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models (GCMs) face uncertainties in estimating Earth's radiative budget due to aerosol-cloud interactions (ACI). Accurate

particle number size distributions (PNSDs) are crucial for improving ACI representation, requiring precise modelling of

aerosol sources and sinks. Using a Lagrangian trajectory framework, we examine how clouds and precipitation influence

aerosols during transport, and thereby influence aerosol—cloud relationships in the boreal forest. Two GCMs, the United
Kingdom Earth System Model (UKESM1) and ECHAM6.3-HAMZ2.3-MOZ1.0 with the SALSA2.0 aerosol module
(ECHAM-SALSA), are complemented with model-derived trajectories and evaluated against in-situ observations, which

are_accompanied by reanalysis trajectories. Overall aerosol-precipitation trends are similar between GCMs and

observations. However, seasonal differences emerge: in summer, UKESM1 exhibits more efficient aerosol removal via

precipitation than ECHAM-SALSA and observations, whereas in winter, the opposite is observed. These differences

coincide with key variables controlling aerosol activation, such as sub-grid scale updraught velocities and PNSDs. For

example, in winter, removal of total aerosol mass in ECHAM-SALSA was stronger than in UKESM1, coinciding with

higher activated fractions and larger sub-grid scale updraught velocities in ECHAM-SALSA. For both GCMs, cloud

processing along trajectories increased SO mass, mainly in the accumulation mode, consistent with observations and

model parametrizations. Discrepancies arise more from differences in PNSDs and updraught velocities than from wet

removal parametrizations, an example being the underrepresentation of small particles in UKESM1. While our findings

are representative of boreal region with predominantly stratiform precipitation, further work is needed to evaluate their
applicability to other regions.
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1 Introduction

Atmospheric aerosol particle concentrations are influenced by their sources and sinks which affect their lifetimes in the
atmosphere, and also play a significant role in our climate system through different mechanisms. One of the most
important mechanisms are aerosol-cloud interactions (ACI), which are still causing the largest uncertainties on the effects
of aerosols on Earth’s radiative budget in general-cireulationglobal climate models (GCMs, Boucher, 2013; Watson-Parris
et al., 2019; Bellouin et al., 2020; Forster et al., 2021), and therefore partly masking the warming effect by greenhouse
gases (Bauer et al., 2022; Quaas et al., 2022). It is critical, therefore, that the microphysical processes influencing ACIs
are well understood and accurately modelled. To accurately simulate ACI in GCMs, the aerosol number size distributions
need to be correctly described (e.g., Mann et al., 2010). Traditionally, discrepancies in particle size distributions between

observations and models exceed those between modal and sectional approaches, with sectional methods dividing the

distribution into discrete size bins

(Mann et al., 2012). However,-but larger
differences in concentrations may emerge when chemistry of the aerosols is inspected (Laakso et al., 2022). On the other

hand, to accurately represent the aerosol number size distributions, GCMs also need to accurately represent the source
and sink processes that act on the aerosol during its lifetime and transport in the atmosphere. The impact of precipitation
on the evolution of the size distribution is very important (e.g., Browse et al., 2014; Khadir et al., 2023), but remains a
major uncertainty in the GCMs. Often, when GCM parametrizations are assessed the models are evaluated against
observations or other GCMs by inspecting differences in averages of variables (or relationships between multiple
variables) over certain time spans (e.g., Blichner et al., 2024; GliB et al., 2021; Labe and Barnes, 2022; Maher et al., 2021;
Pathak et al., 2023) in a Eulerian perspective. However, GCM evaluations in which the evolution of aerosols and other
variables is followed over both time and space in more detail using GCM Lagrangian trajectory-based evaluation
frameworks that have have-been recently introduced r-recentyears-(e.g., Kim et al., 2020). Such frameworks facititate

pave the way for the development of more rigorous observational constraints on uncertain physical and chemical aerosol
processes for GCM evaluation, by including temporal and spatial information associated with the air-mass history.

ACIs include scavenging of aerosol particles by precipitation, cloud droplets and ice crystals. Wet scavenging is one of
the most efficient removal routes of particles from the atmosphere (e.g., Ohata et al., 2016; Liu et al., 2020). Wet
scavenging of aerosol particles can be further divided into in-cloud scavenging and below cloud scavenging. Wet
scavenging via in-cloud scavenging involves the loss of aerosol particles when they become activated into cloud droplets
or ice crystals (nucleation scavenging) which can then further collide with interstitial aerosols in-cloud (e.g., Ohata et al.,
2016; Seinfeld and Pandis, 2016). Below-cloud scavenging concerns the removal of aerosol by rainfall from the collection
of particles due to collisions with falling raindrops and snow and ice from precipitation (e.g., Ohata et al., 2016). Current
understanding identifies the contribution of in-cloud scavenging, followed by removal via precipitation to be, on average,
the most important sink globally for accumulation mode particles (particle diameter d, ~ 100-1000 nm). Ultrafine (d, <
100 nm) and coarse particles (d, > 1 pm), on the other hand, are more efficiently removed by below-cloud scavenging
(e.g., Andronache, 2003; Textor et al., 2006; Croft et al., 2009; Ohata et al., 2016). In addition to wet scavenging, clouds
can also alter the particle properties through aqueous phase oxidation processes. For example, sulfate production due to
oxidation of gaseous sulfur dioxide inside clouds is considered as one of the most important mass addition processes for
sulfate (e.g., Ervens, 2015 and references therein). Production of organics through aqueous phase processes has also been

reported in some environments (e.g., Ervens et al., 2018; Lamkaddam et al., 2021).



105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

Investigation of the effects of precipitation and clouds has traditionally been Eulerian, in which local estimates of
precipitation are employed (e.g., Wang et al., 2021). Lagrangian approaches, in which air mass trajectories are exploited
to examine the effects of precipitation on aerosols and their composition as the air masses travel to the receptor location,
have, however, increased in popularity during the recent years (Dadashazar et al., 2021; Heslin-Rees et al., 2024;
Isokaanta et al., 2022; Kesti et al., 2020; Khadir et al., 2023; Tunved et al., 2004, 2013; Tunved and Strém, 2019). These
types of studies can provide significantly more detailed insights by considering the interplay between aerosols, clouds
and precipitation during airmassair massai—massmass history, that cannot be achieved using Eulerian approaches. All
these studies investigated how the total accumulated precipitation experienced along air-mass trajectories derived from
reanalysis data affects a particle size distribution measured at a specific receptor site. Tunved et al. (2013), for example,
investigated aerosols in the Arctic (Zeppelin station, Ny-Alesund, Norway) and observed strong removal of sub-micron
particulate mass up to 10 mm of accumulated precipitation. They suggested the in-cloud scavenging (followed by removal
via precipitation) is the dominant removal pathway, as larger particles showed first a decrease in their concentration as a
function of accumulated precipitation during transport, followed by the removal smaller sizes. Kesti et al. (2020) studied
aerosols at the humid tropical monsoon climate in the Maldives, and observed more efficient removal en-the-pumber
coneentration-of the accumulation mode particles with increasing accumulated precipitation, when compared to the
smaller particle sizes. Dadashazar et al. (2021) studied sub-tropical environments in Bermuda and concluded that PM2 s
mass experienced the strongest sensitivity to accumulated precipitation up to 5 mm whereas precipitation exceeding this

limit had no major effects on the particulate mass. Khadir et al. (2023) further reported that precipitation can, in some

instances, serve as a source of aerosols.

In addition to the effects of precipitation for aerosols-in-Seandinavian-bereal-region, a previous study by Isokéaanta et al.
(2022) used relative humidity (>94%) as a proxy for in-cloud exposure in boreal air masses and found a pronounced

increase in sulfate mass in air masses recently influenced by non-precipitating clouds, while no significant aqueous-phase

production of organic aerosol was observed—Iikely due to dominant gas-phase biogenic sources. investigated-the-in-

chemistry-is-dominating. This is in-li + }

central Sweden (Graham et al., 2020).

consistent with findings fromin

inthe-Arctic(Heslin-Rees-et-al2024)-These earlier results suggest that sulfate may be more strongly affected by cloud
processing and wet removal than organic aerosol, with removal efficiency likely influenced by factors such as

precipitation timing, aerosol type, and the stage of the air mass trajectory. Our study builds on this by exploring these

aspects across multiple models and observations, employing theFhe GCM Lagrangian evaluation framework presented
by Kim et al. (2020). With this framework-in-which airmassair mass trajectories can be obtained from global GCM

simulations.;_This is achieved by egHocatco-locating multiple variables (for example, aerosol size distribution and

4
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chemical composition) from the GCMs to the-airmassair mass trajectories calculated from the GCM meteorological data

(Kim et al., 2020). This methodology allows us to transparently evaluate and compare the wet scavenging and agueous-

phase processing between the observations and GCMs within the Lagrangian trajectory framework in unprecedented
etail. i ibili ; ; . . i

(oN

This study compares the effects of wet processing (wet removal and aqueous-phase processing) on modelled aerosol size

distributions with long-term observations from Hyytiéld, Finland. Observational trajectories are based on ERA-Interim

reanalysis, while model trajectories are calculated using meteorology data from GCM AMIP-style simulations in which
wind fields were nudged to ERA-Interim. The GCMs used in this study include UKESM1 (United Kingdom Earth System
Model, e.g., Sellar et al., 2019) and ECHAM®6.3-HAM2.3-M0OZ1.0 with sectional aerosol module SALSA2.0 (hereafter
ECHAM-SALSA, Stevens et al., 2013; Kokkola et al., 2018; Tegen et al., 2019). Both GCMs are part of the Aerosol
Comparisons between Observations and Models (AeroCom) Phase 111 GCM Trajectory Experiment (GCMTraj) in which

a comparison between the GCMs against reanalysis meteorology was conducted for the years between 2009 and 2013. In

this study;-te-facilitate-even-more-robust-comparisen-te-ebservations; the simulations for UKESM1 and ECHAM-SALSA
were-extended-to-cover the years from 2005 to 2018 which are also available from the observations. Comparison between

modal (UKESM1) and sectional (ECHAM-SALSA) approaches for estimating the aerosol microphysics provides
additional insight into the model behaviour via this Lagrangian evaluation approach. The Hybrid Single-Particle
Lagrangian Integrated Trajectory model (HYSPLIT; Draxler and Hess, 1998; Stein et al., 2015) is employed to obtain the

backward air mass trajectories. A key difference between our study and previous work, including Isok&éntd et al. (2022),

is our focus on stratiform precipitation rather than total precipitation. Stratiform precipitation is the dominant type in mid-

and high-Ilatitude regions (30-60° from the equator and poleward), whereas tropical regions are typically influenced by

convective systems (e.g., Schumacher and Funk, 2023). Since our study area is primarily the boreal forest region of




184 northern Europe, stratiform precipitation is most relevant. The differing impacts of precipitation types on aerosols have

185 also been highlighted by Khadir et al. (2023), who showed that recent tropical precipitation—largely convective—can be

186 linked to downdrafts that transport small particles from higher altitudes to the boundary layer (see also Franco etal., 2022;
187 Machado et al., 2021; McCoy et al., 2021; Williamson et al., 2019).

188
189
190
191
192
193

194 The aim of our research can be summarized into two main objectives (1-2)-including-two-additional-research-guestions
195  {a-b):

196 1. Do the relationships between aerosols and experienced precipitation during transport differ between the
197 measurements and GCMs and what are the drivers for the observed differences?

198
199

200
201

| Formatted: Normal, Indent: Left: 1,9 cm, No bullets or
numbering

202 2. Do the GCMs exhibit similar increase in sulfate mass due to in-cloud production as the observations and are the
203 observed effects reasonable when reflected to model parametrizations?

204 We start out investigation in Sect. 2 by first introducing the observational datasets, followed by summarising the GCM

205 simulations along with details on the air mass trajectory calculations and data co-locations employed in this work. The

206 aerosol properties at SMEAR 11 are given in Sect. 3 as a necessary background for the following Lagrangian analysis.

