
Soil Parameterization in Land Surface Models Drives Large
Discrepancies in Soil Moisture Predictions Across Hydrologically
Complex Regions of the Contiguous United States
Kachinga Silwimba1, Alejandro N. Flores1, Irene Cionni1, Sharon A. Billings2, Pamela L. Sullivan3,
Hoori Ajami4, Daniel R. Hirmas5, and Li Li6

1Department of Geosciences, Boise State University, Boise, ID, USA
2Department of Ecology and Evolutionary Biology and Kansas Biological Survey & Center for Ecological Research,
University of Kansas, Lawrence, KS, USA
3College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, OR, USA
4Department of Environmental Sciences, University of California, Riverside, CA, USA
5Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
6Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA, USA

Correspondence: Kachinga Silwimba (kachingasilwimba@u.boisestate.edu)

Abstract. Land surface models (LSMs) are critical components of Earth system models (ESMs), enabling the simulation of

energy and water fluxes that are essential for understanding climate systems. Soil hydraulic parameters, derived using pedo-

transfer functions (PTFs), are crucial for modeling soil–plant–water interactions; they introduce uncertainties in soil moisture

simulations. However, a key knowledge gap exists in understanding how specific soil hydraulic properties contribute to these

uncertainties and in identifying the regions most affected by them. This study conducts an intra-model sensitivity analysis5

within the Community Land Model version 5 (CLM5), examining how alternative soil parameter settings influence soil mois-

ture variability across the contiguous United States (CONUS) using Empirical Orthogonal Function (EOF) analysis. The EOF

analysis revealed dominant spatial and temporal patterns of soil moisture across multiple experimental configurations, high-

lighting the impact of soil parameter variability on hydrological processes. The results showed significant discrepancies in

soil moisture simulations, particularly in the central Great Plains, which may be attributed to the combination of arid cli-10

mate conditions and limitations in modeling saturated hydraulic conductivity and soil water retention curves. Seasonal soil

moisture dynamics showed broad similarity to ERA5-Land patterns, with differences in magnitude and phase, indicating the

importance of refined parameterization, particularly in the representation of infiltration and drainage processes. Comparisons

with ERA5-Land, used here solely as a model-based reference for pattern consistency, revealed stronger similarity in regions

with consistent climatic gradients, but persistent differences in hydrologically complex areas, particularly under arid climates15

such as the Great Plains, where hydrological processes remain difficult to represent. Because CLM5 is forced by GSWP3,

whereas ERA5-Land is an offline HTESSEL replay forced by ERA5, differences reflect both forcing and structural contrasts

in addition to parameter effects. This research demonstrates the necessity of refining soil parameter representations, utilizing

high-resolution datasets, and considering climatic variability to inform model development of LSMs. Importantly, these find-

ings also pave the way for future efforts that incorporate dynamic soil properties into LSMs. This work illustrates the influence20
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of soil properties on simulated variability. While the analysis documents their importance, a future direction will be to develop

approaches that allow these properties to vary dynamically within land surface models. This study contributes to ongoing

efforts toward more integrated modeling frameworks that capture soil–hydrology–climate interactions.

1 Introduction

Land surface models (LSMs) are essential components of Earth system models (ESMs), offering critical insights into the25

movement and partitioning of energy and water across the Earth’s surface, which are fundamental processes in understanding

and simulating climate systems accurately (Kang and Hong, 2008; Zhao et al., 2017; Guimberteau et al., 2017; Hagemann

et al., 2013; Dagon et al., 2020). Designed to operate on large spatial scales, LSMs rely on parameterizations of land processes,

including the use of pedotransfer functions (PTFs) to parameterize soil hydraulic properties. PTFs, as described by Van Looy

et al. (2017) and De Lannoy et al. (2014), are mathematical formulations that use extensive soil hydraulic databases to establish30

empirical relationships between soil particle-size distribution and soil hydraulic parameters, such as field capacity, permanent

wilting point, saturated hydraulic conductivity, pore-size distribution, and soil water retention curves (McNeill et al., 2018;

Vereecken et al., 2010; Weber et al., 2020). These PTFs range in complexity from basic linear models to advanced machine

learning algorithms such as artificial neural networks (da Silva et al., 2023; Schaap et al., 1998). These soil hydraulic parameters

are fundamental to the quantification of soil moisture and water flow, as well as soil-plant-water interactions and their effects35

on climate, agriculture, hydrology, and environmental engineering.

