019; Pacheco and Van der Weijden, 

2014) to above 105 m-1 for porous medium (Noiriel et al., 2012; Seigneur et al., 2019) and can also 

evolve during reactive flow (Noiriel, 2015; Seigneur et al., 2019). 

The position of these processes on the diagram, supported by calculations in Section 3.2, 

demonstrates the applicability of the equilibrium model even at relatively high flow rates. This is 855 

especially significant, as high flow rates are characteristic of applications such as groundwater 

storage and recovery, aquifer thermal storage, and geothermal reinjection  (Diaz et al., 2016; 

Fleuchaus et al., 2018; Maliva, 2019).  



 

37 

 

Additional important settings where thermally driven reactions may play a significant role 

includeinvolve mineral carbonation. In particular, this includes the formation of carbonate veins 860 

in ultramafic rocks, such as peridotites, by ascending CO2-CO₂-rich hydrothermal flow (Kelemen 

et al., 2011; Menzel et al., 2024). The CO₂-rich fluids first dissolve the rock minerals, primarily 

olivine. Then, as the pH rises and cation enrichment occurs, carbonate precipitation, primarily 

magnesite, takes place further along the upward flow path. Commonly, theThe rate-limiting step 

in the mineral carbonation process is the commonly suggested to be the relatively slower kinetics 865 

of dissolution (Kelemen et al., 2019; Kelemen et al., 2011). compared to precipitation (Hänchen 

et al., 2006; Kaszuba et al., 2013; Kelemen et al., 2019).  

The solubility of olivine is retrograde, as evidenced by the exothermic nature of the reaction 

(Kaszuba et al., 2013; Prigiobbe et al., 2009). Under thesesuch conditions, the ascending flow 

along a decreasing geothermal gradient is expected to promote undersaturation, enhance the 870 

dissolution reaction (Kelemen et al., 2013), and facilitate. This continued renewal of 

undersaturation facilitates the development of an extended reactive, thermally driven dissolution 

front. Considering the typically low rates of ascending hydrothermal flow (e.g., u < 10-7 m/s; 

Garven, 1995), along with the relatively rapidcharacteristic high reaction rates of olivine 

dissolution kinetics andat high rate constant (Rimstidt, 2015; Rimstidt et al., 2012)temperatures (T 875 

> 150 °C; Rimstidt, 2015; Rimstidt et al., 2012), it suggests that Da iscan be large. Consequently, 

mineral carbonation and vein formation occur under quasi-equilibrium conditions, makingcan be 

controlled by thermally driven solubility changes and described by the THC equilibrium model 

applicable.   

Lastly, a prominent application in which thermally driven reactions play a major role is the 880 

hydrothermal formation of ore deposits. These processes involve a wide range of reactions and 

genetic origins of hydrothermal fluids. Such fluids include metamorphic and meteoric-origin 

waters, which evolve through different fluid-fluid or fluid-rock interactions, as well as fluids 

originating directly from magmatic intrusions (so-called magmatic-hydrothermal fluids; 

Ingebritsen and Appold, 2012; Robb, 2005). A particularly intriguing phenomenon, often primarily 885 

controlled by the dependence of solubility on temperature, is the zoning of metals and minerals, 

which is commonly observed at various field scales. In these cases, regular belts of different 

precipitants form progressively as the distance from the hydrothermal fluid source increases. This 
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pattern is often largely influenced by the solubility of the minerals and their precipitation as a result 

of cooling along the flow path (Kouzmanov and Pokrovski, 2012; Robb, 2005). 890 

4.2. Evolution of Field-scaleDevelopment of Thermally Driven Reactive Fronts in Earth 

Systems 

The dominance of the thermal front over the reactive front and their coalescence under quasi-

equilibrium conditions allowed for the exploration of the reactive front evolution under different 

settings, as discussed in Section 3.4. Specifically, the analysis demonstrates that in radial or 895 

spherical settings (i.e., flows spreading from a point source) at relatively low flow rates (e.g., 

several cubic meters per day), a quasi-steady state is achieved over timescales on the order of tens 

to hundreds of years. Such a cooling process can also induce very steep geothermal gradients. 