207 The relationships between precipitation and aerosol mass and number in the Lagrangian framework are presented first

208 (Sect. 4.1-4.3), followed by a process-chain type evaluation (Sect. 4.4) to understand the driving forces in the

209 relationships. Finally, in Sect. 5, the effects of aqueous-phase processing are presented, followed by overall conclusions
210 (Sect. 6) and outlook (Sect. 7).
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2 Data and methods
2.1 Observations at SMEAR 11

Observational data used in this study include long-term measurements of aerosol number size distributions and particle
chemistry from SMEAR |1 (Station for Measuring Ecosystem-Atmosphere Relations in; Hari and Kulmala, 2005) and are
described in detail in Isok&anta et al. (2022) and the references therein. SMEAR |1 station (Hyytiala, Finland) is classified
as a rural environment, surrounded by relatively homogenous Scots pine (Pinus sylvesteris) forest. In this work particle
number size measurements (covering particle diameters between 3-1000 nm) obtained with a differential mobility particle
sizer (DMPS, e.g., Aalto et al., 2001) are utilized. Chemical composition (organics, sulfate, and equivalent black carbon)
of the particles in the sub-micron range were derived from an aethalometer (e.g., Drinovec et al., 2015) and aerosol

chemical speciation monitor (ACSM, Ng et al., 2011). The dataset for particle number size measurements spans 2005

2018, slightly shorter than in Isokéaanté et al. (2022), to match the GCM simulation period. -The ASCM data extends from

2012 to 2018. Fhe-dataset-used-inth udy educed-compared-to-lsokaantaetal{(20 and-extendstothe-end-0f 2018

2.2 Summaries of the GCMs used in this study
2.2.1 UKESM1

The United Kingdom Earth System Model (UKESM1) configuration used in this study uses the atmospheric and land
components following the protocol set by the Atmospheric Model Intercomparison Project (AMIP, Eyring et al., 2016).
The atmospheric component of the model Fhe-science-configuration-of-the-atmosphere-component-is based on the Global
Atmosphere 7.1 (GA7.1) and the Global Land 7.0 (GL7.0) configurations, as described by Walters et al. (2019). used-in
the-configurationThese are part of the Hadley Centre Global Environment Model version 3 (HadGEM3; Hewitt et al.,
2011), which is coupled to the terrestrial carbon/nitrogen cycles (Sellar et al., 2019). It-and includes interactive
stratosphere—troposphere chemistry from the (Arehibald-etal2020) from the UK Chemistry and Aerosol (UKCA) model
{JKCA(Archibald et al., 2020; Morgenstern et al., 2009; O’Connor et al., 2014)-medel.

Following the AMIP protocol, sea surface temperature and sea ice are taken from the unmodified dataset of Durack et al.
(2017) and horizontally interpolated to the model resolution. In this setup, the dynamic vegetation model (Cox, 2001) is

turned off. Instead, prescribed vegetation from a historical coupled UKESM1 simulation is used to maintain consistent

land-use forcing between the coupled and AMIP experiments.tna-this-model-setup;-the-dynamic-vegetation-model{Cox;

experiments: In a similar fashion, seawater concentrations of dimethyl sulfide (DMS) and chlorophyll-a monthly

climatologies are taken from the coupled historical experiment and are used by the atmosphere model top calculates fluxes

of DMS and primary marine organic aerosol (Mulcahy et al., 2020).

In-additien-tThe simulations used-in-this-study-were nudged to ERA-Interim reanalysis (Dee et al., 2011; Telford et al.,
2008) u/v (horizontal and vertical), wind fields and surface pressure following the setup design for the AeroCom
GCMTraj phase 111 experiment. The model resolution for these configurations was 1.875° x 1.25° longitude—latitude,
which-correspondscorresponding to a horizontal resolution of appreximately-~135 km in the midlatitudes. The model has
85 vertical levels which are divided such that 50 levels are between 0 and 18 km and the remaining 35 levels cover heights
between 18 and 85 km.

[ Field Code Changed

[ Formatted: English (United States)
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Atmospheric composition within UKESM1 is implemented as part of the United-Kingdem-Chemistry—and-Aerosel
{UKCA) model. {e-g--Archibald-etal-2020)-Within UKCA, the Global Model of Aerosol Processes (GLOMAP; Mann
etal., 2010; Mulcahy et al., 2020) is used. This scheme simulates multicomponent global aerosols, including, for example,
sulfate, black carbon, and organic matter. The aerosol particle size distribution is represented using five log-normal
modes, nucleation soluble, Aitken soluble, accumulation soluble, coarse soluble and Aitken insoluble visualized in Figure
S1. More details, including the size ranges for each aerosol mode, are presented in Sect. S1.1. The GLOMAP model also
includes various microphysical processes that affect the evolution of aerosol properties. Wet scavenging processes in
UKESM1, including below-cloud (impaction), in-cloud (nucleation) and plume scavenging are summarized in Sect. S2
and references therein. As a key difference to ECHAM-SALSA (Sect. 2.2.2) concerning the aerosol parametrizations,
new particle formation in the boundary layer is not yet implemented in UKESM1 (Mulcahy et al., 2020).

For this study the AeroCom GCMTraj UKESM1 simulations (2009-2013) were extended-ran longer to cover years from
2005 to 2018 to facilitate robust statistical comparison with the aerosol size distributions and composition measurements
obtained from SMEAR Il. The model output fields were extracted at high temporal resolution (3-hourly output) for all
model levels (when available, otherwise noted as surface). The diagnostics fields utilized in this work (see also Table S4)
are aerosol particle size distribution variables (number concentrations and dry diameters for each aerosol mode), chemical
components including mass mixing ratios of sulfate noted here as SO4 (extracted as sulfuric acid H.SO4 and then
converted, see Sect. S1.1), organic matter (noted here as OA) and black carbon (BC), total (including both liquid rain and
snow) stratiform and convective precipitation at the surface, dry air density, sub-grid scale updraught velocity, number
of activated particles, total precipitation at the surface, relative humidity and cloud fractions. Additionally, from
UKESM1, wet scavenging coefficients (representing removal within the whole atmospheric column) for the different
removal processes (nucleation, impaction and plume) and species (OA, H.SO4 and BC), SO, concentrations, and both
vertically resolved and surface liquid stratiform precipitation are inspected. These variables and/or variables derived from
them are eelocatco-located to the UKESM1 derived HYSPLIT back-trajectories as described in Sect. 2.3.

2.2.2 ECHAM-SALSA

ECHAM®6.3-HAM2.3-M0OZ1.0 is a global aerosol-chemistry-climate model consisting of the atmospheric general
circulation model ECHAM (Stevens et al., 2013) coupled with the Hamburg Aerosol Model HAM (Tegen et al., 2019)
and chemistry model MOZ (Schultz et al., 2018). For this work, as for UKESM1, simulations follow AMIP style runs
following the AeroCom phase 111 GCMTraj experiment setup. Therefore, as for UKESM1, the u/v wind fields and surface
pressure were nudged towards ERA-Interim reanalysis data. In addition, the sea surface temperature and sea ice cover
were prescribed based on monthly mean climatologies obtained from the AMIP project (Eyring et al., 2016). The model
solves atmospheric circulation with vertical gridding of 47 layers extending roughly up to 80 km. Model horizontal
resolution for these configurations is 1.875° x 1.875° longitude—latitude.

ECHAM®6.3-HAM2.3-M0OZ1.0 is paired with the sectional aerosol microphysics model SALSA2.0 (ECHAM-SALSA)
in which the size distribution is divided into 3 subranges (dp1 = 3 — 50 nm, dy2 = 50 — 700 nm and dpz = 700 nm — 10 um)
including 10 size classes in logarithmical size space. Subranges dp2 and dys include parallel size classes for insoluble and
soluble aerosol species, making the total number of size classes 17 (Kokkola et al., 2018), visualized in Figure S1. More
details of the subranges and their compositions are given in Sect. S1.2. Additional details of the aerosol processes
calculated in SALSA2.0 can be found in Kokkola et al. (2018) and Holopainen et al. (2020). Wet scavenging

parametrizations are summarized in Sect. S2 for below- and in-cloud scavenging.
8
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As for UKESM1, simulations cover the years from 2005 to 2018 for ECHAM-SALSA. Data output-frem-ECHAM-
SALSA is also 3-hourly and vertically resolved unless the variable is noted as surface variable. The diagnostics extracted
from ECHAM-SALSA-for-this-study (see also Table S4) include aerosol particle size distribution variables (number
concentrations and dry diameters for each size class), chemical components including mass mixing ratios of sulfate (SO.),
organics (noted here as OA) and black carbon (BC), total (including both liquid rain and snow) stratiform and convective
precipitation at the surface, dry air density, sub-grid scale updraught velocity, number of activated particles, total
precipitation at the surface, relative humidity and cloud fractions. Similar to UKESML1, these variables and/or variables
calculated from them are eeHocatco-located to the ECHAM-SALSA derived HYSPLIT back-trajectories as described in
Sect. 2.3.

2.3 AirmassAir mass trajectory calculations and data eeHocatco-location
2.3.1HYSPLIT

The 4--day (96 h) back trajectories arriving at SMEAR Il were calculated by version 5.1.0 of the HYSPLIT (Stein et al.,
2015) model for the period from January 2005 to December 2018. The 4-day long back trajectories were used to ensure
consistency with the results from Isokdantd et al. (2022). In addition, this is typically a long enough period for slowly
moving air masses to travel to the boreal environment from high arctic and marine areas. Arrival height of the trajectories
to the receptor station was set to 100 m above the ground level. To obtain the GCM derived trajectories, the meteorological
fields from the GCMs were first converted into a consistent netCDF4 format which was then converted into the ARL
packed HYSPLIT4 compatible format (Kim et al., 2020). Ferthis—study,—and-for-the-AeroCom-GCM-Trajectory
ExperimenttThe GCM and ERA-Interim (Dee et al., 2011) reanalysis meteorological datasets required for the HYSPLIT4
trajectory calculations were re-gridded to a consistent 1° horizontal resolution. The vertical discretization of the GCM
variables was provided on terrain-following medelHevelsforthose- GCMs-that-have-theirnative-eutput-as-hybrid sigma-
pressure levels. In UKESM1, however, the native output is on hybrid height levels, which is not supported by HYSPLIT.
Therefore, UKESM1 was output on fixed pressure levels-instead, which-were-selected to closely match the ERA-Interim
pressure levels.

Trajectories were calculated for every 3 hour for both reanalysis data and the GCMs, which—was—also—the
usedcorresponding to GCM-simulation-diagnestic-output resolution. This led to 8 trajectories per day, a total of 40896 air
mass trajectories between 2005-2018 before applying any pre-processing and temporal harmonization of the data (Sect.
2.4). Hereafter, when discussing observational data coupled with the ERA-Interim back-trajectories, those are referred as
observations unless mentioned otherwise. It should be noted that reanalysis data is not interchangeable with observations

but is used as a proxy in this study.

2.3.2 CollecatCo-location of GCM data along the airmassair mass trajectories

The variables from the GCMs described in Sect. 2.2.1 and 2.2.2 were temporally (time), spatially (latitude, longitude) and

vertically (variables which covered different model or pressure levels) eeHecatco-located to the GCM derived airmassair
mass trajectories. In short, a eellecatco-locator tool (Kim et al., 2020) based off the Community Intercomparison Suite
(CIS, Watson-Parris et al., 2016) was used to eellecatco-locate 4-dimensional data which uses hybrid altitude coordinates.

As the default interpolator within CIS has often difficulties eellecatco-locating to the near-surface trajectory points (due

to surrounding grid-boxes being at the boundaries of the data domain), eurthe modified eeHocatco-locator provided more

flexibility for the interpolation of these near-surface points. This is relevant also in this work, as for our surface sites the
9
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trajectories can also travel at low altitudes. In this improved eellecatco-locator, when the linear interpolation in the near-
surface trajectories would result into a missing value, nearest-neighbour interpolation is used instead. t-that-wayThus,
extrapolation of values can be avoided and information for trajectory points that are within the data domain retained. The
colecatco-located GCM data from the airmassair mass trajectory arrival times, i.e., times when the air mass is located at
SMEAR |II, are used to represent the conditions at SMEAR I1,-thus facilitating direct comparison to observational data
obtained at the site.

