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Abstract: The study presents a robust, automated camera gauge for long-term river water level monitoring operating in near 

real-time. The system employs artificial intelligence (AI) for the image-based segmentation of water bodies and the 10 

identification of ground control points (GCPs), combined with photogrammetric techniques, to determine water levels from 

surveillance camera data acquired every 15 minutes. The method was tested at four locations over a period of more than 2.5 

years. During this period over 219,000 images were processed. The results demonstrate a high degree of accuracy, with mean 

absolute errors ranging from 1.0 to 2.3 cm in comparison to official gauge references. The camera gauge demonstrates 

resilience to adverse weather and lighting conditions, achieving an image utilisation rate of above 95% throughout the entire 15 

period. The integration of infrared illumination enabled 24/7 monitoring capabilities. Key factors influencing accuracy were 

identified as camera calibration, GCP stability, and vegetation changes. The low-cost, non-invasive approach advances 

hydrological monitoring capabilities, particularly for flood detection and mitigation in ungauged or remote areas, enhancing 

image-based techniques for robust, long-term environmental monitoring with frequent, near real-time updates. 

1 Introduction 20 

The use of image-based systems has transformed the field of geosciences, offering precise and efficient tools for the monitoring 

and analysis of environmental phenomena. The integration of cameras and photogrammetry in geoscientific research enables 

the continuous collection of real-time data, facilitating the study of dynamic processes and the acquisition of detailed 

information on changes in landscapes and ecosystems. These observation systems have been demonstrated to be particularly 

beneficial in the monitoring of rivers (Eltner et al., 2018; Manfreda et al., 2024), rock and glacier landscapes (Blanch et al., 25 

2023a; Ioli et al., 2023), soil surface (Epple et al., 2025) and vegetation evolution (Iglhaut et al., 2019) among others. They 

offer a robust and less intrusive alternative to traditional methods, and their low cost and straightforward implementation 

(Blanch et al., 2024) make them suitable for deployment in remote or less developed areas, thereby expanding the scope of 

monitored elements and reducing vulnerability to natural disasters. 

 30 

In particular, the utilization of image-based systems for river monitoring offers a number of advantages over the use of 

conventional gauging stations. These include greater flexibility in camera placement, the ability to monitor multiple points of 

a river simultaneously, and reduced costs associated with system installation and maintenance. Additionally, cameras allow 

for data acquisition in adverse conditions and at very short time intervals, providing a comprehensive and uninterrupted 

perspective of riverine fluctuations. These advantages make image-based systems an optimal tool for the management and 35 

study of water resources, thus increasing the capacity to respond to extreme events and facilitating decision-making in water 

management. 
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Monitoring river water levels is a basic but fundamental metric for understanding river behaviour and having this information 

in real time is crucial for managing flood risks. The ability to detect, predict and mitigate the consequences of water level 40 

changes is immensely useful for disaster managers and for minimizing the impacts to the community. Therefore, the 

development of low-cost, automated water level detection systems, i.e., camera gauges, is essential, as they provide accurate 

and continuous data, enabling early warning systems and significantly improving the response to critical events (Manfreda et 

al., 2024).  

 45 

On top of that, the integration of artificial intelligence (AI) in hydrological monitoring, while rapidly advancing, has yet to be 

fully explored for sustained real-time water level detection. The advancement of AI allows the automation of processes related 

to image processing and information extraction, transforming these image-based systems into truly automatic and intelligent 

systems capable of providing valuable results in near real time. In the case of water level detection from images, the use of AI 

has been a step forward, for example by automatically segmenting water pixels in images, evolving the RGB information in 50 

the images into an automatic interpretation of their content, more accurately and faster than traditional computer vision 

methods (Akiyama et al., 2020). 

  

While camera gauges have shown promise, their long-term reliability and performance under varied environmental conditions 

remain challenging. Traditional methods often struggle with continuous operation, particularly during adverse weather 55 

conditions or at night.  The literature discusses various automatic methods for detecting water levels from images. For instance, 

one approach is to install scale bars in the observation area for an automatic measurement based on estimating the contact of 

the water with the scale bar (Kuo and Tai, 2022; Pan et al., 2018). These methods are highly efficient and provide good 

accuracy, but they require intervention in the river to install the scale bar, involving logistical challenges and maintenance 

issues, which limit the system’s versatility and potential for widespread deployment, especially in natural environments. 60 

 

Another approach involves transforming the scale bars into landmarks, which are points present in the image with known 

elevations (e.g., obtained through ground surveys). This approach, known as landmark-based water-level estimation (LBWLE 

by Vandaele et al., 2021), requires identifying these elements in the image and performing interpolation between the two 

elevations. The accuracy of the measurements is directly related to the ability to identify known elevation points in the images, 65 

and the linear interpolation may not correspond to the actual elevation distribution in the images. Another method that does 

not require any field installation is the Static Observer Flooding Index (SOFI) method (Moy de Vitry et al., 2019), which 

detects water level variation based on a direct correlation between the number of pixels segmented as water in each image. 

This method does not provide direct metric values of the water level but does allow the identification of trends during flooding 

events (Vandaele et al., 2021). 70 

 

Other approaches, like the one developed in this article, use the strategy of image-to-geometry registration, which involves 

reprojecting automatically segmented images into 3D models containing metric real-world information. This method, 

extensively discussed by Elias et al. (2019) and Eltner et al. (2018), enables the estimation of water levels as real-world 

elevations by establishing a correspondence between 2D image pixels and their corresponding 3D coordinates in a metrically 75 

scaled model of the environment. 

 

Works based on this approach include Eltner et al. (2021), who laid the groundwork for this study; Zamboni et al. (2025), who 

aimed to estimate water levels using image-to-geometry and by leveraging deep learning segmentation models that minimize 

the need for annotated datasets, lowering the effort and the computational cost of the image water segmentation; Erfani et al. 80 

(2023) who applied the AI and image-to-geometry approach but for a very short time period (sub-daily); and Krüger et al. 
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(2024) who use a low-cost Raspberry Pi-based camera system a to estimate water levels using the approach developed in this 

study in a flash flood environment. Additionally, Elias et al. (2019) developed a smartphone application, "Open Water Levels", 

that utilizes image-to-geometry registration to enable citizen scientists to capture water level measurements using the 

smartphone as a measuring device. 85 

 

However, while the aforementioned studies have shown the potential for hydrological monitoring with cameras, none of them 

address the operational aspects of the system (i.e., long-term use), as they are limited to specific study areas and short-term 

observations. Moreover, these approaches still face certain limitations that are well-known in the image-based systems, which 

primarily concern robustness and adaptability of these methods under challenging environmental conditions and nighttime 90 

observations. The work presented here addresses these challenges by meeting the robustness criteria defined by Peña-Haro et 

al. (2021), as it achieves key properties such as continuous image capture throughout the whole day, applicability across 

different rivers, and the capacity for near real-time data transmission and processing. 

