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Abstract 34 

Global climate models (GCMs) face uncertainties in estimating Earth's radiative budget due to aerosol-cloud interactions 35 

(ACI). Accurate particle number size distributions (PNSDs) are crucial for improving ACI representation, requiring 36 

precise modelling of aerosol sources and sinks. Using a Lagrangian trajectory framework, we examine how clouds and 37 

precipitation influence aerosols during transport, and thereby influence aerosol–cloud relationships in the boreal forest. 38 

Two GCMs, the United Kingdom Earth System Model (UKESM1) and ECHAM6.3-HAM2.3-MOZ1.0 with the 39 

SALSA2.0 aerosol module (ECHAM-SALSA), are complemented with model-derived trajectories and evaluated against 40 

in-situ observations, which are accompanied by reanalysis trajectories. Overall aerosol–precipitation trends are similar 41 

between GCMs and observations. However, seasonal differences emerge: in summer, UKESM1 exhibits more efficient 42 

aerosol removal via precipitation than ECHAM-SALSA and observations, whereas in winter, the opposite is observed. 43 

These differences coincide with key variables controlling aerosol activation, such as sub-grid scale updraught velocities 44 

and PNSDs. For example, in winter, removal of total aerosol mass in ECHAM-SALSA was stronger than in UKESM1, 45 

coinciding with higher activated fractions and larger sub-grid scale updraught velocities in ECHAM-SALSA. For both 46 
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GCMs, cloud processing along trajectories increased SO₄ mass, mainly in the accumulation mode, consistent with 47 

observations and model parametrizations. Discrepancies arise more from differences in PNSDs and updraught velocities 48 

than from wet removal parametrizations, an example being the underrepresentation of small particles in UKESM1. While 49 

our findings are representative of boreal region with predominantly stratiform precipitation, further work is needed to 50 

evaluate their applicability to other regions. 51 
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1 Introduction 52 

Atmospheric aerosol particle concentrations are influenced by their sources and sinks which affect their lifetimes in the 53 

atmosphere, and also play a significant role in our climate system through different mechanisms. One of the most 54 

important mechanisms are aerosol-cloud interactions (ACI), which are still causing the largest uncertainties on the effects 55 

of aerosols on Earth’s radiative budget in global climate models (GCMs, Boucher, 2013; Watson-Parris et al., 2019; 56 

Bellouin et al., 2020; Forster et al., 2021), and therefore partly masking the warming effect by greenhouse gases (Bauer 57 

et al., 2022; Quaas et al., 2022). It is critical, therefore, that the microphysical processes influencing ACIs are well 58 

understood and accurately modelled. To accurately simulate ACI in GCMs, the aerosol number size distributions need to 59 

be correctly described (e.g., Mann et al., 2010). Traditionally, discrepancies in particle size distributions between 60 

observations and models exceed those between modal and sectional approaches, with sectional methods dividing the 61 

distribution into discrete size bins (Mann et al., 2012). However, larger differences in concentrations may emerge when 62 

chemistry of the aerosols is inspected (Laakso et al., 2022). On the other hand, to accurately represent the aerosol number 63 

size distributions, GCMs also need to accurately represent the source and sink processes that act on the aerosol during its 64 

lifetime and transport in the atmosphere. The impact of precipitation on the evolution of the size distribution is very 65 

important (e.g., Browse et al., 2014; Khadir et al., 2023), but remains a major uncertainty in the GCMs. Often, when 66 

GCM parametrizations are assessed the models are evaluated against observations or other GCMs by inspecting 67 

differences in averages of variables (or relationships between multiple variables) over certain time spans (e.g., Blichner 68 

et al., 2024; Gliß et al., 2021; Labe and Barnes, 2022; Maher et al., 2021; Pathak et al., 2023) in a Eulerian perspective. 69 

However, GCM evaluations in which the evolution of aerosols and other variables is followed over both time and space 70 

in more detail using GCM Lagrangian trajectory-based evaluation frameworks that have been recently introduced (e.g., 71 

Kim et al., 2020). Such frameworks pave the way for the development of more rigorous observational constraints on 72 

uncertain physical and chemical aerosol processes for GCM evaluation, by including temporal and spatial information 73 

associated with the air-mass history.  74 

ACIs include scavenging of aerosol particles by precipitation, cloud droplets and ice crystals. Wet scavenging is one of 75 

the most efficient removal routes of particles from the atmosphere (e.g., Ohata et al., 2016; Liu et al., 2020). Wet 76 

scavenging of aerosol particles can be further divided into in-cloud scavenging and below cloud scavenging. Wet 77 

scavenging via in-cloud scavenging involves the loss of aerosol particles when they become activated into cloud droplets 78 

or ice crystals (nucleation scavenging) which can then further collide with interstitial aerosols in-cloud (e.g., Ohata et al., 79 

2016; Seinfeld and Pandis, 2016). Below-cloud scavenging concerns the removal of aerosol by rainfall from the collection 80 

of particles due to collisions with falling raindrops and snow and ice from precipitation (e.g., Ohata et al., 2016). Current 81 

understanding identifies the contribution of in-cloud scavenging, followed by removal via precipitation to be, on average, 82 

the most important sink globally for accumulation mode particles (particle diameter dp ~ 100-1000 nm). Ultrafine (dp < 83 

100 nm) and coarse particles (dp > 1 µm), on the other hand, are more efficiently removed by below-cloud scavenging 84 

(e.g., Andronache, 2003; Textor et al., 2006; Croft et al., 2009; Ohata et al., 2016). In addition to wet scavenging, clouds 85 

can also alter the particle properties through aqueous phase oxidation processes. For example, sulfate production due to 86 

oxidation of gaseous sulfur dioxide inside clouds is considered as one of the most important mass addition processes for 87 

sulfate (e.g., Ervens, 2015 and references therein). Production of organics through aqueous phase processes has also been 88 

reported in some environments (e.g., Ervens et al., 2018; Lamkaddam et al., 2021). 89 
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Investigation of the effects of precipitation and clouds has traditionally been Eulerian, in which local estimates of 90 

precipitation are employed (e.g., Wang et al., 2021). Lagrangian approaches, in which air mass trajectories are exploited 91 

to examine the effects of precipitation on aerosols and their composition as the air masses travel to the receptor location, 92 

have, however, increased in popularity during the recent years (Dadashazar et al., 2021; Heslin-Rees et al., 2024; 93 

Isokääntä et al., 2022; Kesti et al., 2020; Khadir et al., 2023; Tunved et al., 2004, 2013; Tunved and Ström, 2019). These 94 

types of studies can provide significantly more detailed insights by considering the interplay between aerosols, clouds 95 

and precipitation during air mass history, that cannot be achieved using Eulerian approaches. All these studies investigated 96 

how the total accumulated precipitation experienced along air-mass trajectories derived from reanalysis data affects a 97 

particle size distribution measured at a specific receptor site. Tunved et al. (2013), for example, investigated aerosols in 98 

the Arctic (Zeppelin station, Ny-Ålesund, Norway) and observed strong removal of sub-micron particulate mass up to 10 99 

mm of accumulated precipitation. They suggested the in-cloud scavenging (followed by removal via precipitation) is the 100 

dominant removal pathway, as larger particles showed first a decrease in their concentration as a function of accumulated 101 

precipitation during transport, followed by the removal smaller sizes. Kesti et al. (2020) studied aerosols at the humid 102 

tropical monsoon climate in the Maldives, and observed more efficient removal of the accumulation mode particles with 103 

increasing accumulated precipitation, when compared to the smaller particle sizes. Dadashazar et al. (2021) studied sub-104 

tropical environments in Bermuda and concluded that PM2.5 mass experienced the strongest sensitivity to accumulated 105 

precipitation up to 5 mm whereas precipitation exceeding this limit had no major effects on the particulate mass. Khadir 106 

et al. (2023) further reported that precipitation can, in some instances, serve as a source of aerosols. 107 

In addition to the effects of precipitation for aerosols, a previous study by Isokääntä et al. (2022) used relative humidity 108 

(>94%) as a proxy for in-cloud exposure in boreal air masses and found a pronounced increase in sulfate mass in air 109 

masses recently influenced by non-precipitating clouds, while no significant aqueous-phase production of organic aerosol 110 

was observed—likely due to dominant gas-phase biogenic sources. This is consistent with findings from central Sweden 111 

(Graham et al., 2020). These earlier results suggest that sulfate may be more strongly affected by cloud processing and 112 

wet removal than organic aerosol, with removal efficiency likely influenced by factors such as precipitation timing, 113 

aerosol type, and the stage of the air mass trajectory. Our study builds on this by exploring these aspects across multiple 114 

models and observations, employing the GCM Lagrangian evaluation framework presented by Kim et al. (2020). With 115 

this framework air mass trajectories can be obtained from global GCM simulations. This is achieved by co-locating 116 

multiple variables (for example, aerosol size distribution and chemical composition) from the GCMs to air mass 117 

trajectories calculated from the GCM meteorological data (Kim et al., 2020). This methodology allows us to transparently 118 

evaluate and compare the wet scavenging and aqueous-phase processing between the observations and GCMs within the 119 

Lagrangian trajectory framework in unprecedented detail.  120 

This study compares the effects of wet processing (wet removal and aqueous-phase processing) on modelled aerosol size 121 

distributions with long-term observations from Hyytiälä, Finland. Observational trajectories are based on ERA-Interim 122 

reanalysis, while model trajectories are calculated using meteorology data from GCM AMIP-style simulations in which 123 

wind fields were nudged to ERA-Interim. The GCMs used in this study include UKESM1 (United Kingdom Earth System 124 

Model, e.g., Sellar et al., 2019) and ECHAM6.3-HAM2.3-MOZ1.0 with sectional aerosol module SALSA2.0 (hereafter 125 

ECHAM-SALSA, Stevens et al., 2013; Kokkola et al., 2018; Tegen et al., 2019). Both GCMs are part of the Aerosol 126 

Comparisons between Observations and Models (AeroCom) Phase III GCM Trajectory Experiment (GCMTraj) in which 127 

a comparison between the GCMs against reanalysis meteorology was conducted for the years between 2009 and 2013. In 128 

this study the simulations for UKESM1 and ECHAM-SALSA cover the years from 2005 to 2018 which are also available 129 
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from the observations. Comparison between modal (UKESM1) and sectional (ECHAM-SALSA) approaches for 130 

estimating the aerosol microphysics provides additional insight into the model behaviour via this Lagrangian evaluation 131 

approach. The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT; Draxler and Hess, 1998; Stein 132 

et al., 2015) is employed to obtain the backward air mass trajectories. A key difference between our study and previous 133 

work, including Isokääntä et al. (2022), is our focus on stratiform precipitation rather than total precipitation. Stratiform 134 

precipitation is the dominant type in mid- and high-latitude regions (30–60° from the equator and poleward), whereas 135 

tropical regions are typically influenced by convective systems (e.g., Schumacher and Funk, 2023). Since our study area 136 

is primarily the boreal forest region of northern Europe, stratiform precipitation is most relevant. The differing impacts 137 

of precipitation types on aerosols have also been highlighted by Khadir et al. (2023), who showed that recent tropical 138 

precipitation—largely convective—can be linked to downdrafts that transport small particles from higher altitudes to the 139 

boundary layer (see also Franco et al., 2022; Machado et al., 2021; McCoy et al., 2021; Williamson et al., 2019). 140 

The aim of our research can be summarized into two main objectives (1-2): 141 

1. Do the relationships between aerosols and experienced precipitation during transport differ between the 142 

measurements and GCMs and what are the drivers for the observed differences? 143 

2. Do the GCMs exhibit similar increase in sulfate mass due to in-cloud production as the observations and are the 144 

observed effects reasonable when comparedreflected to model parametrizations? 145 

We start ourt investigation in Sect. 2 by first introducing the observational datasets, followed by summarising the GCM 146 

simulations along with details on the air mass trajectory calculations and data co-locations employed in this work. The 147 

aerosol properties at SMEAR IIthe measurement station (Hyytiälä, Finland) are given in Sect. 3 as a necessary background 148 

for the following Lagrangian analysis. The relationships between precipitation and aerosol mass and number in the 149 