PTFs play a crucial role in converting readily available soil texture data into soil hydraulic parameters, addressing the

difficulties of acquiring accurate soil moisture data at larger scales (Fu et al., 2023). However, many soil hydraulic parameters

are derived from laboratory or small-scale field studies, which often fail to capture the full heterogeneity of larger areas, limiting

their representativeness (Lai and Ren, 2016; Godoy et al., 2018). To overcome this limitation, global soil texture maps enhance40

PTFs’ predictive capabilities, enabling their application in regions where field measurements are unavailable and making them

indispensable for land modeling (Tafasca et al., 2020; Dai et al., 2019). Soil moisture, a key output of these models, is a

vital variable governing the exchange of water and energy between land and atmosphere. It has profound impacts on climate

systems, vegetation dynamics, and extreme events, including droughts and floods (Zhang et al., 2021).

The influence of soil hydraulic properties on soil moisture simulations is well documented. For example, Fu et al. (2023)45

demonstrated that these properties significantly affect soil moisture simulations at the ELBARA field site in the northeast of the

Tibetan Plateau, using the one-dimensional (1D) Richards equation. Similarly, Fu et al. (2022) noted that the numerical solution

approach of the Community Land Model (Lawrence et al., 2019) produces a narrow range of soil hydraulic property values,

which suggests a relatively weak influence on soil moisture simulations within this range. However, when optimized hydraulic

properties are used, potentially derived to capture site-specific variability or improve model similarity beyond this narrow range50

they can exert a more substantial influence on soil moisture dynamics. Furthermore, Feki et al. (2018) showed that saturated

hydraulic conductivity exhibits the highest sensitivity to temporal changes in environmental factors, such as precipitation or

temperature variability significantly affecting soil moisture variability, as shown in FEST-WB model simulation of a maize field
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in the Secugnago region. These findings underline the importance of accurately representing soil hydraulic properties, which

directly influence the partitioning of water into runoff, infiltration, and evapotranspiration (Ye et al., 2023), as well as the55

temporal and spatial variability of soil moisture. However, uncertainties in parameterizations, such as the soil water retention

curve that links water potential to volumetric soil moisture, continue to challenge the predictive capacity of LSMs, especially

under extreme climatic conditions (Koster et al., 2004; De Lannoy et al., 2014). Improving the representation of soil moisture

and its underlying hydraulic properties is critical, as it affects global hydrological cycles, vegetation health, and energy flows,

all of which are essential for understanding and mitigating the impacts of climate events (Oleson et al., 2010).60

In addition to these complexities, scaling point-scale or regional observations of soil moisture to the coarser resolutions

of LSM outputs presents a persistent challenge. While observational networks and remote sensing missions have expanded

the availability of soil moisture data, the heterogeneous nature of soil properties combined with varying retrieval algorithms

and coverage gaps can introduce significant uncertainties, both in terms of the accuracy of satellite products and their limita-

tions for validating LSM outputs (Famiglietti, 2014; Brocca et al., 2017). Moreover, uncertainties in parameterization make it65

challenging to accurately simulate soil moisture dynamics, as noted by Reichle et al. (2004) and Kato et al. (2007), limiting

the ability of LSMs to replicate observed soil moisture datasets. This discrepancy in spatial resolution and data precision can

make model calibration more challenging, increase uncertainties in estimating parameters, and, as a result, weaken confidence

