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Abstract 29 

Global climate models (GCMs) face uncertainties in estimating Earth's radiative budget due to aerosol-cloud interactions 30 

(ACI). Accurate particle number size distributions (PNSDs) are crucial for improving ACI representation, requiring 31 

precise modelling of aerosol sources and sinks. Using a Lagrangian trajectory framework, we examine how clouds and 32 

precipitation influence aerosols during transport, and thereby influence aerosol–cloud relationships in the boreal forest. 33 

Two GCMs, the United Kingdom Earth System Model (UKESM1) and ECHAM6.3-HAM2.3-MOZ1.0 with the 34 

SALSA2.0 aerosol module (ECHAM-SALSA), are complemented with model-derived trajectories and evaluated against 35 

in-situ observations, which are accompanied by reanalysis trajectories. Overall aerosol–precipitation trends are similar 36 

between GCMs and observations. However, seasonal differences emerge: in summer, UKESM1 exhibits more efficient 37 

aerosol removal via precipitation than ECHAM-SALSA and observations, whereas in winter, the opposite is observed. 38 

These differences coincide with key variables controlling aerosol activation, such as sub-grid scale updraught velocities 39 

and PNSDs. For example, in winter, removal of total aerosol mass in ECHAM-SALSA was stronger than in UKESM1, 40 

coinciding with higher activated fractions and larger sub-grid scale updraught velocities in ECHAM-SALSA. For both 41 

GCMs, cloud processing along trajectories increased SO₄ mass, mainly in the accumulation mode, consistent with 42 

observations and model parametrizations. Discrepancies arise more from differences in PNSDs and updraught velocities 43 

than from wet removal parametrizations, an example being the underrepresentation of small particles in UKESM1. While 44 
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our findings are representative of boreal region with predominantly stratiform precipitation, further work is needed to 45 

evaluate their applicability to other regions. 46 
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1 Introduction 47 

Atmospheric aerosol particle concentrations are influenced by their sources and sinks which affect their lifetimes in the 48 

atmosphere, and also play a significant role in our climate system through different mechanisms. One of the most 49 

important mechanisms are aerosol-cloud interactions (ACI), which are still causing the largest uncertainties on the effects 50 

of aerosols on Earth’s radiative budget in global climate models (GCMs, Boucher, 2013; Watson-Parris et al., 2019; 51 

Bellouin et al., 2020; Forster et al., 2021), and therefore partly masking the warming effect by greenhouse gases (Bauer 52 

et al., 2022; Quaas et al., 2022). It is critical, therefore, that the microphysical processes influencing ACIs are well 53 

understood and accurately modelled. To accurately simulate ACI in GCMs, the aerosol number size distributions need to 54 

be correctly described (e.g., Mann et al., 2010). Traditionally, discrepancies in particle size distributions between 55 

observations and models exceed those between modal and sectional approaches, with sectional methods dividing the 56 

distribution into discrete size bins (Mann et al., 2012). However, larger differences in concentrations may emerge when 57 

chemistry of the aerosols is inspected (Laakso et al., 2022). On the other hand, to accurately represent the aerosol number 58 

size distributions, GCMs also need to accurately represent the source and sink processes that act on the aerosol during its 59 

lifetime and transport in the atmosphere. The impact of precipitation on the evolution of the size distribution is very 60 

important (e.g., Browse et al., 2014; Khadir et al., 2023), but remains a major uncertainty in the GCMs. Often, when 61 

GCM parametrizations are assessed the models are evaluated against observations or other GCMs by inspecting 62 

differences in averages of variables (or relationships between multiple variables) over certain time spans (e.g., Blichner 63 

et al., 2024; Gliß et al., 2021; Labe and Barnes, 2022; Maher et al., 2021; Pathak et al., 2023) in a Eulerian perspective. 64 

However, GCM evaluations in which the evolution of aerosols and other variables is followed over both time and space 65 

in more detail using GCM Lagrangian trajectory-based evaluation frameworks that have been recently introduced (e.g., 66 

Kim et al., 2020). Such frameworks pave the way for the development of more rigorous observational constraints on 67 

uncertain physical and chemical aerosol processes for GCM evaluation, by including temporal and spatial information 68 

associated with the air-mass history.  69 

ACIs include scavenging of aerosol particles by precipitation, cloud droplets and ice crystals. Wet scavenging is one of 70 

the most efficient removal routes of particles from the atmosphere (e.g., Ohata et al., 2016; Liu et al., 2020). Wet 71 

scavenging of aerosol particles can be further divided into in-cloud scavenging and below cloud scavenging. Wet 72 

scavenging via in-cloud scavenging involves the loss of aerosol particles when they become activated into cloud droplets 73 

or ice crystals (nucleation scavenging) which can then further collide with interstitial aerosols in-cloud (e.g., Ohata et al., 74 

2016; Seinfeld and Pandis, 2016). Below-cloud scavenging concerns the removal of aerosol by rainfall from the collection 75 

of particles due to collisions with falling raindrops and snow and ice from precipitation (e.g., Ohata et al., 2016). Current 76 

understanding identifies the contribution of in-cloud scavenging, followed by removal via precipitation to be, on average, 77 

the most important sink globally for accumulation mode particles (particle diameter dp ~ 100-1000 nm). Ultrafine (dp < 78 

100 nm) and coarse particles (dp > 1 µm), on the other hand, are more efficiently removed by below-cloud scavenging 79 

(e.g., Andronache, 2003; Textor et al., 2006; Croft et al., 2009; Ohata et al., 2016). In addition to wet scavenging, clouds 80 

can also alter the particle properties through aqueous phase oxidation processes. For example, sulfate production due to 81 

oxidation of gaseous sulfur dioxide inside clouds is considered as one of the most important mass addition processes for 82 

sulfate (e.g., Ervens, 2015 and references therein). Production of organics through aqueous phase processes has also been 83 

reported in some environments (e.g., Ervens et al., 2018; Lamkaddam et al., 2021). 84 
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Investigation of the effects of precipitation and clouds has traditionally been Eulerian, in which local estimates of 85 

precipitation are employed (e.g., Wang et al., 2021). Lagrangian approaches, in which air mass trajectories are exploited 86 

to examine the effects of precipitation on aerosols and their composition as the air masses travel to the receptor location, 87 

have, however, increased in popularity during the recent years (Dadashazar et al., 2021; Heslin-Rees et al., 2024; 88 

Isokääntä et al., 2022; Kesti et al., 2020; Khadir et al., 2023; Tunved et al., 2004, 2013; Tunved and Ström, 2019). These 89 

types of studies can provide significantly more detailed insights by considering the interplay between aerosols, clouds 90 

and precipitation during air mass history, that cannot be achieved using Eulerian approaches. All these studies investigated 91 

how the total accumulated precipitation experienced along air-mass trajectories derived from reanalysis data affects a 92 

particle size distribution measured at a specific receptor site. Tunved et al. (2013), for example, investigated aerosols in 93 

the Arctic (Zeppelin station, Ny-Ålesund, Norway) and observed strong removal of sub-micron particulate mass up to 10 94 

mm of accumulated precipitation. They suggested the in-cloud scavenging (followed by removal via precipitation) is the 95 

dominant removal pathway, as larger particles showed first a decrease in their concentration as a function of accumulated 96 

precipitation during transport, followed by the removal smaller sizes. Kesti et al. (2020) studied aerosols at the humid 97 

tropical monsoon climate in the Maldives, and observed more efficient removal of the accumulation mode particles with 98 

increasing accumulated precipitation, when compared to the smaller particle sizes. Dadashazar et al. (2021) studied sub-99 

tropical environments in Bermuda and concluded that PM2.5 mass experienced the strongest sensitivity to accumulated 100 

precipitation up to 5 mm whereas precipitation exceeding this limit had no major effects on the particulate mass. Khadir 101 

et al. (2023) further reported that precipitation can, in some instances, serve as a source of aerosols. 102 

In addition to the effects of precipitation for aerosols, a previous study by Isokääntä et al. (2022) used relative humidity 103 

(>94%) as a proxy for in-cloud exposure in boreal air masses and found a pronounced increase in sulfate mass in air 104 

masses recently influenced by non-precipitating clouds, while no significant aqueous-phase production of organic aerosol 105 

was observed—likely due to dominant gas-phase biogenic sources. This is consistent with findings from central Sweden 106 

(Graham et al., 2020). These earlier results suggest that sulfate may be more strongly affected by cloud processing and 107 

wet removal than organic aerosol, with removal efficiency likely influenced by factors such as precipitation timing, 108 

aerosol type, and the stage of the air mass trajectory. Our study builds on this by exploring these aspects across multiple 109 

models and observations, employing the GCM Lagrangian evaluation framework presented by Kim et al. (2020). With 110 

this framework air mass trajectories can be obtained from global GCM simulations. This is achieved by co-locating 111 

multiple variables (for example, aerosol size distribution and chemical composition) from the GCMs to air mass 112 

trajectories calculated from the GCM meteorological data (Kim et al., 2020). This methodology allows us to transparently 113 

evaluate and compare the wet scavenging and aqueous-phase processing between the observations and GCMs within the 114 

Lagrangian trajectory framework in unprecedented detail.  115 

This study compares the effects of wet processing (wet removal and aqueous-phase processing) on modelled aerosol size 116 

distributions with long-term observations from Hyytiälä, Finland. Observational trajectories are based on ERA-Interim 117 

reanalysis, while model trajectories are calculated using meteorology data from GCM AMIP-style simulations in which 118 

wind fields were nudged to ERA-Interim. The GCMs used in this study include UKESM1 (United Kingdom Earth System 119 

Model, e.g., Sellar et al., 2019) and ECHAM6.3-HAM2.3-MOZ1.0 with sectional aerosol module SALSA2.0 (hereafter 120 

ECHAM-SALSA, Stevens et al., 2013; Kokkola et al., 2018; Tegen et al., 2019). Both GCMs are part of the Aerosol 121 

Comparisons between Observations and Models (AeroCom) Phase III GCM Trajectory Experiment (GCMTraj) in which 122 

a comparison between the GCMs against reanalysis meteorology was conducted for the years between 2009 and 2013. In 123 

this study the simulations for UKESM1 and ECHAM-SALSA cover the years from 2005 to 2018 which are also available 124 
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from the observations. Comparison between modal (UKESM1) and sectional (ECHAM-SALSA) approaches for 125 

estimating the aerosol microphysics provides additional insight into the model behaviour via this Lagrangian evaluation 126 

approach. The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT; Draxler and Hess, 1998; Stein 127 

et al., 2015) is employed to obtain the backward air mass trajectories. A key difference between our study and previous 128 

work, including Isokääntä et al. (2022), is our focus on stratiform precipitation rather than total precipitation. Stratiform 129 

precipitation is the dominant type in mid- and high-latitude regions (30–60° from the equator and poleward), whereas 130 

tropical regions are typically influenced by convective systems (e.g., Schumacher and Funk, 2023). Since our study area 131 

is primarily the boreal forest region of northern Europe, stratiform precipitation is most relevant. The differing impacts 132 

of precipitation types on aerosols have also been highlighted by Khadir et al. (2023), who showed that recent tropical 133 

precipitation—largely convective—can be linked to downdrafts that transport small particles from higher altitudes to the 134 

boundary layer (see also Franco et al., 2022; Machado et al., 2021; McCoy et al., 2021; Williamson et al., 2019). 135 