Lagrangian framework are presented first (Sect. 4.1-4.3), followed by a process-chain type evaluation (Sect. 4.4) to 150 

understand the driving forces in the relationships. Finally, in Sect. 5, the effects of aqueous-phase processing are 151 

presented, followed by overall conclusions (Sect. 6) and outlook (Sect. 7).  152 
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2 Data and methods 153 

2.1 Observations at SMEAR II 154 

Observational data used in this study include long-term measurements of aerosol number size distributions and particle 155 

chemistry from SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations in; Hari and Kulmala, 2005) and are 156 

described in detail in Isokääntä et al. (2022) and the references therein. SMEAR II station (Hyytiälä, Finland) is classified 157 

as a rural environment, surrounded by relatively homogenous Scots pine (Pinus sylvesteris) forest. In this work particle 158 

number size measurements (covering particle diameters between 3-1000 nm) obtained with a differential mobility particle 159 

sizer (DMPS, e.g., Aalto et al., 2001) are utilized. Chemical composition (organics, sulfate, and equivalent black carbon) 160 

of the particles in the sub-micron range were derived from an aethalometer (e.g., Drinovec et al., 2015) and aerosol 161 

chemical speciation monitor (ACSM, Ng et al., 2011). The dataset for particle number size measurements spans 2005–162 

2018, slightly shorter than in Isokääntä et al. (2022), to match the GCM simulation period. The ASCM data extends from 163 

2012 to 2018.  164 

2.2 Summaries of the GCMs used in this study 165 

2.2.1 UKESM1 166 

The United Kingdom Earth System Model (UKESM1) configuration used in this study uses the atmospheric and land 167 

components following the protocol set by the Atmospheric Model Intercomparison Project (AMIP, Eyring et al., 2016). 168 

The atmospheric component of the model is based on the Global Atmosphere 7.1 (GA7.1) and the Global Land 7.0 169 

(GL7.0) configurations, as described by Walters et al. (2019). These are part of the Hadley Centre Global Environment 170 

Model version 3 (HadGEM3; Hewitt et al., 2011), which is coupled to the terrestrial carbon/nitrogen cycles (Sellar et al., 171 

2019). It includes interactive stratosphere–troposphere chemistry from the  from the UK Chemistry and Aerosol (UKCA) 172 

model (Archibald et al., 2020; Morgenstern et al., 2009; O’Connor et al., 2014). 173 

Following the AMIP protocol, sea surface temperature and sea ice are taken from the unmodified dataset of Durack et al. 174 

(2017) and horizontally interpolated to the model resolution. In this setup, the dynamic vegetation model  (Cox, 2001) is 175 

turned off. Instead, prescribed vegetation from a historical coupled UKESM1 simulation is used to maintain consistent 176 

land-use forcing between the coupled and AMIP experiments. In a similar fashion, seawater concentrations of dimethyl 177 

sulfide (DMS) and chlorophyll-a monthly climatologies are taken from the coupled historical experiment and are used by 178 

the atmosphere model top calculates fluxes of DMS and primary marine organic aerosol (Mulcahy et al., 2020). 179 

The simulations were nudged to ERA-Interim reanalysis (Dee et al., 2011; Telford et al., 2008) u/v (horizontal and 180 

vertical), wind fields and surface pressure following the setup design for the AeroCom GCMTraj phase III experiment. 181 

The model resolution for these configurations was 1.875∘ × 1.25∘ longitude–latitude, corresponding to a horizontal 182 

resolution of ~135 km in the midlatitudes. The model has 85 vertical levels which are divided such that 50 levels are 183 

between 0 and 18 km and the remaining 35 levels cover heights between 18 and 85 km.  184 

Atmospheric composition within UKESM1 is implemented as part of the UKCA model. Within UKCA, the Global Model 185 

of Aerosol Processes (GLOMAP; Mann et al., 2010; Mulcahy et al., 2020) is used. This scheme simulates multicomponent 186 

global aerosols, including, for example, sulfate, black carbon, and organic matter. The aerosol particle size distribution is 187 

represented using five log-normal modes, nucleation soluble, Aitken soluble, accumulation soluble, coarse soluble and 188 

Aitken insoluble visualized in Figure S1. More details, including the size ranges for each aerosol mode, are presented in 189 
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Sect. S1.1. The GLOMAP model also includes various microphysical processes that affect the evolution of aerosol 190 

properties. Wet scavenging processes in UKESM1, including below-cloud (impaction), in-cloud (nucleation) and plume 191 

scavenging are summarized in Sect. S2 and references therein. As a key difference to ECHAM-SALSA (Sect. 2.2.2) 192 

concerning the aerosol parametrizations, new particle formation in the boundary layer is not yet implemented in this 193 

version of UKESM1 (Mulcahy et al., 2020). 194 

For this study the AeroCom GCMTraj UKESM1 simulations (2009-2013) were ran longer to cover years extended for 195 

the period from 2005 to 2018 to facilitate robust statistical comparison with the aerosol size distributions and composition 196 

measurements obtained from SMEAR II. The model output fields were extracted at high temporal resolution (3-hourly 197 

output) for all model levels (when available, otherwise noted as surface). The diagnostics fields utilized in this work (see 198 

also Table S4) are aerosol particle size distribution variables (number concentrations and dry diameters for each aerosol 199 

mode), chemical components including mass mixing ratios of sulfate noted here as SO4 (extracted as sulfuric acid H2SO4 200 

and then converted, see Sect. S1.1), organic matter (noted here as OA) and black carbon (BC), total (including both liquid 201 

rain and snow) stratiform and convective precipitation at the surface, dry air density, sub-grid scale updraught velocity, 202 

number of activated particles, total precipitation at the surface, relative humidity and cloud fractions. Additionally, from 203 

UKESM1, wet scavenging coefficients (representing removal within the whole atmospheric column) for the different 204 

removal processes (nucleation, impaction and plume) and species (OA, H2SO4 and BC), SO2 concentrations, and both 205 

vertically resolved and surface liquid stratiform precipitation are inspected. These variables and/or variables derived from 206 

them are co-located to the UKESM1 derived HYSPLIT back-trajectories as described in Sect. 2.3. 207 

2.2.2 ECHAM-SALSA 208 

ECHAM6.3-HAM2.3-MOZ1.0 is a global aerosol-chemistry-climate model consisting of the atmospheric general 209 

circulation model ECHAM (Stevens et al., 2013) coupled with the Hamburg Aerosol Model HAM (Tegen et al., 2019) 210 

and chemistry model MOZ (Schultz et al., 2018). For this work, as for UKESM1, simulations follow AMIP style runs 211 

following the AeroCom phase III GCMTraj experiment setup. Therefore, as for UKESM1, the u/v wind fields and surface 212 

pressure were nudged towards ERA-Interim reanalysis data. In addition, the sea surface temperature and sea ice cover 213 

were prescribed based on monthly mean climatologies obtained from the AMIP project (Eyring et al., 2016). The model 214 

solves atmospheric circulation with vertical gridding of 47 layers extending roughly up to 80 km. Model horizontal 215 

resolution for these configurations is 1.875° × 1.875° longitude–latitude. 216 

ECHAM6.3-HAM2.3-MOZ1.0 is paired with the sectional aerosol microphysics model SALSA2.0 (ECHAM-SALSA) 217 

in which the size distribution is divided into 3 subranges (dp1 = 3 – 50 nm, dp2 = 50 – 700 nm and dp3 = 700 nm – 10 µm) 218 

including 10 size classes in logarithmical size space. Subranges dp2 and dp3 include parallel size classes for insoluble and 219 

soluble aerosol species, making the total number of size classes 17 (Kokkola et al., 2018), visualized in Figure S1. More 220 

details of the subranges and their compositions are given in Sect. S1.2. Additional details of the aerosol processes 221 

calculated in SALSA2.0 can be found in Kokkola et al. (2018) and Holopainen et al. (2020). Wet scavenging 222 

parametrizations are summarized in Sect. S2 for below- and in-cloud scavenging. 223 

As for UKESM1, simulations cover the years from 2005 to 2018 for ECHAM-SALSA. Data output is also 3-hourly and 224 

vertically resolved unless the variable is noted as surface variable. The diagnostics extracted from ECHAM-SALSA (see 225 

also Table S4) include aerosol particle size distribution variables (number concentrations and dry diameters for each size 226 

class), chemical components including mass mixing ratios of sulfate (SO4), organics (noted here as OA) and black carbon 227 
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(BC), total (including both liquid rain and snow) stratiform and convective precipitation at the surface, dry air density, 228 

sub-grid scale updraught velocity, number of activated particles, total precipitation at the surface, relative humidity and 229 

cloud fractions. Similar to UKESM1, these variables and/or variables calculated from them are co-located to the ECHAM-230 

SALSA derived HYSPLIT back-trajectories as described in Sect. 2.3. 231 

2.3 Air mass trajectory calculations and data co-location 232 

2.3.1 HYSPLIT 233 

The 4-day (96 h) back trajectories arriving at SMEAR II were calculated by version 5.1.0 of the HYSPLIT (Stein et al., 234 

2015) model for the period from January 2005 to December 2018. The 4-day long back trajectories were used to ensure 235 

consistency with the results from Isokääntä et al. (2022). In addition, this is typically a long enough period for slowly 236 

moving air masses to travel to the boreal environment from high arctic and marine areas. Arrival height of the trajectories 237 

to the receptor station was set to 100 m above the ground level. To obtain the GCM derived trajectories, the meteorological 238 

fields from the GCMs were first converted into a consistent netCDF4 format which was then converted into the ARL 239 

packed HYSPLIT4 compatible format (Kim et al., 2020). The GCM and ERA-Interim (Dee et al., 2011) reanalysis 240 

meteorological datasets required for the HYSPLIT4 trajectory calculations were re-gridded to a consistent 1° horizontal 241 

resolution. The vertical discretization of the GCM variables was provided on terrain-following hybrid sigma-pressure 242 

levels. In UKESM1, however, the native output is on hybrid height levels, which is not supported by HYSPLIT. 243 

Therefore, UKESM1 was output on fixed pressure levels, selected to closely match the ERA-Interim pressure levels.   244 

Trajectories were calculated for every 3rd hour for both reanalysis data and the GCMs, corresponding to GCM output 245 

resolution. This led to 8 trajectories per day, a total of 40896 air mass trajectories between 2005-2018 before applying 246 

any pre-processing and temporal harmonization of the data (Sect. 2.4). Hereafter, when discussing observational data 247 

coupled with the ERA-Interim back-trajectories, those are referred as observations unless mentioned otherwise. It should 248 

be noted that reanalysis data is not interchangeable with observations but is used as a proxy in this study. 249 

2.3.2 Co-location of GCM data along the air mass trajectories 250 

The variables from the GCMs described in Sect. 2.2.1 and 2.2.2 were temporally (time), spatially (latitude, longitude) and 251 

vertically (variables which covered different model or pressure levels) co-located to the GCM derived air mass 252 

trajectories. In short, a co-locator tool (Kim et al., 2020)  based off the Community Intercomparison Suite (CIS, Watson-253 

Parris et al., 2016) was used to co-locate 4-dimensional data which uses hybrid altitude coordinates. As the default 254 

interpolator within CIS has often difficulties co-locating to the near-surface trajectory points (due to surrounding grid-255 

boxes being at the boundaries of the data domain), the modified co-locator provided more flexibility for the interpolation 256 

of these near-surface points. This is relevant also in this work, as for our surface site the trajectories can also travel at low 257 

altitudes. In this improved co-locator, when the linear interpolation in the near-surface trajectories would result into a 258 

missing value, nearest-neighbour interpolation is used instead. Thus, extrapolation of values can be avoided and 259 

information for trajectory points that are within the data domain retained. The co-located GCM data from the air mass 260 

trajectory arrival times, i.e., times when the air mass is located at SMEAR II, are used to represent the conditions at 261 