 

To address these challenges, new research is relying on AI solutions to bring robustness to image processing. Object 95 

segmentation in images using convolutional neural networks (CNNs) has become an essential tool in data analysis, especially 

in applications requiring detection of features in natural and urban environments. CNNs are a class of deep learning models 

designed to process grid-like data structures, such as images, leveraging convolutional layers to extract features and patterns 

from the inputs. In the case of image segmentation these networks classify each pixel in an image, identifying different 

elements within the scene (e.g., water bodies in our case). The use of neural networks for image segmentation represents a 100 

significant improvement in results, enhancing the performance of traditional computer vision algorithms (Moghimi et al., 

2024). 

 

Two recent studies have explored the segmentation of water bodies. Wagner et al. (2023) tested 32 neural networks on the 

RIWA dataset – a dataset specifically created to segment water in rivers for monitoring purposes - (Blanch et al., 2023b). 105 

Moghimi et al. (2024) evaluated the performance of six modern neural networks across different datasets, including the RIWA 

dataset. In both works, the U-Net neural network (Ronneberger et al., 2015) was selected as the best-performing model for the 

RIWA dataset. In Wagner et al. (2023), the UPerNet (Xiao et al., 2018) neural network demonstrated a similar accuracy to U-

Net but with a considerable reduction in loss, ensuring higher quality during inference. In line, Wang et al., 2024 have recently 

tried the ResUnet + SAM framework to segment water images (including RIWA dataset) in order to monitor the water level 110 

trend in UK rivers.  

 

In addition to CNNs for water body segmentation, Zamboni et al. (2025) take advantage of the fixed camera systems to evaluate 

the use of Space-Time Correspondence Networks (STCN), treating each image as a new frame in a sequence and identifying 

the difference, thus avoiding the cost of training a specific water body model. They also compare the results using generic 115 

models such as Segment Anything – SAM (Kirillov et al., 2023), showing a notable loss of accuracy with respect to the 

reference. Although these generic approaches offer convenience and cost savings, their accuracy limitations make them 

unsuitable for reliable water level monitoring. Therefore, in this work we employ advanced in-house trained AI models to 

robustly segment water bodies in automatically acquired images. 

 120 

By combining AI techniques – for image segmentation and ground control point detection (GCP) - with established 

photogrammetric methods for image-to-geometry registration, our approach enables consistent and accurate water level 

monitoring over extended observation periods. This study reflects the evolution from initial proof-of-concept testing (Eltner 

et al., 2018, 2021) to the development of an operational system, capable of obtaining results 24/7, even in adverse weather 
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conditions. Our work not only demonstrates the viability of image-based systems but also provides a significant advancement 125 

in very low-cost hydrological monitoring, offering a robust solution that addresses the key challenges of continuous operation 

and reliability in real-world conditions. 

2 Methodology 

2.1 Study area 

This research utilizes images captured at four study sites in Saxony, Germany, within the framework of the KIWA project 130 

(Grundmann et al., 2024). At three of these sites, the camera is situated at gauging stations operated by the Staatliche 

Betriebsgesellschaft für Umwelt und Landwirtschaft, the Saxon state company for the environment and agriculture, enabling 

comparison of the measurements to reference gauges. These three stations are Elbersdorf (ELB) at the Wesenitz river, 

Großschönau 2 (GRO) at the Mandau River, and Lauenstein 4 (LAU) at the Müglitz river. The fourth camera is situated in the 

village of Neukirch (NEU), also at the Wesenitz river. All four cameras are located on tributaries of the Elbe River (Figure 1). 135 

 

Figure 1. Map with the distribution of study sites and camera placement. A) Camera installation at GRO, ELB and LAU 

study sites. B) Images captured by each camera providing a view at the study area. The lower part of the figure shows 

the periods in which data was captured at each study area. 
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The images are captured using surveillance cameras, which provide an integrated solution for capturing images and videos 

and transmitting the data remotely to a server (Figure 1a). At ELB, LAU, and GRO stations, the Axis Q1645 LE camera model 

is used, while at NEU the Q1615 Mk III camera is employed. Both camera types capture images with a maximum resolution 

of 1920x1080, but they differ in pixel size, being 3.75 µm and 2.90 µm, respectively (Table 1). All cameras are equipped with 140 

a zoom lens covering focal lengths between approximately 3 to 10 mm, which enables efficient coverage of the study area 

(Figure 1b).  

 

At all four locations, the cameras are configured to capture a still image every 15 minutes, which is transmitted directly to 

servers. Capturing is continuous throughout the day, resulting in 96 images acquired per day. During this research, a remotely 145 

controlled infrared (IR) light was installed at ELB and LAU stations to illuminate the study area, allowing the cameras to 

capture usable images at night and facilitating 24-hour observation cycles. In contrast, at GRO and NEU stations, night-time 

images are captured but are not usable for water level monitoring. The cameras were installed at the end of 2021 and have 

Figure 2. Graphical workflow for obtaining water level from an AI strategy for segmenting and identifying Ground 

Control Points (GCPs) and image-to-geometry for obtaining metric values of the water level, 
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covered more than 2.5 years of data collection. Table 1 summarizes the characteristics of each location, including installation 

date and images acquired up to June 30, 2024. 150 

 

Table 1. Image acquisition properties for each study area. 