in simulation outputs. Emerging evidence further complicates this issue by highlighting that soil properties can change over

relatively short time scales due to shifts in climate and land cover. The dynamic nature of soil properties introduces additional70

pressure to understand soil-hydraulic relationships better and integrate these temporal dynamics into LSMs, as demonstrated

by studies indicates how climate and land cover changes influence soil processes (Hirmas et al., 2018; Koop et al., 2023; Caplan

et al., 2019; Sullivan et al., 2022; Hauser et al., 2022). Addressing these complexities requires robust, data-driven approaches

and dimensionality reduction techniques to disentangle the effects of parameterization on soil moisture patterns across various

ecosystems and climate conditions.75

A major challenge to addressing these uncertainties is the high dimensionality of LSM simulations when applied to con-

tinental or global scales, making it difficult to isolate the effects of specific parameters on soil moisture from other factors

such as meteorological forcings and modes of climate variability (Ji et al., 2023; Li et al., 2013; Zeng et al., 2021). Therefore,

we present an intra-model sensitivity analysis within CLM5, focusing on how alternative soil hydraulic parameter datasets

propagate into regional soil moisture patterns and variability, without treating any external product as ground truth. Specif-80

ically, we ask: (1) How do soil hydraulic parameters influence large-scale spatial patterns in soil moisture associated with

well-characterized climate variability modes? (2) How do these parameters shape the temporal dynamics of soil moisture dur-

ing climate extremes, such as droughts and floods? Using empirical orthogonal function (EOF) analysis, we systematically

evaluate the impact of soil hydraulic parameterizations in CLM5 simulations over the contiguous United States (CONUS). We

compare the spatial and temporal patterns of CLM5 with those in ERA5-Land using pattern-similarity metrics (e.g., corre-85

lation, Taylor diagrams, Euclidean distance). ERA5-Land is used solely as a model-based reference for patterns; it does not

assimilate soil moisture observations and is not treated as ground truth. We note an upfront forcing and structural mismatch:

our CLM5 experiments are driven by GSWP3, whereas ERA5-Land is an offline HTESSEL replay forced by ERA5; therefore,
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the differences reflect both forcing and structural contrasts, as well as parameter effects. (Neither product includes irrigation,

so agricultural hotspots should not be over-interpreted.) We aim to transparently document where parameter uncertainty most90

affects simulated soil moisture patterns and variability across CONUS, and to provide disciplined evidence to inform model

use and development. We next outline the data sources, EOF methods, and computational steps, and then present principal

findings on soil moisture variability and parameter sensitivity, followed by broader implications for land surface modeling and

climate dynamics.

2 Data and Methods95

2.1 Study Region

The study region for this analysis encompasses the CONUS, spanning from the Atlantic to the Pacific Ocean and bounded by

Canada to the north and Mexico to the south (Figure 1). This domain encompasses a wide range of latitudes, elevations, and

climatic regimes, providing an ideal natural laboratory for assessing spatial variability in land surface processes. The CONUS

encompasses major climate zones, including humid continental, Mediterranean, subtropical, arid, and alpine, all of which are100

influenced by differences in latitude, topographic relief, and proximity to moisture sources such as the Gulf of Mexico and

the Pacific Ocean. These climatic gradients play a critical role in controlling soil moisture dynamics by modulating processes

such as infiltration, evaporation, and water retention. Topographic features, including the Rocky Mountains, Sierra Nevada,

Cascade Range, and Appalachian Mountains, have a significant influence on precipitation regimes and surface hydrology.

These orographic barriers modify storm tracks and induce spatial variability in rainfall and snowpack accumulation, ultimately105

affecting soil water availability. The land cover across the CONUS is equally heterogeneous, ranging from forested regions in

the Northeast and Pacific Northwest to urbanized corridors and sparsely vegetated deserts in the Southwest. This heterogeneity

in land cover introduces additional complexity into soil moisture behavior, as vegetation, impervious surfaces, and soil types

interact to determine local infiltration and storage dynamics.