SMEAR II, facilitating direct comparison to observational data obtained at the site. 262 

A difference to Isokääntä et al. (2022) where the ERA-Interim precipitation internally processed by HYSPLIT onto 263 

trajectories coordinates was used, is that the raw precipitation fields from ERA-Interim are employed in this work by co-264 
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locating them to the air mass trajectories in a post-processing step (as for the variables extracted from GCMs described 265 

above). This approach was chosen to retain the original numerical precision of ERA-Interim (and GCM) precipitation 266 

data, ensuring accurate alignment with co-located GCM variables (e.g., aerosol size distributions and chemical 267 

composition), which HYSPLIT does not provide. Here, “consistency” refers to numerical accuracy rather than matching 268 

data sources. 269 

2.4 Data harmonization between measurements and GCMs 270 

2.4.1 Temporal co-location and data pre-processing 271 

The data from the measurements (1-hourly averages) conducted at SMEAR II was temporally co-located with the ERA-272 

Interim derived back-trajectory arrival times (3-hourly). Additionally, the GCM derived trajectories (3-hourly) were only 273 

co-located with the times when aerosol observations were available. By adopting this approach, only GCM trajectories 274 

corresponding to existing data points in observations were retained and utilized in further analysis. The importance of 275 

temporal co-location for model evaluation is discussed, for example, in Schutgens et al. (2016).  Harmonisation of the 276 

measured aerosol size distribution and composition with the corresponding variables available from the GCMs are 277 

described in Sect. 2.4.2 and 2.4.3. 278 

For consistency with Isokääntä et al. (2022) identical pre-processing is applied here to the in-situ aerosol observations 279 

before the temporal co-location described above. Thus, data points for which the measured wind direction was between 280 

120 and 140 degrees were removed due to possible influence of strong VOC (volatile organic compound) emissions from 281 

the local sawmill (Heikkinen et al., 2020; Liao et al., 2011). In addition, trajectories crossing the area of Kola Peninsula 282 

were excluded as in Isokääntä et al., (2022) due to strong pollution sources within the area (Heikkinen et al., 2020; 283 

Kulmala et al., 2000; Riuttanen et al., 2013). This led to aerosol size distribution data covering the years between 2005 284 

and 2018 (number of final data rows/trajectories: 30688) and aerosol chemical composition for the years between 2012 285 

and 2018 (number of final data rows/trajectories: 6174). Distribution of the data points over the years are shown in Figures 286 

S2 and S3. 287 

2.4.2 Aerosol particle number size distribution 288 

The DMPS (differential mobility particle sizer, e.g., Aalto et al., 2001) observations include 51 size bins in the observed 289 

size range (dp = 3-1000 nm). For UKESM1, complete log-normal particle number size distributions (Seinfeld and Pandis, 290 

2016) were calculated by using the modal parameters (dry diameters, number concentrations and geometric mean 291 

diameters) given by the model. The number size distribution is discretised into the same size grid as the observations i.e., 292 

the bin midpoints are identical to the ones available from the DMPS measurements. This approach was possible as in 293 

SMEAR II the size grid DMPS applies stays constant over the whole investigated period. This harmonization was 294 

conducted for each hour along the air mass trajectories using the co-location approach described in Sect. 2.3.2 as 295 

UKESM1 provided all needed modal parameters for calculation of the full particle number size distributions (PNSD) 296 

along the trajectories.  297 

For ECHAM-SALSA, the number concentrations of soluble and insoluble bins (i.e., size classes) were added together for 298 

each size bin. To make the logarithmic number size distribution comparable to UKESM1 data and DMPS measurements, 299 

the values within each size bin (i) were divided by the logarithm of the maximum size di,max minus the logarithm of the 300 

minimum size di,min  i.e., by log10(di,max)-log10(di,min) for that size bin (see Table S3). Similar to UKESM1, this was 301 
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conducted along the trajectories. For aerosols, ECHAM-SALSA bins ranging from 3.0 nm to 1700 nm in diameter are 302 

studied, as by strictly limiting to sub-micron bins (≤ 700 nm), the largest sub-micron particles (700 nm < dp ≤ 1000 nm) 303 

that do contribute to the total particle mass, would be lost. Sensitivity analysis was conducted including only the sub-304 

micron bins, and none of the conclusions changed.  305 

Integrated variables, such as total number and mass concentrations (for submicron particles) were calculated from the 306 

particle number size distributions by assuming the particles are spherical and have a constant density of ρ = 1.6 g cm-3. 307 

This density corresponds to the average density of particles observed at SMEAR II (e.g., Häkkinen et al., 2012). Again, 308 

these quantities were calculated for each hour (i.e., 96 data points, see Sect. 2.3.1) along every single air mass trajectory.  309 

2.4.3 Chemical composition 310 

Observational data for organic aerosol (hereafter OA) and sulfate (hereafter SO4) was obtained using observations from 311 

ACSM (aerosol chemical speciation monitor, Ng et al., 2011) which is most efficient at measuring particles with ~ 75-312 

650 nm of vacuum aerodynamic diameter, passing through particles up to 1 µm (Liu et al., 2007). For UKESM1, Aitken 313 

and accumulation mode are used in this context by summing the mass mixing ratios (MMR, kg of species per kg of air) 314 

of these modes, including both soluble and insoluble modes when available. Due to the definition of the modes in 315 

UKESM1, these correspond to particle diameters between 10-500 nm (see Sect. S1.1), thus having large overlap with the 316 

size range most efficiently represented in ACSM. The MMRs from UKESM1 and ECHAM-SALSA are converted into 317 

mass concentrations by multiplying the MMRs with the density of the air to facilitate comparisons to chemistry 318 

observations given in the units of µg m-3. Equivalent black carbon (hereafter BC) was measured with an aethalometer 319 

using a cut off diameter of 10 µm (PM10). Due to most of the absorbing particles at SMEAR II being at sub-micron range, 320 

the difference in the BC mass between PM1 and PM10 is only 10 % (Luoma et al., 2019). Therefore, from UKESM1, 321 

Aitken and accumulation modes are also used to estimate the total BC. In addition, to obtain SO4 from H2SO4 (sulfuric 322 

acid) which is the UKESM1 native output, a conversion factor is used (see Sect. S1.1). From ECHAM-SALSA, bins with 323 

diameters ranging from 19.6 nm to 700 nm (see Sect. S1.2) are used to estimate the total sub-micron OA, SO4 and BC, 324 

including again both soluble and insoluble bins. Here, for ECHAM-SALSA, the largest bin of which a portion also 325 

consists of aerosols larger than 1 µm (700 nm < dp < 1700 nm) is not included to ensure consistency with the ACSM 326 

measuring efficiency (which decreases from ~650 nm up to the maximum size of 1 µm). 327 
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3 Aerosol properties at SMEAR II – Eulerian comparison between observations and GCMs 328 

To set the scene and provide context to GCM development since these previous studies (see also e.g., Reddington et al., 329 

2016), a short assessment of the differences and similarities in Eulerian framework between the aerosol observations, 330 

UKESM1 and ECHAM-SALSA at SMEAR II is given here. Airmass transport between ERA-Interim and the GCMs is 331 

first assessed (Sect. 3.1), followed by the aerosol particle number size distributions (Sect. 3.2) and chemical composition 332 

(3.3). This provides the necessary background information to facilitate further comparisons within the Lagrangian 333 

evaluation framework used in this work.  334 

3.1 Comparison of air mass transport between ERA-Interim and the GCMs 335 

To ensure the differences shown in the following sections for the Eulerian analysis are not driven by diverging transport 336 

pathways between the GCMs and ERA-Interim, the airmass transport routes were inspected. The airmass transport routes 337 

in Figure 1 show very similar patterns for ERA-Interim and the GCMs, i.e., the differences are, on average, very small—338 

as expected for simulations in which wind fields are consistently nudged to ERA-Interim reanalysis. Vertical transport 339 

differences exist (Figure S5), which can be attributed to potential temperature not being nudged, which follows standard 340 

practices (Zhang et al., 2014). For this station, however, these differences are relatively small, and the largest differences 341 

are in areas with low frequency of trajectories. Therefore, any observed differences in the analyses presented in the 342 

following sections are unlikely to be dominated by differences in the airmass transport. 343 

 344 

Figure 1 ERA-Interim air mass trajectory frequencies for spring (MAM), summer (JJA), autumn (SON) and winter (DJF) are 345 

shown in the top row. Frequencies for UKESM1 (e-h) and ECHAM-SALSA (i-l) are shown as differences to the ERA-Interim. 346 

Before calculating the differences, the GCM hexagonal grid (150 hexagons in the x-direction) were first regridded to match the 347 

gridding in ERA-Interim. Red cross shows the location of SMEAR II. 348 
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3.3 Aerosol particle number size distributions 349 

In Figure 2 particle number size distributions from the GCMs are compared with observational data at SMEAR II. The 350 

figure reveals that UKESM1 underestimates the number concentration of the small (dp < 50 nm) particles, especially 351 

during summer (Figure 2b, Table S5). This is, however, expected, as the new particle formation from boundary layer 352 

nucleation was not implemented in UKESM1 (Mulcahy et al., 2020). ECHAM-SALSA does have a better representation 353 

of the PNSD of the smaller aerosol particles during spring and summer when compared to observations (Figure 2c), 354 

During warmer seasons, also the absolute number concentrations agree well between observations and ECHAM-SALSA 355 

(see nucleation mode from Table S5). This highlights the importance of NPF from nucleation in the boundary layer, 356 

especially in summer. During winter, however, ECHAM-SALSA does exhibit some overestimation for Aitken mode 357 

aerosols (Figure 2e and Aitken mode from Table S5). 358 

During winter, UKESM1 overestimates larger Aitken and accumulation mode aerosols (dp up to 200 nm) compared to 359 

the observations (Figure 2b and g), but during spring the number concentration of the accumulation mode aerosols is very 360 

close to observations (367 cm-3 in UKESM1 vs 352 cm-3 in observations as shown in Table S5). This is somewhat 361 

surprising considering the missing growth of small particles from NPF into accumulation mode, however, this could 362 

indicate that there are other processes that dominate the accumulation mode. During winter (Figure 2g) the observations 363 

exhibit clear bimodal PNSD peaking around 50 and 200 nm but neither of the GCMs is able to capture this behaviour. 364 

Overall, both GCMs tend to be shifted towards the larger sizes in all seasons (Figure 2d-g), and this effect is slightly more 365 

pronounced in UKESM1. Overall, ECHAM-SALSA better estimates of the peak values of the PNSD, except in winter 366 

(Figure 1g), when it overestimates the particle concentrations at the size range of dp = 50 – 100 nm.  367 

 368 

Figure 2 Particle number size distribution at SMEAR II as medians for the day of the year for DMPS measurements (ground 369 

level) are shown in (a), followed by the differences between the DMPS observations and the GCMs in (b) and (c).  For subplot 370 

(c), the measured size distribution was first regridded to the ECHAM-SALSA bins by integrating between the upper and lower 371 

limit of each ECHAM-SALSA size bins before calculating the difference.  Median PNSDs for each season are shown in (d)-(g) 372 

with shaded areas indicating the 25th and 75th percentiles.  373 
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3.3 Chemical composition of the aerosols 374 

Particle chemical composition as a mass concentration for each chemical species from the composition measurements 375 

and the GCMs at SMEAR II (trajectory receptor location) is illustrated in Figure 3, and the seasonal patterns are typical 376 

for this location. Largest concentration of organic material is present during summer (JJA) and smallest in winter (DJF). 377 

Both GCMs also have pronounced OA concentration during summer compared to the other seasons, and UKESM1 378 

captures the pronounced OA concentrations observed during summer particularly well (median OA 2.0 µg m-3 and 2.2 379 