 Reference Camera IR support Number of images 

 River 
HWIMS 

Ref. 
Model 

1st 

acquisition 
Calibration 

IR-

Lamp 
Installation Day 

IR 

Night 
Total 

ELB Wesenitz Yes Q1645 LE 07 Nov 21 3D Model Yes 04 Nov 22 48,759 24,063 72,822 

LAU Müglitz Yes Q1645 LE 16 Dec 21 In field Yes 03 May 23 47,893 17,684 65,577 

GRO Mandau Yes Q1645 LE 17 Feb 22 In field No - 47,109 - 47,109 

NEU Wesenitz No Q1615 Mk III 24 Nov 21 3D Model No - 33,382 - 33,382 

 

2.2 3D Modelling and Camera Calibration 

The first step in the workflow (Figure 2) involves creating a high-resolution 3D model of the study area, covering the river 155 

region monitored by the surveillance cameras. GCPs must be installed within the study area to support photogrammetric data 

processing and to retrieve the position and orientation, i.e., exterior orientation parameters, of the camera. The GCPs must be 

visible in both the 3D model and the still images captured by the gauge cameras. Furthermore, proper distribution of the GCPs 

in the image (covering the outer frame of the image) ensures an accurate estimation of the camera geometry. In this work, the 

GCPs were measured with centimetre accuracy using RTK-GNSS. The 3D models were generated using terrestrial 160 

photogrammetry along with UAV photogrammetry when possible, using the Structure-from-Motion Multi-View Stereo (SfM-

MVS) algorithm (e.g., Eltner and Sofia, 2020; Smith et al., 2016; Westoby et al., 2012), and the resulting model was 

georeferenced with the fixed GCPs as well as additionally placed temporary GCPs that were also measured with RTK-GNSS 

 

Given that the accurate 3D mapping of the river reach, including the riverbed, is crucial in water level measurement, the 165 

PyBathySfM tool (Dietrich, 2017) was employed to apply refraction correction to areas underwater, which is typically not 

considered during standard SfM 3D reconstruction. After correction, a reference Z coordinate in the riverbed of the 3D model 

is selected, serving as the zero height for the water surface (h_kiwa0). When 3D reconstruction of the riverbed via 

photogrammetry is not possible - due to factors such as high-water levels or water opacity - we capture cross-sections using 

RTK-GNSS. In these cases, the underwater area is reconstructed by interpolating these points, resulting in a mesh that directly 170 

represents the elevation (h_kiwa0). This riverbed mesh is subsequently integrated with the SfM model, which captures the 

entire surrounding study area 

 

With both approaches, the h_kiwa0 reference is obtained by averaging the Z coordinates of a square region (e.g. ELB: area 

4.5m2) located in the central part of the river bed, and it may differ from the reference zero height (h_ref0) of the official 175 

gauging stations. To resolve this mismatch, an offset is incorporated into the calculated values (wl_kiwa). This offset is the 

one that minimises the differences with respect to the reference values (wl_ref) across the entire time series, and for the period 

presented in this study, it has values of ELB: -2.0 cm, LAU: -1.0 cm, and GRO: -2.5 cm. 

 

Fieldwork includes camera calibration, i.e., the estimation of the interior camera parameters focal distances, principal point 180 

and distortion parameters. Before installing the cameras on their final mounts, images of a calibration chart were captured from 

different perspectives to avoid parameter correlation during the camera calibration (e.g., Liebold et al., 2023). The interior 

https://doi.org/10.5194/egusphere-2025-724
Preprint. Discussion started: 27 March 2025
c© Author(s) 2025. CC BY 4.0 License.



7 

 

camera parameter estimation was performed using Agisoft Metashape (v2.0.1), incorporating the images of the calibration 

board and the 3D coordinates of the coded targets on the board in a bundle adjustment. In cases where calibration images could 

not be captured (i.e., if the camera was already mounted), an approximate calibration was performed. This involve 185 

incorporating still images from the fixed camera into the bundle adjustment used to create the 3D model of the study area. By 

identifying homologous points between the images used for the 3D modelling and the fixed camera images, we could estimate 

the interior camera parameters for those images. This approach provided a gross calibration file. At stations LAU and GRO, 

the calibration could be performed using the calibration chart, while at ELB and NEU the rough calibration strategy had to be 

used. 190 

Figure 3. Flowchart summarizing the complete process from image acquisition to water level determination. The chart 

outlines the steps from the initial JPG image captured by the camera to the final extraction of water level data. 
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2.3 Image classification and filtering 

Surveillance cameras automatically switch to night mode, producing black and white images instead of the colour images used 

during the day. This change is based on light conditions rather than a fixed schedule. Therefore, the first filtering step involves 

analysing the RGB channel values in three different pixels of the image (Figure 3). If the values of the three channels are equal 

in all three selected pixels, the image is classified as nocturnal. This filter allows us to exclude all night-captured images from 195 

the daytime processing batch. Night images, in the absence of infra-red (IR) light, are not used because the river's visibility is 

incomplete and depends on the ambient light conditions of each scenario. If IR lamps are present, night images are processed 

with the parameters defined for the night images. The next filtering step, applied only to daytime images, involves assessing 

the sharpness of the images. A Sobel filter (> 0.4) is used to determine the average edge detection value of each image. This 

allows to exclude any image from processing that is blurry, out of focus, or where the region of interest (ROI) is not visible 200 

due to adverse weather conditions (e.g., heavy snowfall, fog) (Figure 3). 

2.4 AI Segmentation 

Once the image passes the preliminary filters, we use a CNN to perform image segmentation, i.e., to select the water surface, 

defined by water pixels, and extract it from the background (Figure 2). For this purpose, we tested 32 different CNN 

architectures (Wagner et al., 2023) on the River Water Segmentation Dataset, also known as RIWA (Blanch et al., 2023). This 205 

dataset comprises 1163 daylight images of rivers captured with smartphones, drones, and DSLR cameras, manually labelled, 

as well as river images from the WaterNet dataset (Liang et al., 2020) and AED20K images (Zhou et al., 2019). Part of the 

images used to create the RIWA dataset were also obtained with the KIWA project cameras (22 images, 1.9% of the dataset). 

We found that the CNN architecture with the best performance for segmenting KIWA images was UPerNet neural network 

with the ResNeXt50 (Xiao et al., 2018) backbone for the feature extraction.  210 

 

To improve the training process, the original RIWA dataset is iteratively modified to exclude water images that are significantly 

different from our target scenario and to include more images captured by KIWA cameras (Figure 4). To determine which 

Figure 4. Data used for AI-based segmentation. Green areas represent manually segmented images, while orange/pink 

areas show the results obtained from the model for both daytime and nighttime images. 

https://doi.org/10.5194/egusphere-2025-724
Preprint. Discussion started: 27 March 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

KIWA images to include, an iterative process (Deep Active Learning) is used to select images that are poorly segmented in 

previous training runs (Li et al., 2024). Thus, we include challenging or sensitive images that have not been correctly segmented 215 

before (e.g., bad weather, transparent water, strong shadows over the water) in subsequent trainings. The final dataset used for 

the last training consists of 1,337 images, of which 145 (11% of the dataset) are KIWA images covering various locations, 

weather conditions, and water levels (Figure 4). Similarly, a training dataset is generated for images captured with the infrared 

sensor (Figure 4). The absence of publicly available infrared image datasets limits the creation of a more general and 

transferable dataset, leading to a single dataset of 146 KIWA images, which include various weather conditions and water 220 

levels. 