To support spatially disaggregated analysis of soil moisture variability and its driving mechanisms, we adopt the regional110

classification scheme proposed by Giorgi and Francisco (2000), which partitions CONUS into four climatically and geographi-

cally coherent macro-regions: Western North America (WNA), Central North America (CNA), Eastern North America (ENA),

and North Central America (NCA). This classification provides a physically grounded framework for evaluating the sensitiv-

ity of modeled soil moisture to soil hydraulic parameterizations across distinct hydroclimatic zones. As shown in Figure 1,

each region captures distinct physiographic and climatic attributes, including the arid basins and mountain ranges of WNA,115

the agricultural plains and grasslands of CNA, the humid subtropical and deciduous forest zones of ENA, and the transitional

climatic conditions present in NCA. The utility of this framework is two-fold. First, it facilitates regional intercomparison of

soil moisture patterns and their controls, enabling consistent evaluation across diverse landscapes. Second, it improves the

interpretability of EOF modes by linking observed spatial variability to regional climatic drivers, soil texture distributions, and

vegetation structure. This regionalized approach is particularly valuable given the goal of disentangling parameter driven soil120

moisture responses from broader meteorological forcings. By leveraging the CONUS domain and its subdivisions, the study
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advances understanding of how soil hydraulic parameter uncertainty manifests across large-scale gradients and informs the

development of improved land surface model parameterizations.

Figure 1. Regional divisions of the CONUS area into four major zones: Western North America (WNA), Central North America (CNA),

Eastern North America (ENA), and North Central America (NCA), as defined by Giorgi and Francisco (2000), based on climate variability

and geographical features. Prominent subregions and geographical landmarks, such as mountain ranges and plains, are also depicted.

2.2 Data Description

The Soil Parameter Intercomparison Project (SP-MIP), initiated at the GEWEX-SoilWat workshop in Leipzig (2016), aims to125

quantify the variability in land surface model (LSM) output caused by differences in soil parameters and structures. Following

the Land Surface, Snow, and Soil Moisture Model Intercomparison Project (LS3MIP) protocol (Van den Hurk et al., 2016),

SP-MIP brought together eight leading LSMs: CLM5, ISBA, JSBACH, JULES, MATSIRO, MATSIRO-GW, NOAH-MP, and

ORCHIDEE for a series of global simulation experiments (Gundmundsson and Cuntz, 2017). These models were run on a 0.5◦

grid and forced with Global Soil Wetness Project Phase 3 (GSWP3) meteorological data for 1980 to 2010. We use CLM5 output130

produced by the NSF National Center for Atmospheric Research (NCAR) for SP-MIP (Thornton, 2010; Lawrence et al., 2019).

The dataset covers global landmasses at 0.5◦ resolution (25,920 grid cells, excluding water bodies and permanent snow/ice) and

includes 41 land surface variables such as evapotranspiration, soil temperature, and runoff, spanning 30 years (1980 to 2010).

The global soil profile reaches a depth of 41.998 m with 25 layers, but for this study, soil moisture was extracted from depths

(0-1.0 m) containing most roots (root-zone) of the CONUS region, covering 6,413 grid cells. The focus is on the variable water135

content of soil layers (mrsol) to explore soil moisture variability and distribution. Importantly, irrigation is not represented;

all simulations are under rainfed (naturalized) conditions to isolate the influence of soil hydraulic parameterizations without

additional anthropogenic water inputs. ERA5-Land (ECMWF) is also used as a model-based pattern reference (not ground

truth). It is an offline land-surface replay forced by ERA5 and does not assimilate soil moisture observations. For consistency,
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ERA5-Land fields were regridded to 0.5◦ to match CLM5. Note the forcing mismatch (CLM5: GSWP3; ERA5-Land: ERA5),140

so differences reflect both forcing and structural contrasts as well as parameter effects.