A difference to Isokaénta et al. (2022) where the ERA-Interim precipitation internally processed by HYSPLIT onto
trajectories coordinates was used, is that the raw precipitation fields from ERA-Interim are employed in this work by

colecatco-locating them to the airmassair mass trajectories in a post-processing step (as for the variables extracted from

GCM s described above). similarto-the-variables-extracted-from-the- GCMs-mentioned-above—This approach was chosen

to retain the original numerical precision of ERA-Interim (and GCM) precipitation data, ensuring accurate alignment with

co-located GCM variables (e.qg., aerosol size distributions and chemical composition), which HYSPLIT does not provide.

Here, “consistency” refers to numerical accuracy rather than matching data sources. Fhis-approach-was-selected—as-it

2.4 Data harmonization between measurements and GCMs
2.4.1 Temporal eeHocatco-location and data pre-processing

The data from the measurements (1-hourly averages) conducted at SMEAR 11 was temporally eeHocatco-located with the
ERA-Interim derived back-trajectory arrival times (3-hourly). Additionally, the GCM derived trajectories (3-hourly) were
only eeHocatco-located with the times when aerosol observations were available. By adopting this approach, only GCM
trajectories corresponding to existing data points in observations were retained and utilized in further analysis;—nless
noted-otherwise. The importance of temporal eeHecatco-location for model evaluation is discussed, for example, in
Schutgens et al. (2016). Harmonisation of the measured aerosol size distribution and composition with the corresponding
variables available from the GCMs are described in Sect. 2.4.2 and 2.4.3.

For consistency with Isokaénté et al. (2022) identical pre-processing is applied here to the in-situ aerosol observations
before the temporal eeHocatco-location described above. +n-the-pre-processingThus, data points for which the measured
wind direction was between 120 and 140 degrees were removed due to possible influence of strong VOC (volatile organic
compound) emissions from the local sawmill (Heikkinen et al., 2020; Liao et al., 2011). In addition, trajectories crossing
the area of Kola Peninsula were excluded as in Isok&antd et al., (2022) due to strong pollution sources within the area
(Heikkinen et al., 2020; Kulmala et al., 2000; Riuttanen et al., 2013). This led to aerosol size distribution data covering
the years between 2005 and 2018 (number of final data rows/trajectories: 30688) and aerosol chemical composition for
the years between 2012 and 2018 (number of final data rows/trajectories: 6174). How-these-data-points-are-dDistribution
of the data pointsed over the years are shown in Figures S2 and S3-in-Seet-S3.-Fhe-resulting-final-transport-paths-of the
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2.4.2 Aerosol particle number size distribution

The DMPS (differential mobility particle sizer, e.qg., Aalto et al., 2001) observations include 51 size bins in the observed

size range (dp = 3-1000 nm). For UKESM1, complete log-normal particle number size distributions (Seinfeld and Pandis,
2016) were calculated by using the modal parameters (dry diameters, number concentrations and geometric mean
diameters) given by the model. The number size distribution is discretised into the same size grid as the observationsi.e.,
the bin midpoints are identical to the ones available from the DMPS measurements. This approach was possible as in
SMEAR I the size grid DMPS applies stays constant over the whole investigated period. This harmonization was

conducted for each hour along the airmassair mass trajectories using the eeHocatco-location approach described in Sect.

2.3.2 as UKESML1 provided all needed modal parameters for calculation of the full particle number size distributions
(PNSD) along the trajectories.

For ECHAM-SALSA, the number concentrations of soluble and insoluble bins (i.e., size classes) were added together for
each size bin. To make the logarithmic number size distribution comparable to UKESM1 data and DMPS measurements,
the values within each size bin (i) were divided by the logarithm of the maximum size dimax minus the logarithm of the
minimum size dimin i.e., by 10g10(dimax)-10g10(dimin) for that size bin (see Table S3). Similar to UKESML1, this was
conducted along the trajectories. For aerosols, ECHAM-SALSA bins ranging from 3.0 nm to 1700 nm in diameter are
studied, as by strictly limiting to sub-micron bins (< 700 nm), the largest sub-micron particles (700 nm < d, < 1000 nm)
that do contribute to the total particle mass, would be lost. Hewever-sSensitivity analysis was conducted including only
the sub-micron bins, and none of the conclusions changed.

Integrated variables, such as total number and mass concentrations (for submicron particles) were calculated from the
particle number size distributions by assuming the particles are spherical and have a constant density of p = 1.6 g cm™.
This density corresponds to the average density of particles observed at SMEAR 1l (e.g., Hakkinen et al., 2012). Again,
these quantities were calculated for each hour (i.e., 96 data points, see Sect. 2.3.1) along every single air mass trajectory.

2.4.3 Chemical composition

Observational data for organic aerosol (hereafter OA) and sulfate (hereafter SO4) was obtained using observations from
ACSM (aerosol chemical speciation monitor, Ng et al., 2011) which is most efficient at measuring particles with ~ 75-

650 nm of vacuum aerodynamic diameter, passing through particles up to 1 pm (Liu et al., 2007). For UKESM1, Aitken
and accumulation mode are used in this context by summing the mass mixing ratios (MMR, kg of species per kg of air)
of these modes, including both soluble and insoluble modes when available. Due to the definition of the modes in
UKESML1, these correspond to particle diameters between 10-500 nm (see Sect. S1.1), thus having large overlap with the
size range most efficiently represented in ACSM. The MMRs from UKESM1 and ECHAM-SALSA are converted into
mass concentrations by multiplying the MMRs with the density of the air to facilitate comparisons to chemistry
observations given in the units of pg m3. Equivalent black carbon (hereafter BC) was measured with an aethalometer
using a cut off diameter of 10 pm (PMao). Due to most of the absorbing particles at SMEAR 11 being at sub-micron range,
the difference in the BC mass between PM; and PMyo is only 10 % (Luoma et al., 2019). Therefore, from UKESM1,
Aitken and accumulation modes are also used to estimate the total BC. In addition, to obtain SO, from H2SO4 (sulfuric
acid) which is the UKESML1 native output, a conversion factor is used (see Sect. S1.1). From ECHAM-SALSA, bins with
diameters ranging from 19.6 nm to 700 nm (see Sect. S1.2) are used to estimate the total sub-micron OA, SO4 and BC,
including again both soluble and insoluble bins. Here, for ECHAM-SALSA, the largest bin of which a portion also
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399  consists of aerosols larger than 1 pm (700 nm < d, < 1700 nm) is not included to ensure consistency with the ACSM
400 measuring efficiency (which decreases from ~650 nm up to the maximum size of 1 pm).
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3 Aerosol properties at SMEAR 11 — Eulerian comparison between observations and GCMs

provide context to GCM development since these previous studies (see also e.g., Reddington et al., 2016), a short
assessment of the differences and similarities in Eulerian framework between the aerosol observations, UKESM1 and
ECHAM-SALSA at SMEAR Il is given here. Airmass transport between ERA-Interim and the GCMs is first assessed
(Sect. 3.1), followed by the aerosol particle number size distributions (Sect. 3.2) and chemical composition (Seet-3-1-ané

3.32). This provides the necessary background information to facilitate further comparisons within the Lagrangian

evaluation framework used in this work.

3.1 Comparison of air mass transport between ERA-Interim and the GCMs

To ensure the differences shown in the following sections for the Eulerian analysis are not driven by diverging transport

pathways between the GCMs and ERA-Interim, the airmass transport routes were inspected. The airmass transport routes

in Figure 1 show very similar patterns for ERA-Interim and the GCMs, i.e., the differences are, on average, very small—
as expected for simulations in which wind fields are consistently nudged to ERA-Interim reanalysis. Vertical transport
differences exist (Figure S5), which can be attributed to potential temperature not being nudged, which follows standard
practices (Zhang et al., 2014). For this station, however, these differences are relatively small, and the largest differences
are in areas with low frequency of trajectories. Therefore, any observed differences in the analyses presented in the

following sections are unlikely to be dominated by differences in the airmass transport.
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Figure 13 ERA-Interim air mass trajectory frequencies for spring (MAM), summer (JJA), autumn (SON) and winter (DJF)
are shown in the top row. Frequencies for UKESM1 (e-h) and ECHAM-SALSA (i-1) are shown as differences to the ERA-
Interim. Before calculating the differences, the GCM hexagonal grid (150 hexagons in the x-direction) were first regridded to

match the gridding in ERA-Interim. Red cross shows the location of SMEAR II.

3.3% Aerosol particle number size distributions

In Figure 2 particle number size distributions from the GCMs are compared with observational data at SMEAR 1l. The

figure reveals that UKESM1 underestimates the number concentration of the small (d, < 50 nm) particles, especiall

during summer (Figure 2Figure-tab-d, Table S5). This is, however, expected, as the new particle formation from boundary
layer nucleation was not implemented in UKESM1 (Mulcahy et al., 2020). ECHAM-SALSA does have a better

representation of the PNSD of the smaller aerosol particles during spring and summer when compared to observations
(Figure 2Figure—tce), —During warmer seasons, and-also the absolute number concentrations agree well between
observations and ECHAM-SALSA duringthese warmerseasens-(see nucleation mode from Table S5). This; highlightsing

the importance of NPF from nucleation in the boundary layer, especially in summer. During winter, however, ECHAM-
SALSA does exhibit some overestimation for Aitken mode aerosols (Figure 2Figure-Le and Aitken mode from Table S5).

During winter, UKESM1 overestimates larger Aitken and accumulation mode aerosols (d, up to 200 nm) compared to
the observations (Figure 2Figure-tbd and gi), but during spring the number concentration of the accumulation mode

aerosols is very close to observations (367 cm- in UKESM1 vs 352 cm™ in observations as shown in Table S5). This is

somewhat surprising considering the missing growth of small particles from NPF into accumulation mode, however, this

could indicate that there arefrom other processes thatwhieh dominate the accumulation mode. During winter (Figure
2Figure-1a-and-gi) the observations exhibit clear bimodal PNSD peaking around 50 and 200 nm but neither of the GCMs

is able to capture this behaviour. Overall, both GCMs tend to be shifted towards the larger sizes in all seasons (Figure
14
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Figure 2% Particle number size distribution at SMEAR Il as medians for the day of the year for{a} DMPS measurements

(ground level)_are shown in (a), followed by the (b} UKESMIl-and-{c}-ECHAM-SALSA-dBifferences between the DMPS
observations and the GCMs-are-shewn in (b) and (c). For subplot (c), the measured size distribution was first regridded to the

ECHAM-SALSA bins by integrating between the upper and lower limit of each ECHAM-SALSA size bins before calculating
the difference. in{d)-and-{e)-and-forthis-purpose-DMPS-measurements-in{e)-data-have-beenre-gridded-to- ECHAM-SA A

grid- Median PNSDs for each season are shown in (d)-(gf) with shaded areas indicating the 25t and 75t percentiles.

3.32 Chemical composition of the aerosols

Particle chemical composition as a mass concentration for each chemical species from the composition measurements
and the GCMs at SMEAR 11 (trajectory receptor location) is illustrated in Figure 3Figure-2, and the seasonal patterns are

typical for this location. a-g-{rumeric-values-are-shown-in-Table-S6)-and-the-menthly-variations-are-shown-in-Figure2e

ving-tLargest concentration
of organic material is present during summer (JJA) and smallest in winter (DJF). Both GCMs also have pronounced OA
concentration during summer compared to the other seasons, and UKESM1 captures the pronounced OA concentrations
observed during summer particularly well (median OA 2.0 ug m* and 2.2 ug m? in UKESM1 and observations,
respectively, Table S6). A portion of the small underestimation of the OA concentrations of the GCMs during spring and
summer could, however, be influenced by the height of the observations as chemical composition measurements are
conducted at the surface whereas the GCM data shown here are at the trajectory arrival point height at the receptor station
(100 m.a.g.l.). Scale difference likely also plays a role-in-the-differences-everal, as the point measurements are compared
with the GCM grid box values interpolated to airmassair mass trajectories. Monthly data (Figure 3Figure-2e) shows the

second OA peak for the observations to be in February, as expected based on Heikkinen et al. (2020), and in ECHAM-
SALSA this peak falls on January. UKESM1 has-this-peakpeaks in February, but the difference in the concentrations
(compared to observations) between February and January/March is very small. The seasonality of the OA concentrations
presented here for both observations and GCMs also agrees with the results from Blichner et al. (2024) who presented
the same GCMs but for a different time period. Differences in the monthly peak concentration can be observed for BC
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too, where observations and UKESML1 peak in February, but ECHAM-SALSA exhibits the largest BC concentrations in
January (Figure 3Figure 2g).