 

Both datasets are augmented using the Albumentation library (Buslaev et al., 2020), which allows for modifying both the 

original image and the corresponding mask. Data augmentation enables the synthetic creation of larger datasets, resulting in 

more robust training and more transferable results across different locations and conditions. Augmentation, especially based 225 

on geometric modifications, is crucial when working with fixed cameras as it helps to prevent overfitting due to spatial 

correlations. Additionally, pixel-level modifications are applied within a realistic range that ensures no unrealistic colours or 

switches between RGB channels have been introduced, maintaining the natural appearance of the images from our sites. Data 

augmentation was applied after generating all 512×512 patches from each original image in the training dataset, with each 

original patch producing four augmented versions. 230 

 

For training the UPerNet network with a ResNeXt50 backbone in daytime images, we use the FocalLoss cost function and the 

Adam optimizer with an initial learning rate of 0.0001, which is later reduced using the ReduceLROnPlateau algorithm. 

Training is conducted on a NVIDIA GTX A6000, with a batch size of 30 for 1000 epochs. To assess the training metrics, an 

independent evaluation dataset of 30 images is used, 21 of which are KIWA images (70%). This imbalance in the evaluation 235 

dataset is justified because we aim to optimize the model specifically for KIWA images rather than a random distribution of 

available images. The best model obtained for daytime images has a segmentation accuracy of 98.9% of correctly identified 

pixels, while the model obtained for night images has an accuracy of 99.1%. Accuracy represents the proportion of pixels 

correctly classified as river or riverbank relative to the total number of pixels in the image. Once the models are trained, we 

automatically perform image inference (Figure 4), so that every 15 minutes we automatically receive not only the camera 240 

image, but also the mask that identifies the areas corresponding to the river and to the riverbanks. 

2.5 AI GCP Identification  

Although the cameras are installed using fixed mounts, stability of the cameras and sensors during the observation period is 

not given. We detect abrupt and smooth camera movements. These movements, linked to physical disruptions and thermal 

disturbances, result in variations of the 2D image coordinates of the GCPs. Identifying these coordinates with high accuracy 245 

and reliability is important in the performance of the camera gauge (Figure 2). Therefore, the GCPs need to be measured in 

each image every time. 

 

Automatic identification of GCPs in images is addressed differently in the literature, for example, using tracking algorithms 

(e.g., Eltner et al., 2017), feature descriptors like SIFT or SURF (Chureesampant and Susaki, 2014) or geometric shape-fitting 250 

(e.g., Maalek and Lichti, 2021). For this work, we utilize an artificial intelligence-based approach that allows us to directly 

obtain the centre of each GCP. We adapt and retrain the R-CNN Keypoint detector neural network for the automatic 

identification of each GCP's coordinates. This method, extensively explained in Blanch et al. (2025) allows to obtain GCP 

identification with a precision of less than 0.5 pixel, automatically and without any pre- or post-processing of the images or 

results. With the model specifically trained on KIWA images, we develop a robust approach to identify GCPs with good 255 
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transferability and capable of detecting GCPs in scenarios where the other above mentioned detection algorithms fail (Blanch 

et al., 2025a). 

 

If the automatic GCP detection system fails to identify up to four GCPs in the image (e.g., due to occlusion or disappearance), 

the KNNImputer algorithm (scikit-learn) is used to provide an estimated coordinate for the missing GCPs. This algorithm aims 260 

to determine undetected values by searching for nearby images (i.e., images where the GCP coordinates are very similar to the 

current image's GCP coordinates) and assigning the missing values. If our AI-based GCP detector fails to determine more than 

four GCPs, the coordinates from the previous image where all GCPs were correctly identified are automatically assigned. 

2.5 Photogrammetric process 

Once the 2D coordinates of the GCPs are obtained, along with the calibration file (interior camera orientation parameters), we 265 

proceed with the reprojection of the 3D point cloud into the 2D image space (see Elias et al., 2019; Eltner et al., 2018 for more 

explanation) (Figure 2 and 3). The first step is to compute the parameters of the exterior orientation by determining the camera's 

location and orientation by correlating the 2D coordinates of the GCPs with their 3D coordinates in the real world (world 

coordinate system). This is achieved by considering the collinearity constraints to eventually transform points from the real-

world 3D space to the 2D space of the camera. Thereby, the 3D point cloud of the study area is reprojected onto the image 270 

plane, requiring the knowledge about the interior camera parameters besides the exterior geometry. Consequently, each pixel 

in the image that got hit by a reprojected 3D point can be assigned a corresponding 3D coordinate from the world coordinate 

system. The final step involves extracting the contour lines of the water mask that delimits the pixels classified as water by the 

AI segmentation approach and using the nearest neighbour algorithm to find which points in the reprojected 3D point cloud 

are closest to this line. Only the upper contour of the segmented water mask, i.e., the river side opposite to the camera, is used 275 

in this study, and the search for nearby points is limited to a central, cropped area of the point cloud to ensure the usage of a 

reliable part of the 3D model of the river reach.  

 

With the selected points of the 3D point cloud closest to the water line a statistical calculation of the Z coordinates is performed, 

resulting in a median Z coordinate that determines the water surface position (h_kiwa). Finally, by subtracting the reference 280 

elevation and adding the right offset (h_kiwa – h_kiwa0 + offset), the water level (wl_kiwa) is obtained. Additionally, the 

standard deviation of the distribution of Z coordinate values along the intersected points is used as a parameter to estimate the 

quality of the water level measurement. 

 

At the locations with a gauging station (ELB, LAU, and GRO), the wl_kiwa values is compared to the values made available 285 

by the official monitoring network (wl_ref). These reference values are obtained using float operated or bubble gauges 

(redundant measurement system). The reference is a 15-minute average value obtained by averaging measurements in 5-minute 

interval. Since these values, unlike wl_kiwa, do not correspond to the river's current state but to an average of its behaviour 

every 15 minutes, the comparisons to determine the method's accuracy are presented on a daily basis, averaging wl_kiwa and 

wl_ref every 24 hours. 290 

 

Filtering of results and outliers is done on top of the obtained results because the workflow is automatic and was directly 

applied to all images received on the server. Results are filtered based on two statistical criteria. The first is based on the 

standard deviation value of the Z coordinate of the points intersecting with the 3D model. A high dispersion of this value 

indicates that the segmentation boundary is cutting through various Z coordinate levels and hence is incorrect, as we assume 295 

horizontal water behaviour. The second statistical filter criterion is applied to the wl_kiwa results to eliminate potential outliers 
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compared to the wl_ref. We use the modified Tukey filter to identify extreme outliers, utilising two times the interquartile 

range (Q3-Q1). 