2.2.1 Experimental Designs

Four experimental designs were implemented to isolate the effects of soil properties on hydrological and energy balance

variables. Soil parameters for Experiment 1 and soil textures for Experiment 2 (EXP2) were derived at a 0.5◦ resolution, based

on dominant soil classifications within the 0-5 cm layer of SoilGrids data (Hengl et al., 2014) at a 5 km resolution. The Brooks145

and Corey parameters are derived from Table 2 of Clapp and Hornberger (1978), while the Mualem-van Genuchten parameters

represent ROSETTA class average hydraulic values as cited by Schaap et al. (2001), with soil textures taken from Table 1

of Cosby et al. (1984). For Experiments 4a-d (EXP4a–4d), the USDA soil categories used are Loamy Sand, Loam, Silt, and

Clay, as defined by Montzka et al. (2011). These experiments employ identical transfer functions for Brooks and Corey, as

well as Mualem-van Genuchten parameters, as applied in Experiment 1 (EXP1). CLM5 solves the Richards equation for the150

movement of soil water. The provided soil parameters and textures are uniform throughout the entire soil column. For a detailed

description of the SP-MIP dataset, please refer to Gundmundsson and Cuntz (2017). The schematic (Figure 2) summarizes the

CLM5 workflow and experimental grouping, which consists of four designs yielding seven runs (EXP1, EXP2, EXP3, and

EXP4a–4d), used to assess how soil hydraulic parameterizations influence soil moisture variability.

To assess the influence of soil hydraulic parameterizations on soil moisture variability within the CLM5, a series of simula-155

tions was conducted following the SP-MIP framework (Gundmundsson and Cuntz, 2017). Although SP-MIP was designed for

multi-model comparisons, we adapted it to evaluate intra-model variability within CLM5 by varying soil hydraulic parameter

sets. All simulations used consistent meteorological forcing (GSWP3), spatial resolution (0.5◦), and spanned 1980 to 2010,

with a standardized spin-up routine to ensure reliable initial conditions. Below, we describe the four experimental setups, their

objectives, configurations, hypotheses, and expected outcomes, focusing on how parameters are applied within CLM5. Each160

experiment followed the standard CLM5 spin-up procedure to ensure that carbon, water, and energy state variables reached

quasi-equilibrium prior to the simulation period, thereby minimizing the influence of initial conditions on soil moisture dy-

namics (Lawrence et al., 2019). Spin-up followed SP-MIP protocol guidelines to ensure equilibrium prior to the 1980 to 2010

simulation period (Gundmundsson and Cuntz, 2017). For clarity, Table 3 summarizes the soil inputs, parameter settings, and

purposes of EXP1–EXP4a-EXP4d (root-zone soil moisture, 1980 to 2010).165
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Figure 2. Experimental setup for evaluating soil moisture variability in CLM5. The model utilizes GSWP3 forcing data and conducts

multiple experiments with varying soil hydraulic parameterizations. EXP1 applies standardized parameters, EXP2 derives parameters from

soil texture, EXP3 uses default CLM5 settings, and EXP4a–4d assign uniform parameters for different soil types.

(1) EXP1 – Soil Hydraulic Parameters Provided by SP-MIP: This experiment serves as a baseline simulation, applying

soil hydraulic parameters provided by SP-MIP (Table 1). These parameters, derived from PTFs such as Brooks and

Corey (Clapp and Hornberger, 1978) and Mualem-van Genuchten (Schaap et al., 2001), are applied uniformly across all

grid cells in the CONUS at a 0.5◦ resolution using GSWP3 meteorological forcing data (1980 to 2010). The objective

is to establish an internal reference for soil moisture simulations by eliminating spatial variability in soil properties,170

allowing isolation of CLM5’s response to a consistent soil parameter set. The hypothesis is that SP-MIP soil hydraulic

parameters will produce uniform soil moisture patterns, serving as a control to quantify the effects of parameter variations

in other experiments. The expected outcome is a consistent baseline for intra-model comparisons, highlighting CLM5’s

sensitivity to parameter changes rather than inter-model differences.