µg m-3 in UKESM1 and observations, respectively, Table S6). A portion of the small underestimation of the OA 380 

concentrations of the GCMs during spring and summer could, however, be influenced by the height of the observations 381 

as chemical composition measurements are conducted at the surface whereas the GCM data shown here are at the 382 

trajectory arrival point height at the receptor station (100 m.a.g.l.). Scale difference likely also plays a role, as the point 383 

measurements are compared with the GCM grid box values interpolated to air mass trajectories. Monthly data (Figure 3e) 384 

shows the second OA peak for the observations to be in February, as expected based on Heikkinen et al. (2020), and in 385 

ECHAM-SALSA this peak falls on January. UKESM1 peaks in February, but the difference in the concentrations 386 

(compared to observations) between February and January/March is very small. The seasonality of the OA concentrations 387 

presented here for both observations and GCMs also agrees with the results from Blichner et al. (2024) who presented 388 

the same GCMs but for a different time period. Differences in the monthly peak concentration can be observed for BC 389 

too, where observations and UKESM1 peak in February, but ECHAM-SALSA exhibits the largest BC concentrations in 390 

January (Figure 3g). 391 

In general, even though a perfect harmonization of the particle chemical composition data between observations and 392 

GCMs is not achieved (see Sect. 2.4.3), the median concentrations between observations and GCMs agree relatively well 393 

when the overall seasonality is inspected (Figure 3a-d); the concentrations are dominated by OA in all seasons, followed 394 

by SO4 and BC. Inspection of the monthly median concentrations (Figure 3e-g), however, revealed that differences also 395 

exist.  396 

 397 

Figure 3 Average seasonal mass concentration of sub-micron OA, SO4 and BC at SMEAR II from the chemical composition 398 

measurements, UKESM1 and ECHAM-SALSA is shown in (a)-(d). Black horizontal lines show the median and the boxes 399 

extend between 25th and 75th percentiles. Monthly median (lines) concentrations and 25th-75th percentiles (shaded areas) are 400 

presented in (e)-(g).   401 
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4 Lagrangian analysis of overall effects of integral precipitation on aerosols at SMEAR II 402 

In this section we use the Lagrangian framework to investigate the potential wet removal of the aerosols. In Sect. 4.1 we 403 

first examine the impact of using vertically resolved liquid precipitation (UKESM1 only), which has not previously been 404 

done for Lagrangian trajectory analyses. Then we inspect the relationship between accumulated precipitation and aerosols 405 

for the two GCM s used in this study: UKESM 1 and ECHAM-SALSA. In Sect. 4.2 we focus on total aerosol mass and 406 

number, and in Sect. 4.3 we focus on the OA, BC, and SO4 portions of the total mass for submicron-size aerosols. Then, 407 

in Sect. 4.4, the processes controlling the precipitation-aerosol relationships presented in the previous sections are 408 

investigated, and the differences are discussed in detail between the GCMs (Sect. 4.4.1) and within each GCM (Sect. 409 

4.4.2). Supplementary analysis assesses the representability of the models employed here amongst larger group of GCMs 410 

(Sect. S4). 411 

4.1 Assessment of surface vs. vertically resolved precipitation in Lagrangian wet removal 412 

In earlier studies assessing aerosol-precipitation relationships at SMEAR II using the Lagrangian framework (e.g., 413 

Isokääntä et al., 2022; Khadir et al., 2023; Tunved et al., 2013) the vertical position of the trajectories with respect to the 414 

precipitating clouds was not considered. The approach, therefore, does not allow for separation between in-cloud and 415 

below-cloud precipitation scavenging. Instead, it provides us with the overall effect of precipitation (hereafter noted as 416 

wet removal), in which the surface precipitation is used as a proxy for the experienced precipitation by the air mass. This 417 

also means that it could include trajectories that travel above the precipitation, potentially confounding interpretation of 418 

the results.  419 

For this study, the impact of this simplification was examined by extracting the vertically resolved liquid precipitation 420 

from UKESM1, which can be compared to the surface precipitation (see Appendix A). Based on this analysis, it was 421 

possible to conclude (see e.g., Figure A1) that for this station the surface precipitation is a relatively good proxy for the 422 

experienced precipitation by the air mass. Therefore, and to be able to include the effects due to snowfall, which was 423 

unfortunately not extracted with high enough vertical resolution from UKESM1, the surface precipitation is continued to 424 

be used in this study. Vertically resolved precipitation was not available from ECHAM-SALSA. 425 

4.2 Relationship between precipitation and aerosol mass and number concentrations 426 

.The removal of the normalized masses (dp = 3-1000 nm,  Figure 4a) by accumulated stratiform precipitation for 427 

observations and both GCMs exhibit exponential decrease reaching asymptotic behaviour after ~10 mm of accumulated 428 

precipitation (after 5 mm for UKESM1 during summer). Normalization of the median mass/number concentration to the 429 

median value under zero accumulated stratiform precipitation is used in this study. This approach aims to minimize the 430 

influence of differences in the native particle number size distributions (e.g., Figure 1), which affect  total mass and 431 

number concentrations, and instead highlight the removal attributable to precipitation.  432 

For the particle number concentration (dp = 3-1000 nm), there are clear seasonal differences (Figure 4b). ECHAM-433 

SALSA and the observations show clear seasonal differences in particle number removal, with much more efficient 434 

removal in winter than in summer. UKESM1, however, does not display this seasonal contrast—likely because it lacks 435 

boundary layer nucleation, a key source of small particles during summer, which leads to similar particle number 436 

concentrations across seasons. Inspection of the seasonality is relevant, as differences in the relationships could be driven 437 

by different particle size distributions at the station which vary by season due to differences in meteorology (e.g., origin 438 
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of air-masses, temperature and sunlight) along the air mass trajectories. Seasonality also impacts to the type of the 439 

precipitation (liquid vs snow and stratiform vs convective, for example). 440 

Figure 4c shows that the seasonal patterns (e.g., more samples for smaller precipitation values in summer) in the 441 

distribution of accumulated precipitation are similar for both models and observations, thus unlikely to be driving 442 

differences in the aerosol-precipitation relationships. The relationships between the aerosol mass, number, and mean 443 

stratiform rainfall rate along the trajectory (Figure S6a-b) exhibit similar seasonal differences as the relationships in Figure 444 

4a-b. For example, in summer, UKESM1 exhibits the strongest initial reduction for particle mass (Figure S7a). 445 

Observations and ECHAM-SALSA exhibit minimal to no reduction or particle number during summer (Figure S7b), 446 

similar to Figure 4b.Non-normalized mass and number concentrations are shown in Figures S7 and S8. 447 

 448 

Figure 4 Normalized total (dp = 3-1000 nm) particle mass (a) and number (b) at SMEAR II for summer (June, July and August) 449 

and wintertime (December, January and February ) as a function of accumulated stratiform surface precipitation (incl. both 450 

liquid and snow) along the 96 hour long air mass trajectories for observations (DMPS measurements paired with ERA-Interim 451 

trajectories) and GCMs. The coloured points show the median values for each 0.5 mm bin of accumulated precipitation when 452 

the number of trajectories in the bin was 10 or larger. The sample size for each corresponding bin is shown in (c).  453 

4.3 Relationship between precipitation and aerosol chemical composition 454 

The normalized masses of OA, BC, and SO4 in submicron-sized particles as a function of accumulated stratiform 455 

precipitation (including both liquid and snow) for the observations and the GCMs is shown in Figure 5 (see also Figure 456 

S9 showing the same data but grouped differently for easier comparison between the species). The division into warmer 457 

and colder months follows the monthly median temperatures (measured at the site) as in Isokääntä et al. (2022). The 458 
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sample sizes in Figure 5g-h agree well during warmer months between the GCMs. During colder months (Figure 5h) 459 

more differences emerge for the smaller precipitation bins (< 3 mm of accumulated precipitation). 460 

The general patterns between the observations and GCMs are similar for all species—exponential decrease is observed 461 

for the mass concentrations, similar to the relationships between total particle mass and precipitation shown in Figure 4a. 462 

The seasonal differences for the total particle mass (Figure 4a) and the chemical constituents are comparable despite the 463 

different approach used to separate the data into temperature regimes instead of seasons. During the colder months (Figure 464 

5d-f), ECHAM-SALSA exhibits the most efficient reduction for all the three species, as expected based on the reduction 465 

of the total aerosol mass (Figure 4a). During the warmer months (Figure 5-c), UKESM1 tends to show more efficient 466 

reduction than ECHAM-SALSA, the effect being most pronounced for OA. This is in line with the derived reduction of 467 

total particle mass and number during summer shown in Sect. 4.1 (Figure 4a-b), in which ECHAM-SALSA exhibited 468 

stronger reduction during winter and UKESM1 during the summer.  469 

The observational data presented by Isokääntä et al. (2022) showed that the reduction of SO4 due to accumulated total 470 

precipitation in the warmer months was less efficient compared to other species, despite SO4 being highly hygroscopic 471 

and thus relatively easily activated as a cloud droplet. This is relevant also in this study, as the activation into cloud 472 

droplets followed by precipitation is the dominant reduction mechanisms also for the mass of the different chemical 473 

species (discussed in more detail in Sect. 4.4). Similar to Isokääntä et al. (2022), the derived reduction for SO4 is less 474 

efficient (i.e., smaller end concentrations are reached) compared to OA and BC also here for the observations and 475 

UKESM1 (Figure S9a-b), though the differences between species are overall smaller but still statistically significant 476 

(Kruskal-Wallis rank sum test, p < 0.001). For ECHAM-SALSA, the derived removals between OA and SO4 do not differ 477 

(Figure S9c, Kruskal-Wallis rank sum test, p = 0.2) during warmer months, but BC shows more efficient reduction with 478 

the accumulated stratiform precipitation than OA and SO4. This could be arising from the fact that, in ECHAM-SALSA, 479 

all BC is basically in the soluble particles (Figure S10b) but OA and SO4 can reside in the insoluble particles as well.  480 

Isokääntä et al. (2022) hypothesized that the low derived removal efficiency of SO4 during warmer months could be 481 

caused by the species being distributed to different sizes depending on the season. Inspection of the size resolved chemical 482 

composition from the GCMs (Figure S10), however, is not able to fully explain the observed seasonal differences: SO4 483 

in the GCMs is almost completely distributed to the soluble accumulation mode, and the seasonal differences are only 484 

minor. In ECHAM-SALSA, small contribution of insoluble SO4 in the accumulation mode is present, but the difference 485 

between the seasons is small (Figure S10b). Other possible explanations could include, for example (but not limited to), 486 

mixing state (internal/external) of the particles and production of SO4 through cloud processing, which could compensate 487 

for the reduction by stratiform precipitation. 488 
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 489 

Figure 5 Normalized mass concentration for submicron OA, SO4 and BC at SMEAR II as a function of accumulated stratiform 490 

surface precipitation along the 96 hour long air mass trajectories for observations (chemistry measurements paired with ERA-491 

Interim trajectories) and the GCMs for warm (T > 10 °C, (a)-(c)) and cold (T < 10 °ͦC, (d)-(f)) months. The coloured points 492 

show the normalized median values for each 0.5 mm bin of accumulated precipitation when the number of trajectories for the 493 

bin was 10 or larger. The sample size for each corresponding 0.5 mm bin is shown in (g)-(h).  494 

4.4 Process-chain evaluation for understanding the relationship between precipitation and aerosols 495 

To understand the differences between GCMs and observations in Figure 4 and Figure 5, we assess the relative importance 496 

of wet removal pathways. Prior studies (Isokääntä et al., 2022; Tunved et al., 2013; Wang et al., 2021), suggests that in-497 

cloud scavenging, particle activation followed by rainout, is the dominant removal mechanism for submicron particles in 498 

this region. For UKESM1 the relative contributions of the removal types (below-cloud impaction, nucleation followed 499 

by rainout, and plume scavenging) were quantified using median scavenging coefficients along the trajectories (see Sect. 500 

S2). These scavenging coefficients represent the removal within the total atmospheric column, median values along 501 

complete trajectories being 0.040 (JJA) and 0.028 (DJF) moles s-1 for impaction, 0.700 (JJA) and 0.191 (DJF) moles s-1 502 

for nucleation followed by rainout and 0.001 (JJA) and 0.000 (DJF) moles s-1 for plume scavenging.  503 