These gradients may be two orders of magnitude larger than the typical basal geothermal gradient 

formed by Earth heat flow (e.g., 0.025 °C/m ;Davies, 2013), as shown in the temperature profile 900 

in the inset of Fig. 4c (see also Roded et al. (2023). 

A prominent example of such conditions is porphyry-type deposits. In these systems, magmatic-

hydrothermal fluids are expelled from a crystallizing magmatic intrusion. These fluids then spread 

away (typically upward and laterally) from the source while cooling and precipitating various 

metals and minerals (Ingebritsen & Appold, 2012; Robb, 2005). The results here suggest that 905 

reactive mineral deposition fronts associated with porphyry ore deposits are essentially stationary 

for a large part of their lifetime, typically ranging from tens of thousands to millions of years 

(Cooke et al., 2014; Robb, 2005). The results presented here also contrast with the view that 

thermal gradients are too weak to promote precipitation (Cooke et al., 2014). Another example 

involves hypogenic karst and cave formation driven by upwelling hydrothermal flow, which 910 

discharges through a permeable fault pathway, spreads radially in a confined aquifer, and cools 

(Roded et al., 2023, 2024a). In this case, the results suggest that the alteration front or the cave 

system may exhibit quasi-constant and final dimensions. 

However, in the planar case of uniformly ascending hydrothermal flow and mineral carbonation 

in veins, steady-state thermal conditions are presumably reached quickly. This occurs compared 915 

to the timescale of vein evolution, which spans tens of thousands of years or longer (Früh-Green 

et al., 2003). Similarly, in any case of hydrothermal ore deposit formation by ascending flow (i.e., 
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hypogene), steady-state thermal conditions may be reached quickly. In both scenarios, the hot 

ascending flow alters the background geothermal gradient and may achieve steady-state over 

relatively short timescales (Ingebritsen et al., 2010; Roded et al., 2013). 920 

In these cases, the timescale for the thermal front to reach a steady-state suggests that if reactive 

processes span periods comparable to the geological timescale of tectonic processesThe quasi-

equilibrium conditions, characterized by the thermal front’s control over the reactive front and 

their coalescence, allowed examination of their evolution in different settings in Section 3.4. A 

particularly interesting finding is that in radial (or similar) settings, and at relatively low flow rates, 925 

a quasi-steady state develops over brief timescales of tens to hundreds of years. Such a cooling 

process can also produce very steep thermal gradients, as shown in the temperature profile in 

Fig. 5d, and can cause localized, thermally driven reactive effects. These thermal gradients may 

be up to two orders of magnitude greater than the typical geothermal gradient resulting from 

Earth’s heat flow (e.g., ~0.025 °C/m; Turcotte and Schubert, 2014). 930 

A relevant example includes hypogenic karst cave formation driven by upwelling hydrothermal 

flow through a conduit pathway within a fault. This flow discharges and spreads radially in a 

confined aquifer while cooling rapidly, promoting localized carbonate dissolution around the water 

inlet (Roded et al., 2023, 2024a). In this case, the results in Fig. 5d suggest that the cave system or 

alteration front may reach approximately constant final dimensions. These settings may also apply 935 

to additional alterations by hypogenic flows and thermal seepages. 

Additional relevant settings that can involve coalesced fronts are ascending hydrothermal flow 

along a decreasing geothermal gradient, leading to cooling and thermally driven reactions. 

Particularly, as mentioned above (Section 4.1), this may induce olivine dissolution followed by 

mineral carbonation in veins in ultramafic rocks. Alternatively, quartz vein formation dominantly 940 

occurs due to cooling along the flow path (Bons, 2000; Sibson et al., 1975). In these settings, 

coalesced fronts may become stationary as the hot ascending flow alters the background 

geothermal gradient, producing a modified steady vertical thermal profile (Person et al., 1996; 

Roded et al., 2013).  