3 Results 

The water level detection system processed data ranging from 660 days (22 months) of the NEU camera to 946 days of the 300 

ELB camera (31.5 months). In total, 219,720 images have been automatically processed. Except for the ELB location, images 

have been mostly obtained continuously throughout the observation period. Generally, the utilization rate (images acquired vs 

valid water level measurements) ranges from 86.87% for NEU, where the system captures not usable images at night with the 

daylight sensor, to 99.2% for LAU IR, which is similar to the values at ELB and GRO. Analysing the image processing stage 

by stage revealed that the Sobel filter is crucial for excluding images that are typically corrupted or unable to undergo 305 

segmentation. This is usually due to poor image quality caused by adverse weather conditions (e.g., fog, heavy snow) or low 

light levels (e.g., sunset or sunrise). High ambient light in urban environments (at NEU and GRO) can cause the surveillance 

camera to activate day mode even at night resulting in failed image processing that justify the higher percentage of images 

deleted in this step. The image quality-based filter ensured a workflow success rate (valid images vs water level measurements) 

of over 99% across all locations (Table 2).  310 

 

Table 2. Showing the images passing the filtering and calculation processes. From the images acquired by the camera to the images 

used to calculate a water level. (Night images without IR light are not included in acquired images). The success rate is calculated 

for all images acquired (even in bad weather) and for images that pass the Sobel filter (which are considered valid images). Note 

that no Tukey Filter values are given for NEU due to missing reference at this site. 315 

 

Acquired 

Images 
Sobel Filter 

Workflow 

completed 

St. Dev. 

Filter 
Tukey Filter % of success 

Days Images Images % Images % Images % Images % Acquired Usable 

ELB 946 48,759 48,517 99,5 48,272 99,5 48,018 99,5 47,852 99,7 98,1 98,6 

ELB IR 585 24,063 - - 24,057 99,9 23,520 97,8 23,471 97,8 97,5 97,5 

LAU 927 47,947 47,893 99,8 47,869 99,9 47,857 99,9 47,318 98,8 98,8 98,8 

LAU IR 424 17,684 - - 17,665 99,9 17,614 99.7 17,538 99,5 99,2 99,2 

GRO 864 47,109 46,526 98,7 46,510 99.9 46,118 99,1 44,903 97,3 95,3 96,5 

NEU 660 33,382 30,147 90,3 30,142 99,9 29,001 96,2 - - 86,9 96,2 

 

The obtained water level values from the workflow were filtered based on the standard deviation of the intersected Z 

coordinates (std < 0.1 m) with the percentage of results passing this filter ranging from 96.2% at NEU to 99.9% at LAU. Files 

filtered out at this stage are mainly due to faulty water segmentation in the image or very low water levels leading to 

intersections of the water line with parts of the model that were not well reconstructed (e.g., contact between the riverbed and 320 

slopes). Both cases result in irregular intersections with the 3D model, which implies different Z-coordinates and higher 

dispersion of these values. The final outlier filter (2·IQR; Tukey filter) allowed more than 98.5% of the images to pass through. 

Filtered images at that stage generally correspond to issues in the photogrammetric process (e.g., errors in determining the 

GCPs in the images) resulting in water level measurements significantly different from the reference values (Table 2). 

 325 

Table 3 shows the reprojection errors obtained at each GCP at each study site. The pixel deviations, which are directly related 

to the camera calibration and photogrammetric processing, allow to infer the quality of the fit of the 3D model to the 2D image. 

Note that the GCPs were positioned peripherally in the edges of the images where lens distortions are most pronounced and 

thus more challenging to correct.   

 330 

https://doi.org/10.5194/egusphere-2025-724
Preprint. Discussion started: 27 March 2025
c© Author(s) 2025. CC BY 4.0 License.



12 

 

Table 4 shows the comparison between wl_kiwa and wl_ref. The Mean-Absolute Error (MAE) value represents the mean of 

all absolute differences (
1

𝑛
∑ |𝑤𝑙_𝑘𝑖𝑤𝑎 − 𝑤𝑙_𝑟𝑒𝑓|) and together with the Root-Mean-Square Error (RMSE) is used to estimate 

the deviation of our measurement from the reference. The results are provided in two ways: a) image-by-image (i.e., the 

wl_kiwa measurement from each image is compared with the wl_ref value for the same timestamp) and b) a 24-hour average 

in which all available images for each dataset (could be day, night or all day) are averaged daily to a single value (i.e., wl_kiwa 335 

and wl_ref values are averaged using all night images, and then compared). The comparison is done by averaging the reference 

values for the same timestamps used for the KIWA average. The MAE values, measured for the whole period, range from 1.3 

cm to 2.7 cm in LAU and ELB, respectively, for an image-to-image comparison, and from 1.0 cm to 2.3 cm in LAU and GRO, 

respectively, in the daily average values. For all study areas, the Spearman's coefficient ranges between approximately 0.95 

and 1 indicating a high level of correlation between wl_ref and wl_kiwa. 340 

 

Table 3. Focal distance of each camera and reprojection error, measured in pixels, at each GCP at the different study site. 

 Focal Length GCP 1 GCP 2 GCP 3 GCP 4 GCP 5 GCP 6 GCP 7 GCP 8 Average 

ELB 4,1 mm 11.3 px 17.6 px 20.6 px 20.8 px 16.1 px 20.0 px 15.3 px 18.6 px 17.5 px 

LAU 5.7 mm 8.7 px 2.5 px 6.4 px 8.6 px 8.6 px 7.4 px 5.0 px 3.5 px 6.3 px 

GRO 4.6 mm 19.0 px 15.4 px 39.7 px 30.1 px 36.0 px 28.6 px 33.7 px - 29.0 px 

NEU 6,6 mm 6.2 px 6.3 px 5.2 px 5.3 px 2.8 px 4.4 px 4.4 px - 4.9 px 

 

To check the evolution of the system over time, we calculate the same values for the first 365 days after installing the systems 

(Table 5). The results are less dispersed compared to the entire time series, with a MAE of about 1.5 cm for all locations in 345 

both the image-by-image analysis and the daily averages.  