In general, even though a perfect harmonization of the particle chemical composition data between observations and
GCMs is not achieved (see Sect. 2.4.3), the median concentrations between observations and GCMs agree relatively well
when the overall seasonality is inspected (Figure 3Figure-2a-d); the concentrations are dominated by OA in all seasons,
followed by SO4 and BC. Inspection of the monthly median concentrations (Figure 3Figure-2e-g), however, revealed that
differences also exist.
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Figure 32 Average seasonal mass concentration of sub-micron OA, SO4 and BC at SMEAR 11 from the chemical composition
measurements, UKESM1 and ECHAM-SALSA is shown in (a)-(d). Black horizontal lines show the median and the boxes
extend between 25" and 75t percentiles. Monthly median (lines) concentrations and 25t-75t percentiles (shaded areas) are

presented in (e)-(g).
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4 Lagrangian analysis of overall effects of integral precipitation on aerosols at SMEAR 11

In this section we use the Lagrangian framework to investigate the potential wet removal of the aerosols. In Sect. 4.1 we«

first examine the impact of using vertically resolved liquid precipitation (UKESM1 only), which has not previously been

done for Lagrangian trajectory analyses. Then we inspect the relationship between accumulated precipitation and aerosols
for the two GCM s used in this study: UKESM 1 and ECHAM-SALSA. In Sect. 4.2 we focus on total aerosol mass and

number, and in Sect. 4.3 we focus on the OA, BC, and SO, portions of the total mass for submicron-size aerosols. Then,

in Sect. 4.4, the processes controlling the precipitation-aerosol relationships presented in the previous sections are

investigated, and the differences are discussed in detail between the GCMs (Sect. 4.4.1) and within each GCM (Sect.

4.4.2). Supplementary analysis assesses the representability of the models employed here amongst larger group of GCMs

(Sect. S4).

4.1 Assessment of surface vs. vertically resolved precipitation in Lagrangian wet removal

In earlier studies assessing aerosol-precipitation relationships at SMEAR Il using the Lagrangian framework (e.g.,
Isokaanta et al., 2022; Khadir et al., 2023; Tunved et al., 2013) the vertical position of the trajectories with respect to the
precipitating clouds was not considered. The approach, therefore, does not allow for separation between in-cloud and
below-cloud precipitation scavenging. Instead, it provides us with the overall effect of precipitation (hereafter noted as
wet removal), in which the surface precipitation is used as a proxy for the experienced precipitation by the air mass. This
also means that it could include trajectories that travel above the precipitation, potentially confounding interpretation of
the results.

For this study,-it-was-pessible-to-examine the impact of this simplification_was examined by extracting the vertically
resolved liquid precipitation from UKESM1, which can be compared to the surface precipitation (see Appendix A). Based
on this analysis, it was possible to conclude (see e.g., Figure A1) that for this station the surface precipitation is a relatively
good proxy for the experienced precipitation by the air mass. Therefore, and to be able to include the effects due to

snowfall, which was unfortunately not extracted with high enough vertical resolution from UKESM1, the surface

precipitation is continued to be used in this study. Vertically resolved precipitation was not available from ECHAM-
SALSA.
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4.21 Relationship between precipitation and aerosol mass and number concentrations

The removal of the normalized masses (dp = 3-1000 nm, Figure 4Figure-4a) by accumulated stratiform precipitation for
observations and both GCMs exhibit exponential decrease reaching asymptotic behaviour after ~10 mm of accumulated

precipitation (after 5 mm for UKESM1 during summer). Normalization of the median mass/number concentration to the
median-massfaumber-median value under zerowhen accumulated stratiform precipitation is used in this study. zere-is
employed-here-in-attemptThis approach aims to minimize the effects-due-to-theinfluence of differences in the native
particle number size distributions (e.qg., Figure 1), which affect furthercause-differencesin-the total mass and number
concentrations, and inspect-the-actual derived removal by precipitation-insteadinstead highlight the removal attributable
to precipitation.

For the particle number concentration (dp = 3-1000 nm), en-the-other-hand;-there-are-clear differences-which-also-depend
on-the-seasenthere are clear seasonal differences (Figure 4b). ECHAM-SALSA and the observations show clear seasonal

differences in particle number removal, with much more efficient removal in winter than in summer. UKESM1, however,

does not display this seasonal contrast—Ilikely because it lacks boundary layer nucleation, a key source of small particles

during summer, which leads to similar particle number concentrations across seasons. Here- ECHAM-SALSA-and-the

Inspection of the seasonality is relevant, as differences in the relationships could be driven by different particle size

distributions at the station which vary by season due to differences in meteorology (e.qg., origin of air-masses, temperature

and sunlight) along the air mass trajectories. Seasonality also impacts to the type of the precipitation (liquid vs snow and

stratiform vs convective, for example).

Figure 4Figure-4c shows that the seasonal patterns (e.g., more samples for smaller precipitation values in summer) in the
distribution of accumulated precipitation are similar for both models and observations, thus unlikely driving differences
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in the aerosol-precipitation relationships. The relationships between the aerosol mass, number, and mean stratiform
rainfall rate along the trajectory (Figure S67a-b) exhibit similar seasonal differences as the relationships in Figure 4Figure
4a-b. For example, in summer, UKESM1 exhibits the strongest initial remevatreduction for particle mass (Figure S7a).
Observations and ECHAM-SALSA exhibit minimal to no remevalreduction or particle number during summer (Flgure
S7b), similar to Figure Fegarel,b i i

concentrations are shown in Figures S7 and S8.
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Figure 44 Normalized total (dp = 3-1000 nm) particle mass (a) and number (b) at SMEAR 11 for summer (June, July and
AugustddA) and wintertime (December, January and February B3F) as a function of accumulated stratiform surface
precipitation (incl. both liquid and snow) along the 96 hour long airmassair mass trajectories for observations (DMPS

measurements paired with ERA-Interim trajectories) and GCMs. The coloured points show the median values for each 0.5 mm
bin of accumulated precipitation when the number of data—rewstrajectories in the bin was 10 or larger. The sample size for

each corresponding bin is shown in (c).

4.32 Relationship between precipitation and aerosol chemical composition

The normalized masses of OA, BC, and SO, in submicron-sized particles as a function of accumulated stratiform
precipitation (including both liquid and snow) for the observations and the GCMs is shown in Figure 5Figure5 (see also
Figure S910 showing the same data but grouped differently for easier comparison between the species). The division into

warmer and colder months follows the monthly median temperatures (measured at the site) as in Isokaant et al. (2022).
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forreliable-analysis-The sample sizes for-each-precipitation-bin-are-presented-in Figure SFigure-5g-h;-and-during-warmer
months—they agree well during warmer months between the GCMs. During colder months (Figure 5Figure-5h) more
differences emerge for the smaller precipitation bins (< 3 mm of accumulated precipitation).

The general patterns between the observations and GCMs are similar for all species—exponential decrease is observed
for the mass concentrations, similar to the relationships between total particle mass and precipitation shown in Figure
4Figure-4a. The seasonal differences for the total particle mass (Figure 4Figure-4a) and the chemical constituents are
comparable despite the different approach used to separate the data into temperature regimes instead of seasons. During
the colder months (Figure 5Figure-5d-f), ECHAM-SALSA exhibits the most efficient remevalreduction for all the three
species, as expected based on the remevalreduction of the total aerosol mass (Figure 4Figure-4a). During the warmer
months (Figure 5Figure-5-c), UKESML1 tends to show more efficient remevalreduction than ECHAM-SALSA, the effect
being most pronounced for OA. This is in line with the derived remevalreduction of total particle mass and number during
summer shown in Sect. 4.1 (Figure 4Figure-4a-b), in which ECHAM-SALSA exhibited stronger remevalreduction during
winter and UKESM1 during the summer.

The observational data presented by Isokééntd et al. (2022) showed that the remevatreduction of SO4 due to accumulated
total precipitation in the warmer months was less efficient compared to other species, despite SO being highly
hygroscopic and thus relatively easily activated as a cloud droplet. This is relevant also in this study, as the activation into
cloud droplets followed by precipitation is the dominant remevalreduction mechanisms also for the mass of the different
chemical species (discussed in more detail in Sect. 4.43). Similar to Isokéanta et al. (2022), the derived remevalreduction
for SO4 is less efficient (i.e., smaller end concentrations are reached) compared to OA and BC also here for the
observations and UKESM1 (Figure S910a-b), though the differences between species are overall smaller but still
statistically significant (Kruskal-Wallis rank sum test, p < 0.001). For ECHAM-SALSA, the derived removals between
OA and SO, do not differ (Figure S910c, Kruskal-Wallis rank sum test, p = 0.2) during warmer months, but BC shows
more efficient removalreduction with the accumulated stratiform precipitation than OA and SO4. This could be arising
from the fact that, in ECHAM-SALSA, all BC is basically in the soluble particles (Figure S101b) but OA and SO4 can
reside in the insoluble particles as well.

Isok&énté et al. (2022) hypothesized that the low derived removal efficiency of SO4 during warmer months could be
caused by the species being distributed to different sizes depending on the season. Inspection of the size resolved chemical
composition from the GCMs (Figure S10%), however, is not able to fully explain the observed seasonal differences: SO4
in the GCMs is almost completely distributed to the soluble accumulation mode, and the seasonal differences are only
minor. In ECHAM-SALSA, small contribution of insoluble SO, in the accumulation mode is present, but the difference
between the seasons is small (Figure S101b). Other possible explanations could include, for example (but not limited to),
mixing state (internal/external) of the particles and production of SO4 through cloud processing, which could compensate
for the remevalreduction by stratiform precipitation.
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Figure 55 Normalized mass concentration for submicron OA, SOsand BC at SMEAR |1 as a function of accumulated stratiform
surface precipitation along the 96 hour long airmassair mass trajectories for observations (chemistry measurements paired
with ERA-Interim trajectories) and the GCMs for warm (T > 10 °C, (a)-(c)) and cold (T < 10 ¢C, (d)-(f)) months. The coloured
points show the normalized median values for each 0.5 mm bin of accumulated precipitation when the number of data

rowstrajectories for the bin was 10 or larger. The sample size for each corresponding 0.5 mm bin is shown in (g)-(h).

4.43 Process-chain evaluation for understanding the relationship between precipitation and aerosols

To unde#stand—wh&ekkpreeesses%dm#ng%eunderstand the differences between GCMs and observations in Figure
4Figure4 and Figure SFigure-5, i i
neededwe assess the relative importance of wet removal pathways. As-atready-discussed-in-previous-literaturePrior studies
(Isokaanta et al., 2022; Tunved et al., 2013; Wang et al., 2021), it-is-tikelysuggests that in-cloud scavenging, particle

activation followed by rainout,
average-is the dominantting removal mechanism in-thestudied-envirenment-for submicron-sized particles in this region.
For UKESML1 the relative contributions of the i

remoeval-type-removal types (below-cloud impaction, nucleation followed by rainout, and plume scavenging;-see-Seet:
$2) were quantified using median scavenging coefficients-previded along the trajectories (see Sect. S2). These scavenging

coefficients represent the removal within the total atmospheric column, median values along complete trajectories being

0.040 (JJA) and 0.028 (DJF) moles s;* for impaction, 0.700 (JJA) and 0.191 (DJF) moles s;* for nucleation followed by

rainout and 0.001 (JJA) and 0.000 (DJF) moles s;* for plume scavenging.
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Indeed;-as-demenstratedAs shown in Figure FIQHFQ—@ for organic aerosol (OA)L{whlch dominates the particle mass in
SMEAR I, e.g., Heikkinen et al., (2020),
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Figure 66 Relative contributions of the different removal pathways in UKESML1 for OA in (a) summer/JJA and (b) winter as a
function of time from SMEAR I1. Impaction refers to the below-cloud impaction scavenging, nucleation + rainout describes
the activation process followed by removal of the particles via the formed raindrops, and plume scavenging is the removal due
to convective clouds.