The aim of our research can be summarized into two main objectives (1-2): 136 

1. Do the relationships between aerosols and experienced precipitation during transport differ between the 137 

measurements and GCMs and what are the drivers for the observed differences? 138 

2. Do the GCMs exhibit similar increase in sulfate mass due to in-cloud production as the observations and are the 139 

observed effects reasonable when compared to model parametrizations? 140 

We start our investigation in Sect. 2 by first introducing the observational datasets, followed by summarising the GCM 141 

simulations along with details on the air mass trajectory calculations and data co-locations employed in this work. The 142 

aerosol properties at the measurement station (Hyytiälä, Finland) are given in Sect. 3 as a necessary background for the 143 

following Lagrangian analysis. The relationships between precipitation and aerosol mass and number in the Lagrangian 144 

framework are presented first (Sect. 4.1-4.3), followed by a process-chain type evaluation (Sect. 4.4) to understand the 145 

driving forces in the relationships. Finally, in Sect. 5, the effects of aqueous-phase processing are presented, followed by 146 

overall conclusions (Sect. 6) and outlook (Sect. 7).  147 
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2 Data and methods 148 

2.1 Observations at SMEAR II 149 

Observational data used in this study include long-term measurements of aerosol number size distributions and particle 150 

chemistry from SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations in; Hari and Kulmala, 2005) and are 151 

described in detail in Isokääntä et al. (2022) and the references therein. SMEAR II station (Hyytiälä, Finland) is classified 152 

as a rural environment, surrounded by relatively homogenous Scots pine (Pinus sylvesteris) forest. In this work particle 153 

number size measurements (covering particle diameters between 3-1000 nm) obtained with a differential mobility particle 154 

sizer (DMPS, e.g., Aalto et al., 2001) are utilized. Chemical composition (organics, sulfate, and equivalent black carbon) 155 

of the particles in the sub-micron range were derived from an aethalometer (e.g., Drinovec et al., 2015) and aerosol 156 

chemical speciation monitor (ACSM, Ng et al., 2011). The dataset for particle number size measurements spans 2005–157 

2018, slightly shorter than in Isokääntä et al. (2022), to match the GCM simulation period. The ASCM data extends from 158 

2012 to 2018.  159 

2.2 Summaries of the GCMs used in this study 160 

2.2.1 UKESM1 161 

The United Kingdom Earth System Model (UKESM1) configuration used in this study uses the atmospheric and land 162 

components following the protocol set by the Atmospheric Model Intercomparison Project (AMIP, Eyring et al., 2016). 163 

The atmospheric component of the model is based on the Global Atmosphere 7.1 (GA7.1) and the Global Land 7.0 164 

(GL7.0) configurations, as described by Walters et al. (2019). These are part of the Hadley Centre Global Environment 165 

Model version 3 (HadGEM3; Hewitt et al., 2011), which is coupled to the terrestrial carbon/nitrogen cycles (Sellar et al., 166 

2019). It includes interactive stratosphere–troposphere chemistry from the  from the UK Chemistry and Aerosol (UKCA) 167 

model (Archibald et al., 2020; Morgenstern et al., 2009; O’Connor et al., 2014). 168 

Following the AMIP protocol, sea surface temperature and sea ice are taken from the unmodified dataset of Durack et al. 169 

(2017) and horizontally interpolated to the model resolution. In this setup, the dynamic vegetation model  (Cox, 2001) is 170 

turned off. Instead, prescribed vegetation from a historical coupled UKESM1 simulation is used to maintain consistent 171 

land-use forcing between the coupled and AMIP experiments. In a similar fashion, seawater concentrations of dimethyl 172 

sulfide (DMS) and chlorophyll-a monthly climatologies are taken from the coupled historical experiment and are used by 173 

the atmosphere model top calculates fluxes of DMS and primary marine organic aerosol (Mulcahy et al., 2020). 174 

The simulations were nudged to ERA-Interim reanalysis (Dee et al., 2011; Telford et al., 2008) u/v (horizontal and 175 

vertical), wind fields and surface pressure following the setup design for the AeroCom GCMTraj phase III experiment. 176 

The model resolution for these configurations was 1.875∘ × 1.25∘ longitude–latitude, corresponding to a horizontal 177 

resolution of ~135 km in the midlatitudes. The model has 85 vertical levels which are divided such that 50 levels are 178 

between 0 and 18 km and the remaining 35 levels cover heights between 18 and 85 km.  179 

Atmospheric composition within UKESM1 is implemented as part of the UKCA model. Within UKCA, the Global Model 180 

of Aerosol Processes (GLOMAP; Mann et al., 2010; Mulcahy et al., 2020) is used. This scheme simulates multicomponent 181 

global aerosols, including, for example, sulfate, black carbon, and organic matter. The aerosol particle size distribution is 182 

represented using five log-normal modes, nucleation soluble, Aitken soluble, accumulation soluble, coarse soluble and 183 

Aitken insoluble visualized in Figure S1. More details, including the size ranges for each aerosol mode, are presented in 184 
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Sect. S1.1. The GLOMAP model also includes various microphysical processes that affect the evolution of aerosol 185 

properties. Wet scavenging processes in UKESM1, including below-cloud (impaction), in-cloud (nucleation) and plume 186 

scavenging are summarized in Sect. S2 and references therein. As a key difference to ECHAM-SALSA (Sect. 2.2.2) 187 

concerning the aerosol parametrizations, new particle formation in the boundary layer is not  implemented in this version 188 

of UKESM1 (Mulcahy et al., 2020). 189 

For this study the AeroCom GCMTraj UKESM1 simulations (2009-2013) were extended for the period from 2005 to 190 

2018 to facilitate robust statistical comparison with the aerosol size distributions and composition measurements obtained 191 

from SMEAR II. The model output fields were extracted at high temporal resolution (3-hourly output) for all model levels 192 

(when available, otherwise noted as surface). The diagnostics fields utilized in this work (see also Table S4) are aerosol 193 

particle size distribution variables (number concentrations and dry diameters for each aerosol mode), chemical 194 

components including mass mixing ratios of sulfate noted here as SO4 (extracted as sulfuric acid H2SO4 and then 195 

converted, see Sect. S1.1), organic matter (noted here as OA) and black carbon (BC), total (including both liquid rain and 196 

snow) stratiform and convective precipitation at the surface, dry air density, sub-grid scale updraught velocity, number 197 

of activated particles, total precipitation at the surface, relative humidity and cloud fractions. Additionally, from 198 

UKESM1, wet scavenging coefficients (representing removal within the whole atmospheric column) for the different 199 

removal processes (nucleation, impaction and plume) and species (OA, H2SO4 and BC), SO2 concentrations, and both 200 

vertically resolved and surface liquid stratiform precipitation are inspected. These variables and/or variables derived from 201 

them are co-located to the UKESM1 derived HYSPLIT back-trajectories as described in Sect. 2.3. 202 

2.2.2 ECHAM-SALSA 203 

ECHAM6.3-HAM2.3-MOZ1.0 is a global aerosol-chemistry-climate model consisting of the atmospheric general 204 

circulation model ECHAM (Stevens et al., 2013) coupled with the Hamburg Aerosol Model HAM (Tegen et al., 2019) 205 

and chemistry model MOZ (Schultz et al., 2018). For this work, as for UKESM1, simulations follow AMIP style runs 206 

following the AeroCom phase III GCMTraj experiment setup. Therefore, as for UKESM1, the u/v wind fields and surface 207 

pressure were nudged towards ERA-Interim reanalysis data. In addition, the sea surface temperature and sea ice cover 208 

were prescribed based on monthly mean climatologies obtained from the AMIP project (Eyring et al., 2016). The model 209 

solves atmospheric circulation with vertical gridding of 47 layers extending roughly up to 80 km. Model horizontal 210 

resolution for these configurations is 1.875° × 1.875° longitude–latitude. 211 

ECHAM6.3-HAM2.3-MOZ1.0 is paired with the sectional aerosol microphysics model SALSA2.0 (ECHAM-SALSA) 212 

in which the size distribution is divided into 3 subranges (dp1 = 3 – 50 nm, dp2 = 50 – 700 nm and dp3 = 700 nm – 10 µm) 213 

including 10 size classes in logarithmical size space. Subranges dp2 and dp3 include parallel size classes for insoluble and 214 

soluble aerosol species, making the total number of size classes 17 (Kokkola et al., 2018), visualized in Figure S1. More 215 

details of the subranges and their compositions are given in Sect. S1.2. Additional details of the aerosol processes 216 

calculated in SALSA2.0 can be found in Kokkola et al. (2018) and Holopainen et al. (2020). Wet scavenging 217 

parametrizations are summarized in Sect. S2 for below- and in-cloud scavenging. 218 

As for UKESM1, simulations cover the years from 2005 to 2018 for ECHAM-SALSA. Data output is also 3-hourly and 219 

vertically resolved unless the variable is noted as surface variable. The diagnostics extracted from ECHAM-SALSA (see 220 

also Table S4) include aerosol particle size distribution variables (number concentrations and dry diameters for each size 221 

class), chemical components including mass mixing ratios of sulfate (SO4), organics (noted here as OA) and black carbon 222 
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(BC), total (including both liquid rain and snow) stratiform and convective precipitation at the surface, dry air density, 223 

sub-grid scale updraught velocity, number of activated particles, total precipitation at the surface, relative humidity and 224 

cloud fractions. Similar to UKESM1, these variables and/or variables calculated from them are co-located to the ECHAM-225 

SALSA derived HYSPLIT back-trajectories as described in Sect. 2.3. 226 

2.3 Air mass trajectory calculations and data co-location 227 

2.3.1 HYSPLIT 228 

The 4-day (96 h) back trajectories arriving at SMEAR II were calculated by version 5.1.0 of the HYSPLIT (Stein et al., 229 

2015) model for the period from January 2005 to December 2018. The 4-day long back trajectories were used to ensure 230 

consistency with the results from Isokääntä et al. (2022). In addition, this is typically a long enough period for slowly 231 

moving air masses to travel to the boreal environment from high arctic and marine areas. Arrival height of the trajectories 232 

to the receptor station was set to 100 m above the ground level. To obtain the GCM derived trajectories, the meteorological 233 

fields from the GCMs were first converted into a consistent netCDF4 format which was then converted into the ARL 234 

packed HYSPLIT4 compatible format (Kim et al., 2020). The GCM and ERA-Interim (Dee et al., 2011) reanalysis 235 

meteorological datasets required for the HYSPLIT4 trajectory calculations were re-gridded to a consistent 1° horizontal 236 

resolution. The vertical discretization of the GCM variables was provided on terrain-following hybrid sigma-pressure 237 

levels. In UKESM1, however, the native output is on hybrid height levels, which is not supported by HYSPLIT. 238 

Therefore, UKESM1 was output on fixed pressure levels, selected to closely match the ERA-Interim pressure levels.   239 

Trajectories were calculated for every 3rd hour for both reanalysis data and the GCMs, corresponding to GCM output 240 

resolution. This led to 8 trajectories per day, a total of 40896 air mass trajectories between 2005-2018 before applying 241 

any pre-processing and temporal harmonization of the data (Sect. 2.4). Hereafter, when discussing observational data 242 

coupled with the ERA-Interim back-trajectories, those are referred as observations unless mentioned otherwise. It should 243 

be noted that reanalysis data is not interchangeable with observations but is used as a proxy in this study. 244 

2.3.2 Co-location of GCM data along the air mass trajectories 245 

The variables from the GCMs described in Sect. 2.2.1 and 2.2.2 were temporally (time), spatially (latitude, longitude) and 246 

vertically (variables which covered different model or pressure levels) co-located to the GCM derived air mass 247 

trajectories. In short, a co-locator tool (Kim et al., 2020)  based off the Community Intercomparison Suite (CIS, Watson-248 