(2) EXP2 – Texture-Derived Soil Hydraulic Parameters: In this experiment, CLM5 uses SP-MIP-provided soil texture175

inputs (Table 2), such as fractions of clay, silt, sand, dry bulk density, and organic matter content, to derive soil hydraulic

parameters internally via its native PTFs and lookup tables. These parameters vary spatially across the CONUS domain

based on textural classes. The objective is to assess how CLM5’s standard approach to translating soil texture into hy-

draulic properties influences soil moisture outputs. The hypothesis is that spatial variability in texture-derived parameters

will introduce heterogeneity in soil moisture patterns, reflecting the default parameterization practices of CLM5. The ex-180

pected outcome is a simulation that mirrors operational CLM5 runs, allowing for comparison with EXP1 to assess the

impact of texture-to-parameter translation on hydrological variability.

(3) EXP3 – CLM5 Default Configuration: This experiment employs CLM5’s default soil hydraulic parameters, as defined

by its operational input datasets, applied to all soil layers across CONUS. Unlike EXP1’s standardized parameters or
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EXP2’s texture-derived parameters, EXP3 reflects CLM5’s inherent configuration without external constraints. The ob-185

jective is to evaluate the model’s intrinsic variability due to its standard soil parameter settings, providing a benchmark

for CLM5’s default behavior. The hypothesis is that CLM5’s default parameters, which vary spatially based on its native

soil maps, will produce distinct soil moisture patterns compared to the controlled setups in EXP1 and EXP2. The ex-

pected outcome is a simulation that highlights the influence of CLM5’s built-in assumptions on soil moisture, allowing

quantification of parameter-driven variability within a single model.190

(4) EXP4a–4d – Uniform Soil Texture Simulations: These four experiments (EXP4a: loamy sand, EXP4b: loam, EXP4c:

clay, EXP4d: silt) each involve a separate CLM5 simulation with uniform soil hydraulic parameters from SP-MIP (Table

1) applied across the entire CONUS domain. The parameters, derived from PTFs for each USDA soil class (Montzka

et al., 2011), are spatially constant within each experiment but differ across the four runs based on soil type. The objective

is to test CLM5’s sensitivity to distinct soil textures and their associated hydraulic properties, such as porosity, saturated195

hydraulic conductivity, and water retention curves, and to evaluate their impact on hydrological (e.g., soil moisture) and

energy balance (e.g., evapotranspiration) outputs. The hypothesis is that each soil type will produce unique soil moisture

patterns, reflecting texture-dependent hydrological behavior. The expected outcome is a set of simulations that isolate the

effects of soil texture on CLM5’s outputs, providing insights into parameter-driven variability across diverse soil types.

Table 1. Soil parameters for the three selected water retention curves were supplied by SP-MIP as input for experiments 1 and 4a-d.

Parameter Name long_name (netCDF) Unit

he air entry potential m

mbc Brooks-Corey m parameter = Clapp-Hornberger b –

thetar residual soil moisture m3 m−3

thetas saturated soil moisture, porosity m3 m−3

ks Hydraulic conductivity at saturation or at air entry ms−1

lambdac Corey lambda parameter –

alphavg van Genuchten alpha parameter m−1

nvg van Genuchten n parameter –

mvg van Genuchten m parameter –

thetafcbc Brooks-Corey field capacity m3 m−3

thetafcvg van Genuchten field capacity m3 m−3

thetapwpbc Brooks-Corey permanent wilting point m3 m−3

thetapwpvg van Genuchten permanent wilting point m3 m−3
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Table 2. Soil textural characteristics supplied by SP-MIP for experiment 2.