As noted in-the-paragraph-above, nucleation followed by removal-of-the-particles-by-precipitation-is-driving-the-observed
relationships—shewnprecipitation-driven removal explains the patterns in Figure 4Figure—4 and 45. To understand
differences in this process across models, we compare key variables along air mass trajectories related to in-cloud

in-pPrevious studies (Dusek et al.,
2006; Ohata et al., 2016; Partridge et al., 2012; Reutter et al., 2009)- have emphasized the role of sub-grid processes and
variables influencing droplet activation, such as particle size and vertical air motion. We therefore examine how model

representations of activation—affected by sub-grid vertical velocities and aerosol size distributions—influence

removal. Fh

Key variables controlling the aerosol activation into cloud droplets (presented in Figure 7Figure-7a-j)-inchude shows the

number of particles having—with diameterd, > 80 nm (Ngy) and sub-grid scale vertical velocities (referred as
updraughtsupdraught velocities-from-hereon-for-coneiseness), which control droplet formation. The aAccumulation mode

particles (i-e-Ngo)-are-of special-interest-as-these-sizes-are-mostare likely to activate to cloud droplets (Croft et al., 2010;
Partridge et al., 2012),_and updraught velocities drive supersaturation needed for activation. -within-the-sub-micron-size
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supersaturation-needed-forcondensation—The resulting-fraction-of-activated-particlesactivated fraction (Nact/Nior) is shown

in Figure 7Figure-7k-0, and the rainfall rates (at the surface) are presented in Figure S123. In addition, total number of
particles-(Nior) and total mass of the particles (M) at the submicron range, aceempanied-with-the airmassair mass heights
and number of activated particles (Nac) along-the-trajectories-are presented in Figure S134. Chemical composition
relevant for hygroscopicity and droplet formation, is shown in Figure S15.1n-addition-to-particlesize-also-chemistry-has

Together, these

whether the regime is the aerosol- or updraught limited (Reutter et al., 2009).

Figure 4Figure-4 and Figure S5Figure-5 showed strong seasonal contrasts, and seasonal differences in N80, updraughts
and activation are also evident during transportexhibited-strong—seasenal-differences—between-GCMs—and-seasona

(Figure 7Figure—7). Section 4.3.1 discusses seasonal characteristics within each GCM, followed by a model-observation

comparison in Sect. 4.3.2.
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742

743 Figure 77 The evolution of the main drivers for the wet removal (nucleation followed by rainout) along the trajectories. The
744 first row from the top displays the Nso (number of particles for which dp > 80 nm), the second row shows the sub-grid scale
745 updraughtsupdraught velocities (m s*), third row displays the activated fraction of particles, and the bottom row shows the
746 corresponding trajectory frequencies. For the maps, means are calculated for each hexagonal gridbox (grid resolution being
747 150 in the x-direction) that the trajectory crosses, and for the rightmost panels, means have been calculated for each hour along
748 the trajectory. For the updraughtsupdraught velocities and activated fractions, only values when trajectory is in-cloud are
749 shown.

750  4.43.1 Seasonal differences within each GCM

751 In UKESML1, the derived removal for the particle mass during summer is clearly stronger, especially up to ~10 mm of [Formatted: Font: Not Bold

752  accumulated precipitation, compared to winter (Figure 4Figure-4a). For the particle number, the differences between
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summer and winter are less pronounced, and similar concentrations at the receptor station are reached (Figure 4Figure
4b) with high accumulated precipitation. A seasonal difference in the absolute values of Ngo can be observed, the number
concentration being approximately 100 #particles cm™ larger during winter compared to summer (Figure 7Figure-7e).
This difference, wintertime values being larger, is also seen in Ny (Figure S134e). As stated in Sect. 2.2.1, the boundary
layer nucleation is absent in UKESM1—a process being especially frequent around SMEAR |1 during spring and summer
(Nieminen et al., 2014). This is likely the cause for the observed differences in N as the model lacks large portion of the
smaller particles during summer. For the mass, however, the summertime My is larger (Figure S34§S13j). This could
imply that UKESM1 has more numerous medium-sized particles during summer, or, that on average, the particles in
summer are larger compared to winter, thus having larger contribution to particle mass. Figure 2Figure-1 supports the
latter scenario, showing the average PNSD at SMEAR 11 peaking at larger particle sizes in summer compared (~200 nm,
Figure 2Figure-1g) to winter (~100 nm, Figure 2Figure-1i).

The seasonal differences between the updraughtsupdraught velocities in UKESM1 are small, until about 48 hours before

arrival (Figure 7Figure-7j). After that, the summertime updraughtsupdraught velocities exhibit little to no change, but
wintertime wpdraughtsupdraught velocities decrease as the airmassair mass travels closer to SMEAR I1. These differences

relatively close to the receptor station can be attributed to the geographical distribution of the updraughtsupdraught
velocities: close to SMEAR 11 (across Finland, Sweden and Norway, for example), the values are larger in summertime

(Figure 7Figure-7f) compared to wintertime (Figure 7Figure-7h).-These regions coincide with areas ofthe high trajectory

frequency, meaning most air masses pass through them. As a result, the elevated updraught velocities in these regions
strongly influence the averages shown in Figure 7j. ies;i-thus-the-high-updraughts—are-beingreflected-on-the-averages
Wespeew&e%sp%@#e@%ﬂ—ww } i i } i -.

Activated fractions differ markedly between seasons (Figure 70), with nearly half of aerosols activating in summer

compared to about one fifth in winter. These seasonal differences align with the spatial patterns of activated fractions and

trajectory frequencies (Figure 7k, p), showing particularly high values over northern Norway and extending into the Arctic

- During winter, the
activated fractions in this area are much lower (Figure 7Figure-7m). The Nac, on the other hand, displays minor differences
between the seasons in UKESML1 but is slightly larger in winter. However, considering the fact that Nt in UKESM1 is
much higher in winter (Figure S134e) as mentioned earlier, the larger activated fraction (derived as Nact/Niot) in summer
is reasonable.

The chemical composition of particles during their travel in UKESML1 (Figure S145a) reveals that overall, during summer,
the mass concentration is completely dominated by soluble modes, whereas in winter, a portion of insoluble OA in the
Aitken mode is also present. Soluble SO, in the accumulation mode contributes more in winter, but this is greatly

compensated by soluble OA in both Aitken and accumulation modes during summer. If the higher solubility of OA in

summer compensates for the lower SO levels, this could further enhance the particle activation potential in UKESM1

during summer compared to winter.
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Figure 8 shows the relationship between mean activated fraction and mean updraught velocity that the air mass

experienced before arriving at SM-EAR 11 for the summer and winter. Another-way-to-inspect-therelationships-between

—For UKESML1, the relationship
between these two variables is clearly stronger in summer (slope of 2.12, Figure 8Figure-8a) compared to winter (slope
0.62, Figure 8Figure-8b). Therefore, during summer, even a very small increase in updraught could cause a very large
increase in the activated fraction. Due to this, the slightly higher updraughtsupdraught velocities during summer, when
the airmassair masses approach SMEAR |1l (Figure 7Figure-7j), could play a major role, eventually also leading to the
larger activated fractions during summer. This, together with the points discussed above (such as the availability of CCN,
Nt and particle chemistry along the trajectories), likely causes the seasonal differences observed in the remevalreduction
of particle mass in Figure 4Figure-4a. When also considering the missing boundary layer nucleation in UKESM1 as
mentioned earlier, lack of seasonality in the derived removal of total particle number in UKESM1 (Figure 4Figure-4b)

can also be explained.

ECHAM-SALSA exhibits stronger remevalreduction (i.e., lowersmaker concentrations are reached with increasing
accumulated precipitation) during winter than in summer for both particle mass (Figure 4Figure-4a) and number (Figure
4Figure-4b). The number of particles for which 80 nm < d, < 1000 nm (Nso) is relatively similar between summer and
winter, exhibiting increase from ~300 #-em=-up to ~650 #particles cm= as the airmassair mass reaches SMEAR II. During
summer, the Nyt in ECHAM-SALSA is clearly larger compared to winter (Figure S134e). -which-iste-beThis is expected
due to the strong contribution of small aerosols during summer (e.g., Figure 2Figure-1c). The total mass (M), however,

is relatively alike between the seasons (FigureS134j), which is reasonable due to the similar contribution of Ngo in both

seasons, as these particles mostly contribute to particle mass.

The updraughtsupdraught velocities in ECHAM-SALSA exhibit large location-dependent seasonal differences (Figure
TFigure7g versus i), especially over the oceans, where the updraughtsupdraught velocities are larger during winter (Figure
TFigure—7i) than in summer (Figure 7Figure—7g). However, overall, the average experienced updraughtsupdraught
velocities during the transport are rather similar in magnitude between the two seasons (Figure 7Figure—7j). This overall
similarity occurs because the frequency of trajectories passing over the oceans is quite low (Figure 7Figure-7s) and they
therefore do not contribute to the average over all transport directions much. On average, the updraughtsupdraught
velocities increase from ~0.4 m s up to ~0.7 m s as the air masses approach SMEAR |I. Slightly before arrival to
SMEAR 11 (12-36 hours before arrival), difference can be observed in the updraught behaviour: winter updraught starts
decreasing around 36 hours before arrival before increasing again at the 12-hour mark. During summer, the updraught
increases all the way up ~18 hours, after which its steeply decreases and increases again at the same 12-hour mark as the
wintertime updraught. As these differences are taking place relatively close to SMEAR |1, it is likely that they are driven
by the seasonal differences in the transport and local conditions very close to SMEAR I1.

Activated fractions in ECHAM-SALSA display similar trends along their transport, increasing towards SMEAR 11, but
the seasonal difference in the magnitude is approximately 0.1, wintertime values being larger (Figure 7Figure-70). This
difference stays nearly constant along the transport. Again, clear seasonal differences within the trajectory transport areas
(Figure 7Figure-7l and n) can be observed, and as the high activated fractions during winter (Figure 7Figure-7n) do occur
in high trajectory frequency areas (Figure 7Figure-7s), they are more clearly reflected in the values when averaged over
all transport directions (Figure 7Figure-70). As the seasonal differences Ngo in ECHAM-SALSA are negligible, it is
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unlikely that the number of potential CCN is driving the seasonal differences in activated fractions and in the aerosol
mass-precipitation relationships in Figure 4Figure-4a. When the N is inspected (Figure S134t), however, somewhat
larger number of particles have activated in winter compared to summer. Thus, when considering the large difference in

the total number of particles (Figure S134e), the displayed differences in the activated fractions (=Nac/Niot) are reasonable.

In addition to size, the chemical composition of the potential CCN also has an impact to their activation. Thus—we
inspected-theThe composition of-beth Aitken and accumulation mode aerosols_in ECHAM-SALSA ;-shewn-in-Figure
S15b-along-the trajectories—Comparison-of-the-seasons-i-ECHAM-SALSA-(Figure S145b) does reveal, however-that
the particles have relatively similar soluble accumulation mode SO4 contribution_;—for-example—in both seasons. The
contribution of soluble OA in the accumulation mode is slightly larger in summer, but during winter, the smaller
contribution from OA (in accumulation mode) seems to be compensated by larger contribution from soluble BC in the
accumulation mode. Thus, the contribution from soluble modes altogether is relatively similar between the seasons and

unlikely causes large differences in the particle hygroscopicity which could impact activation.

In order to investigate whether the seasonal differences in the activated fractions could also be due to slight differences
in the sensitivity of activation to updrauvghtsupdraught velocities, we inspected the relationships between activated
fractions and updraughtsupdraught velocities similar to UKESM1. For ECHAM-SALSA, the slope for summer is smaller
(slope of 0.18, Figure 8Figure-8c) compared to winter (slope 0.36, Figure 8Figure-8b). Thus, during winter, when the
updraught increases, the activated fraction can increase two times as much compared to summer. Therefore, despite the
similar number of potential CCN in both seasons (Nso, Figure 7Figure-7e), larger portion of those activate during winter,
resulting to larger Nac (FigureS134t) and activated fractions (Figure 7Figure—70). All these findings discussed above are
consistent with the stronger remevalreduction for particle mass observed for ECHAM-SALSA in winter (compared to
summer) in Figure 4Figure-4a. During summer, very little to no remevalreduction is observed for the particle number for
ECHAM-SALSA in Figure 4Figure-4b. The particle number concentration, however, is dominated by the small aerosols
which are unlikely to activate (see also Figure S134e and Figure 2Figure-Lc). Therefore, even with high accumulated
precipitation, no clear remevalreduction is observed in Figure 4Figure-4b during summer.
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Figure 88 Average experienced activated fraction as a function of average experienced updraught_velocity along the

trajectories. Distribution of the values are shown with the histograms. JJA denotes summer (June-July-August) and DJF winter

(December-January-February). Each coloured point denotes a median value determined from a single trajectory. The black

lines show the regression line from orthogonal regression applied to the data shown and the legend show the slope, intercept
and Pearson correlation (R) between the fit and the data. Note that the black regression lines extend over the whole plot area

only due to visualization purposes.