Parris et al., 2016) was used to co-locate 4-dimensional data which uses hybrid altitude coordinates. As the default 249 

interpolator within CIS has often difficulties co-locating to the near-surface trajectory points (due to surrounding grid-250 

boxes being at the boundaries of the data domain), the modified co-locator provided more flexibility for the interpolation 251 

of these near-surface points. This is relevant also in this work, as for our surface site the trajectories can also travel at low 252 

altitudes. In this improved co-locator, when the linear interpolation in the near-surface trajectories would result into a 253 

missing value, nearest-neighbour interpolation is used instead. Thus, extrapolation of values can be avoided and 254 

information for trajectory points that are within the data domain retained. The co-located GCM data from the air mass 255 

trajectory arrival times, i.e., times when the air mass is located at SMEAR II, are used to represent the conditions at 256 

SMEAR II, facilitating direct comparison to observational data obtained at the site. 257 

A difference to Isokääntä et al. (2022) where the ERA-Interim precipitation internally processed by HYSPLIT onto 258 

trajectories coordinates was used, is that the raw precipitation fields from ERA-Interim are employed in this work by co-259 
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locating them to the air mass trajectories in a post-processing step (as for the variables extracted from GCMs described 260 

above). This approach was chosen to retain the original numerical precision of ERA-Interim (and GCM) precipitation 261 

data, ensuring accurate alignment with co-located GCM variables (e.g., aerosol size distributions and chemical 262 

composition), which HYSPLIT does not provide. Here, “consistency” refers to numerical accuracy rather than matching 263 

data sources. 264 

2.4 Data harmonization between measurements and GCMs 265 

2.4.1 Temporal co-location and data pre-processing 266 

The data from the measurements (1-hourly averages) conducted at SMEAR II was temporally co-located with the ERA-267 

Interim derived back-trajectory arrival times (3-hourly). Additionally, the GCM derived trajectories (3-hourly) were only 268 

co-located with the times when aerosol observations were available. By adopting this approach, only GCM trajectories 269 

corresponding to existing data points in observations were retained and utilized in further analysis. The importance of 270 

temporal co-location for model evaluation is discussed, for example, in Schutgens et al. (2016).  Harmonisation of the 271 

measured aerosol size distribution and composition with the corresponding variables available from the GCMs are 272 

described in Sect. 2.4.2 and 2.4.3. 273 

For consistency with Isokääntä et al. (2022) identical pre-processing is applied here to the in-situ aerosol observations 274 

before the temporal co-location described above. Thus, data points for which the measured wind direction was between 275 

120 and 140 degrees were removed due to possible influence of strong VOC (volatile organic compound) emissions from 276 

the local sawmill (Heikkinen et al., 2020; Liao et al., 2011). In addition, trajectories crossing the area of Kola Peninsula 277 

were excluded as in Isokääntä et al., (2022) due to strong pollution sources within the area (Heikkinen et al., 2020; 278 

Kulmala et al., 2000; Riuttanen et al., 2013). This led to aerosol size distribution data covering the years between 2005 279 

and 2018 (number of final data rows/trajectories: 30688) and aerosol chemical composition for the years between 2012 280 

and 2018 (number of final data rows/trajectories: 6174). Distribution of the data points over the years are shown in Figures 281 

S2 and S3. 282 

2.4.2 Aerosol particle number size distribution 283 

The DMPS (differential mobility particle sizer, e.g., Aalto et al., 2001) observations include 51 size bins in the observed 284 

size range (dp = 3-1000 nm). For UKESM1, complete log-normal particle number size distributions (Seinfeld and Pandis, 285 

2016) were calculated by using the modal parameters (dry diameters, number concentrations and geometric mean 286 

diameters) given by the model. The number size distribution is discretised into the same size grid as the observations i.e., 287 

the bin midpoints are identical to the ones available from the DMPS measurements. This approach was possible as in 288 

SMEAR II the size grid DMPS applies stays constant over the whole investigated period. This harmonization was 289 

conducted for each hour along the air mass trajectories using the co-location approach described in Sect. 2.3.2 as 290 

UKESM1 provided all needed modal parameters for calculation of the full particle number size distributions (PNSD) 291 

along the trajectories.  292 

For ECHAM-SALSA, the number concentrations of soluble and insoluble bins (i.e., size classes) were added together for 293 

each size bin. To make the logarithmic number size distribution comparable to UKESM1 data and DMPS measurements, 294 

the values within each size bin (i) were divided by the logarithm of the maximum size di,max minus the logarithm of the 295 

minimum size di,min  i.e., by log10(di,max)-log10(di,min) for that size bin (see Table S3). Similar to UKESM1, this was 296 
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conducted along the trajectories. For aerosols, ECHAM-SALSA bins ranging from 3.0 nm to 1700 nm in diameter are 297 

studied, as by strictly limiting to sub-micron bins (≤ 700 nm), the largest sub-micron particles (700 nm < dp ≤ 1000 nm) 298 

that do contribute to the total particle mass, would be lost. Sensitivity analysis was conducted including only the sub-299 

micron bins, and none of the conclusions changed.  300 

Integrated variables, such as total number and mass concentrations (for submicron particles) were calculated from the 301 

particle number size distributions by assuming the particles are spherical and have a constant density of ρ = 1.6 g cm-3. 302 

This density corresponds to the average density of particles observed at SMEAR II (e.g., Häkkinen et al., 2012). Again, 303 

these quantities were calculated for each hour (i.e., 96 data points, see Sect. 2.3.1) along every single air mass trajectory.  304 

2.4.3 Chemical composition 305 

Observational data for organic aerosol (hereafter OA) and sulfate (hereafter SO4) was obtained using observations from 306 

ACSM (aerosol chemical speciation monitor, Ng et al., 2011) which is most efficient at measuring particles with ~ 75-307 

650 nm of vacuum aerodynamic diameter, passing through particles up to 1 µm (Liu et al., 2007). For UKESM1, Aitken 308 

and accumulation mode are used in this context by summing the mass mixing ratios (MMR, kg of species per kg of air) 309 

of these modes, including both soluble and insoluble modes when available. Due to the definition of the modes in 310 

UKESM1, these correspond to particle diameters between 10-500 nm (see Sect. S1.1), thus having large overlap with the 311 

size range most efficiently represented in ACSM. The MMRs from UKESM1 and ECHAM-SALSA are converted into 312 

mass concentrations by multiplying the MMRs with the density of the air to facilitate comparisons to chemistry 313 

observations given in the units of µg m-3. Equivalent black carbon (hereafter BC) was measured with an aethalometer 314 

using a cut off diameter of 10 µm (PM10). Due to most of the absorbing particles at SMEAR II being at sub-micron range, 315 

the difference in the BC mass between PM1 and PM10 is only 10 % (Luoma et al., 2019). Therefore, from UKESM1, 316 

Aitken and accumulation modes are also used to estimate the total BC. In addition, to obtain SO4 from H2SO4 (sulfuric 317 

acid) which is the UKESM1 native output, a conversion factor is used (see Sect. S1.1). From ECHAM-SALSA, bins with 318 

diameters ranging from 19.6 nm to 700 nm (see Sect. S1.2) are used to estimate the total sub-micron OA, SO4 and BC, 319 

including again both soluble and insoluble bins. Here, for ECHAM-SALSA, the largest bin of which a portion also 320 

consists of aerosols larger than 1 µm (700 nm < dp < 1700 nm) is not included to ensure consistency with the ACSM 321 

measuring efficiency (which decreases from ~650 nm up to the maximum size of 1 µm). 322 
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3 Aerosol properties at SMEAR II – Eulerian comparison between observations and GCMs 323 

To set the scene and provide context to GCM development since these previous studies (see also e.g., Reddington et al., 324 

2016), a short assessment of the differences and similarities in Eulerian framework between the aerosol observations, 325 

UKESM1 and ECHAM-SALSA at SMEAR II is given here. Airmass transport between ERA-Interim and the GCMs is 326 

first assessed (Sect. 3.1), followed by the aerosol particle number size distributions (Sect. 3.2) and chemical composition 327 

(3.3). This provides the necessary background information to facilitate further comparisons within the Lagrangian 328 

evaluation framework used in this work.  329 

3.1 Comparison of air mass transport between ERA-Interim and the GCMs 330 

To ensure the differences shown in the following sections for the Eulerian analysis are not driven by diverging transport 331 

pathways between the GCMs and ERA-Interim, the airmass transport routes were inspected. The airmass transport routes 332 

in Figure 1 show very similar patterns for ERA-Interim and the GCMs, i.e., the differences are, on average, very small—333 

as expected for simulations in which wind fields are consistently nudged to ERA-Interim reanalysis. Vertical transport 334 

differences exist (Figure S5), which can be attributed to potential temperature not being nudged, which follows standard 335 

practices (Zhang et al., 2014). For this station, however, these differences are relatively small, and the largest differences 336 

are in areas with low frequency of trajectories. Therefore, any observed differences in the analyses presented in the 337 

following sections are unlikely to be dominated by differences in the airmass transport. 338 

 339 

Figure 1 ERA-Interim air mass trajectory frequencies for spring (MAM), summer (JJA), autumn (SON) and winter (DJF) are 340 

shown in the top row. Frequencies for UKESM1 (e-h) and ECHAM-SALSA (i-l) are shown as differences to the ERA-Interim. 341 

Before calculating the differences, the GCM hexagonal grid (150 hexagons in the x-direction) were first regridded to match the 342 

gridding in ERA-Interim. Red cross shows the location of SMEAR II. 343 
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3.3 Aerosol particle number size distributions 344 

In Figure 2 particle number size distributions from the GCMs are compared with observational data at SMEAR II. The 345 

figure reveals that UKESM1 underestimates the number concentration of the small (dp < 50 nm) particles, especially 346 

during summer (Figure 2b, Table S5). This is, however, expected, as the new particle formation from boundary layer 347 

nucleation was not implemented in UKESM1 (Mulcahy et al., 2020). ECHAM-SALSA does have a better representation 348 

of the PNSD of the smaller aerosol particles during spring and summer when compared to observations (Figure 2c), 349 

During warmer seasons, also the absolute number concentrations agree well between observations and ECHAM-SALSA 350 

(see nucleation mode from Table S5). This highlights the importance of NPF from nucleation in the boundary layer, 351 

especially in summer. During winter, however, ECHAM-SALSA does exhibit some overestimation for Aitken mode 352 

aerosols (Figure 2e and Aitken mode from Table S5). 353 

During winter, UKESM1 overestimates larger Aitken and accumulation mode aerosols (dp up to 200 nm) compared to 354 

the observations (Figure 2b and g), but during spring the number concentration of the accumulation mode aerosols is very 355 

close to observations (367 cm-3 in UKESM1 vs 352 cm-3 in observations as shown in Table S5). This is somewhat 356 

surprising considering the missing growth of small particles from NPF into accumulation mode, however, this could 357 

indicate that there are other processes that dominate the accumulation mode. During winter (Figure 2g) the observations 358 

exhibit clear bimodal PNSD peaking around 50 and 200 nm but neither of the GCMs is able to capture this behaviour. 359 

Overall, both GCMs tend to be shifted towards the larger sizes in all seasons (Figure 2d-g), and this effect is slightly more 360 

pronounced in UKESM1. Overall, ECHAM-SALSA better estimates of the peak values of the PNSD, except in winter 361 

(Figure 1g), when it overestimates the particle concentrations at the size range of dp = 50 – 100 nm.  362 

 363 

Figure 2 Particle number size distribution at SMEAR II as medians for the day of the year for DMPS measurements (ground 364 

level) are shown in (a), followed by the differences between the DMPS observations and the GCMs in (b) and (c).  For subplot 365 

(c), the measured size distribution was first regridded to the ECHAM-SALSA bins by integrating between the upper and lower 366 

limit of each ECHAM-SALSA size bins before calculating the difference.  Median PNSDs for each season are shown in (d)-(g) 367 

with shaded areas indicating the 25th and 75th percentiles.  368 
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3.3 Chemical composition of the aerosols 369 