Parameter Name long_name (netCDF) Unit

fclay fraction of clay –

fsilt fraction of silt –

fsand fraction of sand –

rhosoil dry bulk density kgm−3

omsoil organic matter content g(C)kg−1

Table 3. Summary of SP-MIP experimental configurations analyzed in this study. EXP1–EXP2 use prescribed SP-MIP inputs at 0.5◦; EXP3

uses CLM5 defaults; EXP4a–d are globally uniform design soils. Analyses use root-zone soil moisture extracted from each experiment from

1980 to 2010.

EXP Soil Input Parameter Setting Purpose

1 SP-MIP parameter maps Prescribed parameter maps from SP-MIP;

uniform with depth

Baseline with spatially varying prescribed

parameters to isolate CLM5 sensitivity.

2 SP-MIP soil texture maps CLM5 derives parameters from texture via

native PTF/lookup; spatially varying; uni-

form with depth

Assess sensitivity to texture-to-parameter

translation in CLM5.

3 CLM5 default maps CLM5 default parameter datasets; spatially

varying; uniform with depth

Benchmark CLM5 default configuration

against EXP1 and EXP2.

4a Design soil: loamy sand Globally uniform parameter set (loamy

sand); uniform with depth

Texture sensitivity: low retention/high con-

ductivity.

4b Design soil: loam Globally uniform parameter set (loam);

uniform with depth

Texture sensitivity: intermediate properties.

4c Design soil: clay Globally uniform parameter set (clay); uni-

form with depth

Texture sensitivity: high retention/low con-

ductivity.

4d Design soil: silt Globally uniform parameter set (silt); uni-

form with depth

Texture sensitivity: intermediate to high re-

tention.

2.2.2 Model-Based Reference for Pattern Comparison: ERA5-Land200

ERA5-Land, produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), is used here as a spatially

complete, model-based reference for pattern comparison; it is not treated as ground truth or a validation dataset. Note the forc-
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ing and structural contrasts: our CLM5 experiments are forced by GSWP3, whereas ERA5-Land is an offline HTESSEL replay

forced by ERA5; differences therefore reflect both forcing and model structure, not parameter effects alone. ERA5-Land does

not assimilate soil-moisture observations; it is an offline land-surface replay forced by ERA5 atmospheric reanalysis fields205

(Muñoz-Sabater et al., 2021). Thus, land-surface states are governed by HTESSEL physics and driven by ERA5 meteorology.

Although ERA5-Land involves no land-data assimilation, it is often used as a spatially consistent model product for pattern

comparison due to its global coverage and frequent updates. However, studies have identified certain discrepancies, such as a

wet bias in its soil moisture measurements relative to ground-based and Soil Moisture Active Passive (SMAP) satellite data, par-

ticularly in heavily vegetated and humid areas (Lal et al., 2022). Additionally, neither our CLM5 configuration nor ERA5-Land210

includes irrigation, which can significantly affect soil moisture in intensively cultivated regions. As documented in previous

studies, the absence of irrigation in the HTESSEL land surface model used by ERA5-Land has been linked to underestimation

of soil moisture in irrigated areas and is a known limitation when interpreting results over agricultural landscapes (Wipfler

et al., 2011; Lavers et al., 2022; Tang and McColl, 2023). These characteristics and known biases underline the need for careful

interpretation when using ERA5-Land for hydrological analyses and pattern comparison. Despite these issues, its capacity to215

reflect broad spatiotemporal patterns ensures its effectiveness in assessing model similarity and conducting extensive hydrolog-

ical research. While alternative datasets such as the North American Land Data Assimilation System (NLDAS) could provide

higher resolution and are region-specific to CONUS, ERA5-Land was selected for its global consistency, frequent updates, and

ability to offer a broader perspective that facilitates comparison across varying climatic conditions. Additionally, ERA5-Land

provides a direct connection to global atmospheric reanalysis, enabling robust assessments of large-scale interactions between220

soil moisture and climate processes. The ERA5-Land data were regridded to match the CLM5 0.5◦ grid.