As shown in Figure 6 for organic aerosol (OA), which dominates the particle mass in SMEAR II, e.g., Heikkinen et al., 504 

(2020), nucleation followed by rainout dominates removal. Similar patterns are seen for SO4 (H2SO4) and BC ( Figure 505 

S11), supporting that in-cloud removal is the main process in this region, consistent with Isokääntä et al. (2022). 506 
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 507 

Figure 6 Relative contributions of the different removal pathways in UKESM1 for OA in (a) summer/JJA and (b) winter as a 508 

function of time from SMEAR II. Impaction refers to the below-cloud impaction scavenging, nucleation + rainout describes 509 

the activation process followed by removal of the particles via the formed raindrops, and plume scavenging is the removal due 510 

to convective clouds. 511 

As noted above, nucleation followed by precipitation-driven removal explains the patterns in Figure 4 and 54. To 512 

understand differences in this process across models, we compare key variables along air mass trajectories related to in-513 

cloud removal. Previous studies (Dusek et al., 2006; Ohata et al., 2016; Partridge et al., 2012; Reutter et al., 2009) have 514 

emphasized the role of sub-grid processes and variables influencing droplet activation, such as particle size and vertical 515 

air motion. We therefore examine how model representations of activation—affected by sub-grid vertical velocities and 516 

aerosol size distributions—influence removal. 517 

Key variables controlling the aerosol activation into cloud droplets (presented in Figure 7a-j shows the number of particles 518 

with diameter > 80 nm (N80) and sub-grid scale vertical velocities (referred as updraught velocities), which control droplet 519 

formation. The accumulation mode particles are likely to activate to cloud droplets (Croft et al., 2010; Partridge et al., 520 

2012), and updraught velocities drive supersaturation needed for activation. The activated fraction (Nact/Ntot) is shown in 521 

Figure 7k-o, and the rainfall rates (at the surface) are presented in Figure S12. In addition, total number (Ntot) and total 522 

mass of the particles (Mtot) at the submicron range, a air mass heights and number of activated particles (Nact) are presented 523 

in Figure S13. Chemical composition, relevant for hygroscopicity and droplet formation, is shown in Figure S15.  524 

Together, these factors determine whether the regime is the aerosol- or updraught limited (Reutter et al., 2009). Figure 4 525 

and Figure 5 showed strong seasonal contrasts, and seasonal differences in N80, updraughts, and activation are also 526 

evident during transport (Figure 7). Section 4.3.1 discusses seasonal characteristics within each GCM, followed by a 527 

model–observation comparison in Sect. 4.3.2. 528 
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 529 

Figure 7 The evolution of the main drivers for the wet removal (nucleation followed by rainout) along the trajectories. The first 530 

row from the top displays the N80 (number of particles for which dp > 80 nm), the second row shows the sub-grid scale updraught 531 

velocities (m s-1), third row displays the activated fraction of particles, and the bottom row shows the corresponding trajectory 532 

frequencies. For the maps, means are calculated for each hexagonal gridbox (grid resolution being 150 in the x-direction) that 533 

the trajectory crosses, and for the rightmost panels, means have been calculated for each hour along the trajectory. For the 534 

updraught velocities and activated fractions, only values when trajectory is in-cloud are shown. 535 

4.4.1 Seasonal differences within each GCM 536 

In UKESM1, the derived removal for the particle mass during summer is clearly stronger, especially up to ~10 mm of 537 

accumulated precipitation, compared to winter (Figure 4a). For the particle number, the differences between summer and 538 

winter are less pronounced, and similar concentrations at the receptor station are reached (Figure 4b) with high 539 
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accumulated precipitation. A seasonal difference in the absolute values of N80 can be observed, the number concentration 540 

being approximately 100 particles cm-3 larger during winter compared to summer (Figure 7e). This difference, wintertime 541 

values being larger, is also seen in Ntot (Figure S13e). As stated in Sect. 2.2.1, the boundary layer nucleation is absent in 542 

UKESM1—a process being especially frequent around SMEAR II during spring and summer (Nieminen et al., 2014). 543 

This is likely the cause for the observed differences in Ntot as the model lacks large portion of the smaller particles during 544 

summer. For the mass, however, the summertime Mtot is larger (Figure S13j). This could imply that UKESM1 has more 545 

numerous medium-sized particles during summer, or, that on average, the particles in summer are larger compared to 546 

winter, thus having larger contribution to particle mass. Figure 2 supports the latter scenario, showing the average PNSD 547 

at SMEAR II peaking at larger particle sizes in summer compared (~200 nm, Figure 2g) to winter (~100 nm, Figure 2i).  548 

The seasonal differences between the updraught velocities in UKESM1 are small, until about 48 hours before arrival 549 

(Figure 7j). After that, the summertime updraught velocities exhibit little to no change, but wintertime updraught 550 

velocities decrease as the air mass travels closer to SMEAR II. These differences relatively close to the receptor station 551 

can be attributed to the geographical distribution of the updraught velocities: close to SMEAR II (across Finland, Sweden 552 

and Norway, for example), the values are larger in summertime (Figure 7f) compared to wintertime (Figure 7h).These 553 

regions coincide with areas of high trajectory frequency, meaning most air masses pass through them. As a result, the 554 

elevated updraught velocities in these regions strongly influence the averages shown in Figure 7j. Activated fractions 555 

differ markedly between seasons (Figure 7o), with nearly half of aerosols activating in summer compared to about one 556 

fifth in winter. These seasonal differences align with the spatial patterns of activated fractions and trajectory frequencies 557 

(Figure 7k, p), showing particularly high values over northern Norway and extending into the Arctic Ocean. During 558 

winter, the activated fractions in this area are much lower (Figure 7m). The Nact, on the other hand, displays minor 559 

differences between the seasons in UKESM1 but is slightly larger in winter. However, considering the fact that N tot in 560 

UKESM1 is much higher in winter (Figure S13e) as mentioned earlier, the larger activated fraction (derived as Nact/Ntot) 561 

in summer is reasonable.  562 

The chemical composition of particles during their travel in UKESM1 (Figure S14a) reveals that overall, during summer, 563 

the mass concentration is completely dominated by soluble modes, whereas in winter, a portion of insoluble OA in the 564 

Aitken mode is also present. Soluble SO4 in the accumulation mode contributes more in winter, but this is greatly 565 

compensated by soluble OA in both Aitken and accumulation modes during summer. If the higher solubility of OA in 566 

summer compensates for the lower SO₄ levels, this could further enhance the particle activation potential in UKESM1 567 

during summer compared to winter. Figure 8 shows the relationship between mean activated fraction and mean updraught 568 

velocity that the air mass experienced before arriving at SMEAR II for the summer and winter. For UKESM1, the 569 

relationship between these two variables is clearly stronger in summer (slope of 2.12, Figure 8a) compared to winter 570 

(slope 0.62, Figure 8b). Therefore, during summer, even a very small increase in updraught could cause a very large 571 

increase in the activated fraction. Due to this, the slightly higher updraught velocities during summer, when the air masses 572 

approach SMEAR II (Figure 7j), could play a major role, eventually also leading to the larger activated fractions during 573 

summer. This, together with the points discussed above,  (such as the availability of cloud condensation nuclei (CCN), 574 

Ntot and particle chemistry along the trajectories), likely causes the seasonal differences observed in the reduction of 575 

particle mass in Figure 4a. When also considering the missing boundary layer nucleation in UKESM1 as mentioned 576 

earlier, lack of seasonality in the derived removal of total particle number in UKESM1 (Figure 4b) can also be explained. 577 
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ECHAM-SALSA exhibits stronger reduction (i.e., lower concentrations are reached with increasing accumulated 578 

precipitation) during winter than in summer for both particle mass (Figure 4a) and number (Figure 4b). The number of 579 

particles for which 80 nm < dp ≤ 1000 nm (N80) is relatively similar between summer and winter, exhibiting increase from 580 

~300 up to ~650 particles cm-3 as the air mass reaches SMEAR II. During summer, the Ntot in ECHAM-SALSA is clearly 581 

larger compared to winter (Figure S13e). This is expected due to the strong contribution of small aerosols during summer 582 

(e.g., Figure 2c). The total mass (Mtot), however, is relatively alike between the seasons (FigureS13j), which is reasonable 583 

due to the similar contribution of N80 in both seasons, as these particles mostly contribute to particle mass. 584 

The updraught velocities in ECHAM-SALSA exhibit large location-dependent seasonal differences (Figure 7g versus i), 585 

especially over the oceans, where the updraught velocities are larger during winter (Figure 7i) than in summer (Figure 586 

7g). However, overall, the average experienced updraught velocities during the transport are rather similar in magnitude 587 

between the two seasons (Figure 7j). This overall similarity occurs because the frequency of trajectories passing over the 588 

oceans is quite low (Figure 7s) and they therefore do not contribute to the average over all transport directions much. On 589 

average, the updraught velocities increase from ~0.4 m s-1 up to ~0.7 m s-1 as the air masses approach SMEAR II. Slightly 590 

before arrival to SMEAR II (12-36 hours before arrival), difference can be observed in the updraught behaviour: winter 591 

updraught starts decreasing around 36 hours before arrival before increasing again at the 12-hour mark. During summer, 592 

the updraught increases all the way up ~18 hours, after which it steeply decreases and increases again at the same 12-hour 593 

mark as the wintertime updraught. As these differences are taking place relatively close to SMEAR II, it is likely that 594 

they are driven by the seasonal differences in the transport and local conditions very close to SMEAR II. 595 

Activated fractions in ECHAM-SALSA display similar trends along their transport, increasing towards SMEAR II, but 596 

the seasonal difference in the magnitude is approximately 0.1, wintertime values being larger (Figure 7o). This difference 597 

stays nearly constant along the transport. Again, clear seasonal differences within the trajectory transport areas (Figure 7l 598 

and n) can be observed, and as the high activated fractions during winter (Figure 7n) do occur in high trajectory frequency 599 

areas (Figure 7s), they are more clearly reflected in the values when averaged over all transport directions (Figure 7o). 600 

As the seasonal differences N80 in ECHAM-SALSA are negligible, it is unlikely that the number of potential CCN is 601 

driving the seasonal differences in activated fractions and in the aerosol mass-precipitation relationships in Figure 4a. 602 

When the Nact is inspected (Figure S13t), however, somewhat larger number of particles have activated in winter 603 

compared to summer. Thus, when considering the large difference in the total number of particles (Figure S13e), the 604 

displayed differences in the activated fractions (=Nact/Ntot) are reasonable. 605 

In addition to size, the chemical composition of the potential CCN also has an impact to their activation. The composition 606 

of Aitken and accumulation mode aerosols in ECHAM-SALSA (Figure S14b) does reveal, that the particles have 607 

relatively similar soluble accumulation mode SO4 contribution in both seasons. The contribution of soluble OA in the 608 

accumulation mode is slightly larger in summer, but during winter, the smaller contribution from OA (in accumulation 609 

mode) seems to be compensated by larger contribution from soluble BC in the accumulation mode. Thus, the contribution 610 

from soluble modes altogether is relatively similar between the seasons and unlikely causes large differences in the 611 

particle hygroscopicity which could impact activation. 612 

In order to investigate whether the seasonal differences in the activated fractions could also be due to slight differences 613 

in the sensitivity of activation to updraught velocities, we inspected the relationships between activated fractions and 614 

updraught velocities similar to UKESM1. For ECHAM-SALSA, the slope for summer is smaller (slope of 0.18, Figure 615 