Particle chemical composition as a mass concentration for each chemical species from the composition measurements 370 

and the GCMs at SMEAR II (trajectory receptor location) is illustrated in Figure 3, and the seasonal patterns are typical 371 

for this location. Largest concentration of organic material is present during summer (JJA) and smallest in winter (DJF). 372 

Both GCMs also have pronounced OA concentration during summer compared to the other seasons, and UKESM1 373 

captures the pronounced OA concentrations observed during summer particularly well (median OA 2.0 µg m-3 and 2.2 374 

µg m-3 in UKESM1 and observations, respectively, Table S6). A portion of the small underestimation of the OA 375 

concentrations of the GCMs during spring and summer could, however, be influenced by the height of the observations 376 

as chemical composition measurements are conducted at the surface whereas the GCM data shown here are at the 377 

trajectory arrival point height at the receptor station (100 m.a.g.l.). Scale difference likely also plays a role, as the point 378 

measurements are compared with the GCM grid box values interpolated to air mass trajectories. Monthly data (Figure 3e) 379 

shows the second OA peak for the observations to be in February, as expected based on Heikkinen et al. (2020), and in 380 

ECHAM-SALSA this peak falls on January. UKESM1 peaks in February, but the difference in the concentrations 381 

(compared to observations) between February and January/March is very small. The seasonality of the OA concentrations 382 

presented here for both observations and GCMs also agrees with the results from Blichner et al. (2024) who presented 383 

the same GCMs but for a different time period. Differences in the monthly peak concentration can be observed for BC 384 

too, where observations and UKESM1 peak in February, but ECHAM-SALSA exhibits the largest BC concentrations in 385 

January (Figure 3g). 386 

In general, even though a perfect harmonization of the particle chemical composition data between observations and 387 

GCMs is not achieved (see Sect. 2.4.3), the median concentrations between observations and GCMs agree relatively well 388 

when the overall seasonality is inspected (Figure 3a-d); the concentrations are dominated by OA in all seasons, followed 389 

by SO4 and BC. Inspection of the monthly median concentrations (Figure 3e-g), however, revealed that differences also 390 

exist.  391 

 392 

Figure 3 Average seasonal mass concentration of sub-micron OA, SO4 and BC at SMEAR II from the chemical composition 393 

measurements, UKESM1 and ECHAM-SALSA is shown in (a)-(d). Black horizontal lines show the median and the boxes 394 

extend between 25th and 75th percentiles. Monthly median (lines) concentrations and 25th-75th percentiles (shaded areas) are 395 

presented in (e)-(g).   396 
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4 Lagrangian analysis of overall effects of integral precipitation on aerosols at SMEAR II 397 

In this section we use the Lagrangian framework to investigate the potential wet removal of the aerosols. In Sect. 4.1 we 398 

first examine the impact of using vertically resolved liquid precipitation (UKESM1 only), which has not previously been 399 

done for Lagrangian trajectory analyses. Then we inspect the relationship between accumulated precipitation and aerosols 400 

for the two GCM s used in this study: UKESM 1 and ECHAM-SALSA. In Sect. 4.2 we focus on total aerosol mass and 401 

number, and in Sect. 4.3 we focus on the OA, BC, and SO4 portions of the total mass for submicron-size aerosols. Then, 402 

in Sect. 4.4, the processes controlling the precipitation-aerosol relationships presented in the previous sections are 403 

investigated, and the differences are discussed in detail between the GCMs (Sect. 4.4.1) and within each GCM (Sect. 404 

4.4.2). Supplementary analysis assesses the representability of the models employed here amongst larger group of GCMs 405 

(Sect. S4). 406 

4.1 Assessment of surface vs. vertically resolved precipitation in Lagrangian wet removal 407 

In earlier studies assessing aerosol-precipitation relationships at SMEAR II using the Lagrangian framework (e.g., 408 

Isokääntä et al., 2022; Khadir et al., 2023; Tunved et al., 2013) the vertical position of the trajectories with respect to the 409 

precipitating clouds was not considered. The approach, therefore, does not allow for separation between in-cloud and 410 

below-cloud precipitation scavenging. Instead, it provides us with the overall effect of precipitation (hereafter noted as 411 

wet removal), in which the surface precipitation is used as a proxy for the experienced precipitation by the air mass. This 412 

also means that it could include trajectories that travel above the precipitation, potentially confounding interpretation of 413 

the results.  414 

For this study, the impact of this simplification was examined by extracting the vertically resolved liquid precipitation 415 

from UKESM1, which can be compared to the surface precipitation (see Appendix A). Based on this analysis, it was 416 

possible to conclude (see e.g., Figure A1) that for this station the surface precipitation is a relatively good proxy for the 417 

experienced precipitation by the air mass. Therefore, and to be able to include the effects due to snowfall, which was 418 

unfortunately not extracted with high enough vertical resolution from UKESM1, the surface precipitation is continued to 419 

be used in this study. Vertically resolved precipitation was not available from ECHAM-SALSA. 420 

4.2 Relationship between precipitation and aerosol mass and number concentrations 421 

.The removal of the normalized masses (dp = 3-1000 nm,  Figure 4a) by accumulated stratiform precipitation for 422 

observations and both GCMs exhibit exponential decrease reaching asymptotic behaviour after ~10 mm of accumulated 423 

precipitation (after 5 mm for UKESM1 during summer). Normalization of the median mass/number concentration to the 424 

median value under zero accumulated stratiform precipitation is used in this study. This approach aims to minimize the 425 

influence of differences in the native particle number size distributions (e.g., Figure 1), which affect  total mass and 426 

number concentrations, and instead highlight the removal attributable to precipitation.  427 

For the particle number concentration (dp = 3-1000 nm), there are clear seasonal differences (Figure 4b). ECHAM-428 

SALSA and the observations show clear seasonal differences in particle number removal, with much more efficient 429 

removal in winter than in summer. UKESM1, however, does not display this seasonal contrast—likely because it lacks 430 

boundary layer nucleation, a key source of small particles during summer, which leads to similar particle number 431 

concentrations across seasons. Inspection of the seasonality is relevant, as differences in the relationships could be driven 432 

by different particle size distributions at the station which vary by season due to differences in meteorology (e.g., origin 433 
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of air-masses, temperature and sunlight) along the air mass trajectories. Seasonality also impacts to the type of the 434 

precipitation (liquid vs snow and stratiform vs convective, for example). 435 

Figure 4c shows that the seasonal patterns (e.g., more samples for smaller precipitation values in summer) in the 436 

distribution of accumulated precipitation are similar for both models and observations, thus unlikely to be driving 437 

differences in the aerosol-precipitation relationships. The relationships between the aerosol mass, number, and mean 438 

stratiform rainfall rate along the trajectory (Figure S6a-b) exhibit similar seasonal differences as the relationships in Figure 439 

4a-b. For example, in summer, UKESM1 exhibits the strongest initial reduction for particle mass (Figure S7a). 440 

Observations and ECHAM-SALSA exhibit minimal to no reduction or particle number during summer (Figure S7b), 441 

similar to Figure 4b.Non-normalized mass and number concentrations are shown in Figures S7 and S8. 442 

 443 

Figure 4 Normalized total (dp = 3-1000 nm) particle mass (a) and number (b) at SMEAR II for summer (June, July and August) 444 

and wintertime (December, January and February ) as a function of accumulated stratiform surface precipitation (incl. both 445 

liquid and snow) along the 96 hour long air mass trajectories for observations (DMPS measurements paired with ERA-Interim 446 

trajectories) and GCMs. The coloured points show the median values for each 0.5 mm bin of accumulated precipitation when 447 

the number of trajectories in the bin was 10 or larger. The sample size for each corresponding bin is shown in (c).  448 

4.3 Relationship between precipitation and aerosol chemical composition 449 

The normalized masses of OA, BC, and SO4 in submicron-sized particles as a function of accumulated stratiform 450 

precipitation (including both liquid and snow) for the observations and the GCMs is shown in Figure 5 (see also Figure 451 

S9 showing the same data but grouped differently for easier comparison between the species). The division into warmer 452 

and colder months follows the monthly median temperatures (measured at the site) as in Isokääntä et al. (2022). The 453 
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sample sizes in Figure 5g-h agree well during warmer months between the GCMs. During colder months (Figure 5h) 454 

more differences emerge for the smaller precipitation bins (< 3 mm of accumulated precipitation). 455 

The general patterns between the observations and GCMs are similar for all species—exponential decrease is observed 456 

for the mass concentrations, similar to the relationships between total particle mass and precipitation shown in Figure 4a. 457 

The seasonal differences for the total particle mass (Figure 4a) and the chemical constituents are comparable despite the 458 

different approach used to separate the data into temperature regimes instead of seasons. During the colder months (Figure 459 

5d-f), ECHAM-SALSA exhibits the most efficient reduction for all the three species, as expected based on the reduction 460 

of the total aerosol mass (Figure 4a). During the warmer months (Figure 5-c), UKESM1 tends to show more efficient 461 

reduction than ECHAM-SALSA, the effect being most pronounced for OA. This is in line with the derived reduction of 462 

total particle mass and number during summer shown in Sect. 4.1 (Figure 4a-b), in which ECHAM-SALSA exhibited 463 

stronger reduction during winter and UKESM1 during the summer.  464 

The observational data presented by Isokääntä et al. (2022) showed that the reduction of SO4 due to accumulated total 465 

precipitation in the warmer months was less efficient compared to other species, despite SO4 being highly hygroscopic 466 

and thus relatively easily activated as a cloud droplet. This is relevant also in this study, as the activation into cloud 467 

droplets followed by precipitation is the dominant reduction mechanisms also for the mass of the different chemical 468 

species (discussed in more detail in Sect. 4.4). Similar to Isokääntä et al. (2022), the derived reduction for SO4 is less 469 

efficient (i.e., smaller end concentrations are reached) compared to OA and BC also here for the observations and 470 

UKESM1 (Figure S9a-b), though the differences between species are overall smaller but still statistically significant 471 

(Kruskal-Wallis rank sum test, p < 0.001). For ECHAM-SALSA, the derived removals between OA and SO4 do not differ 472 

(Figure S9c, Kruskal-Wallis rank sum test, p = 0.2) during warmer months, but BC shows more efficient reduction with 473 

the accumulated stratiform precipitation than OA and SO4. This could be arising from the fact that, in ECHAM-SALSA, 474 

all BC is basically in the soluble particles (Figure S10b) but OA and SO4 can reside in the insoluble particles as well.  475 

Isokääntä et al. (2022) hypothesized that the low derived removal efficiency of SO4 during warmer months could be 476 

caused by the species being distributed to different sizes depending on the season. Inspection of the size resolved chemical 477 

composition from the GCMs (Figure S10), however, is not able to fully explain the observed seasonal differences: SO4 478 

in the GCMs is almost completely distributed to the soluble accumulation mode, and the seasonal differences are only 479 

minor. In ECHAM-SALSA, small contribution of insoluble SO4 in the accumulation mode is present, but the difference 480 

between the seasons is small (Figure S10b). Other possible explanations could include, for example (but not limited to), 481 

mixing state (internal/external) of the particles and production of SO4 through cloud processing, which could compensate 482 

for the reduction by stratiform precipitation. 483 
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 484 

Figure 5 Normalized mass concentration for submicron OA, SO4 and BC at SMEAR II as a function of accumulated stratiform 485 

surface precipitation along the 96 hour long air mass trajectories for observations (chemistry measurements paired with ERA-486 

Interim trajectories) and the GCMs for warm (T > 10 °C, (a)-(c)) and cold (T < 10 °ͦC, (d)-(f)) months. The coloured points 487 

show the normalized median values for each 0.5 mm bin of accumulated precipitation when the number of trajectories for the 488 

bin was 10 or larger. The sample size for each corresponding 0.5 mm bin is shown in (g)-(h).  489 