4.43.2 Differences between GCMs and observations

Comparing the two GCMs in Figure 4Figure-4 it is obvious that the seasonality in the aerosol-precipitation relationships
is reversed: UKESML1 exhibits stronger remevatreduction during summer but ECHAM-SALSA in winter. This is unlikely
arising from the differences between the intensity of the precipitation during the travel of the air masses, as those are very

similar between the GCMs (Figure S123a-e) within each season.

During summer, UKESML1 has less potential CCN (Ngo, see Figure 7Figure-7e) compared to ECHAM-SALSA, and also
the updraughtsupdraught velocities are smaller in UKESM during summer, eventually leading to smaller number of cloud
droplets too (Nact, Figure S134t). Comparison of the contribution of different chemical species in the accumulation (as
these sizes have larger contribution to the particle mass) mode (Figure S145, top row), however, reveals that UKESM1
has much larger contribution of the soluble particles. This indicates, that during summer, the particles in UKESM1 have
larger hygroscopicity, and could potentially activate more easily compared to ECHAM-SALSA. However, as the resulting
Nact (Figure S134t) in UKESML1 is smaller than in ECHAM-SALSA, the potentially larger hygroscopicity in UKESM1
particles do not seem to have significant impact on the droplet formation. When we consider the changes in the PNSD,
however, where UKESML1 has significantly less particles but with larger average size compared to ECHAM-SALSA
(which has more particles but smaller average size) as shown in Figure 2Figure-1g and Figure S134e, it is sensible that
larger activated fractions are observed for UKESM1 during summer as shown in Figure 7Figure-70. The difference in the
activated fraction between the GCMs, however, is somewhat larger than what could be expected based on the differences
in Nt and Nat alone. Thus, also the relationships between updraughtsupdraught velocities and activated fractions were

inspected to gain further insight. This reveals (Figure 8Figure-8a and c), that indeed during summer, the slope between
30
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activated fractions and updraughtsupdraught velocities in UKESML1 is significantly larger (slope 2.12, Figure 8Figure-8a)
compared to ECHAM-SALSA (slope 0.18, Figure 8Figure-8c)—difference being over 10-fold. This implies that even a
small perturbation in updraught_velocity in UKESML1 could increase the activated fraction drastically, resulting in the
very high activated fractions observed in Figure 7Figure-70, despite UKESM1 having smaller updraughtsupdraught
velocities in general. This could indicate a shift in UKESM1 cloud droplet formation from the updraught-limited regime
to the transitional regime (e.g., Reutter et al., 2009). These findings align with the stronger remevalreduction of particle
mass in UKESML1 as shown in Figure 4Figure-4a. The remevalreduction of the observed particle mass in summer lies in-
between of the two GCMs, initial remevalreduction (up to 5 mm of accumulated precipitation) being more accurately
represented by UKESM1.

The differences in the summertime remevalreduction of particle number (Figure 4Figure-4b) likely arise from the lack of
boundary layer nucleation in UKESM1, thus affecting the number concentration of the smallest aerosol particles (see e.g.,
Figure 2Figure-1g). As already discussed in Sect. 4.43.1, in SMEAR I, NPF is an important source of aerosols and the
frequency of the NPF events has significant seasonal variation (Nieminen et al., 2014), summer and spring being most
pronounced. Thus, the remevalreduction of particle number in UKESM1 during summer (Figure 4Figure-4b) is similar
to the remoevalreduction of particle mass (Figure 4Figure-4a), as both are dominated by relatively large aerosols. The
summertime remevalreduction of particle number in ECHAM-SALSA coincides with observations, which is to be
expected as the Aitken and nucleation mode aerosol concentrations in ECHAM-SALSA are much closer to observed data
than UKESML1 (Figure 2Figure-1g and Table S5).

During winter, ECHAM-SALSA exhibits stronger remevatreduction of particle mass compared to UKESM1 after ~5 mm
of accumulated precipitation (Figure 4Figure-4a). The Ngo (Figure 7Figure-7a-e) is relatively similar between the GCMs,
but updraughtsupdraught velocities (Figure 7Figure-7j) have large difference: UKESM1 updraughtsupdraught velocities
are-below-and-aboverange 0.2-0.4 m s, whereas ECHAM-SALSA has values ranging approximately between 0.5-0.7 m
s’. The higher updraughtsupdraught velocities in ECHAM-SALSA likely lead to the larger Nat (Figure S14t), thus
eventually leading to the larger activated fractions for ECHAM-SALSA along most of the transport (Figure 7Figure-70)

due to Nyt being relatively similar between the GCMs (Figure S134e) during winter. It should be noted, that the difference
in activated fractions (Figure 7Figure-70) far away from SMEAR Il is negligible. However, this difference drastically
increases when airmassair masses travel to SMEAR I1: activated fraction in ECHAM-SALSA continues to increase while
UKESML1 fractions stay nearly constant. Thus, it is unlikely that the similar activated fractions far away from SMEAR I

significantly impact the remoevalreduction observed in Figure 4Figure4a.

Comparison of the particle chemistry in the accumulation mode in winter reveals that the GCMs have (Figure S145,
bottom row) relatively similar fractions of soluble material. UKESML1 tends to have more SO4 but ECHAM-SALSA
more soluble OA and BC. In ECHAM-SALSA, however, the insoluble modes are not strictly insoluble but rather less
insoluble compared to soluble modes (Sect. S2.3) and can thus also activate. This could lead to larger Nac (Figure S1340)
and thus larger activated fraction (Figure 7Figure-70), considering that the difference in N (Figure S134e) between the
GCMs is clearly smaller in winter than what it was in summer. The differences in the relationships between activated
fractions and uperaughtsupdraught velocities for the GCMs (Figure 8Figure-8) are more subtle in winter (UKESM1 slope
0.62, ECHAM-SALSA slope 0.36) compared to the values in summertime discussed earlier. Activated fraction in
UKESMI1 does exhibit higher “sensitivity” for wpdraughtsupdraught velocities, however, due to the much larger
updraughtsupdraught velocities in ECHAM-SALSA, this is likely not enough to increase the activated fraction to the
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920  same level, thus leading to less efficient remevalreduction. These assessments align with the particle mass
921 removalreductions in winter shown in Figure 4Figure-4a, where particles at ECHAM-SALSA reach slightly lower end
922  concentrations with high accumulated precipitation compared to UKESM1.

923  The differences in the wintertime remevalreduction of particle number (Figure 4Figure-4b) are less pronounced compared
924 to those in particle mass (Figure 4Figure-4a). Initial remevalreduction seems to be more effective on UKESM1, however,
925 after ~5 mm of accumulated precipitation, remoevalthe reduction in ECHAM-SALSA tends—to—decrease—shghtly
926  merbecomes strongere: These differences between the GCMs, however, were not statistically significant (Kruskal-Wallis

927 rank sum test, p > 0.01). The observational data exhibits stronger remevaireduction than the GCMs during winter for the
928  particle number (Figure 4Figure-4b) up to ~10 mm of accumulated precipitation. After that, the observations overlap with
929 ECHAM-SALSA. These inconsistencies could also arise from the fact that both GCMs have difficulties representing the
930  bimodal particle number size distribution correctly during the winter months (Figure 2Figure-1i).

931 4.4.3 Other-Additional reasons for inter-model differences - [Formatted: Heading 3

932  Aside from differences driven by aerosol activation, it is important to note that during both summer and winter, additional
933  factors can also contribute to the observed differences in the remevalreductions (Figure 4Figure-4). For example, the
934  differences in the remevalreduction of the particle mass (Figure 4Figure-4b) could be influenced by the plume scavenging

935  scheme, a feature only present in UKESM1 (see Sect. S2.4). In this process, aerosol activate into cloud droplets within
936 the convective updraught and fall out via the main precipitation shaft of the cumulonimbus (Kipling et al., 2013; Mulcahy
937 et al., 2020). Note that even though the particle mass is shown as a function of accumulated stratiform precipitation
938 (Figure 4Figure-4), the atrmassair mass trajectories have experienced convective precipitation too. Thus, removal via
939 nucleation (which is more efficient for larger particles) followed by rainout in the convective plume, could also contribute.
940 Inspection of the contribution of the precipitation types reveals that the contribution from the convective precipitation
941 during summer is indeed slightly larger in UKESM1 compared to ECHAM-SALSA (Figure S156). This difference could
942 be reflected in more effective summertime removalreduction in the particle mass in UKESM1. Another explanation for
943 the more effective remevatreduction of the aerosols during summertime in UKESM1 could be arising from the differences
944 in the parametrizations of the re-evaporation of the falling droplets. In UKESML, this process is not considered (see Sect.
945  S2.3 and Mulcahy et al., 2020) whereas in ECHAM-SALSA evaporation of the droplets can occur and thus release the
946  aerosols back to the atmosphere (e.g., Stier et al., 2005). During summertime, this re-evaporation could be enhanced due
947  to higher temperatures, leading to less effective observed remevalreduction of aerosols in ECHAM-SALSA compared to
948 UKESML1. However, there can also be other explaining factors, such as location of the precipitation during travel,
949  emissions and dry deposition, which could also indirectly cause differences between the models. Quantifying the exact
950  processes from model parametrizations causing the differences between the observed relationships between aerosol mass
951  and integral precipitation likely requires specific model sensitivity simulations to investigate this, thus being out of the
952  scope of this study.
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5 Lagrangian analysis on the effects of aqueous phase processing on aerosol chemical composition

In the analysis presented in this section, the relationship between the chemical processing occurring within clouds and
fogs in the aqueous-phase is investigated. A special interest is in aqueous-phase SO, formation due to its high occurrence
in the atmosphere (e.g., Ervens, 2015; Huang et al., 2019; Liu et al., 2020b). Fe-investigate the-effects-on-cloud processing
by-utilizing-the-Lagrangian-trajectory-framework;We employ a cloud proxy based on relative humidity (RH) along the
trajectories -was-created-similar to Isokaéntd et al. (2022). To this end, the history of the air mass is investigated, and if
the RH exceeds 94 %, we assume the air mass is in cloud. Further, the air masses were then separated into “clear sky” in
which they had no experience of clouds or precipitation during the last 24 hours, and “in-cloud” when the RH exceeded
94 % at least at one trajectory point but no precipitation events occurred during the last 24 hours_(Table S7). Fhese
definitions-are-summarised-in-Table-S7-Only the last 24 hours of the airmassair mass history were considered, as with

longer airmassair mass histories (i.e., longer investigated time) the number of strictly in-cloud trajectories decreases due

to increasing possibility for precipitation events. Sensitivity tests were conducted by adjusting both the RH limit (from
90 % to 98 %) and trajectory length (from 12h to 60h), but they did not affect our conclusions. It was found that the
trajectory length adjustment has large effect on the statistical reliability of the results, hence the investigation is limited
to the last 24 hours and thus also stayed consistent with the previous investigation in Isokaantd et al. (2022). This approach

is applied for ERA-Interim reanalysis and for the GCM trajectories in similar manner.