 

Table 4. Results obtained for the entire time series showing the comparison image by image and the daily average of the official 

values wl_ref and the calculated values wl_kiwa. 

 All-time series 

Location 
Image-by-image 24h average 

MAE RMSE St. Dev ρ MAE RMSE St. Dev ρ 

ELB DAY 2.4 cm 3.2 cm 3.2 cm 0.93 2.3 cm 3.1 cm 3.0 cm 0.95 

ELB IR 3.3 cm 4.1 cm 3.9 cm 0.95 3.1 cm 3.9 cm 3.7 cm 0.93 

ELB TOTAL 2,7 cm 3,4 cm 3,4 cm 0.94 2,3 cm 3,0 cm 3,0 cm 0.95 

LAU DAY 1.3 cm 1.7 cm 1.7 cm 0.97 1.0 cm 1,3 cm 1.3 cm 0.99 

LAU IR 1.3 cm 1.6 cm 1.4 cm 0,98 1,2 cm 1,5 cm 1,3 cm 0,97 

LAU TOTAL 1.3 cm 1.7 cm 1.6 cm 0.97 1.0 cm 1.3 cm 1.3 cm 0.99 

GRO 1,9 cm 2,3 cm 2,3 cm 0.97 1,7 cm 2,2 cm 2,1 cm 0.98 

 350 

Table 5. Results obtained for the first 365 days of each time series showing the comparison image by image and the daily average of 

the official values wl_ref and the calculated values wl_kiwa. All values correspond to daylight conditions 

First Year (365 days) 

Location 
Image-by-image 24h average 

MAE RMSE St. Dev MAE RMSE St. Dev 

ELB 1,6 cm 2,0 cm 2,0 cm 1.4 cm 1.9 cm 1.9 cm 

LAU 1,7 cm 2,0 cm 1,2 cm 1,6 cm 1,8 cm 0,8 cm 

GRO 1.6 cm 2,0 cm 1,9 cm 1,5 cm 1,7 cm 1,7 cm 

 

Figure 5 presents the images generated during the processing at the time of the maximum water level at each location. The 

figure includes the original image captured by the cameras, the re-projection of the 3D model used to calculate the Z coordinate, 355 
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the red line intersecting the model (indicating where the Z coordinate is measured), the identification and re-projection of the 

detected GCPs in the image, and, where available (ELB, LAU, GRO), the comparison with wl_ref. A video animation 

illustrating the water level measurements obtained at the Lauenstein gauging station between December 24 and 31, 2023, is 

available for viewing in Blanch et al., 2025b (link available in the Video Supplement section). 

 360 

Figure 6 illustrates the daily comparison between wl_kiwa and wl_ref for the whole time series. For each location, a subplot 

at the top shows the differences in centimetres for the daily average. The use of colour indicates whether the reference value 

is being underestimated or overestimated compared to the averaged wl_ref. The difference plot shows that the error distribution 

between the wl_kiwa and wl_ref remains randomly stable throughout the observation period, with no clear trend of increase 

or decrease over time in all three locations. The range of difference along the time series is consistent with the results presented 365 

in Table 4, with LAU being the location with the highest accuracy.   

 

The Figure 6 shows identifiable clusters (i.e. periods where the errors are of similar magnitude and direction). These clusters 

can be attributed to various environmental factors affecting the measurements; for example, during the summer months, 

vegetation grows along the riverbanks and occasionally obstructs the monitoring stations until maintenance crews cut the grass. 370 

Another pattern is that, although the differences do not tend to increase with rising water levels, the most significant deviations 

from the reference median are observed during the January 2024 level rises. However, these deviations remain within 

reasonable limits: 4 cm at LAU for a water level of 70 cm, 8 cm at ELB for a water level above 120 cm, and a difference of 7 

cm for water levels above 100 cm.  These deviations may be attributed to differences in the methodologies used for water level 

measurements, as the reference gauges provide averaged water levels over a period, potentially smoothing out rapid 375 

fluctuations typically associated with flood events. 

4 Discussion 

The main contribution of this work is the demonstration of a robust solution for water level measurement using low-cost and 

non-invasive methods. The systems were tested over an extended period at various study sites. The addition of IR lamps has 

Figure 5. Frames of each study area at the time of maximum water level. Each image includes the reprojection of the 3D 

model that is used to calculate the intersection with the water line. In red, the points used for averaging the Z coordinate. 
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addressed one of the primary limitations of visual methods, enabling reliable measurements at night and eventually allowing 380 

for continuous 24-hour monitoring. By integrating AI into the photogrammetric workflow, the system proves to be highly 

robust, functioning effectively also under adverse weather conditions (Figure 7). The utilization rate of images is very high 

(average of 98%), indicating that the system rarely fails to resolve a valid water level. Failures typically occur during periods 

of extremely poor visibility (e.g., fog, heavy snowfall), when the image-based method is not viable due to inadequate 

observation of the water surface (Figure 8ab). 385 

 

Figure 6. wl_kiwa results, averaged daily, obtained at ELB, LAU and GRO and compared with the value of wl_ref. Blue 

colours indicate that the reference value has been overestimated, orange being underestimated. 
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The success in obtaining water level values under adverse weather conditions is due to our iterative training process of the 

neural network for water segmentation in images. We developed a model that can handle a wide variety of situations effectively 

including images that the AI initially struggled to resolve in successive training sessions. It should be noted that KIWA images 

constitute less than 11% of the training dataset, suggesting the model's high transferability. For future installations with 390 

different cameras and environments, we expect that only a small number of manually labelled images will be needed to adapt 

the model to the new site. 

 

The segmentation of images for precise water level measurement presents a significant challenge (i.e., Moghimi et al., 2024; 

Wagner et al., 2023) because it requires precise identification of the interface between the water body and the riverbanks in 395 

the image. This boundary is especially difficult to detect accurately in automatic segmentation processes, since on the one hand 

it is a natural boundary (i.e., waves, water transparency, vegetation), and on the other hand standard metrics such as the 

Intersection over the Union (IoU) or the Dice coefficient, and therefore the most common models, give priority to the precise 

segmentation of the whole object rather than to the precise definition of the contour. In a river context, this delineation is 

especially challenging due to water transparency at the boundaries, which makes clear delimitation difficult even for human 400 

observers. Although we did not employ a contour-centred metric such as the Boundary F1 Score (BFScore), testing various 

neural network models (Wagner et al., 2023) has allowed us to identify the optimum for correct water segmentation, and thus 

obtain water level measurements. 