4.4 Process-chain evaluation for understanding the relationship between precipitation and aerosols 490 

To understand the differences between GCMs and observations in Figure 4 and Figure 5, we assess the relative importance 491 

of wet removal pathways. Prior studies (Isokääntä et al., 2022; Tunved et al., 2013; Wang et al., 2021), suggests that in-492 

cloud scavenging, particle activation followed by rainout, is the dominant removal mechanism for submicron particles in 493 

this region. For UKESM1 the relative contributions of the removal types (below-cloud impaction, nucleation followed 494 

by rainout, and plume scavenging) were quantified using median scavenging coefficients along the trajectories (see Sect. 495 

S2). These scavenging coefficients represent the removal within the total atmospheric column, median values along 496 

complete trajectories being 0.040 (JJA) and 0.028 (DJF) moles s-1 for impaction, 0.700 (JJA) and 0.191 (DJF) moles s-1 497 

for nucleation followed by rainout and 0.001 (JJA) and 0.000 (DJF) moles s-1 for plume scavenging.  498 

As shown in Figure 6 for organic aerosol (OA), which dominates the particle mass in SMEAR II, e.g., Heikkinen et al., 499 

(2020), nucleation followed by rainout dominates removal. Similar patterns are seen for SO4 (H2SO4) and BC ( Figure 500 

S11), supporting that in-cloud removal is the main process in this region, consistent with Isokääntä et al. (2022). 501 
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 502 

Figure 6 Relative contributions of the different removal pathways in UKESM1 for OA in (a) summer/JJA and (b) winter as a 503 

function of time from SMEAR II. Impaction refers to the below-cloud impaction scavenging, nucleation + rainout describes 504 

the activation process followed by removal of the particles via the formed raindrops, and plume scavenging is the removal due 505 

to convective clouds. 506 

As noted above, nucleation followed by precipitation-driven removal explains the patterns in Figure 4 and 5. To 507 

understand differences in this process across models, we compare key variables along air mass trajectories related to in-508 

cloud removal. Previous studies (Dusek et al., 2006; Ohata et al., 2016; Partridge et al., 2012; Reutter et al., 2009) have 509 

emphasized the role of sub-grid processes and variables influencing droplet activation, such as particle size and vertical 510 

air motion. We therefore examine how model representations of activation—affected by sub-grid vertical velocities and 511 

aerosol size distributions—influence removal. 512 

Key variables controlling the aerosol activation into cloud droplets (presented in Figure 7a-j shows the number of particles 513 

with diameter > 80 nm (N80) and sub-grid scale vertical velocities (referred as updraught velocities), which control droplet 514 

formation. The accumulation mode particles are likely to activate to cloud droplets (Croft et al., 2010; Partridge et al., 515 

2012), and updraught velocities drive supersaturation needed for activation. The activated fraction (Nact/Ntot) is shown in 516 

Figure 7k-o, and the rainfall rates (at the surface) are presented in Figure S12. In addition, total number (Ntot) and total 517 

mass of the particles (Mtot) at the submicron range, a air mass heights and number of activated particles (Nact) are presented 518 

in Figure S13. Chemical composition, relevant for hygroscopicity and droplet formation, is shown in Figure S15.  519 

Together, these factors determine whether the regime is the aerosol- or updraught limited (Reutter et al., 2009). Figure 4 520 

and Figure 5 showed strong seasonal contrasts, and seasonal differences in N80, updraughts, and activation are also 521 

evident during transport (Figure 7). Section 4.3.1 discusses seasonal characteristics within each GCM, followed by a 522 

model–observation comparison in Sect. 4.3.2. 523 
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 524 

Figure 7 The evolution of the main drivers for the wet removal (nucleation followed by rainout) along the trajectories. The first 525 

row from the top displays the N80 (number of particles for which dp > 80 nm), the second row shows the sub-grid scale updraught 526 

velocities (m s-1), third row displays the activated fraction of particles, and the bottom row shows the corresponding trajectory 527 

frequencies. For the maps, means are calculated for each hexagonal gridbox (grid resolution being 150 in the x-direction) that 528 

the trajectory crosses, and for the rightmost panels, means have been calculated for each hour along the trajectory. For the 529 

updraught velocities and activated fractions, only values when trajectory is in-cloud are shown. 530 

4.4.1 Seasonal differences within each GCM 531 

In UKESM1, the derived removal for the particle mass during summer is clearly stronger, especially up to ~10 mm of 532 

accumulated precipitation, compared to winter (Figure 4a). For the particle number, the differences between summer and 533 

winter are less pronounced, and similar concentrations at the receptor station are reached (Figure 4b) with high 534 
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accumulated precipitation. A seasonal difference in the absolute values of N80 can be observed, the number concentration 535 

being approximately 100 particles cm-3 larger during winter compared to summer (Figure 7e). This difference, wintertime 536 

values being larger, is also seen in Ntot (Figure S13e). As stated in Sect. 2.2.1, the boundary layer nucleation is absent in 537 

UKESM1—a process being especially frequent around SMEAR II during spring and summer (Nieminen et al., 2014). 538 

This is likely the cause for the observed differences in Ntot as the model lacks large portion of the smaller particles during 539 

summer. For the mass, however, the summertime Mtot is larger (Figure S13j). This could imply that UKESM1 has more 540 

numerous medium-sized particles during summer, or, that on average, the particles in summer are larger compared to 541 

winter, thus having larger contribution to particle mass. Figure 2 supports the latter scenario, showing the average PNSD 542 

at SMEAR II peaking at larger particle sizes in summer compared (~200 nm, Figure 2g) to winter (~100 nm, Figure 2i).  543 

The seasonal differences between the updraught velocities in UKESM1 are small, until about 48 hours before arrival 544 

(Figure 7j). After that, the summertime updraught velocities exhibit little to no change, but wintertime updraught 545 

velocities decrease as the air mass travels closer to SMEAR II. These differences relatively close to the receptor station 546 

can be attributed to the geographical distribution of the updraught velocities: close to SMEAR II (across Finland, Sweden 547 

and Norway, for example), the values are larger in summertime (Figure 7f) compared to wintertime (Figure 7h).These 548 

regions coincide with areas of high trajectory frequency, meaning most air masses pass through them. As a result, the 549 

elevated updraught velocities in these regions strongly influence the averages shown in Figure 7j. Activated fractions 550 

differ markedly between seasons (Figure 7o), with nearly half of aerosols activating in summer compared to about one 551 

fifth in winter. These seasonal differences align with the spatial patterns of activated fractions and trajectory frequencies 552 

(Figure 7k, p), showing particularly high values over northern Norway and extending into the Arctic Ocean. During 553 

winter, the activated fractions in this area are much lower (Figure 7m). The Nact, on the other hand, displays minor 554 

differences between the seasons in UKESM1 but is slightly larger in winter. However, considering the fact that N tot in 555 

UKESM1 is much higher in winter (Figure S13e) as mentioned earlier, the larger activated fraction (derived as Nact/Ntot) 556 

in summer is reasonable.  557 

The chemical composition of particles during their travel in UKESM1 (Figure S14a) reveals that overall, during summer, 558 

the mass concentration is completely dominated by soluble modes, whereas in winter, a portion of insoluble OA in the 559 

Aitken mode is also present. Soluble SO4 in the accumulation mode contributes more in winter, but this is greatly 560 

compensated by soluble OA in both Aitken and accumulation modes during summer. If the higher solubility of OA in 561 

summer compensates for the lower SO₄ levels, this could further enhance the particle activation potential in UKESM1 562 

during summer compared to winter. Figure 8 shows the relationship between mean activated fraction and mean updraught 563 

velocity that the air mass experienced before arriving at SMEAR II for the summer and winter. For UKESM1, the 564 

relationship between these two variables is clearly stronger in summer (slope of 2.12, Figure 8a) compared to winter 565 

(slope 0.62, Figure 8b). Therefore, during summer, even a very small increase in updraught could cause a very large 566 

increase in the activated fraction. Due to this, the slightly higher updraught velocities during summer, when the air masses 567 

approach SMEAR II (Figure 7j), could play a major role, eventually also leading to the larger activated fractions during 568 

summer. This, together with the points discussed above, such as the availability of cloud condensation nuclei (CCN), Ntot 569 

and particle chemistry along the trajectories, likely causes the seasonal differences observed in the reduction of particle 570 

mass in Figure 4a. When also considering the missing boundary layer nucleation in UKESM1 as mentioned earlier, lack 571 

of seasonality in the derived removal of total particle number in UKESM1 (Figure 4b) can also be explained. 572 
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ECHAM-SALSA exhibits stronger reduction (i.e., lower concentrations are reached with increasing accumulated 573 

precipitation) during winter than in summer for both particle mass (Figure 4a) and number (Figure 4b). The number of 574 

particles for which 80 nm < dp ≤ 1000 nm (N80) is relatively similar between summer and winter, exhibiting increase from 575 

~300 up to ~650 particles cm-3 as the air mass reaches SMEAR II. During summer, the Ntot in ECHAM-SALSA is clearly 576 

larger compared to winter (Figure S13e). This is expected due to the strong contribution of small aerosols during summer 577 

(e.g., Figure 2c). The total mass (Mtot), however, is relatively alike between the seasons (FigureS13j), which is reasonable 578 

due to the similar contribution of N80 in both seasons, as these particles mostly contribute to particle mass. 579 

The updraught velocities in ECHAM-SALSA exhibit large location-dependent seasonal differences (Figure 7g versus i), 580 

especially over the oceans, where the updraught velocities are larger during winter (Figure 7i) than in summer (Figure 581 

7g). However, overall, the average experienced updraught velocities during the transport are rather similar in magnitude 582 

between the two seasons (Figure 7j). This overall similarity occurs because the frequency of trajectories passing over the 583 

oceans is quite low (Figure 7s) and they therefore do not contribute to the average over all transport directions much. On 584 

average, the updraught velocities increase from ~0.4 m s-1 up to ~0.7 m s-1 as the air masses approach SMEAR II. Slightly 585 

before arrival to SMEAR II (12-36 hours before arrival), difference can be observed in the updraught behaviour: winter 586 

updraught starts decreasing around 36 hours before arrival before increasing again at the 12-hour mark. During summer, 587 

the updraught increases all the way up ~18 hours, after which it steeply decreases and increases again at the same 12-hour 588 

mark as the wintertime updraught. As these differences are taking place relatively close to SMEAR II, it is likely that 589 

they are driven by the seasonal differences in the transport and local conditions very close to SMEAR II. 590 

Activated fractions in ECHAM-SALSA display similar trends along their transport, increasing towards SMEAR II, but 591 

the seasonal difference in the magnitude is approximately 0.1, wintertime values being larger (Figure 7o). This difference 592 

stays nearly constant along the transport. Again, clear seasonal differences within the trajectory transport areas (Figure 7l 593 

and n) can be observed, and as the high activated fractions during winter (Figure 7n) do occur in high trajectory frequency 594 

areas (Figure 7s), they are more clearly reflected in the values when averaged over all transport directions (Figure 7o). 595 

As the seasonal differences N80 in ECHAM-SALSA are negligible, it is unlikely that the number of potential CCN is 596 

driving the seasonal differences in activated fractions and in the aerosol mass-precipitation relationships in Figure 4a. 597 

When the Nact is inspected (Figure S13t), however, somewhat larger number of particles have activated in winter 598 

compared to summer. Thus, when considering the large difference in the total number of particles (Figure S13e), the 599 

displayed differences in the activated fractions (=Nact/Ntot) are reasonable. 600 