8c) compared to winter (slope 0.36, Figure 8b). Thus, during winter, when the updraught increases, the activated fraction 616 
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can increase two times as much compared to summer. Therefore, despite the similar number of potential CCN in both 617 

seasons (N80, Figure 7e), larger portion of those activate during winter, resulting to larger Nact (FigureS13t) and activated 618 

fractions (Figure 7o). All these findings discussed above are consistent with the stronger reduction for particle mass 619 

observed for ECHAM-SALSA in winter (compared to summer) in Figure 4a. During summer, very little to no reduction 620 

is observed for the particle number for ECHAM-SALSA in Figure 4b. The particle number concentration, however, is 621 

dominated by the small aerosols which are unlikely to activate (see also Figure S13e and Figure 2c). Therefore, even with 622 

high accumulated precipitation, no clear reduction is observed in Figure 4b during summer. 623 

 624 

Figure 8 Average experienced activated fraction as a function of average experienced updraught velocity along the trajectories. 625 

Distribution of the values are shown with the histograms. JJA denotes summer (June-July-August) and DJF winter (December-626 

January-February). Each coloured point denotes a median value determined from a single trajectory. The black lines show the 627 

regression line from orthogonal regression applied to the data shown and the legend show the slope, intercept and Pearson 628 

correlation (R) between the fit and the data. Note that the black regression lines extend over the whole plot area only due to 629 

visualization purposes. 630 

4.4.2 Differences between GCMs and observations 631 

Comparing the two GCMs in Figure 4 it is obvious that the seasonality in the aerosol-precipitation relationships is 632 

reversed: UKESM1 exhibits stronger reduction during summer but ECHAM-SALSA in winter. This is unlikely arising 633 

from the differences between the intensity of the precipitation during the travel of the air masses, as those are very similar 634 

between the GCMs (Figure S12a-e) within each season. However, some of the winter differences may also be attributed 635 

to variations in the number of trajectories with specific amounts of accumulated precipitation (Fig. 4c). Observations 636 

show a higher frequency of trajectories with low accumulated precipitation (<2 mm), whereas the models produce slightly 637 

more trajectories with larger precipitation totals. 638 

During summer, UKESM1 has less potential CCN (N80, see Figure 7e) compared to ECHAM-SALSA, and also the 639 

updraught velocities are smaller in UKESM during summer, eventually leading to smaller number of cloud droplets too 640 

(Nact, Figure S13t). Comparison of the contribution of different chemical species in the accumulation (as these sizes have 641 
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larger contribution to the particle mass) mode (Figure S14, top row), however, reveals that UKESM1 has much larger 642 

contribution of the soluble particles. This indicates, that during summer, the particles in UKESM1 have larger 643 

hygroscopicity, and could potentially activate more easily compared to ECHAM-SALSA. However, as the resulting Nact 644 

(Figure S13t) in UKESM1 is smaller than in ECHAM-SALSA, the potentially larger hygroscopicity in UKESM1 particles 645 

do not seem to have significant impact on the droplet formation. When we consider the changes in the PNSD, however, 646 

where UKESM1 has significantly less particles but with larger average size compared to ECHAM-SALSA (which has 647 

more particles but smaller average size) as shown in Figure 2g and Figure S13e, it is sensible that larger activated fractions 648 

are observed for UKESM1 during summer as shown in Figure 7o. The difference in the activated fraction between the 649 

GCMs, however, is somewhat larger than what could be expected based on the differences in Ntot and Nact alone. Thus, 650 

also the relationships between updraught velocities and activated fractions were inspected to gain further insight. This 651 

reveals (Figure 8a and c), that indeed during summer, the slope between activated fractions and updraught velocities in 652 

UKESM1 is significantly larger (slope 2.12, Figure 8a) compared to ECHAM-SALSA (slope 0.18, Figure 8c)—difference 653 

being over 10-fold. This implies that even a small perturbation in updraught velocity in UKESM1 could increase the 654 

activated fraction drastically, resulting in the very high activated fractions observed in Figure 7o, despite UKESM1 having 655 

smaller updraught velocities in general. This could indicate a shift in UKESM1 cloud droplet formation from the 656 

updraught-limited regime to the transitional regime (e.g., Reutter et al., 2009). These findings align with the stronger 657 

reduction of particle mass in UKESM1 as shown in Figure 4a. The reduction of the observed particle mass in summer 658 

lies in-between of the two GCMs, initial reduction (up to 5 mm of accumulated precipitation) being more accurately 659 

represented by UKESM1. 660 

The differences in the summertime reduction of particle number (Figure 4b) likely arise from the lack of boundary layer 661 

nucleation in UKESM1, thus affecting the number concentration of the smallest aerosol particles (see e.g., Figure 2g). As 662 

already discussed in Sect. 4.4.1, in SMEAR II, NPF is an important source of aerosols and the frequency of the NPF 663 

events has significant seasonal variation (Nieminen et al., 2014), summer and spring being most pronounced. Thus, the 664 

reduction of particle number in UKESM1 during summer (Figure 4b) is similar to the reduction of particle mass (Figure 665 

4a), as both are dominated by relatively large aerosols. The summertime reduction of particle number in ECHAM-SALSA 666 

coincides with observations, which is to be expected as the Aitken and nucleation mode aerosol concentrations in 667 

ECHAM-SALSA are much closer to observed data than UKESM1 (Figure 2g and Table S5). 668 

During winter, ECHAM-SALSA exhibits stronger reduction of particle mass compared to UKESM1 after ~5 mm of 669 

accumulated precipitation (Figure 4a). The N80 (Figure 7a-e) is relatively similar between the GCMs, but updraught 670 

velocities (Figure 7j) have large difference: UKESM1 updraught velocities range 0.2-0.4 m s-1, whereas ECHAM-SALSA 671 

has values ranging approximately between 0.5-0.7 m s-1. The higher updraught velocities in ECHAM-SALSA likely lead 672 

to the larger Nact (Figure S14t), thus eventually leading to the larger activated fractions for ECHAM-SALSA along most 673 

of the transport (Figure 7o) due to Ntot being relatively similar between the GCMs (Figure S13e) during winter. It should 674 

be noted, that the difference in activated fractions (Figure 7o) far away from SMEAR II is negligible. However, this 675 

difference drastically increases when air masses travel to SMEAR II: activated fraction in ECHAM-SALSA continues to 676 

increase while UKESM1 fractions stay nearly constant. Thus, it is unlikely that the similar activated fractions far away 677 

from SMEAR II significantly impact the reduction observed in Figure 4a. 678 

Comparison of the particle chemistry in the accumulation mode in winter reveals that the GCMs have (Figure S14, bottom 679 

row) relatively similar fractions of soluble material. UKESM1 tends to have more SO4, but ECHAM-SALSA more soluble 680 
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OA and BC. In ECHAM-SALSA, however, the insoluble modes are not strictly insoluble but rather less insoluble 681 

compared to soluble modes (Sect. S2.3) and can thus also activate. This could lead to larger Nact (Figure S13o) and thus 682 

larger activated fraction (Figure 7o), considering that the difference in Ntot (Figure S13e) between the GCMs is clearly 683 

smaller in winter than what it was in summer. The differences in the relationships between activated fractions and 684 

updraught velocities for the GCMs (Figure 8) are more subtle in winter (UKESM1 slope 0.62, ECHAM-SALSA slope 685 

0.36) compared to the values in summertime discussed earlier. Activated fraction in UKESM1 does exhibit higher 686 

“sensitivity” for updraught velocities, however, due to the much larger updraught velocities in ECHAM-SALSA, this is 687 

likely not enough to increase the activated fraction to the same level, thus leading to less efficient reduction. These 688 

assessments align with the particle mass reductions in winter shown in Figure 4a, where particles at ECHAM-SALSA 689 

reach slightly lower end concentrations with high accumulated precipitation compared to UKESM1. 690 

The differences in the wintertime reduction of particle number (Figure 4b) are less pronounced compared to those in 691 

particle mass (Figure 4a). Initial reduction seems to be more effective on UKESM1, however, after ~5 mm of accumulated 692 

precipitation, the reduction in ECHAM-SALSA becomes stronger These differences between the GCMs, however, were 693 

not statistically significant (Kruskal-Wallis rank sum test, p ≥ 0.01). The observational data exhibits stronger reduction 694 

than the GCMs during winter for the particle number (Figure 4b) up to ~10 mm of accumulated precipitation. After that, 695 

the observations overlap with ECHAM-SALSA. These inconsistencies could also arise from the fact that both GCMs 696 

have difficulties representing the bimodal particle number size distribution correctly during the winter months (Figure 697 

2i). 698 

4.4.3 Additional reasons for inter-model differences 699 

Aside from differences driven by aerosol activation, it is important to note that during both summer and winter, additional 700 

factors can also contribute to the observed differences in the reductions (Figure 4). For example, the differences in the 701 

reduction of the particle mass (Figure 4b) could be influenced by the plume scavenging scheme, a feature only present in 702 

UKESM1 (see Sect. S2.4). In this process, aerosol activate into cloud droplets within the convective updraught and fall 703 

out via the main precipitation shaft of the cumulonimbus (Kipling et al., 2013; Mulcahy et al., 2020). Note that even 704 

though the particle mass is shown as a function of accumulated stratiform precipitation (Figure 4), the air mass trajectories 705 

have experienced convective precipitation too. Thus, removal via nucleation (which is more efficient for larger particles) 706 

followed by rainout in the convective plume, could also contribute. Inspection of the contribution of the precipitation 707 

types reveals that the contribution from the convective precipitation during summer is indeed slightly larger in UKESM1 708 

compared to ECHAM-SALSA (Figure S15). This difference could be reflected in more effective summertime reduction 709 

in the particle mass in UKESM1. Another explanation for the more effective reduction of the aerosols during summertime 710 

in UKESM1 could be arising from the differences in the parametrizations of the re-evaporation of the falling droplets. In 711 

UKESM1, this process is not considered (see Sect. S2.3 and Mulcahy et al., 2020) whereas in ECHAM-SALSA 712 

evaporation of the droplets can occur and thus release the aerosols back to the atmosphere (e.g., Stier et al., 2005). During 713 

summertime, this re-evaporation could be enhanced due to higher temperatures, leading to less effective observed 714 

reduction of aerosols in ECHAM-SALSA compared to UKESM1. However, there can also be other explaining factors, 715 

such as location of the precipitation during travel, emissions and dry deposition, which could also indirectly cause 716 

differences between the models. Quantifying the exact processes from model parametrizations causing the differences 717 

between the observed relationships between aerosol mass and integral precipitation likely requires specific model 718 

sensitivity simulations to investigate this, thus being out of the scope of this study. 719 
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5 Lagrangian analysis on the effects of aqueous phase processing on aerosol chemical composition 720 

In the analysis presented in this section, the relationship between the chemical processing occurring within clouds and 721 

fogs in the aqueous-phase is investigated. A special interest is in aqueous-phase SO4 formation due to its high occurrence 722 

in the atmosphere (e.g., Ervens, 2015; Huang et al., 2019; Liu et al., 2020b). We employ a cloud proxy based on relative 723 

humidity (RH) along the trajectories similar to Isokääntä et al. (2022). To this end, the history of the air mass is 724 

investigated, and if the RH exceeds 94 %, we assume the air mass is in cloud. Further, the air masses were then separated 725 

into “clear sky” in which they had no experience of clouds or precipitation during the last 24 hours, and “in-cloud” when 726 

the RH exceeded 94 % at least at one trajectory point but no precipitation events occurred during the last 24 hours (Table 727 

S7). Only the last 24 hours of the air mass history were considered, as with longer air mass histories (i.e., longer 728 

investigated time) the number of strictly in-cloud trajectories decreases due to increasing possibility for precipitation 729 

events. Sensitivity tests were conducted by adjusting both the RH limit (from 90 % to 98 %) and trajectory length (from 730 

12h to 60h), but they did not affect our conclusions. It was found that the trajectory length adjustment has large effect on 731 

the statistical reliability of the results, hence the investigation is limited to the last 24 hours and thus also stayed consistent 732 

with the previous investigation in Isokääntä et al. (2022). This approach is applied for ERA-Interim reanalysis and for the 733 