 

Training with night time images proves to be more feasible and accurate because the contrast between the water and the 405 

background is more pronounced. Additionally, there are no transparency issues due to the high absorption of infrared light by 

water, which simplifies the segmentation process. The precision obtained during training for the best-performing model 

(around 99%) is consistent with the model's performance throughout the entire time series, demonstrating its ability to 

consistently segment the water bodies in most images. Ensuring that the mask intersecting with the 3D model accurately 

Figure 7. LAU images obtained during adverse weather conditions correctly resolved by the workflow. a) daytime image 

captured during snowfall. b) nighttime image captured during rainfall. c) daytime image captured during rainfall. d) 

nighttime image captured during snowfall. In all cases, the calculated WL value is considered valid and passes the 

established filters when is compared against the official reference. 

https://doi.org/10.5194/egusphere-2025-724
Preprint. Discussion started: 27 March 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

 

represents the water boundary at the moment of image acquisition. The results obtained are in line with the ones provided by 410 

Wagner et al., (2023) and Moghimi et al., (2024) in their respective research. 

 

The automatic identification of GCPs in each image prevents the accuracy from deteriorating over the observation period as 

effects by experienced camera movements, e.g. due to thermal effects on the camera (Elias et al., 2020), are mitigated. The 

main issue with the use of GCPs has been their durability in the study areas. Although most remained throughout the 2.5-year 415 

study, some were damaged or displaced during high-flow periods or shaded temporally due to vegetation cover, indicating that 

even with an automated camera gauge, maintenance is necessary. Regarding this maintenance, the difference between table 4 

(whole time series) and table 5 (one year) shows how the error between the KIWA values and the reference is higher the longer 

the time window, and although this difference is multifactorial, undoubtedly the deterioration of the GCPs as well as the age 

of the camera calibration play an important role. Also, maintenance is necessary due to other key factors such as vegetation. 420 

Our results indicate that vegetation significantly impacts deviations to the references by either obscuring GCPs or covering the 

water-shore contact, leading to irregular segmentation. An effective solution involves automatic regeneration of the 3D models 

updating the model to the real riverbank situation; however, a crucial aspect of ensuring the robustness of the method is to use 

measurement areas where the water-slope contact remains unobstructed over time. Figure 6 illustrates how, particularly during 

summer, sudden changes lead to the system underestimating or overestimating values (notably in ELB, July 2023). These 425 

anomalies are related to vegetation changes, with abrupt shifts corresponding to days when landscaping work was performed. 

Conversely, stations like LAU show more stable values and greater accuracy throughout the year, as the water-shore contact 

occurs on a concrete wall, providing greater stability over time. 

 

In addition to the accurate segmentation of water and the identification of GCPs, another crucial element for ensuring good 430 

water level measurement is the proper calibration of the fixed cameras (Figure 8c). This was challenging if the cameras were 

already installed and operational. In our case, we observe that the ELB camera, which was already in operation and calibrated 

approximately (i.e., adding the image into the SfM bundle adjustment), shows slightly different precision compared to LAU, 

Figure 8. Main limitations of our camera gauge. a) and b) images from LAU captured during intense snowfall. Although 

the water level result is correct, the overall AI segmentation is erroneous. c) Image from a study site not presented in this 

work, where camera calibration was not well resolved, thus preventing the application of the image-to-geometry 

algorithm. d) Image from ELB showing vegetation occupying both riverbanks, which affects the delineation of the water 

body and obscures most of the GCPs. 
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where a much more precise calibration was performed (i.e., field board calibration). GRO also underwent field calibration, but 

the use of a very short focal length and the large distance of the ROI to the camera adversely affects precision. During the two 435 

years, the camera calibration files had not been modified. However, assuming a temporal stable interior camera geometry is 

unlikely amongst other due to the influence of temperature changes (Elias et al., 2020). In the future, refining the results will 

require the ability to self-calibrate the camera (i.e., obtaining internal parameters) on-site during the analysis of each image 

(e.g., as done and assessed in Elias et al., 2023).  

 440 

Table 3 illustrates how cameras with shorter focal lengths exhibit greater re-projection errors. This is expected, as they tend to 

have higher distortions, particularly at the edges of the image where the GCPs are located. Nevertheless, the results demonstrate 

that the photogrammetric approach and calibration methods worked sufficiently. Notably, the case of NEU is significant, where 

despite not having undergone field calibration, the re-projection values are comparable to those obtained at LAU. The 

acquisition of GCP coordinates and camera calibration are crucial for achieving accurate exterior camera parameter estimation. 445 

Errors at these steps affect the accuracy of the reprojection of the 3D model into the 2D space and the subsequent extraction 

of the Z coordinates.  

 

The creation of the 3D model using SfM algorithms proved to be effective, particularly during normal and high water levels. 

In urban areas (e.g. GRO and NEU) the models are created using terrestrial cameras only, while at other study sites UAV 450 

images are combined. In both cases, the riverbed has to be corrected for refraction influences. In GRO, a larger offset (i.e., -

2.5 cm) has to be applied to the wl_kiwa to minimise the discrepancy between the references zero heights due to the difficulties 

in accurately modelling the riverbed due to significantly higher water levels on the day of image acquisition. For deep rivers, 

where SfM cannot be applied because the riverbed is obscured, GNSS support for tracing cross-sections is necessary. In 

general, a change in accuracy has been observed when the calculated water level intersects the area of the model that is 455 

underwater, as the reconstruction quality of this zone is lower. Although this is not a critical issue, given that the system's 

primary goal is to detect flooding, we suggest that the 3D model should be generated during periods of lower water levels to 

improve the accuracies. 

 

The intersection of the water body boundaries with the 3D model determines the calculated water level, making precision in 460 

both elements crucial. The standard deviation of the extracted Z coordinates provides an indication of the quality of the 

intersection, as we assume that the intersection should occur at a constant elevation (i.e., the same Z coordinate). Measurements 

with high standard deviation suggest difficulty in estimating a stable Z value, which typically indicates either an erroneous 

segmentation of the water pixels or that the water body-shore contact is not clearly visible in the image (e.g., vegetation 

obscuring the contact, Figure 8d). However, the percentage of results filtered by standard deviation (Table 2) is not high, 465 

demonstrating the robustness of the method. 

 

The application of the Tukey filter based on official reference values has minimal impact on the total number of images used 

and is only applied to remove erroneous values that may have passed through the standard deviation filter. Typically, these 

errors are sporadic and also relate to poor segmentation (i.e., segmentation is performed in tiles that may produce horizontal 470 

lines intersecting constant Z values), poor image visibility (e.g., presence of ice or animals on the camera), or a water level too 

low leading to intersections with the 3D model in areas where reconstruction was not optimal. 

