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Author Response to Reviewer #1’s Comments 

Manuscript ID: HESS-2025-733 

Below, I provide detailed responses to all comments (quoted verbatim in bold). 

• This is a well-written manuscript that presents simplified, equilibrium-based 

solutions to the Reactive Lauwerier Problem, which models how thermal 

changes drive mineral reactions in subsurface aquifers. By assuming reactions 

are fast compared to fluid transport (i.e., a high Damköhler number), the 

author derives clear analytical solutions for how porosity and reaction rates 

evolve. These are shown to agree well with more detailed kinetic models, 

except very close to the injection point. The paper offers a useful criterion for 

when the equilibrium assumption is valid and applies the findings to real-

world processes like CO₂ injection, silica precipitation, and ore formation. The 

work builds on previous studies and contributes useful insights. I recommend 

publication after minor clarifications, particularly around what’s new 

compared to the earlier work (Roded et al., 2024b) and how to interpret the 

model’s limitations near injection wells. 

I thank the Reviewer for the thoughtful review and the constructive comments, which are 

greatly appreciated. The suggestions provided will contribute meaningfully to improving 

the clarity and structure of the manuscript. Below, I provide detailed responses to each of 

the Reviewer’s comments, along with a description of the planned revisions to the 

manuscript. 

1. Clarifying the Contribution of the Work: In line with the Reviewer’s comment, 

and consistent with feedback from Referee #2, the manuscript will be revised to 

more explicitly differentiate the present study from the earlier work (Roded et al., 

2024). To make this distinction clearer, Section 2 (‘Settings and Model Equations’) 

will be restructured: most of its current content will be relocated to an appendix, 

while the main Section 2 will be revised to focus more directly on the derivation 

and implications specific to the equilibrium model developed in this study. To 

support this restructuring, a supplementary note—titled “Supplement to Responses 

to Referee 1” and included at the end of this document—has been prepared. This 

note outlines the derivation of the equilibrium model and will form the core of the 

revised Section 2. 
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2. Model Limitations Near Injection Well: I thank the Reviewer for highlighting the 

important issue of model limitations near the injection well, where the local 

equilibrium assumption may break down—a point that was also touched on by 

Referee #2. The manuscript will be revised accordingly. Under high Damköhler 

number conditions and quasi-equilibrium assumptions, deviations between the 

equilibrium and kinetic solutions are generally confined to a narrow zone near the 

injection point (see Fig. 2c). However, in dissolution-dominated cases, these 

localized deviations may still be significant (see lines 334–341).  

 

Moreover, at very early times or under conditions farther from equilibrium (i.e., 

lower Damköhler numbers), the system is more likely to transition into a regime 

where the assumptions of the analytical equilibrium model no longer hold—

particularly near the inlet. This breakdown is illustrated in Fig. 3a and is also 

captured by the applicability criterion derived in Section 3.2.3 (Eq. 26). This 

consideration is particularly important in practical geothermal and hydrological 

contexts, where projection times typically span only several decades. The revised 

manuscript will explicitly address these limitations of the equilibrium model and 

clarify its domain of applicability.   
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Supplement to Responses to Referee 1: Outline of the Derivation of the 

Equilibrium Model 

Assuming the reactive Lauwerier problem settings and starting from the stationary, 

radial solute advection–reaction equation in the aquifer:  

0 = −𝑢
𝜕𝑐

𝜕𝑟
− Ω(𝑟, 𝑡),                                                                                                                         (𝑆. 1) 

where r is the radial coordinate, u is the Darcy flux, c is the solute concentration [M L-3] 

and Ω(r, t) is the reaction rate, which varies in space and time, t (Chaudhuri et al., 2013; 

Szymczak and Ladd, 2012).  

Defining the solute disequilibrium, Λ, as the difference between the dissolved ion 

concentration, c, and the temperature-dependent solubility (i.e., saturation 

concentration), cs(T),  

Λ = 𝑐 − 𝑐s(𝑇),                                                                                                                                           (𝑆. 2) 

Equation S.1 can then be rewritten as: 

0 = −𝑢 [
𝜕Λ

𝜕𝑟
+

𝜕𝑐𝑠

𝜕𝑟
] − Ω(𝑟, 𝑡).                                                                                                               (𝑆. 3) 

Next, assume high Damköhler number conditions and that the reaction kinetics are fast 

compared to the advective transport rate. Under these conditions, quasi-equilibrium 

prevails, and the solute disequilibrium satisfies, Λ ≪ Δcs, where Δcs denotes the absolute 

solubility change in the system, ∆cs = |cs(Tin) – cs(T0)|, i.e., between cs(Tin) at the injection 

point to cs(T0) at ambient conditions. Under these conditions, the first advective term 

(−u∂Λ/∂r) becomes negligible compared to the other terms, and Eq. S.3 can be 

approximated as (Andre and Rajaram, 2005; Phillips, 2009, see p. 237): 

Ω(𝑟, 𝑡) = 𝑢
𝜕𝑐𝑠(𝑇)

𝜕𝑟
.                                                                                                                                 (𝑆. 4) 

Given an expression for cs(T) (e.g., Eq. 8 in the main text) and a defined temperature field 

(e.g., the Lauwerier solution in Eq. 11), a closed-form expression for the reaction rate Ω(r, t) 

can be obtained. Notably, this solution for Ω(r, t) is independent of the specific reaction 

kinetics involved.  



 4 

Last, given the solution to Eq. S.4 for the reaction rate, the change in aquifer porosity, θ, 

can be calculated by solving: 

𝜕𝜃

𝜕𝑡
= −

Ω(𝑟, 𝑡)

𝜈𝑐sol
,                                                                                                                                        (𝑆. 5) 

where csol is the concentration of soluble solid mineral and ν accounts for the 

stoichiometry of the reaction.   

Remark 1: The solution for the planar case can be obtained by following the same steps 

outlined above. 

Remark 2: The previous work focused on solving the full form of Eq. S.1 (or equivalently, 

Eq. S.3) without invoking the local equilibrium assumption. In contrast, the current 

approach solves the reduced form given in Eq. S.4. 

References  

Andre, B. J. and Rajaram, H.: Dissolution of limestone fractures by cooling waters: Early development of 

hypogene karst systems, Water Resour. Res., 41, 2005. 

Chaudhuri, A., Rajaram, H., and Viswanathan, H.: Early-stage hypogene karstification in a mountain 

hydrologic system: A coupled thermohydrochemical model incorporating buoyant convection, Water 

Resour. Res., 49, 5880–5899, 2013. 

Phillips, O. M.: Geological fluid dynamics: sub-surface flow and reactions, Cambridge University Press, 

2009. 

Roded, R., Aharonov, E., Szymczak, P., Veveakis, M., Lazar, B., and Dalton, L. E.: Solutions and case studies 

for thermally driven reactive transport and porosity evolution in geothermal systems (reactive Lauwerier 

problem), Hydrol. Earth Syst. Sci., 28, 4559–4576, 2024. 

Szymczak, P. and Ladd, A. J. C.: Reactive-infiltration instabilities in rocks. Fracture dissolution, J. Fluid 

Mech., 702, 239–264, 2012. 

 

 