GCM trajectories in similar manner.  734 

Reader should also note that UKESM1, ECHAM-SALSA and ERA-Interim do not necessarily have identical definitions 735 

for RH which could impact the results. To acknowledge this, we also investigated how well the RH along the trajectories 736 

actually describes the in-cloud cases by comparing this RH-based proxy to the co-located cloud fraction data from GCMs. 737 

This analysis is presented in Sect. S6, and overall, the cloud events (number of the events and their locations at the 738 

trajectories) from both approaches were similar, leading to similar conclusions as presented in Sect. 5.1 and 5.2 below. 739 

The precipitation used in the classifications here is the total precipitation (including both stratiform and convective 740 

precipitation), as aqueous-phase processes are taking place no matter the cloud type. Relative humidity data is from the 741 

HYSPLIT output instead of using raw GCM/ERA-Interim outputs with manual co-location. This is because UKESM1 742 

was extracted on pressure levels instead of model levels, and the latter were used in this work for the manual co-location 743 

allowing consistency between other variables. The seasonal division applied here is based on the temperature, as in Sect. 744 

4.2. To see whether transport directions and consequently the precursor emissions matter, data is divided into more clean 745 

and more polluted air masses (trajectories visiting latitudes below 60° north assigned to polluted sector as in Isokääntä et 746 

al., 2022). Trajectory frequency maps for these sectors are shown in Figure S16.  747 

In this section, the variation in the total submicron mass of different chemical species depending on the experienced 748 

conditions is first examined and discussed for the GCMs (Sect. 5.1) and reflected to observations. Then, in the next section 749 

(Sect. 5.2), a size-resolved analysis is conducted to determine whether additional insight into in-cloud processing in GCMs 750 

could be provided. 751 

5.1 Effects of in-cloud processing for total submicron aerosol mass 752 

Both observations and GCMs show higher SO₄ mass concentrations for cloud-processed air masses within the “cold and 753 

polluted” (CP) sector (Figure 9), consistent with findings from Isokääntä et al. (2022). This pattern holds despite the 754 

reduced observational dataset due to temporal harmonization with the GCMs (see Sect. 2.4). Other air mass sectors are 755 

shown in the supplementary material (Figure S18). 756 
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Across all air mass sectors, both GCMs agree well with observations, considering expected differences in the total mass 757 

concentrations. Statistically significant increases in SO₄ mass for in-cloud versus clear-sky air masses were found in both 758 

observations and models (p ≤ 0.001, Kruskal-Wallis test; Table S8), except for the warm and clean sector (Figure S17g-759 

f), where no clear difference was observed. As in Isokääntä et al. (2022), this may reflect limited  SO2 availability for 760 

aqueous-phase oxidation in cleaner, warmer air masses. Supporting this, UKESM1 shows the lowest SO2 levels in clean 761 

sectors (CC and WC;Figure S18e), while higher SO2 in polluted sectors (CP and WP) coincide with greater SO4 762 

differences. Recent findings from the Holuhraun eruption (Jordan et al., 2023) also suggest aqueous-phase oxidation 763 

dominates SO₂-to-SO₄ conversion in GCMs. While future increases volcanic activity (Chim et al., 2023), could enhance 764 

SO₂ levels and boost in-cloud SO₄ production, ongoing emission controls may reduce anthropogenic SO₂, potentially 765 

counteracting this effect and influencing aerosol size and composition. 766 

The observations shown here do not exhibit statistically significant differences for OA between the clear sky and in-cloud 767 

air masses in any of the sectors. The median mass of OA in ECHAM-SALSA is larger for the in-cloud air masses for the 768 

cold and polluted sector (Figure 9c and Table S8), but no other sectors exhibit statistically significant differences. 769 

However, this difference in the OA mass in the cold and polluted sector is unlikely due to formation of aqSOA, as the 770 

simulations employed in this study here did not explicitly model the formation of SOA. UKESM1 displays larger 771 

differences in the OA mass, in which most are also statistically different. However, the same applies as for ECHAM-772 

SALSA, i.e., the model simulations do not include the formation of SOA, and thus the differences must arise from other 773 

affecting factors. Both GCMs employ CMIP6 emission datasets as noted in the model setup for AeroCom Phase III GCM 774 

Trajectory Experiment, and thus the differences observed here unlikely arise from varying emissions. One should also 775 

keep in mind that the representations of OA in the GCMs might differ, and especially their relationship with temperature, 776 

relevant driver for SOA formation in general, has been shown to exhibit large structural uncertainties between the GCMs 777 

(Blichner et al., 2024).  778 

Isokääntä et al., (2022) did not observe significant aqueous-phase SOA (hereafter, aqSOA) formation from the 779 

observations and this has also been noted previously (Graham et al., 2020) for similar boreal environment. Formation of 780 

SOA from gaseous precursors dominates this boreal region (see e.g., Petäjä et al., 2022), and thus distinguishing aqSOA 781 

from the total formed SOA with our methodology is challenging. For isoprene-dominated environments, the formation 782 

of aqSOA is a significant source for total SOA burden (e.g., Lamkaddam et al., 2021). Also biomass burning emissions 783 

have been identified as a potential source for aqSOA (Gilardoni et al., 2016; Wang et al., 2024). 784 

It was reported earlier that the observations also suggested increase in the mass fraction of SO4 when the air masses had 785 

been exposed to in-cloud conditions long enough (Isokääntä et al., 2022). To investigate whether similar behaviour could 786 

be observed for the GCMs, we calculated the total time spent under the influence of non-precipitation clouds from the 787 

96h long trajectories. Figure 10 demonstrates slight increases in the mass fraction of SO4 with increasing time spent in 788 

non-precipitating clouds for both GCMs. This, however, is somewhat affected by the data size. If inspecting the GCM 789 

data which is temporally harmonised to the observations (Figure 10a-b), the conclusion is not as obvious compared to the 790 

case were inspecting all available GCM data (Figure 10c-d). This highlights the importance of long enough GCM 791 

simulations needed in this type of Lagrangian analysis utilizing single particle air mass trajectories unless ensemble 792 

trajectories are utilised. 793 
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 794 

Figure 9 Median (black horizontal lines and numerical values) particle mass concentrations at SMEAR II with 25th–75th 795 

percentiles (boxes) for OA, eBC, and SO4 for the cold and polluted (CP) air mass sector. The experienced conditions by the air 796 

mass are denoted as clear sky and in-cloud (non-precipitating). Subplots include (a) SMEAR II + ERA-Interim, (b) UKESM1 797 

and (c) ECHAM-SALSA. 798 

 799 

Figure 10 The mass fractions of OA, SO4, and BC for the more polluted air masses as a function of time spent in in non-800 

precipitating cloud. The top row (a-b) shows the temporally harmonised data and bottom row displays the GCM data without 801 

harmonization. The figure shows mass fractions derived from median concentrations for each 1-hour bin. 802 

5.2 Effects of in-cloud processing for size-resolved aerosol mass 803 

To see whether the observed in-cloud formed SO4 mass in the GCMs (Figure 9b-c) is contributing to same particle sizes 804 

as in the observations reported in Isokääntä et al. (2022), the analysis was repeated here for the GCMs. The observations 805 

indicated SO4 mass originating from aqueous-phase processes is mostly contributing to particles with diameters of 200-806 

1000 nm. Figure 11 shows the particle mass concentrations for various size classes derived from the PNSDs from the 807 

GCMs for the clear sky and cloud processed air masses for the cold and polluted sector. The three other sectors are shown 808 

in Figure S19, and Table S9 shows the results for the GCMs from the statistical significance testing between the clear sky 809 
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and in-cloud groups within each size class. Compared to observations, UKESM1 data (Figure 11a and Figure S19) implies 810 

the mass increase seems to be mostly distributed to bins with dp = 100-350 nm and up to 600 nm in the cold and polluted 811 

and cold and clean sectors. This is likely due to UKESM1 having large concentrations of particles in general within this 812 

size range (see e.g., Figure 2d). Like the observations, UKESM1 does not exhibit any mass increases for any of the size 813 

bins in the warm and clean sector (Figure S19e), being in line with no observed increase in the SO4 mass in the same 814 

sector (WC) between the clear sky and cloud processed air masses (Figure S17h). 815 

ECHAM-SALSA (Figure 11b and Figure S19), exhibits increased mass concentrations for sizes starting from dp = 50 nm 816 

(only in cold and polluted sector) up to 1700 nm, depending on the sector. The largest bin here in ECHAM-SALSA might 817 

also be influenced by dp = 1-1.7 µm particles, which are neither considered in UKESM1 nor in the observations when 818 

inspecting the chemical components (see Sect. 2.4.2). Like UKESM1, ECHAM-SALSA also does not exhibit mass 819 

increases for any of the size bins for the warm and clean sector (Figure S21f). 820 

 821 

Figure 11 Median (black horizontal lines and numerical values) particle mass concentrations with 25th–75th percentiles (boxes) 822 

for selected size bins for (a) observations with ERA-Interim, (b) UKESM1 and (c) ECHAM-SALSA for the cold and polluted 823 

(CP sector). For the latter, the native size bins are shown (bottom row of the legend). The experienced conditions by the air 824 

mass are denoted as clear sky and in-cloud (non-precipitating).  825 

An advantage of the GCMs used in this study is their provision of size-resolved chemical composition, shown as mass 826 

fractions in Figure S20. For UKESM1, increase in the soluble SO4 in the accumulation mode can be observed (Figure 827 

S20a). Due to the model structure, however, the accumulation mode itself consist of a large spread of particle sizes (dp = 828 

100-1000 nm), i.e., internally mixed aerosols with external size modes, thus not providing additional information to our 829 

PNSD based analysis. For ECHAM-SALSA, the original sectional bins can be inspected (Figure S20c) thus 830 

corresponding to the PNSD bins presented in Figure 11b. All size bins that exhibited mass increases in Figure 11b also 831 

exhibit higher mass fraction for SO4 in Figure S20c. 832 

The observed changes in particle number size distributions (Figure 11) reflect the actual model parameterizations. In 833 

UKESM1, SO₄ produced via aqueous-phase chemistry is allocated to the soluble accumulation mode (dp > 100 nm) and 834 

coarse mode (dp > 500 nm) (Mann et al., 2010), with the results here showing increases in the 100–600 nm range. In 835 

ECHAM-SALSA, aqueous-phase SO₄ is distributed across soluble size bins spanning 50–10000 nm (2a bins; see Table 836 

S3, Bergman et al., 2012), with sector-dependent mass increases observed between 50–1700 nm. . In terms of aqueous-837 

phase oxidation of SO2, both GCMs have similar parametrizations, and for example, oxidation of SO2 by ozone (O3) and 838 

hydrogen peroxide (H2O2) is considered in both (Bergman et al., 2012; Hardacre et al., 2021). 839 
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6 Conclusions 840 

In this study we investigated the effects of stratiform precipitation (wet removal) and clouds (aqueous-phase oxidation) 841 

on submicron aerosols along air mass trajectories. Two global climate models—UKESM1 and ECHAM-SALSA—were 842 

analysed using a Lagrangian framework consistent with Isokääntä et al. (2022), now being seamlessly applicable to GCMs  843 

(Kim et al., 2020). Our geographical focus was the SMEAR II station in Hyytiälä, Finland, and the surroundings, 844 

representative of the boreal environment.  845 

Our first objective was to investigate whether the trajectory-based relationships between aerosols mass, number and 846 

precipitation vary between the observations and the GCMs. For aerosol mass, the derived removal for observations 847 

generally fell between the two modelsthose simulated by ECHAM-SALSA and UKESM1 across seasons. This indicates  848 

that both models captured the observed mass–precipitation relationship for total aerosol and individual species (OA, SO₄, 849 