In these cases, where the coalesced, thermally driven reactive front remains stationary over 945 

geological timescales, spatial alterations will depend on thesealteration of the front depends on 
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slower tectonic processes. These tectonic timescales. These tectonic timescales are associated with 

processes such isostasy due toas erosion, subduction, orand orogenic activity. A well-known 

example is the alteration of the geothermal gradient caused by surface erosion or sediment 

deposition (Haenel et al., 2012; Turcotte and Schubert, 2002).(Haenel et al., 2012; Turcotte and 950 

Schubert, 2014). In response to tectonic changes, the slowly varying subsurface thermal 

distributionfield drives the gradual migration of the reactive front. 

4.3. 4 Theoretical Modeling Outlook 

Finally, this study and Roded et al. (2024b) demonstrate the extension of established heat transport 

solutions to THC-coupled solutions. For future work, the possibility of extending these solutions 955 

and approaches in several directions should be investigated. Specifically, it should be examined 

how the solutions developed can be further extended to address more realistic and complex 

scenarios. In particular, this includes consideration of more complex kinetic systems involving 

multiple species and additional or more intricate couplings between variables and parameters.  

In such cases, semi-analytical approaches could be especially useful. Due to the quasi-static 960 

assumption of reactive flow, the set of equations for reaction rate (Eqs. 10 and 15) or solute 

disequilibrium (Eqs. B3 and B6) could potentially be implemented in a semi-analytical, coupled, 

and iterative manner. 

Furthermore, the approach taken here and in Roded et al. (2024b) can be adapted to extend 

additional thermal solutions to significant thermally driven reactive transport scenarios. Notably, 965 

this may be especially practical and feasible under the equilibrium assumption, where thermally 

driven reactions depend solely on the thermal gradients. 

5. Summary and Conclusions 

1. Summary and Conclusions 

In this work, the equilibrium assumption iswas used to derive thermally driven reactive transport 970 

solutions for the RLP (reactiveReactive Lauwerier problemProblem) in both Cartesian and radial 

coordinates. The solution for porosity evolution isThe solutions were then validated and analyzed 

against a reference solutionsolutions and a case study of CO₂-rich hot water injection from a single 
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well into a carbonate aquifer, leading to cooling and calcite dissolution. The limitations of the 

solution are analyzed as a function of time and the progression of the thermal front. Under these 975 

radial settings, as the studies involving thermally driven reactions of carbonates. In particular, the 

shortcoming of the equilibrium-approximated solutions associated with the advective boundary 

condition is analyzed. It was found that as the thermal front advances downstream into regions 

with lower flow velocity and higher Da, and the error associated with the equilibrium assumption 

diminishes., inlet temperature gradients become milder and the advective discrepancy less 980 

pronounced. This finding motivatesalso motivated the derivation of a specific criterion and 

functional relationshipcriterion to guidedescribe quasi-equilibrium conditions in the RLP, 

incorporatingwhich incorporates time and thermal parameters. Specifically, this criterion is 

expressed through two functions: a dynamic Da number and a thermal parameter function that 

accounts for front elongation and confirms the interpretation. 985 

Next, theFollowing this, a unique feature of the thermal front controlling the reactive front and 

theirquasi-equilibrium conditions—the coalescence under quasi-equilibrium conditions of the 

thermal and reactive fronts—is used to explore their evolution over time. This is examined in both 

planar and radial settings, as well as a function of flow rate. The growth rate in the radial case 

decreases much more rapidly, and it is shown that, in and under the low-flow-rate limit where 990 

conduction effectively distributes heat. The advancement rate in the radial case decays much more 

rapidly, and, notably, in the low-flow-rate limit, the front can become essentially stationary 

inwithin a relativelyvery short period. Additionally, under these conditions, very sharp temperature 

gradients are created near the inlet, which can induce localized fluid-rock interactions. 