Reader should also note that UKESM1, ECHAM-SALSA and ERA-Interim do not necessarily have identical definitions
for RH which could impact the results. To acknowledge this, we also investigated how well the RH along the trajectories

actually describes the in-cloud cases by comparing this RH-based proxy to the eellecatco-located cloud fraction data from

GCMs. This analysis is presented in Sect. S6, and overall, the cloud events (number of the events and their locations at
the trajectories) from both approaches were similar, leading to similar conclusions-censidering-agueousphase-processing
of-aeresols as presented in Sect. 5.1 and 5.2 below. Additionathy-theThe precipitation used in the classifications here is
the total precipitation (including both stratiform and convective precipitation), as aqueous-phase processes are taking
place no matter the cloud type. Fhe-RH-data—which-is-used-to-calculate-the-cloud-proxy—Relative humidity data is used
from the HYSPLIT output instead of using raw GCM/ERA-Interim outputs with manual eeHeeatco-location. ;-as-RH-data
fremThis is because UKESM1 was extracted on pressure levels instead of model levels, and the latter were used in this
work for the manual eeHocatco-location allowing consistency between other variables. The seasonal division applied here
is based on the temperature, as in Sect. 4.2-te-ensure-sufficient statistics-for-the-chemistry-ebservations. To see whether
transport directions and consequently the precursor emissions matter, data is divided into more clean and more polluted
air masses (trajectories visiting latitudes below 60° north assigned to polluted sector as in Isokaéntd et al., 2022).

Trajectory frequency maps for these sectors are shown in Figure S167.

In this section, the variation in the total submicron mass of different chemical species depending on the experienced
conditions is first examined and discussed for the GCMs (Sect. 5.1) and reflected to observations. Then, in the next section
(Sect. 5.2), a size-resolved analysis is conducted to determine whether additional insight into in-cloud processing in GCMs
could be provided.

5.1 Effects of in-cloud processing for total submicron aerosol mass
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hlgheré@ -mass-for-cloud-processed-air-masses;-is-also-seen-for-both-GCMs-Both observations and GCMs show higher

SO. mass concentrations for cloud-processed air masses within the “cold and polluted” (CP) sector (Figure 9), consistent

with findings from Isokééanta et al. (2022). This pattern holds despite the reduced observational dataset due to temporal
harmonization with the GCMs (see Sect. 2.4). Other air mass sectors are shown in the supplementary material (Figure

S18).
Overall—for-all-presentedAcross all air mass sectors, both GCMs agree remarkably-well with-the observations-when,

considering-the unaveidable-expected differences in the total mass concentrations—for-the-different-chemical-species.
Statistically significant increases in SO mass for in-cloud versus clear-sky air masses were found in both observations

and models (p <0.001, Kruskal-Wallis test; Table S8), except for the warm and clean sector (Figure S17g-f), where no

clear difference was observed. Fhe-increases-in-the-SO,-masses-between-the-clear-sky-and-in-cloud-air-masses-were-alse

—As itn Isokaénta et al. (2022), this may

a e de g W SO availabilityle
to-be-oxidised-in-thefor aqueous--phase oxidation during-the-warmermonths-in-the-air-masses-arriving-from-thein cleaner,
warmer air masses.-areas-with-little-anthropegenic-influence- Supporting this,Fer UKESM 14t was-pessible-to-investigate
the—eeneempatmns-ef—seg-damg—the—transpen—‘F shows the_lowest SO, levels in clean sectorseeneempahens-aleng—the
(CCand
WC;-in-Figure S189e), while higher SO, in—tn-centrast-beth-cold-and-warm polluted sectors (CP and WP) exhibit-higher

meemranenalengme%ajeetene&commdemg with the-largest-differences-in-greater SO, differencesaerosel-mass

compeosition—Recent findings from the Holuhraun eruption (Jordan et al., 2023) also suggest aqueous-phase oxidation

dominates SO,-t0-SO4 conversion in GCMs. While future increases volcanic activity (Chim et al., 2023), could enhance

SO: levels and boost in-cloud SO+ production, ongoing emission controls may reduce anthropogenic SO., potentially

counteracting this effect and influencing aerosol size and composition.
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The observations shown here do not exhibit statistically significant differences for OA between the clear sky and in-cloud

atrmassair masses in any of the sectors. The median mass of OA in ECHAM-SALSA is larger for the in-cloud airmassair
masses for the cold and polluted sector (Figure 9Figure-9¢ and Table S8), but no other sectors exhibit statistically
significant differences. However, this difference in the OA mass in the cold and polluted sector is unlikely due to
formation of agSOA, as the simulations employed in this study here did not explicitly model the formation of SOA.
UKESML1 displays larger differences in the OA mass, in which most are also statistically different. However, the same
applies as for ECHAM-SALSA, i.e., the model simulations do not include the formation of SOA, and thus the differences

must arise from other affecting factors. Both GCMs employ CMIP6 emission datasets as noted in the model setup for

AeroCom Phase Il GCM Trajectory Experiment, and thus the differences observed here unlikely arise from varying

emissions. One should also keep in mind that the representations of OA in the GCMs might differ, and especially their
relationship with temperature, relevant driver for SOA formation in general, has been shown to exhibit large structural
uncertainties between the GCMs (Blichner et al., 2024).

Isok&antd et al., (2022) did not observe significant aqueous-phase SOA (hereafter, agSOA) formation from the

observations and this has also been noted previously (Graham et al., 2020) for similar boreal environment. Formation of

SOA from gaseous precursors dominates this boreal region (see e.g., {Petéja et al., 2022), and thus distinguishing agSOA

from the total formed SOA with our methodology is challenging. For isoprene-dominated environments, the formation

of agSOA is a significant source for total SOA burden (e.g., Lamkaddam et al., 2021). Also biomass burning emissions

have been identified as a potential source for agSOA (Gilardoni et al., 2016; Wang et al., 2024).

It was reported earlier that the observations also suggested increase in the mass fraction of SO4 when the airmassair
masses had been exposed to in-cloud conditions long enough (Isok&éanta et al., 2022). To investigate whether similar
behaviour could be observed for the GCMs, we calculated the total time spent under the influence of non-precipitation
clouds from the 96h long trajectories. Figure 10Figure-10 demonstrates slight increases in the mass fraction of SO, with
increasing time spent in non-precipitating clouds for both GCMs. This, however, is somewhat affected by the data size.
If inspecting the GCM data which is temporally harmonised to the observations (Figure 10Figure-10a-b), the conclusion
is not as obvious compared to the case were inspecting all available GCM data (Figure 10Figure-10c-d). This highlights
the importance of long enough GCM simulations needed in this type of Lagrangian analysis utilizing single particle air

mass trajectories unless ensemble trajectories are utilised.
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Figure 99 Median (black horizontal lines and numerical values) particle mass concentrations at SMEAR |1 with 25th-75th

percentiles (boxes) for OA, eBC, and SOx for the cold and polluted (CP) airmassair mass sector. The experienced conditions

by the air mass are denoted as clear sky and in-cloud (non-precipitating). Subplots include (a) SMEAR 11 + ERA-Interim, (b)
UKESM1 and (c) ECHAM-SALSA.
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Figure 1010 The mass fractions of OA, SO4, and BC for the more polluted air masses as a function of time spent in in non-
precipitating cloud. The top row (a-b) shows the temporally harmonised data and bottom row displays the GCM data without
harmonization. The figure shows mass fractions derived from median concentrations for each 1-hour bin.

5.2 Effects of in-cloud processing for size-resolved aerosol mass

To see whether the observed in-cloud formed SO4 mass in the GCMs (Figure 9Figure-9b-c) is contributing to same particle
sizes as in the observations reported in Isokaanta et al. (2022), the analysis was repeated here for the GCMs. The
observations indicated SO, mass originating from aqueous-phase processes is mostly contributing to particles with
diameters of 200-1000 nm-—{Figure-S20-and-lsokdanta—et-al,—2022). Figure 11Figure—1% shows the particle mass
concentrations for various size classes derived from the PNSDs from the GCMs for the clear sky and cloud processed air
masses for the cold and polluted sector. The three other sectors for-the-GCMs-are-shewn-inare shown in Figure S192%,
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and Table S9 shows the results for the GCMs from the statistical significance testing between the clear sky and in-cloud
groups within each size class. Compared to observations, UKESM1 data (Figure 11Figure-11a and Figure S21-fortherest
of-the-sectors19) implies the mass increase seems to be mostly distributed to bins with dp = 100-350 nm and up to 600
nm in the cold and polluted and cold and clean sectors. This is likely due to UKESM1 having large concentrations of
particles in general within this size range (see e.g., Figure 2Figure-1d). Like the observations, UKESM1 does not exhibit
any mass increases for any of the size bins in the warm and clean sector (Figure S1922e), being in line with no observed

increase in the SO, mass in the same sector (WC) between the clear sky and cloud processed air masses (Figure S178h).

ECHAM-SALSA (Figure 11Figure—1ib and Figure S21—for—the rest—of-the—sectorsl9), exhibits increased mass
concentrations for sizes starting from d, = 50 nm (only in cold and polluted sector) up to 1700 nm, depending on the
sector. The largest bin here in ECHAM-SALSA might also be influenced by d, = 1-1.7 um particles, which are neither
considered in UKESM1 nor in the observations when inspecting the chemical components (see Sect. 2.4.2). Like
UKESM1, ECHAM-SALSA also does not exhibit mass increases for any of the size bins for the warm and clean sector
(Figure S21f).
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Figure 113% Median (black horizontal lines and numerical values) particle mass concentrations with 25th-75th percentiles
(boxes) for selected size bins for (a) observations with ERA-Interim, (b) UKESM1 and (ck) ECHAM-SALSA for the cold and

polluted (CP sector). For the latter, the native size bins are shown (bottom row of the legend). The experienced conditions by

the air mass are denoted as clear sky and in-cloud (non-precipitating).

An advantage of the GCMs used in this study is their provision of size-resolved chemical composition, shown as mass
fractions in Figure S202. For UKESML1, increase in the soluble SO, in the accumulation mode can be observed (Figure
S202a). Due to the model structure, however, the accumulation mode itself consist of a large spread of particle sizes (dp
=100-1000 nm), i.e., internally mixed aerosols with external size modes, thus not providing additional information to our
PNSD based analysis. For ECHAM-SALSA, the original sectional bins can be inspected (Figure S202c) thus
corresponding to the PNSD bins presented in Figure 11Figure-11h. All size bins that exhibited mass increases in Figure
11Figure-11b also exhibit higher mass fraction for SO4 in Figure S202c.

The observed changes in particle number size distributions (Figure 11) reflect the actual model parameterizations. In

UKESMI, SOs produced via aqueous-phase chemistry is allocated to the soluble accumulation mode (dp > 100 nm) and

coarse mode (dp > 500 nm) (Mann et al., 2010), with the results here showing increases in the 100-600 nm range. In

ECHAM-SALSA, aqueous-phase SO is distributed across soluble size bins spanning 50-10000 nm (2a bins; see Table
S3, Bergman et al., 2012), with sector-dependent mass increases observed between 50-1700 nm. Overall—inthe GCMs
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1112 of SO, by ozone (03) and hydrogen peroxide (H.02) is considered in both (Bergman et al., 2012; Hardacre et al., 2021).
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6 Conclusions-and-eutlook

In this study we investigated the effects of stratiform precipitation (wet removal) and clouds (aqueous-phase oxidation)
on sub-micron sized-aerosols along airmassair mass trajectories. We-studied-tTwo global climate models—UKESM1 and

ECHAM-SALSA—in-a-manner-consistent-towere analysed using a Lagrangian framework consistent with Isok&éanté et
al. (2022) i now being seamlessly applicableied to-the GCMs
(Kim et al., 2020). Our geographical study-area-foeused-enfocus was the SMEAR 11 station in Hyytiala, Finland, and the
surroundings, thus-being-representative of the boreal environment.