In addition to size, the chemical composition of the potential CCN also has an impact to their activation. The composition 601 

of Aitken and accumulation mode aerosols in ECHAM-SALSA (Figure S14b) does reveal, that the particles have 602 

relatively similar soluble accumulation mode SO4 contribution in both seasons. The contribution of soluble OA in the 603 

accumulation mode is slightly larger in summer, but during winter, the smaller contribution from OA (in accumulation 604 

mode) seems to be compensated by larger contribution from soluble BC in the accumulation mode. Thus, the contribution 605 

from soluble modes altogether is relatively similar between the seasons and unlikely causes large differences in the 606 

particle hygroscopicity which could impact activation. 607 

In order to investigate whether the seasonal differences in the activated fractions could also be due to slight differences 608 

in the sensitivity of activation to updraught velocities, we inspected the relationships between activated fractions and 609 

updraught velocities similar to UKESM1. For ECHAM-SALSA, the slope for summer is smaller (slope of 0.18, Figure 610 

8c) compared to winter (slope 0.36, Figure 8b). Thus, during winter, when the updraught increases, the activated fraction 611 
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can increase two times as much compared to summer. Therefore, despite the similar number of potential CCN in both 612 

seasons (N80, Figure 7e), larger portion of those activate during winter, resulting to larger Nact (FigureS13t) and activated 613 

fractions (Figure 7o). All these findings discussed above are consistent with the stronger reduction for particle mass 614 

observed for ECHAM-SALSA in winter (compared to summer) in Figure 4a. During summer, very little to no reduction 615 

is observed for the particle number for ECHAM-SALSA in Figure 4b. The particle number concentration, however, is 616 

dominated by the small aerosols which are unlikely to activate (see also Figure S13e and Figure 2c). Therefore, even with 617 

high accumulated precipitation, no clear reduction is observed in Figure 4b during summer. 618 

 619 

Figure 8 Average experienced activated fraction as a function of average experienced updraught velocity along the trajectories. 620 

Distribution of the values are shown with the histograms. JJA denotes summer (June-July-August) and DJF winter (December-621 

January-February). Each coloured point denotes a median value determined from a single trajectory. The black lines show the 622 

regression line from orthogonal regression applied to the data shown and the legend show the slope, intercept and Pearson 623 

correlation (R) between the fit and the data. Note that the black regression lines extend over the whole plot area only due to 624 

visualization purposes. 625 

4.4.2 Differences between GCMs and observations 626 

Comparing the two GCMs in Figure 4 it is obvious that the seasonality in the aerosol-precipitation relationships is 627 

reversed: UKESM1 exhibits stronger reduction during summer but ECHAM-SALSA in winter. This is unlikely arising 628 

from the differences between the intensity of the precipitation during the travel of the air masses, as those are very similar 629 

between the GCMs (Figure S12a-e) within each season. However, some of the winter differences may also be attributed 630 

to variations in the number of trajectories with specific amounts of accumulated precipitation (Fig. 4c). Observations 631 

show a higher frequency of trajectories with low accumulated precipitation (<2 mm), whereas the models produce slightly 632 

more trajectories with larger precipitation totals. 633 

During summer, UKESM1 has less potential CCN (N80, see Figure 7e) compared to ECHAM-SALSA, and also the 634 

updraught velocities are smaller in UKESM during summer, eventually leading to smaller number of cloud droplets too 635 

(Nact, Figure S13t). Comparison of the contribution of different chemical species in the accumulation (as these sizes have 636 
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larger contribution to the particle mass) mode (Figure S14, top row), however, reveals that UKESM1 has much larger 637 

contribution of the soluble particles. This indicates, that during summer, the particles in UKESM1 have larger 638 

hygroscopicity, and could potentially activate more easily compared to ECHAM-SALSA. However, as the resulting Nact 639 

(Figure S13t) in UKESM1 is smaller than in ECHAM-SALSA, the potentially larger hygroscopicity in UKESM1 particles 640 

do not seem to have significant impact on the droplet formation. When we consider the changes in the PNSD, however, 641 

where UKESM1 has significantly less particles but with larger average size compared to ECHAM-SALSA (which has 642 

more particles but smaller average size) as shown in Figure 2g and Figure S13e, it is sensible that larger activated fractions 643 

are observed for UKESM1 during summer as shown in Figure 7o. The difference in the activated fraction between the 644 

GCMs, however, is somewhat larger than what could be expected based on the differences in Ntot and Nact alone. Thus, 645 

also the relationships between updraught velocities and activated fractions were inspected to gain further insight. This 646 

reveals (Figure 8a and c), that indeed during summer, the slope between activated fractions and updraught velocities in 647 

UKESM1 is significantly larger (slope 2.12, Figure 8a) compared to ECHAM-SALSA (slope 0.18, Figure 8c)—difference 648 

being over 10-fold. This implies that even a small perturbation in updraught velocity in UKESM1 could increase the 649 

activated fraction drastically, resulting in the very high activated fractions observed in Figure 7o, despite UKESM1 having 650 

smaller updraught velocities in general. This could indicate a shift in UKESM1 cloud droplet formation from the 651 

updraught-limited regime to the transitional regime (e.g., Reutter et al., 2009). These findings align with the stronger 652 

reduction of particle mass in UKESM1 as shown in Figure 4a. The reduction of the observed particle mass in summer 653 

lies in-between of the two GCMs, initial reduction (up to 5 mm of accumulated precipitation) being more accurately 654 

represented by UKESM1. 655 

The differences in the summertime reduction of particle number (Figure 4b) likely arise from the lack of boundary layer 656 

nucleation in UKESM1, thus affecting the number concentration of the smallest aerosol particles (see e.g., Figure 2g). As 657 

already discussed in Sect. 4.4.1, in SMEAR II, NPF is an important source of aerosols and the frequency of the NPF 658 

events has significant seasonal variation (Nieminen et al., 2014), summer and spring being most pronounced. Thus, the 659 

reduction of particle number in UKESM1 during summer (Figure 4b) is similar to the reduction of particle mass (Figure 660 

4a), as both are dominated by relatively large aerosols. The summertime reduction of particle number in ECHAM-SALSA 661 

coincides with observations, which is to be expected as the Aitken and nucleation mode aerosol concentrations in 662 

ECHAM-SALSA are much closer to observed data than UKESM1 (Figure 2g and Table S5). 663 

During winter, ECHAM-SALSA exhibits stronger reduction of particle mass compared to UKESM1 after ~5 mm of 664 

accumulated precipitation (Figure 4a). The N80 (Figure 7a-e) is relatively similar between the GCMs, but updraught 665 

velocities (Figure 7j) have large difference: UKESM1 updraught velocities range 0.2-0.4 m s-1, whereas ECHAM-SALSA 666 

has values ranging approximately between 0.5-0.7 m s-1. The higher updraught velocities in ECHAM-SALSA likely lead 667 

to the larger Nact (Figure S14t), thus eventually leading to the larger activated fractions for ECHAM-SALSA along most 668 

of the transport (Figure 7o) due to Ntot being relatively similar between the GCMs (Figure S13e) during winter. It should 669 

be noted, that the difference in activated fractions (Figure 7o) far away from SMEAR II is negligible. However, this 670 

difference drastically increases when air masses travel to SMEAR II: activated fraction in ECHAM-SALSA continues to 671 

increase while UKESM1 fractions stay nearly constant. Thus, it is unlikely that the similar activated fractions far away 672 

from SMEAR II significantly impact the reduction observed in Figure 4a. 673 

Comparison of the particle chemistry in the accumulation mode in winter reveals that the GCMs have (Figure S14, bottom 674 

row) relatively similar fractions of soluble material. UKESM1 tends to have more SO4, but ECHAM-SALSA more soluble 675 
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OA and BC. In ECHAM-SALSA, however, the insoluble modes are not strictly insoluble but rather less insoluble 676 

compared to soluble modes (Sect. S2.3) and can thus also activate. This could lead to larger Nact (Figure S13o) and thus 677 

larger activated fraction (Figure 7o), considering that the difference in Ntot (Figure S13e) between the GCMs is clearly 678 

smaller in winter than what it was in summer. The differences in the relationships between activated fractions and 679 

updraught velocities for the GCMs (Figure 8) are more subtle in winter (UKESM1 slope 0.62, ECHAM-SALSA slope 680 

0.36) compared to the values in summertime discussed earlier. Activated fraction in UKESM1 does exhibit higher 681 

“sensitivity” for updraught velocities, however, due to the much larger updraught velocities in ECHAM-SALSA, this is 682 

likely not enough to increase the activated fraction to the same level, thus leading to less efficient reduction. These 683 

assessments align with the particle mass reductions in winter shown in Figure 4a, where particles at ECHAM-SALSA 684 

reach slightly lower end concentrations with high accumulated precipitation compared to UKESM1. 685 

The differences in the wintertime reduction of particle number (Figure 4b) are less pronounced compared to those in 686 

particle mass (Figure 4a). Initial reduction seems to be more effective on UKESM1, however, after ~5 mm of accumulated 687 

precipitation, the reduction in ECHAM-SALSA becomes stronger These differences between the GCMs, however, were 688 

not statistically significant (Kruskal-Wallis rank sum test, p ≥ 0.01). The observational data exhibits stronger reduction 689 

than the GCMs during winter for the particle number (Figure 4b) up to ~10 mm of accumulated precipitation. After that, 690 

the observations overlap with ECHAM-SALSA. These inconsistencies could also arise from the fact that both GCMs 691 

have difficulties representing the bimodal particle number size distribution correctly during the winter months (Figure 692 

2i). 693 

4.4.3 Additional reasons for inter-model differences 694 

Aside from differences driven by aerosol activation, it is important to note that during both summer and winter, additional 695 

factors can also contribute to the observed differences in the reductions (Figure 4). For example, the differences in the 696 

reduction of the particle mass (Figure 4b) could be influenced by the plume scavenging scheme, a feature only present in 697 

UKESM1 (see Sect. S2.4). In this process, aerosol activate into cloud droplets within the convective updraught and fall 698 

out via the main precipitation shaft of the cumulonimbus (Kipling et al., 2013; Mulcahy et al., 2020). Note that even 699 

though the particle mass is shown as a function of accumulated stratiform precipitation (Figure 4), the air mass trajectories 700 

have experienced convective precipitation too. Thus, removal via nucleation (which is more efficient for larger particles) 701 

followed by rainout in the convective plume, could also contribute. Inspection of the contribution of the precipitation 702 

types reveals that the contribution from the convective precipitation during summer is indeed slightly larger in UKESM1 703 

compared to ECHAM-SALSA (Figure S15). This difference could be reflected in more effective summertime reduction 704 

in the particle mass in UKESM1. Another explanation for the more effective reduction of the aerosols during summertime 705 

in UKESM1 could be arising from the differences in the parametrizations of the re-evaporation of the falling droplets. In 706 

UKESM1, this process is not considered (see Sect. S2.3 and Mulcahy et al., 2020) whereas in ECHAM-SALSA 707 

evaporation of the droplets can occur and thus release the aerosols back to the atmosphere (e.g., Stier et al., 2005). During 708 

summertime, this re-evaporation could be enhanced due to higher temperatures, leading to less effective observed 709 

reduction of aerosols in ECHAM-SALSA compared to UKESM1. However, there can also be other explaining factors, 710 

such as location of the precipitation during travel, emissions and dry deposition, which could also indirectly cause 711 

differences between the models. Quantifying the exact processes from model parametrizations causing the differences 712 

between the observed relationships between aerosol mass and integral precipitation likely requires specific model 713 

sensitivity simulations to investigate this, thus being out of the scope of this study. 714 
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5 Lagrangian analysis on the effects of aqueous phase processing on aerosol chemical composition 715 