The applicability of the THC equilibrium model for importantnotable fluid-–rock interaction 995 

processes is then discussed and positioned on a diagram based on the Damköhler number, 

demonstrating the applicability of the equilibrium assumption under different conditions. The 

processes examined . These include sedimentary reservoir evolution, through reactions involving 

silica and calcite, as well as natural mineral carbonation in peridotite, and ore deposit formation 

by hydrothermal flows.ultramafic rocks. These processes are positioned on a phase diagram based 1000 

on the Damköhler number, illustrating the applicability of the equilibrium model. 
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Notably, it is suggested that the theoretical approach used here to extend established heat transport 

solutions to thermally driven reactive transport may be applicable to other important scenarios in 

Earth systems. Finally, it is emphasized that since thermally driven reactive fronts near equilibrium 

often cease to expand after the early stages. Instead, they remainbecome stationary, with within a 1005 

short period, their evolution is governed by geological processes. These processes, such as 

tectonics or surface erosion and deposition, occuroperate on much longer timescales.  

Appendix A: Da Condition for ApplicabilityUnderlying Assumptions and Equations of the 

Equilibrium ModelRLP 

This appendix describes the main assumptions of the RLP under the equilibrium assumption. It 1010 

follows the main presentation from Roded et al. (2024b) and extends it to account for the quasi-

equilibrium conditions considered in this study. First, the main assumptions are detailed, followed 

by a comprehensive overview of the basic conservation equations. 

A.1.  Main Model Assumptions 

The thermal Lauwerier (Lauwerier, 1955) solution involves several simplifying assumptions. 1015 

These include neglecting the initial geothermal gradient and assuming that the basal geothermal 

heat flux is negligible compared to the heat supplied by the injected fluid. The aquifer is also 

assumed to be situated at depth, preventing heat from being transferred to the surface; otherwise, 

there would be greater heat exchange between the aquifer and the caprock. This assumption also 

depends on the timescale of interest: the thermal front, which rises over time, may not extend to 1020 

the surface on a short timescale. However, over a longer period, it may transfer heat to the surface, 

which can be calculated using the characteristic timescale of conduction tC (tC = lC
2/αb, where l 

accounts for the characteristic length scales of conduction and αb is the thermal diffusivity).  

In the confining layers, heat is transferred solely through conduction in the vertical direction (z), 

while neglecting lateral (ξ) heat conduction. This assumption restricts the model’s applicability to 1025 

cases with high injected fluid fluxes, where mild lateral temperature gradients evolve. To evaluate 

the validity of this assumption, a thermal Péclet number is employed, which compares heat 

advection in the aquifer to lateral heat conduction in the confining layers: PeT = uAl/αb, where l is 

a length scale at which substantial temperature variation occurs (e.g., larger than 2% from the total 
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temperature change, ∆T). A posteriori inspection confirms that PeT ≫ 1 beyond the initial moments 1030 

under all conditions considered here. Moreover, after a very short initial phase, the length scale l 

should exceed the vertical dimension of the aquifer, H, where complete thermal mixing is assumed 

(l ≫ H). This assumption may not hold if a thick aquifer (i.e., large H) is considered, and significant 

vertical temperature gradients are expected to develop.  

Additionally, thermal and solute dispersions within the aquifer are neglected, as both thermal (PeT) 1035 

and solute (Pes) Péclet numbers are assumed to be large. Properties of the fluid and solid phases, 

such as density and thermal conductivity, are assumed to be constant and temperature-independent. 

Finally, it is assumed that Da > 1, making the equilibrium assumption applicable. As a result, 

reaction rates are essentially independent of kinetics and reactive surface area, as demonstrated in 

Section 2.2 of the main text.  1040 

A.2.  The Basic Conservation Equations 

Heat Transport: 

Here, the basic conservation equations that underlie the Lauwerier solutions (Eqs. 6 and 13) and 

the THC equilibrium model (Eq. 5) are presented. More general versions of the conservation 

equations are provided in  Roded et al. (2024b). In what follows, the radial case (ξ = r) is considered 1045 

first, followed by the planar flow case and Cartesian coordinates (ξ = x). 