Our first objective was to investigate whether the trajectory-based relationships between aerosols mass, number and
precipitation vary between the observations and the-twe GCMs. For aerosol mass, the derived removal for observations
resided-in-fell between the GCMs-for-beoth-summer-and-wintertwo models across seasons. In contrast, aerosol number
showed stronger divergence: while ECHAM-SALSA and observations indicated minimal reduction, UKESM1 exhibited

significant loss in particle number via precipitation, likely due to a lack of small particles in the model. Supplementary

analysis comparing a wider ensemble of GCMs indicated that these two models were broadly representative, with their
aerosol—precipitation relationships generally falling near the middle of the inter-model spread. For-aeroselnumber-greater

chemical-species;in organic aerosol (OA), sulfate (SO4) and black carbon (BC); was-alse-inspected—and-the-aerosel-

precipitation-patterns-followed-the-ones-presented-foralso followed the same general trends as total aerosol-mass, despite
more-vague-seasonal-separationalthough with weaker seasonal differences. Our use of normalized submicron mass and
number as a function of accumulated precipitation proved effective in comparing removal across models, though it lacks

detail on particle size evolution—an important topic for future work.,,

As-suggested-by-earlierstudies;-the-process-by-which-aAerosols activatione into cloud droplets followed by removal-via

preeipitationrainout -is-tkehy appears to be the dominant removal process;-en-average; also in this study being in line with
earlier work. UKESM1 results further supported this showing nucleation followed by rainout as the largest

contributor.

observed removals within the GCMs were evaluated further by inspecting key variables, such as, number of potential
cloud condensation nuclei (Ngo) and sub-grid—seale—vertical-velocities—{updraughtsupdraught velocitiesy—centroHing

aerosol-activation-into-cloud-droplets. The seasonal differences we observed in these variables, along with changes in
particle chemistry during the transport, were feund-to-be-consistent with the seasenality-of-the-aerosol-precipitation
relationships. Furtherinspection-of-the—r_The relationship between activated fractions and updraught velocities shows

opposite seasonal patterns in the GCMs: UKESM1 has a stronger summer correlation, while ECHAM-SALSA’s is
stronger in winter, though its seasonal variation is smaller overall.elationship-between-activated-fractions-and-updraughts
39

( Formatted: English (United States)




152
153
154
155
156
157
158
159
160
161
162

163
164
165
166
167
168
169
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

smaker—than—in—former. This behaviour further explains the-ebserved differences between the aerosol-precipitation

relationships in which ECHAM-SALSA showed similarity to observations. We hypothesize that UKESM1's pattern may

stem from the absence of boundary layer nucleation, resulting in fewer small particles during summer. This emphasizes

the need for better representation of particle number size distributions (PNSDs) in GCMs.\We-suggested—among-other

Earlier studies (Isokaanta et al., 2022; Khadir et al., 2023) have noted that surface precipitation data, commonly used in

trajectory analyses, may not accurately reflect precipitation experienced by air masses at trajectory height. Here, we used

vertically resolved precipitation from UKESM1 and found that surface precipitation serves as a good proxy in this

environment, where trajectories largely remain within the mixed layer and stratiform precipitation dominates. However,

this analysis only considered liquid precipitation and may not apply to regions where convective precipitation is more

prevalent. In such environments, the vertical distribution, intensity, and frequency of precipitation could differ

substantially, potentially altering the accumulated wet removal along trajectories. Therefore, while our results are

representative of boreal regions with stratiform precipitation, further work is needed to assess how applicable they are to
regions with different precipitation regimes.have-brought up-the fact that the precipitation-data,-which-isusually-available
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Our second objective was to investigate whether the GCMs exhibit similar increase in sulfate mass due to in-cloud
production as the observational inhi i izati

Bethdata. Both GCMs exhibited statistically significant difference in the SO4 mass when airmassair masses with only

clear sky experience were compared to in-cloud processes airmassair masses. The SO4 mass was larger for the cloud
processed airmassair masses for all other airmassair mass sectors (based on temperature and direction) except the warm

and clean airmassair masses, where GCMs showed no significant difference between clear sky and in-cloud airmassair
masses. These results a i
earlier workt (Isokaanta et al., 2022)-from-the-same-site. Availability of the SO, to be oxidised is likely determining
whether we see in-cloud production of SO4, and from UKESML1 this was further supported by the-inspected-SO;
concentrations and their seasonality. The size-resolved analysis reflected the model parametrizations, -well-as-expected;

weH-with-our-earlierstudy-utilizing-a-slightly-largerobservational-data-sewere consistent with

the aqueous-phase SO being mostly distributed in the larger aerosol sizes. Future-studies-invelving-GEMs-could-examine

As expected based on Isokaanta et al. (2022), the-reduced-observations-here-alsowe did not indicate-observe significant

aqueous-phase SOA formation. This is likely due to the studied environment (boreal forest), and has also been noted

previously (Graham et al., 2020) for similar boreal forest environment. However, some increases in OA mass were seen

in the GCMs despite the fact that agSOA formation was not explicitly modeled, possibly reflecting other processes or

model inconsistencies.

- A recent study

from Blichner et al. (2024) also pointed out the large differences between GCMs concerning their OA-temperature
relationships, which could also contribute to the discrepancies observed here.

Overall, both GCMs reproduced the observed exponential decrease in aerosol mass with increasing precipitation and

showed similar cloud-processing behaviour for SOa. Yet key seasonal differences remain, especially in aerosol—

precipitation relationships and their underlying drivers. A primary model bias identified in this study is the difference in

aerosol number size distributions compared to observations, particularly the underrepresentation of small particles in

UKESML. Our results suggest that discrepancies arise more from differences in aerosol size distributions and updraught
velocities than from the wet removal parametrizations themselves. These variables also affect activated fractions and
cloud interactions, and they are shaped by processes beyond the 4-day analysis window.Overall-the-GEMs-show-similar
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7 Outlook 3 [ Formatted: Heading 1

While our results show encouraging agreement between observations and GCMs in overall aerosol-—precipitation

relationships, key differences—especially related to seasonality and aerosol number—highlight the need for further work.

Future studies should investigate the evolution of aerosol size distributions along air mass trajectories in more detail and

better disentangle gas-phase and aqueous-phase sulfate formation. Expanding analyses to regions with dominant

convective precipitation is also important, as the findings here are limited to stratiform, liquid-phase conditions typical of

boreal environments. Including a wider range of GCMs, despite the computational demands, would help clarify the

structural causes behind the differences observed. Together, these efforts are essential for improving the representation
of aerosol-cloud-precipitation interactions in climate models. Future-studies—invelving-GCMscould—examine—the
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Appendix A

The lack of vertical resolution in the precipitation data ebtained-from ERA-Interim reanalysis or Global Data Assimilation
System (GDAS, (http://ready.arl.noaa.gov/archives.php, last access: 3.2.2024) in studies using Lagrangian approaches is
now being recognised (Dadashazar et al., 2021; Isok&anté et al., 2022; Khadir et al., 2023). Unfortunately, vertically
resolved precipitation data;-forexample- from reanalysis datasets or GCMs, with high enough time resolution to be useful
for trajectory models, is not a commonly provided diagnostic. For UKESM1, heweververticatly-resolhved-precipitation
data-is-athis diagnostic-that can be extracted-from-the-medel+un. Here, we-have conducted a comparison between the

vertically resolved and surface precipitation data along the airmassair mass trajectories to investigate how well the surface

precipitation describes the actual experienced precipitation by the airmassair mass. Only liquid (stratiform) precipitation

is inspected, as vertically resolved snowfall was not included in the variable extraction with high enough vertical

resolution for this model run.

We started-our—investigation-by—inspectingfirst inspected the relationship between the normalized particle mass and
number with the accumulated stratiform precipitation, similar to what-is-shewn-in-Figure 4Figure-4.; -This assessed

whether aerosol—precipitation relationships differ between surface and vertically resolved precipitation.to-see-whetherthe

vertically-reselved-precipitation). This-analysis,-dDisplayed in Figure Al, the results indicates the effects of stratiform

precipitation at the height of the airmassair mass are similar to the effects of stratiform precipitation at the surface. This

is likely related to the average altitude of the airmassair masses, as for SMEAR |1 they tend to travel well below the top

of boundary layer.

B JJAUKESM12D @ JJAIUKESM13D 4 DJF:UKESM1-2D DJF: UKESM-3D
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Figure A1 Normalized total (d, = 3-1000 nm) particle mass (a) and number (b) at SMEAR I1 for summer (JJA)
and wintertime (DJF) as a function of 0-25 mm of accumulated liquid stratiform precipitation along the 96-hour96-
hour long airmassair mass trajectories at the height of the airmassair mass (referred as 3D) and at the surface

44


http://ready.arl.noaa.gov/archives.php

1271
4272
1273

274
275
1276

1277

1278
1279
1280
1281
1282
1283

1284

]|285
1286
1287
1288
1289

290
291
1292
1293

1294
1295

(referred as 2D) for UKESM1. The coloured points show the median values for each 0.5 mm bin of accumulated
precipitation when the number of data—rowstrajectories in the bin was 10 or larger. The sample size for the
corresponding bins is shown in (c).

To investigate-in-more-detail whether the height of the airmassair mass plays a role, as speculated in Isok&anté et al.
(2022), the airmassair mass trajectory altitudes were-first clustered with Kmeans (e.g., Hartigan and Wong, 1979) and 3
clusters with distinct height profiles were selected for further analysis. Clustering each season separately provided similar
height profiles as clustering of the whole data, and thus the latter approach is presented-here.

Figure A2 shows the median altitudes of the clusters and the corresponding mean stratiform rainfall rates. Overall, the
mean rainfall rates show similar values despite the precipitation diagnostic. In the low-altitude cluster (Figure A2d),
overall highest rainfall rates (mean over all trajectories and hours for surface precipitation, ~ 0.033 mm h') are observed.
In the mid-altitude cluster, rainfall rates are smaller (~ 0.016 mm h'*) compared to the low-altitude cluster, and in the
high-altitude cluster, the rainfall rates are the smallest (~0.010 mm h). In the high-altitude cluster (Figure A2f) more

differences emerge between the two precipitation types, especially afar from SMEAR II.
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Surface precipitation === Precipitation at the airmass height

Figure A2 Clusters based on airmassair_mass trajectory altitudes for UKESML. In (a)-(c) the black lines show median

trajectory altitude as a function of time from SMEAR 11 and 25t to 75t percentiles are shown with the shaded area. The used
arrival height at SMEAR 11 given to HYSPLIT is indicated with blue horizontal line. The corresponding mean rainfall rates
are shown in (d)-(f). Clusters are named based on the maximum altitude the trajectory has resided during the last 4 days. Note
the different y-axis limits in subplots (a)-(c).

Each cluster was then further separated by season-for-mere-detailed-analysis. The median altitudes, if inspected separately
for each season, are nearly identical between the seasons within each cluster, and thus not shown here. Figure S2123
shows the differences between the mean liquid rainfall rates between surface and vertically resolves stratiform

precipitation (positive difference indicating the rainfall rates at the surface are higher) for each cluster and each season.

During autumn (SON) the two approaches for the precipitation exhibit observable differences only in the high-altitude

cluster, where the surface precipitation shows some overestimation of the actual experienced precipitation by the
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airmassair mass with increasing trend when moving farther away from SMEAR 1. This could imply that the airmassair

mass has spent some time above or inside the precipitating cloud, as also the airmassair mass altitude increases when

moving away from the station (Figure A2a-c). During summer (JJA), all clusters mostly show precipitation at the
atrmassair mass height being larger than the surface precipitation, expect in the high-altitude cluster (Figure S2123c) 72
to 96 hours before arrival to SMEAR 1. As the temperatures during summer are higher than in other seasons, this could
be indication of evaporation as the surface precipitation in UKESML1 includes only precipitation that reaches the surface
i.e.,, it is not column integrated. During spring (MAM) and winter (DJF) the surface precipitation shows small
overestimation at some points along the trajectories, and the differences are largest at the high-altitude cluster—where,
however, the rainfall rates are very small overall (see Figure A2f) for both precipitation types.
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Data availability

Raw observational data were collected by INAR, University of Helsinki. Field data (particle number size distributions
and black carbon) are freely available from https://smear.avaa.csc.fi/download (last access: 20 February 2022; Ministry
of Education and Culture of Finland and CSC, 2022). The ACSM data on aerosol composition are freely available from
the EBAS database at http://ebas.nilu.no/ (last access: 20 February 2022; NILU, 2022).

The pre-processed observational data, ERA-Interim and GCMs trajectories along with the eelecatco-located variables

used in this study wi anee-can be found from (Talvinen et al., 2025b).

Code availability

Data analysis was conducted in R statistical software (R version 4.2.0, R Core Team, 2019) and Python (version 3.10.4),

and colour maps for the figures considering colour vision deficiencies were inspired by Crameri et al., (2020).

The scripts used-for-the-analysis-and-to reproduce the main findingspletting both in R and python wil-be-made-openly
available-in-Zenodeo-upen-aceeptancecan be found from (Talvinen et al., 2025a).

Python scripts for the data conversion (GCM output into ARL) and eellecatco-location of the GCM and reanalysis data

variables to the trajectories can be obtained from DGP.
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