In the analysis presented in this section, the relationship between the chemical processing occurring within clouds and 716 

fogs in the aqueous-phase is investigated. A special interest is in aqueous-phase SO4 formation due to its high occurrence 717 

in the atmosphere (e.g., Ervens, 2015; Huang et al., 2019; Liu et al., 2020b). We employ a cloud proxy based on relative 718 

humidity (RH) along the trajectories similar to Isokääntä et al. (2022). To this end, the history of the air mass is 719 

investigated, and if the RH exceeds 94 %, we assume the air mass is in cloud. Further, the air masses were then separated 720 

into “clear sky” in which they had no experience of clouds or precipitation during the last 24 hours, and “in-cloud” when 721 

the RH exceeded 94 % at least at one trajectory point but no precipitation events occurred during the last 24 hours (Table 722 

S7). Only the last 24 hours of the air mass history were considered, as with longer air mass histories (i.e., longer 723 

investigated time) the number of strictly in-cloud trajectories decreases due to increasing possibility for precipitation 724 

events. Sensitivity tests were conducted by adjusting both the RH limit (from 90 % to 98 %) and trajectory length (from 725 

12h to 60h), but they did not affect our conclusions. It was found that the trajectory length adjustment has large effect on 726 

the statistical reliability of the results, hence the investigation is limited to the last 24 hours and thus also stayed consistent 727 

with the previous investigation in Isokääntä et al. (2022). This approach is applied for ERA-Interim reanalysis and for the 728 

GCM trajectories in similar manner.  729 

Reader should also note that UKESM1, ECHAM-SALSA and ERA-Interim do not necessarily have identical definitions 730 

for RH which could impact the results. To acknowledge this, we also investigated how well the RH along the trajectories 731 

actually describes the in-cloud cases by comparing this RH-based proxy to the co-located cloud fraction data from GCMs. 732 

This analysis is presented in Sect. S6, and overall, the cloud events (number of the events and their locations at the 733 

trajectories) from both approaches were similar, leading to similar conclusions as presented in Sect. 5.1 and 5.2 below. 734 

The precipitation used in the classifications here is the total precipitation (including both stratiform and convective 735 

precipitation), as aqueous-phase processes are taking place no matter the cloud type. Relative humidity data is from the 736 

HYSPLIT output instead of using raw GCM/ERA-Interim outputs with manual co-location. This is because UKESM1 737 

was extracted on pressure levels instead of model levels, and the latter were used in this work for the manual co-location 738 

allowing consistency between other variables. The seasonal division applied here is based on the temperature, as in Sect. 739 

4.2. To see whether transport directions and consequently the precursor emissions matter, data is divided into more clean 740 

and more polluted air masses (trajectories visiting latitudes below 60° north assigned to polluted sector as in Isokääntä et 741 

al., 2022). Trajectory frequency maps for these sectors are shown in Figure S16.  742 

In this section, the variation in the total submicron mass of different chemical species depending on the experienced 743 

conditions is first examined and discussed for the GCMs (Sect. 5.1) and reflected to observations. Then, in the next section 744 

(Sect. 5.2), a size-resolved analysis is conducted to determine whether additional insight into in-cloud processing in GCMs 745 

could be provided. 746 

5.1 Effects of in-cloud processing for total submicron aerosol mass 747 

Both observations and GCMs show higher SO₄ mass concentrations for cloud-processed air masses within the “cold and 748 

polluted” (CP) sector (Figure 9), consistent with findings from Isokääntä et al. (2022). This pattern holds despite the 749 

reduced observational dataset due to temporal harmonization with the GCMs (see Sect. 2.4). Other air mass sectors are 750 

shown in the supplementary material (Figure S18). 751 
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Across all air mass sectors, both GCMs agree well with observations, considering expected differences in the total mass 752 

concentrations. Statistically significant increases in SO₄ mass for in-cloud versus clear-sky air masses were found in both 753 

observations and models (p ≤ 0.001, Kruskal-Wallis test; Table S8), except for the warm and clean sector (Figure S17g-754 

f), where no clear difference was observed. As in Isokääntä et al. (2022), this may reflect limited  SO2 availability for 755 

aqueous-phase oxidation in cleaner, warmer air masses. Supporting this, UKESM1 shows the lowest SO2 levels in clean 756 

sectors (CC and WC;Figure S18e), while higher SO2 in polluted sectors (CP and WP) coincide with greater SO4 757 

differences. Recent findings from the Holuhraun eruption (Jordan et al., 2023) also suggest aqueous-phase oxidation 758 

dominates SO₂-to-SO₄ conversion in GCMs. While future increases volcanic activity (Chim et al., 2023), could enhance 759 

SO₂ levels and boost in-cloud SO₄ production, ongoing emission controls may reduce anthropogenic SO₂, potentially 760 

counteracting this effect and influencing aerosol size and composition. 761 

The observations shown here do not exhibit statistically significant differences for OA between the clear sky and in-cloud 762 

air masses in any of the sectors. The median mass of OA in ECHAM-SALSA is larger for the in-cloud air masses for the 763 

cold and polluted sector (Figure 9c and Table S8), but no other sectors exhibit statistically significant differences. 764 

However, this difference in the OA mass in the cold and polluted sector is unlikely due to formation of aqSOA, as the 765 

simulations employed in this study here did not explicitly model the formation of SOA. UKESM1 displays larger 766 

differences in the OA mass, in which most are also statistically different. However, the same applies as for ECHAM-767 

SALSA, i.e., the model simulations do not include the formation of SOA, and thus the differences must arise from other 768 

affecting factors. Both GCMs employ CMIP6 emission datasets as noted in the model setup for AeroCom Phase III GCM 769 

Trajectory Experiment, and thus the differences observed here unlikely arise from varying emissions. One should also 770 

keep in mind that the representations of OA in the GCMs might differ, and especially their relationship with temperature, 771 

relevant driver for SOA formation in general, has been shown to exhibit large structural uncertainties between the GCMs 772 

(Blichner et al., 2024).  773 

Isokääntä et al., (2022) did not observe significant aqueous-phase SOA (hereafter, aqSOA) formation from the 774 

observations and this has also been noted previously (Graham et al., 2020) for similar boreal environment. Formation of 775 

SOA from gaseous precursors dominates this boreal region (see e.g., Petäjä et al., 2022), and thus distinguishing aqSOA 776 

from the total formed SOA with our methodology is challenging. For isoprene-dominated environments, the formation 777 

of aqSOA is a significant source for total SOA burden (e.g., Lamkaddam et al., 2021). Also biomass burning emissions 778 

have been identified as a potential source for aqSOA (Gilardoni et al., 2016; Wang et al., 2024). 779 

It was reported earlier that the observations also suggested increase in the mass fraction of SO4 when the air masses had 780 

been exposed to in-cloud conditions long enough (Isokääntä et al., 2022). To investigate whether similar behaviour could 781 

be observed for the GCMs, we calculated the total time spent under the influence of non-precipitation clouds from the 782 

96h long trajectories. Figure 10 demonstrates slight increases in the mass fraction of SO4 with increasing time spent in 783 

non-precipitating clouds for both GCMs. This, however, is somewhat affected by the data size. If inspecting the GCM 784 

data which is temporally harmonised to the observations (Figure 10a-b), the conclusion is not as obvious compared to the 785 

case were inspecting all available GCM data (Figure 10c-d). This highlights the importance of long enough GCM 786 

simulations needed in this type of Lagrangian analysis utilizing single particle air mass trajectories unless ensemble 787 

trajectories are utilised. 788 
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 789 

Figure 9 Median (black horizontal lines and numerical values) particle mass concentrations at SMEAR II with 25th–75th 790 

percentiles (boxes) for OA, eBC, and SO4 for the cold and polluted (CP) air mass sector. The experienced conditions by the air 791 

mass are denoted as clear sky and in-cloud (non-precipitating). Subplots include (a) SMEAR II + ERA-Interim, (b) UKESM1 792 

and (c) ECHAM-SALSA. 793 

 794 

Figure 10 The mass fractions of OA, SO4, and BC for the more polluted air masses as a function of time spent in in non-795 

precipitating cloud. The top row (a-b) shows the temporally harmonised data and bottom row displays the GCM data without 796 

harmonization. The figure shows mass fractions derived from median concentrations for each 1-hour bin. 797 

5.2 Effects of in-cloud processing for size-resolved aerosol mass 798 

To see whether the observed in-cloud formed SO4 mass in the GCMs (Figure 9b-c) is contributing to same particle sizes 799 

as in the observations reported in Isokääntä et al. (2022), the analysis was repeated here for the GCMs. The observations 800 

indicated SO4 mass originating from aqueous-phase processes is mostly contributing to particles with diameters of 200-801 

1000 nm. Figure 11 shows the particle mass concentrations for various size classes derived from the PNSDs from the 802 

GCMs for the clear sky and cloud processed air masses for the cold and polluted sector. The three other sectors are shown 803 

in Figure S19, and Table S9 shows the results for the GCMs from the statistical significance testing between the clear sky 804 
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and in-cloud groups within each size class. Compared to observations, UKESM1 data (Figure 11a and Figure S19) implies 805 

the mass increase seems to be mostly distributed to bins with dp = 100-350 nm and up to 600 nm in the cold and polluted 806 

and cold and clean sectors. This is likely due to UKESM1 having large concentrations of particles in general within this 807 

size range (see e.g., Figure 2d). Like the observations, UKESM1 does not exhibit any mass increases for any of the size 808 

bins in the warm and clean sector (Figure S19e), being in line with no observed increase in the SO4 mass in the same 809 

sector (WC) between the clear sky and cloud processed air masses (Figure S17h). 810 

ECHAM-SALSA (Figure 11b and Figure S19), exhibits increased mass concentrations for sizes starting from dp = 50 nm 811 

(only in cold and polluted sector) up to 1700 nm, depending on the sector. The largest bin here in ECHAM-SALSA might 812 

also be influenced by dp = 1-1.7 µm particles, which are neither considered in UKESM1 nor in the observations when 813 

inspecting the chemical components (see Sect. 2.4.2). Like UKESM1, ECHAM-SALSA also does not exhibit mass 814 

increases for any of the size bins for the warm and clean sector (Figure S21f). 815 

 816 

Figure 11 Median (black horizontal lines and numerical values) particle mass concentrations with 25th–75th percentiles (boxes) 817 

for selected size bins for (a) observations with ERA-Interim, (b) UKESM1 and (c) ECHAM-SALSA for the cold and polluted 818 

(CP sector). For the latter, the native size bins are shown (bottom row of the legend). The experienced conditions by the air 819 

mass are denoted as clear sky and in-cloud (non-precipitating).  820 

An advantage of the GCMs used in this study is their provision of size-resolved chemical composition, shown as mass 821 

fractions in Figure S20. For UKESM1, increase in the soluble SO4 in the accumulation mode can be observed (Figure 822 

S20a). Due to the model structure, however, the accumulation mode itself consist of a large spread of particle sizes (dp = 823 

100-1000 nm), i.e., internally mixed aerosols with external size modes, thus not providing additional information to our 824 

PNSD based analysis. For ECHAM-SALSA, the original sectional bins can be inspected (Figure S20c) thus 825 

corresponding to the PNSD bins presented in Figure 11b. All size bins that exhibited mass increases in Figure 11b also 826 

exhibit higher mass fraction for SO4 in Figure S20c. 827 

The observed changes in particle number size distributions (Figure 11) reflect the actual model parameterizations. In 828 

UKESM1, SO₄ produced via aqueous-phase chemistry is allocated to the soluble accumulation mode (dp > 100 nm) and 829 

coarse mode (dp > 500 nm) (Mann et al., 2010), with the results here showing increases in the 100–600 nm range. In 830 

ECHAM-SALSA, aqueous-phase SO₄ is distributed across soluble size bins spanning 50–10000 nm (2a bins; see Table 831 