Assuming that heat transfer in the radial direction, r, is negligible, the heat equation in the bedrock 

and caprock confining the aquifer is,  

 
𝜕𝑇

𝜕𝑡
= 𝛼b

𝜕2𝑇

𝜕𝑧2
,     for     {

𝑧 ≤ −
𝐻

2

𝑧 ≥
𝐻

2

,                                                                                                       (𝐴1) 

where T denotes temperature, t is time, z is the vertical coordinate originating at the center of the 1050 

injection well and H denotes the aquifer thickness (see Fig. 1). The thermal diffusivity is given by 

αb = Kb/Cpb, where the subscript b denotes bulk rock, K is the thermal conductivity, and Cp is the 

volumetric heat capacity (Chen and Reddell, 1983; Stauffer et al., 2014). 
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Assuming that heat transport in the aquifer is dominated by advection and that perfect mixing 

prevails in the transverse direction (z), a 'depth-averaged' heat transport equation can be derived 1055 

for the aquifer domain:  

𝐶pb
𝐻

𝜕𝑇

𝜕𝑡
= −𝐶pf

𝐻
1

𝑟

𝜕(𝑟𝑢𝑇)

𝜕𝑟
− 𝒏 ∙ 𝚯(𝑟, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
,                                               (𝐴2) 

where subscript f denotes fluid and u is the Darcy flux, assumed to be uniform along the z direction, 

and calculated from the total volumetric flow rate, Q, using u(r) = Q/(H2πr) (Andre and Rajaram, 

2005; Lauwerier, 1955). The Θ function accounts for the heat exchange between the aquifer and 1060 

the confining bedrock and caprock, calculated using Fourier’s law, assuming continuous 

temperature at the interfaces: 

𝚯 = −2𝛫b

𝜕𝑇

𝜕𝑧
|

𝑧=
𝐻
2

,−
𝐻
2

.                                                                                                                              (𝐴3) 

The factor of two accounts for both the bedrock and caprock (Stauffer et al., 2014). In Eq. A2, n 

represents a unit vector directed outward from the aquifer and perpendicular to the interface 1065 

between the aquifer and the bedrock or caprock. This orientation ensures that, e.g., in the case of 

a warmer aquifer, the upward and downward heat fluxes constitute a heat sink.  

Reactive Transport: 

The solute advection-reaction equation in the aquifer is:  

0 = −𝑢
𝜕𝑐

𝜕𝑟
− Ω(𝑟, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
,                                                                                      (𝐴4) 1070 

where c is the solute concentration and Ω is the reaction rate (Chaudhuri et al., 2013; Szymczak 

and Ladd, 2012). Note that the transient and dispersivity terms in Eq. A4 are neglected, with the 

latter being omitted due to the assumption of Pes ≫ 1. The justification for neglecting the transient 

term and invoking the quasi-static approximation in the derivation of Eq. A4, lies in the separation 

of timescales between the relaxation of solute concentration (tA), heat conduction (tC) in the 1075 

confining rocks and mineral alteration (for in-depth analysis and discussion see Roded et al. 

(2024b) and as well, e.g., Bekri et al., 1995; Ladd and Szymczak, 2017; Lichtner, 1991; Roded et 

al., 2020). 

