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Figure S1. Criteria of the air masses classification.
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Figure S2. Diurnal variations of particle size distributions in marine and urban air masses observed at the ANC site during the IOP.

10



15

20

22007 A 22001 B 22007 ©
2000 A 2000 2000
1800 - A=, 1800 - o 1800 - -
. Lo
1600 ; % 1600 N 1600 S
AY
= 1400 i . = 1400 7 3 = 1400 " '\
= 1200 - g ' = 1200 A ; 1 = 1200 A ’ v
5 1000 / \ 5 1000 i : 5 1000 / \
@ 1 \ [aa] /3 'I [s] 7 \
O 800 - : ' o 800 - : ) o 800 - ) )
600 - < N 600 - y % 600 - fg s
4004-" 77 s - 400 19 L 4004 ! R
200 s 2009 _ .. & M 2004=--7 "=+,
0 T T T T T T T T T T T T 0 T T T T T T T T T T | T o T T T T T T T T T T T T
13 5 7 9 11 13 15 17 19 21 23 13 5 7 9 11131517 19 21 23 13 5 7 9 11 131517 19 21 23

Hour of day (LT)

Hour of day (LT)

Hour of day (LT)

Figure S3. Diurnal variations of planetary boundary layer height (PBLH) of (A) marine, (B) urban, and (C) unseparated (all) air masses.
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Figure S4. Wind pattern dependence of OA factors. (A) Wind-rose plots of OA factors in urban and marine air masses. Top row: urban.
Bottom row: marine. (B-C) Normalized average mass concentration of OA factors as a function of wind direction in (B) urban and (C) marine
air masses. OOA2 and OOA3 mass concentrations are largely independent of wind direction in urban and marine air masses.
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Figure S5. (A-B) fa3 vs. fs2 and fa3 vs. fo1 for all the PMF factors.
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Figure S7. Correlation of the mass spectrum of OOAL in this study with that of heavy shipping emission organics from Schulze et al.

(2018).
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Figure S8. The sensitivity test of the 1-D box model (Same as Fig. 9 in the main text except that k1, k2, and k3 are set to 2.5x1012, 5x10°13,
and 5x10'* cm? molecule™! 57!, which are 50% lower than base values). (A, B, C) Diurnal variations of observed and modeled OOA3 mass
concentrations in marine (A), urban (B), and unseparated (C) air masses from left to right. (D, E, F) Simulated contributions from different

processes (mixing from aloft, chemical production/loss, deposition loss) and the net change rate of OOA3 within the PBLH in the marine (D),
urban (E), and unseparated (F) air mass from left to right.

19 31 1.29
Marine A Urban B Unseparated C
0.8 1 244
o @ & 091
£ E £
o 0.6+ o 184 /,—— o
2 S S 06
204 2454 2
304 31 o}
g & £ 03
0.2 1 0.6 4
I—Observed —Modeled|
0 T 1 T T 1 T 1 T T 1  § o 1 T 1 T T 1 T 1 T T 1 O T T 1  § T T T 1 T T 1
173 5 7 9 1 13 15 17 19 21 23 13 5 7 9 11 13 15 17 19 21 23 13 5 7 9 1 13 15 17 19 21 23
Hour of Day (LT) ) Hour of Day (LT) Hour of Day (LT)
0.02 7 0.08
— Marine D . Unseparated F
'« 0.014 7 0.06
@ @
i 0+ o £ 0.044
=4 (=2}
=-0.01 —W — = 0.02-
o —&— Mixing from Aloft °
2y 4 : =
20.02- +<D:hem|§§| Production/Loss g 04
Ie) eposition Loss 8
_S 0,03 - —— Net Change_ £ 0.024
dmga,/dt =0 |
T 1 T T 1 T 1 T T 1 T '004 1 T 1 1
1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23

Hour of Day (LT) Hour of Day (LT) Hour of Day (LT)

Figure S9. The sensitivity test of the 1-D box model (Same as Fig. 9 in the main text except that ki, k2, and k3 are set to 7.5x10-12, 1.5x10"
12 and 1.5x10""3 cm® molecule™ s7!, which are 50% higher than base values). (A, B, C) Diurnal variations of observed and modeled OOA3
mass concentrations in marine (A), urban (B), and unseparated (C) air masses from left to right. (D, E, F) Simulated contributions from different

processes (mixing from aloft, chemical production/loss, deposition loss) and the net change rate of OOA3 within the PBLH in the marine (D),
urban (E), and unseparated (F) air mass from left to right.
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Figure S10. The circulation of land-sea/bay breezes increases the time of air mass over land and the fraction of urban air
mass type observed at the ANC site midday. (A) Averaged diurnal variations of wind direction and wind speed over days with
air mass changes during the IOP. (B) Percentage of time spent by the air mass over the land during the 24-hour period before
arriving at the ANC site. The backward trajectories are derived from the diurnal variations of wind direction and speed averaged
over days with air mass changes during IOP (i.e. Fig. S10A). (C-D) Derived backward trajectories at local times (C) 13:00 and

(D) 21:00. ANC site is marked by the cyan star. .



Table S1. Instruments deployed at the ANC site during the TRACER IOP and measurements that are related to this study.

Measurement type Instruments Variable Data available Time resolution
time (Local Time)
Meteorology Vaisala automatic weather ~ Surface wind speed, 05/29/2022- 1 min
station wind direction, air 09/29/2022

temperature, relative
humidity, air pressure

Clouds Ceilometer Planetary boundary layer  06/30/2022- 16s
heights 09/29/2022

Aerosol Aerosol Chemical Chemical compositions 05/29/2022- 10 min
Speciation Monitor of aerosol particles 09/29/2022
(ACSM)
Scanning Mobility Particle  Aerosol size distribution ~ 05/29/2022- 5 min
Sizer (SMPS) 09/29/2022
Condensation Particle Total particle number 05/29/2022- 1 min
Counter (CPC) concentration 09/29/2022




Table S2. Comparison of OA mass spectra with those from earlier laboratory and field studies.
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Table S3. Correlation coefficients R? of OA factors with NO3 and SOs4.

NO; SO4
HOA 0.28 0.07
91FAC 0.58 0.05
isoprene-SOA  0.40 0.36
OO0A1l 042 0.17
O0A2 042 0.24
OO0A3 036 0.25




60 Table S4. Comparison of the mass concentrations of key aerosol components with those reported by prior studies in the Houston region.

Total Org SO4 NH4 NOs3 HOA SOA
Location Air mass 3 3 3 3 3 3 3
(pg'm™) (ug'm™) (ug'm™) (pg'm~) (ug'm™) (pg'm~) (ug'm=)
. Marine 3.55 1.42 1.47 0.50 0.16 0.07 1.29
This study Guy
Urban 9.96 6.58 2.15 0.74 0.49 0.24 5.87
Yoon 2021 Manvel Croix 0.41 3.74
Dai 2019 Sugar Land 3.58 1.7 1.3 0.5 0.08 0.2 1.0
Wallace 2018 Manchester St. 10.8 5.5 2.5 1.3 1.5 0.67 1.93
Marine 3.82 0.7 2.4 0.7 0.02 0.05 0.64
Schulze 2018 Southwest of Galveston
Urban 9.8 7.2 1.9 0.6 0.1 0.16 7.06
Al-Naiema 2018 Houston Ship Channel 2.86 1.14 1.29 0.4 0.03 0.42 0.72
University of
Cleveland 2012 10.9 5.5 4.1 0.9 04 1.7 3.7

Houston
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