BC). In contrast, aerosol number revealed clear model biases that varied by season. In summer, UKESM1 exhibited a 850 

pronounced loss of particle number via precipitation compared to both observations and ECHAM-SALSA. This bias 851 

likely stems from the absence of boundary layer nucleation, which produces fewer small particles and leaves a larger 852 

fraction of particles susceptible to wet removal.showed stronger divergence: while ECHAM-SALSA and observations 853 

indicated minimal reduction, UKESM1 exhibited significant loss in particle number via precipitation, likely due to a lack 854 

of small particles in the model. Supplementary analysis comparing a wider ensemble of GCMs indicated that these two 855 

models were broadly representative, with their aerosol–precipitation relationships generally falling near the middle of the 856 

inter-model spread. Reductions in organic aerosol (OA), sulfate (SO4) and black carbon (BC) also followed the same 857 

general trends as total aerosol, although with weaker seasonal differences. Our use of normalized submicron mass and 858 

number as a function of accumulated precipitation proved effective in comparing removal across models, though it lacks 859 

detail on particle size evolution—an important topic for future work. 860 

Key variables influencing the wet removal processes, such as number of potential cloud condensation nuclei (N₈₀) and 861 

updraught velocities, were also examined to evaluate the observed removals. In UKESM1, a strong summer correlation 862 

between activated fraction and updraught velocity (Fig. 8) may further increase particle number removal. However, 863 

analogous study examining droplet number/CCN versus updraught (Virtanen et al., 2025) show substantial variability 864 

across models, highlighting that the relationship. In winter, both models overpredicted particle number removal relative 865 

to observations. This overprediction may in part reflect differences in precipitation statistics, with models simulating 866 

fewer low-precipitation trajectories (<2 mm) than observed (Fig. 4c). However, other factors such as particle size 867 

distributions, activation efficiencies, and limitations in the representation of subgrid-scale meteorology are also likely to 868 

contribute. Aerosol activation into cloud droplets followed by rainout appears to be the dominant removal process also in 869 

this study being in line with earlier work. UKESM1 results further supported this showing nucleation followed by rainout 870 

as the largest contributor. The seasonal differences in the observed removals within the GCMs were evaluated further by 871 

inspecting key variables, such as, number of potential cloud condensation nuclei (N80) and updraught velocities. The 872 

seasonal differences we observed in these variables, along with changes in particle chemistry during the transport, were 873 

consistent with the aerosol-precipitation relationships.  The relationship between activated fractions and updraught 874 

velocities shows opposite seasonal patterns in the GCMs: UKESM1 has a stronger summer correlation, while ECHAM-875 

SALSA’s is stronger in winter, though its seasonal variation is smaller overall. This behaviour further explains the 876 

differences between the aerosol-precipitation relationships in which ECHAM-SALSA showed similarity to observations. 877 

We hypothesize that UKESM1's pattern may stem from the absence of boundary layer nucleation, resulting in fewer small 878 
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particles during summer. Overall, our resultsThis emphasizes the need for better representation of particle number size 879 

distributions (PNSDs) in GCMs. 880 

Earlier work has indicated that aerosol activation into cloud droplets followed by rainout is the dominant wet removal 881 

process. Our results support this, with UKESM1 showing nucleation followed by rainout as the largest contributor. 882 

Supplementary analysis comparing a wider ensemble of GCMs indicated that these two models were broadly 883 

representative, with their aerosol–precipitation relationships generally falling near the middle of the inter-model spread. 884 

Overall, oOur use ofmethod using normalized submicron mass and number as a function of accumulated precipitation 885 

proved to be effective in comparing removal across models, though it lacks details on particle size evolution—an 886 

important topic for future work. 887 

Earlier studies (Isokääntä et al., 2022; Khadir et al., 2023) have noted that surface precipitation data, commonly used in 888 

trajectory analyses, may not accurately reflect precipitation experienced by air masses at trajectory height. Here, we used 889 

vertically resolved precipitation from UKESM1 and found that surface precipitation serves as a good proxy in this 890 

environment, where trajectories largely remain within the mixed layer and stratiform precipitation dominates. However, 891 

this analysis only considered liquid precipitation and may not apply to regions where convective precipitation is more 892 

prevalent. In such environments, the vertical distribution, intensity, and frequency of precipitation could differ 893 

substantially, potentially altering the accumulated wet removal along trajectories. Therefore, while our results are 894 

representative of boreal regions with stratiform precipitation, further work is needed to assess how applicable they are to 895 

regions with different precipitation regimes. 896 

Our second objective was to investigate whether the GCMs exhibit similar increase in sulfate mass due to in -cloud 897 

production as the observational data. Both GCMs exhibited statistically significant difference in the SO4 mass when air 898 

masses with only clear sky experience were compared to in-cloud processes air masses. The SO4 mass was larger for the 899 

cloud processed air masses for all other air mass sectors (based on temperature and direction) except the warm and clean 900 

air masses, where GCMs showed no significant difference between clear sky and in-cloud air masses. These results were 901 

consistent with earlier work (Isokääntä et al., 2022). Availability of the SO2 to be oxidised is likely determining whether 902 

we see in-cloud production of SO4, and from UKESM1 this was further supported by theSO2 concentrations and their 903 

seasonality. The size-resolved analysis reflected the model parametrizations, the aqueous-phase SO4 being mostly 904 

distributed in the larger aerosol sizes.  905 

As expected based on Isokääntä et al. (2022), we did not observe significant aqueous-phase SOA formation. This is likely 906 

due to the studied environment (boreal forest), and has also been noted previously (Graham et al., 2020) for similar boreal 907 

forest environment. However, some increases in OA mass were seen in the GCMs despite the fact that aqSOA formation 908 

was not explicitly modeled, possibly reflecting other processes or model inconsistencies.  A recent study from Blichner 909 

et al. (2024) also pointed out the large differences between GCMs concerning their OA-temperature relationships, which 910 

could also contribute to the discrepancies observed here. 911 

Overall, both GCMs reproduced the observed exponential decrease in aerosol mass with increasing precipitation and 912 

showed similar cloud-processing behaviour for SO₄. Yet key seasonal differences remain, especially in aerosol–913 

precipitation relationships and their underlying drivers. A primary model bias identified in this study is the difference in 914 

aerosol number size distributions compared to observations, particularly the underrepresentation of small particles in 915 

UKESM1. Our results suggest that discrepancies arise more from differences in aerosol size distributions and updraught 916 
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velocities than from the wet removal parametrizations themselves. These variables also affect activated fractions and 917 

cloud interactions, and they are shaped by processes beyond the 4-day analysis window. 918 

 919 
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7 Outlook 920 

While our results show encouraging agreement between observations and GCMs in overall aerosol–precipitation 921 

relationships, key differences—especially related to seasonality and aerosol number—highlight the need for further work. 922 

Future studies should investigate the evolution of aerosol size distributions along air mass trajectories in more detail and 923 

better disentangle gas-phase and aqueous-phase sulfate formation. Expanding analyses to regions with dominant 924 

convective precipitation is also important, as the findings here are limited to stratiform, liquid-phase conditions typical of 925 

boreal environments. Including a wider range of GCMs, despite the computational demands, would help clarify the 926 

structural causes behind the differences observed. Together, these efforts are essential for improving the representation 927 

of aerosol–cloud–precipitation interactions in climate models.  928 
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Appendix A  929 

The lack of vertical resolution in the precipitation data from ERA-Interim reanalysis or Global Data Assimilation System 930 

(GDAS, (http://ready.arl.noaa.gov/archives.php, last access: 3.2.2024) in studies using Lagrangian approaches is now 931 

being recognised (Dadashazar et al., 2021; Isokääntä et al., 2022; Khadir et al., 2023). Unfortunately, vertically resolved 932 

precipitation data from reanalysis datasets or GCMs, with high enough time resolution to be useful for trajectory models, 933 

is not a commonly provided diagnostic. For UKESM1, this diagnostic can be extracted. Here, we conducted a comparison 934 

between the vertically resolved and surface precipitation data along the air mass trajectories to investigate how well the 935 

surface precipitation describes the actual experienced precipitation by the air mass. Only liquid (stratiform) precipitation 936 

is inspected, as vertically resolved snowfall was not included in the variable extraction with high enough vertical 937 

resolution for this model run.  938 

We first inspected the relationship between the normalized particle mass and number with the accumulated stratiform 939 

precipitation, similar to Figure 4. This assessed whether aerosol–precipitation relationships differ between surface and 940 

vertically resolved precipitation. Displayed in Figure A1, the results indicate the effects of stratiform precipitation at the 941 

height of the air mass are similar to the effects of stratiform precipitation at the surface. This is likely related to the average 942 

altitude of the air masses, as for SMEAR II they tend to travel well below the top of boundary layer. 943 

 944 

Figure A1 Normalized total (dp = 3-1000 nm) particle mass (a) and number (b) at SMEAR II for summer (JJA) 945 

and wintertime (DJF) as a function of 0-25 mm of accumulated liquid stratiform precipitation along the 96-hour 946 

long air mass trajectories at the height of the air mass (referred as 3D) and at the surface (referred as 2D) for 947 

UKESM1. The coloured points show the median values for each 0.5 mm bin of accumulated precipitation when 948 

the number of trajectories in the bin was 10 or larger. The sample size for the corresponding bins is shown in (c).  949 

To investigate whether the height of the air mass plays a role, as speculated in Isokääntä et al. (2022), the air mass 950 

trajectory altitudes were clustered with Kmeans (e.g., Hartigan and Wong, 1979) and 3 clusters with distinct height 951 

http://ready.arl.noaa.gov/archives.php
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profiles were selected for further analysis. Clustering each season separately provided similar height profiles as clustering 952 

of the whole data, and thus the latter approach is presented. 953 

Figure A2 shows the median altitudes of the clusters and the corresponding mean stratiform rainfall rates. Overall, the 954 

mean rainfall rates show similar values despite the precipitation diagnostic. In the low-altitude cluster (Figure A2d), 955 

overall highest rainfall rates (mean over all trajectories and hours for surface precipitation, ~ 0.033 mm h-1) are observed. 956 

In the mid-altitude cluster, rainfall rates are smaller (~ 0.016 mm h-1) compared to the low-altitude cluster, and in the 957 

high-altitude cluster, the rainfall rates are the smallest (~0.010 mm h-1). In the high-altitude cluster (Figure A2f) more 958 

differences emerge between the two precipitation types, especially afar from SMEAR II. 959 

 960 

Figure A2 Clusters based on air mass trajectory altitudes for UKESM1. In (a)-(c) the black lines show median trajectory 961 

altitude as a function of time from SMEAR II and 25th to 75th percentiles are shown with the shaded area. The used arrival 962 

height at SMEAR II given to HYSPLIT is indicated with blue horizontal line. The corresponding mean rainfall rates are shown 963 

in (d)-(f). Clusters are named based on the maximum altitude the trajectory has resided during the last 4 days. Note the different 964 

y-axis limits in subplots (a)-(c). 965 

Each cluster was then further separated by season. The median altitudes, if inspected separately for each season, are nearly 966 

identical between the seasons within each cluster, and thus not shown here. Figure S21 shows the differences between 967 

the mean liquid rainfall rates between surface and vertically resolves stratiform precipitation (positive difference 968 

indicating the rainfall rates at the surface are higher) for each cluster and each season.  969 

During autumn (SON) the two approaches for the precipitation exhibit observable differences only in the high-altitude 970 

cluster, where the surface precipitation shows some overestimation of the actual experienced precipitation by the air mass 971 

with increasing trend when moving farther away from SMEAR II. This could imply that the air mass has spent some time 972 

above or inside the precipitating cloud, as also the air mass altitude increases when moving away from the station (Figure 973 

A2a-c). During summer (JJA), all clusters mostly show precipitation at the air mass height being larger than the surface 974 

precipitation, expect in the high-altitude cluster (Figure S21c) 72 to 96 hours before arrival to SMEAR II. As the 975 

temperatures during summer are higher than in other seasons, this could be indication of evaporation as the surface 976 
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precipitation in UKESM1 includes only precipitation that reaches the surface i.e., it is not column integrated. During 977 

spring (MAM) and winter (DJF) the surface precipitation shows small overestimation at some points along the trajectories, 978 

and the differences are largest at the high-altitude cluster—where, however, the rainfall rates are very small overall (see 979 

Figure A2f) for both precipitation types.   980 

 981 

 982 

  983 
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