Using the reaction rate, the change in porosity, θ, can be calculated as: 
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𝜕𝜃

𝜕𝑡
= −

Ω

𝜈𝑐sol
,     for     −

𝐻

2
≤ 𝑧 ≤

𝐻

2
.                                                                                                  (𝐴5) 1080 

Here, csol represents the concentration of soluble solid mineral and ν accounts for the stoichiometry 

of the reaction. For planar flow and Cartesian coordinates, r can be substituted with x in the 

equations above, and Eq. A2 then takes the following form: 

𝐶pb
𝐻

𝜕𝑇

𝜕𝑡
= −𝑢𝐶pf

𝐻
𝜕𝑇

𝜕𝑥
− 𝒏 ∙ 𝚯(𝑥, 𝑡),     for    −

𝐻

2
≤ 𝑧 ≤

𝐻

2
.                                                        Assuming quasi-equilibrium conditions and equating the 1085 

reaction rates given in Eqs. 6 and 14 yields, 

𝑢
𝜕𝑐s(𝑇)

𝜕𝑟
≈ 𝐴s𝜆(𝑐 − 𝑐s(𝑇)).                                                                                                                 (𝐴. 1) 

Assuming on a local scale that 

𝜕𝑐s

𝜕𝑟
≈

Δ𝑐s𝜀

𝑙
,                                                                                                                                               (𝐴. 2) 

where, l represents a characteristic length scale over which temperature and solubility change, with 1090 

the magnitude of Δcsε is εΔcs, where ε << 1 (e.g., ε = 0.01) and Δcs denotes the absolute solubility 

change in the system (∆cs = |cs(Tin) – cs(T0)|). Assuming quasi-equilibrium conditions and that 

Δcsε/(c - cs(T)) > 1, Eq. A.1 can be rearranged to give, 

𝐷𝑎 =
𝑙𝐴s𝜆

𝑢A
> 1,                                                                                                                                    (𝐴. 3) 

where Da is the Damköhler number, and the velocity u is replaced by the characteristic fluid 1095 

velocity uA in the above equation. 

(𝐴6) 

The above set of heat transport equations underlies the development of the thermal Lauwerier 

solutions presented in Section 3.1 (Eqs. 6 and 13). Section 2.2 of the main text provides the 

derivation of the equilibrium-approximated form of Eq. A4, which is used to obtain the 1100 

equilibrium-approximated solutions developed in this study. 
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Appendix B: RLP Solutions 

B.1.  Radial RLP SolutionsCase 

The RLP solution to the RLP for the solute disequilibrium in the radial case is given by, 

Λ1105 

= ∆𝑇𝛽𝑒
(

𝜂2

4𝜁2−𝜂𝑟2)
(erf [𝜁𝑟2 −

𝜂

2𝜁
]

+ erf [
𝜂

2𝜁
]).                                                                            (𝐵. 1,                                                                              (𝐵1) 

where η = πHAsλ/Q and the definition of ζ is given in Eq. 7. 

A closed-form expression for the temporal and spatial evolution of porosity, θ, is given by, 

𝜃(𝑟, 𝑡) = 𝜃0 + 4
𝜁2𝑡

𝜂2

𝜆𝐴s∆𝑇𝛽

𝜈𝑐sol
(−𝑒

𝜂/4(
𝜂

𝜁2−4𝑟2)
(erf [𝜁𝑟2 −

𝜂

2𝜁
] + erf [

𝜂

2𝜁
]) +

𝜂

𝜁√𝜋
𝑒−𝜂𝑟2

1110 

+ erf[𝜁𝑟2](1 − 𝜂𝑟2) −
𝜂

𝜁√𝜋
𝑒−𝜁2𝑟4

+ 𝜂𝑟2

− 1).                                                 (𝐵. 2  (𝐵2) 

For efficient computation and preventing integer overflow (Press et al., 2007), an approximate 

solution of Eq. B.1For efficient computation and preventing integer overflow, an approximate 

solution of Eq. B1 is developed using the first-order asymptotic expansion of erfc,  1115 

Λ =  
∆𝑇𝛽

√𝜋
𝑒(−𝜂𝑟2) (

e(𝜂𝑟2−𝜁2𝑟4)

𝜂
2𝜁

− 𝜁𝑟2

−
2𝜁

𝜂
).                                                                                             (𝐵. 3  (𝐵3) 