 

Regarding the results obtained, we observe that the precision achieved in LAU is 1 cm in MAE during more than two years of 

observation, indicating a very low average daily deviation from the official reference. This result confirms the roadmap for 475 

future installations, as LAU is a location where the camera was calibrated on-site (i.e., low re-projection error), a moderately 
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large focal length was chosen (i.e., less distortion), and the water-shore contact zone is a concrete wall (i.e., segmentation 

without vegetation) situated at a distance of 15 m to the camera. In contrast, the ELB study site shows a MAE of 2.3 cm during 

946 days of monitoring. This higher error is due to the lack of precise camera's internal parameters combined with a challenging 

water-shore interface often obscured by vegetation, complicating segmentation. Figure 5 clearly shows abrupt changes in the 480 

determination of wl_kiwa, especially in summer, corresponding to vegetation maintenance in the area. This vegetation issue 

for image-based water level monitoring was also described in Eltner et al. (2018) and Peña-Haro et al. (2021). Especially for 

this location, we have found that there are often significant deviations from the official reference because just 100 m upstream 

there is a water mill, which regularly altered the water level in the measurement area in the dm-range within few minutes. The 

official reference gauge averages the water level values every 15 minutes. Thus, every time the mill floodgate is opened or 485 

closed the averaged reference value does not represent the instant water level calculated by the camera gauge. Although we 

tried to minimise these effects using the daily averages, this regular discrepancy adds background noise. Finally, a MAE of 

1.7 cm is obtained at GRO, where, although an on-site calibration was performed, difficulties arise due to the loss of GCPs, 

the width of the river and the distance to the camera (20 m), as well as the use of a wide-angle lens to capture the whole scene, 

which adds complexity to the measurement workflow. 490 

 

Another result demonstrating the need for maintenance (e.g. compute new 3D models, cut the grass, clean the study area, 

reinstall GCPs) and recalibration of the cameras is the evolution of precision over time. During the first 365 days (table 5), the 

precision obtained in LAU, ELB, and GRO is similar, i.e., around 1.5 cm in MAE, representing a benchmark of what can be 

expected from a newly implemented low-cost camera system. However, over time it is not possible to maintain this level of 495 

accuracy. In the case of LAU, the MAE during the whole observation period is lower than during the first 365 days. This is 

due to the fact that the offset that minimises the differences with the reference is calculated for the entire time series, penalising, 

in this case, the first year of observation. 

 

The results obtained represent an advance in accuracy, robustness and duration of observations compared to previous work 500 

also automatically estimating water levels in the same study sites. While Eltner et al. (2021) reported an error of -1.1 ± 3.1 cm 

for their best observation (using smoothing algorithms) at ELB, their best Spearman coefficient was 0.93, which is significantly 

lower than ours. In addition, the values presented by Eltner et al. (2021) showed significant seasonal variability, a problem we 

also noticed but which our AI approach resolved better. The method by Zamboni et al. (2025) requires less computational 

power and avoids model training. However, they sacrifice precision, with mean absolute errors of 2.1 cm in LAU and 2.9 cm 505 

in ELB, and Spearman's correlations of 0.95 and 0.94, respectively. In addition, both papers prioritise methodological 

advances, without considering night-time observations, resilience to bad weather and time-series longevity. Compared to the 

work of Erfani et al. (2023), which covers only few hours of observation, our precision values remain in the same range as 

they obtain a minimum RMSE of 1.5 cm to 2.9 cm for the best observations at the most favourable side of the river.  

 510 

In line with other published works that estimated water levels automatically from images and did not use measuring tapes, the 

results obtained in this study represent an advancement. For example, in Wang et al., 2024., Spearman coefficients range from 

0.87 to a maximum of 0.94 for their best method, which covered an observation period of only two weeks. Vandaele et al., 

2021, who analysed one year of observation, achieved Pearson correlations ranging from 0.94 to 0.96 for their best approach. 

The Pearson correlations obtained in our work ranged from 0.96 at ELB to 0.99 at LAU, in image-by-image comparisons 515 

during a period that was twice as long as the one used by Vandale et al., 2021.  

 

The results of this study are consistent with the German manual for river water level measurements, requiring water levels 

with accuracies below 2.0 cm  as an acceptable systematic error (Bund/Länderarbeitsgemeinschaft Wasser, 2018). The image-
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by-image results obtained during the first year (Table 5) of observation comply with this requirement, including both the MAE 520 

and the RMSE. For the image-to-image results obtained over the entire time series (Table 4), both LAU and GRO consistently 

show results below 2.0 cm in terms of MAE. Only the ELB station revealed an error of 0.7 cm above the required limit. 

However, this error is not due to the methodology but rather to the specific installation site, which could be minimised by 

using a more responsive reference (i.e., that tolerate better rapid stream fluctuations), maintenance and proper and updated 

camera calibration. 525 

5 Conclusion 

This study demonstrated the effectiveness of an AI-enhanced image-based camera gauge for long-term, near real-time river 

water level monitoring. Over a 2.5-year period, our approach was capable to accurately measure water levels with deviations 

below 2.5 cm, achieving Spearman correlation coefficients greater than 0.94 when compared to reference gauges. The usage 

of neural networks for water segmentation and for GCP identification, combined with photogrammetry, allowed for the 530 

automatic processing of a large volume of images, even under adverse weather condition. The installation of IR lamps, 

combined with the surveillance cameras' ability to capture night time images, mitigated one of the major limitations of image-

based methods, i.e., having measurements only during daylight, enabling 24/7 water level measurements. The results 

demonstrated increased inaccuracies over time, highlighting the need for proper maintenance of both the environment (e.g., 

vegetation) and the cameras (e.g., calibration). Future work aimed at minimizing these maintenance requirements, e.g., 535 

regenerating 3D models to adapt to terrain changes and automatically calibrating the cameras, will lead to further 

improvements in measurement quality and robustness. 

Video supplement: The video supplement presents an animation of the water level measurements obtained at the Lauenstein 

gauging station from December 24 to 31, 2023, using the methodology described in this publication. It is accessible in the 

Zenodo repository: https://doi.org/10.5281/zenodo.14875801 (Blanch et al., 2025b). 540 

Data availability: The raw data and source code are not available for public access but can be provided upon request under 

reasonable conditions. The RIWA dataset used for the preliminary training of the dataset can be found in Blanch, X. et al., 

2023. 
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