S3, Bergman et al., 2012), with sector-dependent mass increases observed between 50–1700 nm. . In terms of aqueous-832 

phase oxidation of SO2, both GCMs have similar parametrizations, and for example, oxidation of SO2 by ozone (O3) and 833 

hydrogen peroxide (H2O2) is considered in both (Bergman et al., 2012; Hardacre et al., 2021). 834 
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6 Conclusions 835 

In this study we investigated the effects of stratiform precipitation (wet removal) and clouds (aqueous-phase oxidation) 836 

on submicron aerosols along air mass trajectories. Two global climate models—UKESM1 and ECHAM-SALSA—were 837 

analysed using a Lagrangian framework consistent with Isokääntä et al. (2022), now being seamlessly applicable to GCMs  838 

(Kim et al., 2020). Our geographical focus was the SMEAR II station in Hyytiälä, Finland, and the surroundings, 839 

representative of the boreal environment.  840 

Our first objective was to investigate whether the trajectory-based relationships between aerosols mass, number and 841 

precipitation vary between the observations and the GCMs. For aerosol mass, the derived removal for observations 842 

generally fell between those simulated by ECHAM-SALSA and UKESM1 across seasons. This indicates that both models 843 

captured the observed mass–precipitation relationship for total aerosol and individual species (OA, SO₄, BC). In contrast, 844 

aerosol number revealed clear model biases that varied by season. In summer, UKESM1 exhibited a pronounced loss of 845 

particle number via precipitation compared to both observations and ECHAM-SALSA. This bias likely stems from the 846 

absence of boundary layer nucleation, which produces fewer small particles and leaves a larger fraction of particles 847 

susceptible to wet removal.  848 

Key variables influencing the wet removal processes, such as number of potential cloud condensation nuclei (N₈₀) and 849 

updraught velocities, were also examined to evaluate the observed removals. In UKESM1, a strong summer correlation 850 

between activated fraction and updraught velocity (Fig. 8) may further increase particle number removal. However, 851 

analogous study examining droplet number/CCN versus updraught (Virtanen et al., 2025) show substantial variability 852 

across models, highlighting that the relationship. In winter, both models overpredicted particle number removal relative 853 

to observations. This overprediction may in part reflect differences in precipitation statistics, with models simulating 854 

fewer low-precipitation trajectories (<2 mm) than observed (Fig. 4c). However, other factors such as particle size 855 

distributions, activation efficiencies, and limitations in the representation of subgrid-scale meteorology are also likely to 856 

contribute.  Overall, our results emphasize the need for better representation of particle number size distributions (PNSDs) 857 

in GCMs. 858 

Earlier work has indicated that aerosol activation into cloud droplets followed by rainout is the dominant wet removal 859 

process. Our results support this, with UKESM1 showing nucleation followed by rainout as the largest contributor. 860 

Supplementary analysis comparing a wider ensemble of GCMs indicated that these two models were broadly 861 

representative, with their aerosol–precipitation relationships generally falling near the middle of the inter-model spread. 862 

Overall, our method using normalized submicron mass and number as a function of accumulated precipitation proved to 863 

be effective in comparing removal across models, though it lacks details on particle size evolution—an important topic 864 

for future work. 865 

Earlier studies (Isokääntä et al., 2022; Khadir et al., 2023) have noted that surface precipitation data, commonly used in 866 

trajectory analyses, may not accurately reflect precipitation experienced by air masses at trajectory height. Here, we used 867 

vertically resolved precipitation from UKESM1 and found that surface precipitation serves as a good proxy in this 868 

environment, where trajectories largely remain within the mixed layer and stratiform precipitation dominates. However, 869 

this analysis only considered liquid precipitation and may not apply to regions where convective precipitation is more 870 

prevalent. In such environments, the vertical distribution, intensity, and frequency of precipitation could differ 871 

substantially, potentially altering the accumulated wet removal along trajectories. Therefore, while our results are 872 
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representative of boreal regions with stratiform precipitation, further work is needed to assess how applicable they are to 873 

regions with different precipitation regimes. 874 

Our second objective was to investigate whether the GCMs exhibit similar increase in sulfate mass due to in-cloud 875 

production as the observational data. Both GCMs exhibited statistically significant difference in the SO4 mass when air 876 

masses with only clear sky experience were compared to in-cloud processes air masses. The SO4 mass was larger for the 877 

cloud processed air masses for all other air mass sectors (based on temperature and direction) except the warm and clean 878 

air masses, where GCMs showed no significant difference between clear sky and in-cloud air masses. These results were 879 

consistent with earlier work (Isokääntä et al., 2022). Availability of the SO2 to be oxidised is likely determining whether 880 

we see in-cloud production of SO4, and from UKESM1 this was further supported by theSO2 concentrations and their 881 

seasonality. The size-resolved analysis reflected the model parametrizations, the aqueous-phase SO4 being mostly 882 

distributed in the larger aerosol sizes.  883 

As expected based on Isokääntä et al. (2022), we did not observe significant aqueous-phase SOA formation. This is likely 884 

due to the studied environment (boreal forest), and has also been noted previously (Graham et al., 2020) for similar boreal 885 

forest environment. However, some increases in OA mass were seen in the GCMs despite the fact that aqSOA formation 886 

was not explicitly modeled, possibly reflecting other processes or model inconsistencies.  A recent study from Blichner 887 

et al. (2024) also pointed out the large differences between GCMs concerning their OA-temperature relationships, which 888 

could also contribute to the discrepancies observed here. 889 

Overall, both GCMs reproduced the observed exponential decrease in aerosol mass with increasing precipitation and 890 

showed similar cloud-processing behaviour for SO₄. Yet key seasonal differences remain, especially in aerosol–891 

precipitation relationships and their underlying drivers. A primary model bias identified in this study is the difference in 892 

aerosol number size distributions compared to observations, particularly the underrepresentation of small particles in 893 

UKESM1. Our results suggest that discrepancies arise more from differences in aerosol size distributions and updraught 894 

velocities than from the wet removal parametrizations themselves. These variables also affect activated fractions and 895 

cloud interactions, and they are shaped by processes beyond the 4-day analysis window. 896 

 897 
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7 Outlook 898 

While our results show encouraging agreement between observations and GCMs in overall aerosol–precipitation 899 

relationships, key differences—especially related to seasonality and aerosol number—highlight the need for further work. 900 

Future studies should investigate the evolution of aerosol size distributions along air mass trajectories in more detail and 901 

better disentangle gas-phase and aqueous-phase sulfate formation. Expanding analyses to regions with dominant 902 

convective precipitation is also important, as the findings here are limited to stratiform, liquid-phase conditions typical of 903 

boreal environments. Including a wider range of GCMs, despite the computational demands, would help clarify the 904 

structural causes behind the differences observed. Together, these efforts are essential for improving the representation 905 

of aerosol–cloud–precipitation interactions in climate models.  906 
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Appendix A  907 

The lack of vertical resolution in the precipitation data from ERA-Interim reanalysis or Global Data Assimilation System 908 

(GDAS, (http://ready.arl.noaa.gov/archives.php, last access: 3.2.2024) in studies using Lagrangian approaches is now 909 

being recognised (Dadashazar et al., 2021; Isokääntä et al., 2022; Khadir et al., 2023). Unfortunately, vertically resolved 910 

precipitation data from reanalysis datasets or GCMs, with high enough time resolution to be useful for trajectory models, 911 

is not a commonly provided diagnostic. For UKESM1, this diagnostic can be extracted. Here, we conducted a comparison 912 

between the vertically resolved and surface precipitation data along the air mass trajectories to investigate how well the 913 

surface precipitation describes the actual experienced precipitation by the air mass. Only liquid (stratiform) precipitation 914 

is inspected, as vertically resolved snowfall was not included in the variable extraction with high enough vertical 915 

resolution for this model run.  916 

We first inspected the relationship between the normalized particle mass and number with the accumulated stratiform 917 

precipitation, similar to Figure 4. This assessed whether aerosol–precipitation relationships differ between surface and 918 

vertically resolved precipitation. Displayed in Figure A1, the results indicate the effects of stratiform precipitation at the 919 

height of the air mass are similar to the effects of stratiform precipitation at the surface. This is likely related to the average 920 

altitude of the air masses, as for SMEAR II they tend to travel well below the top of boundary layer. 921 

 922 

Figure A1 Normalized total (dp = 3-1000 nm) particle mass (a) and number (b) at SMEAR II for summer (JJA) 923 

and wintertime (DJF) as a function of 0-25 mm of accumulated liquid stratiform precipitation along the 96-hour 924 

long air mass trajectories at the height of the air mass (referred as 3D) and at the surface (referred as 2D) for 925 

UKESM1. The coloured points show the median values for each 0.5 mm bin of accumulated precipitation when 926 

the number of trajectories in the bin was 10 or larger. The sample size for the corresponding bins is shown in (c).  927 

To investigate whether the height of the air mass plays a role, as speculated in Isokääntä et al. (2022), the air mass 928 

trajectory altitudes were clustered with Kmeans (e.g., Hartigan and Wong, 1979) and 3 clusters with distinct height 929 

http://ready.arl.noaa.gov/archives.php
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profiles were selected for further analysis. Clustering each season separately provided similar height profiles as clustering 930 

of the whole data, and thus the latter approach is presented. 931 

Figure A2 shows the median altitudes of the clusters and the corresponding mean stratiform rainfall rates. Overall, the 932 

mean rainfall rates show similar values despite the precipitation diagnostic. In the low-altitude cluster (Figure A2d), 933 

overall highest rainfall rates (mean over all trajectories and hours for surface precipitation, ~ 0.033 mm h-1) are observed. 934 

In the mid-altitude cluster, rainfall rates are smaller (~ 0.016 mm h-1) compared to the low-altitude cluster, and in the 935 

high-altitude cluster, the rainfall rates are the smallest (~0.010 mm h-1). In the high-altitude cluster (Figure A2f) more 936 

differences emerge between the two precipitation types, especially afar from SMEAR II. 937 

 938 

Figure A2 Clusters based on air mass trajectory altitudes for UKESM1. In (a)-(c) the black lines show median trajectory 939 

altitude as a function of time from SMEAR II and 25th to 75th percentiles are shown with the shaded area. The used arrival 940 

height at SMEAR II given to HYSPLIT is indicated with blue horizontal line. The corresponding mean rainfall rates are shown 941 

in (d)-(f). Clusters are named based on the maximum altitude the trajectory has resided during the last 4 days. Note the different 942 

y-axis limits in subplots (a)-(c). 943 

Each cluster was then further separated by season. The median altitudes, if inspected separately for each season, are nearly 944 

identical between the seasons within each cluster, and thus not shown here. Figure S21 shows the differences between 945 

the mean liquid rainfall rates between surface and vertically resolves stratiform precipitation (positive difference 946 

indicating the rainfall rates at the surface are higher) for each cluster and each season.  947 

During autumn (SON) the two approaches for the precipitation exhibit observable differences only in the high-altitude 948 

cluster, where the surface precipitation shows some overestimation of the actual experienced precipitation by the air mass 949 

with increasing trend when moving farther away from SMEAR II. This could imply that the air mass has spent some time 950 

above or inside the precipitating cloud, as also the air mass altitude increases when moving away from the station (Figure 951 

A2a-c). During summer (JJA), all clusters mostly show precipitation at the air mass height being larger than the surface 952 

precipitation, expect in the high-altitude cluster (Figure S21c) 72 to 96 hours before arrival to SMEAR II. As the 953 

temperatures during summer are higher than in other seasons, this could be indication of evaporation as the surface 954 
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precipitation in UKESM1 includes only precipitation that reaches the surface i.e., it is not column integrated. During 955 

spring (MAM) and winter (DJF) the surface precipitation shows small overestimation at some points along the trajectories, 956 

and the differences are largest at the high-altitude cluster—where, however, the rainfall rates are very small overall (see 957 

Figure A2f) for both precipitation types.   958 

 959 

 960 

  961 
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