B.2.  Planar Case 

For the planar case, the corresponding solutions are given by, 
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Λ = ∆𝑇𝛽𝑒
(

𝜎2

4𝜔2−𝜎𝑥)
(erf [𝜔𝑥 −

𝜎

2𝜔
] + erf [

𝜎

2𝜔
]),                                                                             (𝐵4) 1120 

and 

𝜃(𝑥, 𝑡) = 𝜃0 + 4
𝜔2𝑡

𝜎2

𝜆𝐴s∆𝑇𝛽

𝜈𝑐sol
(−𝑒

𝜎/4(
𝜎

𝜔2−4𝑥)
(erf [𝜔𝑥 −

𝜎

2𝜔
] + erf [

𝜎

2𝜔
]) +

𝜎

𝜔√𝜋
𝑒−𝜎𝑥

+ erf[𝜔𝑥](1 − 𝜎𝑥) −
𝜎

𝜔√𝜋
𝑒−𝜔2𝑥2

+ 𝜎𝑥 − 1).                                                     (𝐵5) 

An approximate expression for Eq. B4 is given by 

Λ =  
∆𝑇𝛽

√𝜋
𝑒(−𝜎𝑥) (

e(𝜎𝑥−𝜔2𝑥2)

𝜎
2𝜔

− 𝜔𝑥
−

2𝜔

𝜎
).                                                                                                (𝐵6) 1125 

Here, σ = Asλ/u and the definition of ω is given in Eq. 14.  

To prevent integer overflow errors, Eq. B.3 is Eqs. B3 and B6 are used to calculate the 

undersaturation and profiles shown in Figs. 2b and 3b, and the reaction rate profiles in Fig. 4a. 

These expressions are Figs. 2b and 3a, respectively. It is also used to iteratively solve numerically 

in the iterative numerical solution to obtain the porosity profileprofiles at later times, as shown in 1130 

Fig.Figs. 2c and 3c (t = 100 kyr). The accuracy of the approximation in Eq. B.3 was validated by 

comparing it with the full solution in Eq. C.1, which is solvable for early times (t ≈ 1 yr). 

Additionally,Prior validation confirmed the accuracy of Eq. C.3 and the iterative solutions was 

also validated by solving for the porosity profile and comparing the results to those obtained using 

the full solution in Eq. B.2 for t = 10 kyrapproximate solutions (Eqs. B3 and B6; (Roded et al., 1135 

2024b).  

Appendix C: Derivation of the Applicability Criterion 

In this appendix, the derivation of the applicability criterion shown in Section 3.3 is presented. 

This criterion provides a functional relationship between key parameters, variables, and the system 

equilibrium state in RLP settings. The derivation of the criterion leverages a key feature of the 1140 

quasi-equilibrium regime: the coalescence of the thermal and reactive fronts in the aquifer, which 

occurs when Da is high (compare the curves in Fig. 2a and b). In this regime, reactions dominate 

over transport, and thermally induced disequilibrium dissipates rapidly, essentially not extending 

downstream of the thermal front.  
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It is noted that even when the fronts coincide downstream, far-from-equilibrium conditions may 1145 

still persist upstream. This is observed in the results of Fig. 4, where the equilibrium solution 

(which aligns with the thermal front) and the reference solution closely match downstream at later 

times, but diverge upstream. Nonetheless, the derived functional relationships offer useful 

guidance. 

First, the thermal front’s outer-end position, ξF(t), is defined as the furthest distance of thermal 1150 

perturbation due to the injection at a given time. The thermal perturbation is quantified by ε = 

(T(ξF)-T0)/ΔT, where ε is a prescribed small value (ε ≪ 1); here, ε = 0.01. Below, we consider the 

radial case (ξF = rF), though applying the same steps to the planar case equations yields the same 

result.  

Rearranging and substituting the definition of ε into the Lauwerier solution (Eq. 6) yields: 1155 

𝜀 = erfc(𝑎),     where     𝑎 = 𝜁(𝑡)𝑟F
2,                                                                                                   (𝐶1) 

where a is a constant, and for ε = 0.01, a ≈ 1.8. Then, rF can be expressed as, 

𝑟F = √
𝑎

𝜁(𝑡)
.                                                                                                                                                 (𝐶2) 

Next, an approximate form of the reference solution for disequilibrium is used (Eq. B3 in Appendix 

B; Roded et al., 2024b). The reasoning for using a far-from-equilibrium-based solution, even 1160 

though the equilibrium model strictly assumes Λ = 0 (cf. Eqs. 4 and 5), is that a small Λ confirms 

the validity of this approximation. Therefore, solute disequilibrium serves as a metric to quantify 

the spatial and temporal extent over which the equilibrium assumption is valid. 

Assuming quasi-equilibrium at the front’s outer-end position, rF, and applying the condition ε ≥ 

Λ/Δcs, where Δcs denotes the solubility change in the system, ∆cs = cs(Tin) – cs(T0), which here 1165 

may be positive or negative, Eq. B3 becomes: 

ε ≥
∆𝑇

∆𝑐s
 

𝛽

√𝜋
𝑒(−𝜂𝑟F

2
) (

e(𝜂𝑟F
2−𝜁2𝑟F

4
)

𝜂
2𝜁

− 𝜁𝑟F
2

−
2𝜁

𝜂
).                                                                                            (𝐶3) 
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Next, applying a few more steps by substituting the definition from Eq. C2, neglecting early times, 

and assuming high Da and η ≫ ζ, Eq. C3 can be simplified to:  

ε ≥
∆𝑇

∆𝑐𝑠
 

𝛽

√𝜋

2𝜁

𝜂
.                                                                                                                                          (𝐶4) 1170 

Noting that β = Δcs/ΔT and explicitly substituting the parameters using Eq. 7 and η = πHAsλ/Q, 

Eq. C4 becomes,  

1 ≫
2

√𝜋𝑡
(

1

𝐴s𝜆
) (

√𝐾b𝐶pb

𝐻𝐶pf

),                                                                                                                    (𝐶5) 

where As is the specific reactive area [L−1] and λ is the kinetic reaction rate coefficient of the first-

order reaction [L T-1]. Equation C5 defines the conditions under which the thermal and reactive 1175 

fronts coincide and provides a functional relationship to the equilibrium state in RLP settings. 

Appendix D: Parameter Values 

Table 1.  Parameter values used in the simulation in Section 3.2.1. 

Table 1.  Parameter values used in the simulation in Section 3.2. 

Aquifer thickness H = 4 m 

Initial porosity θ0 = 0.05  

Total volumetric flow rate1 Q = 500 m3/s day-1 

Fluid velocity u = 10-6 m s-1 

Initial aquifer temperature2  T0 = 20 °C 

Injection temperature2 Tin = 60 °C 

Fluid volumetric heat capacity2 Cpf = 4.2⸱106 J m-3  °C-1   

Rock volumetric heat capacity2 Cpb = 3.12⸱106 J/(m3 m-3 °C)-1   

Rock thermal conductivity2 Kb = 3 W m-1  °C-1    

Calcite rate coefficient3  λ = 10-6 m/s 

Fractured carbonates specific reactive surface area5 As = 10 m−1 

Calcite mineral concentration3 csol = 2.7·104 mol/m3 m-3 

Solubility change parameter calcite7 β = -0.075 mol m-3 °C-1    

Stoichiometry coefficient3,4 ν = 1 

1-Glassley (2014)Glassley (2014); 2-Huenges and Ledru (2011); 3-Palmer (1991); 4-Rimstidt and Barnes (1980); 5- 

see textSection 4.1; 6-Hussaini and Dvorkin (2021) and Lai et al. (2015); 7-Roded et al. (2023). 
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