2.3 EOF Analysis for Soil Moisture Variability

EOF analysis is a widely utilized statistical method in geophysical sciences for extracting dominant spatiotemporal patterns

from high-dimensional datasets (Jollife, 2002; Björnsson and Venegas, 1997). Initially introduced by Lorenz (1956) in the

context of meteorology, EOF analysis has evolved into a foundational tool for analyzing climate and hydrological variables225

such as precipitation, evapotranspiration, and soil moisture (Monahan et al., 2009; Korres et al., 2010). The method works

by decomposing a dataset into orthogonal spatial patterns (EOFs) and their corresponding temporal amplitudes (principal

components, PCs) through linear algebra techniques such as Singular Value Decomposition (SVD) (Hannachi et al., 2007;

Dawson, 2016). In this study, EOF analysis is applied to soil moisture outputs from CLM5 across the CONUS domain. The

objective is to assess how varying soil hydraulic parameterizations influence both the spatial structure and temporal evolution230

of soil moisture, particularly in the context of seasonal to interannual climate variability and hydrologic extremes, such as

droughts and floods. EOF analysis is well-suited to this objective because it captures the internal covariance structure of spatial

fields and retains dominant modes of variability that simpler diagnostics, such as RMSE or mean bias, may obscure.

EOF analysis provides a unified framework for comparing spatial and temporal patterns across different experimental setups

(EXP1, EXP2, EXP3, EXP4a–4d) and relative to a model-based pattern reference (ERA5-Land; used only for pattern compari-235

son, not ground truth). This facilitates the detection of parameter-sensitive regions and improves the mechanistic understanding
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of how soil hydraulic properties modulate model behavior. Such insights are particularly valuable in hydroclimatically com-

plex regions, including the central Great Plains and the arid western CONUS, where soil–climate interactions display high

spatial heterogeneity. Moreover, EOF techniques have proven effective for diagnosing how land surface processes, especially

soil moisture dynamics, interact with large-scale atmospheric teleconnections such as ENSO, the Pacific Decadal Oscillation240

(PDO), and the North Atlantic Oscillation (NAO) (Jimma et al., 2023; Kuss and Gurdak, 2014). In this context, EOFs help

reveal persistent spatiotemporal modes and teleconnection pathways that underlie soil moisture memory and seasonal pre-

dictability (Orth and Seneviratne, 2012; Perry and Niemann, 2007). These properties support both pattern-oriented comparison

and the interpretation of hydroclimatic variability from a process-oriented perspective.

However, care must be taken in interpreting EOF results. The orthogonality constraint can produce modes that are statis-245

tically optimal but not necessarily tied to discrete physical processes (Hannachi et al., 2007). To address this limitation, our

study complements EOF analysis with additional pattern-similarity diagnostics, such as Euclidean distance metrics and Taylor

diagrams, to evaluate spatial pattern similarity and the sensitivity of model output to parameter perturbations. All EOF analyses

are performed using the open-source Python package eofs (Dawson, 2016), which is optimized for climate and Earth system

data. This ensures a reproducible, efficient, and physically interpretable workflow for quantifying parameter-driven variability250

in land surface model simulations.

2.3.1 Computation of EOF Using Singular Value Decomposition

Singular Value Decomposition (SVD) is a robust linear algebra technique widely employed for matrix factorization, enabling

the decomposition of any n×m matrix, Yw, without explicitly solving an eigenvalue problem or constructing a covariance

matrix (e.g., Linz and Wang, 2003; Dawson, 2016; Björnsson and Venegas, 1997). In this study, SVD is utilized to compute255

the EOF modes by decomposing the matrix of soil moisture anomalies, Yw, into orthogonal components. The decomposition

is represented as:
Yw :

n×m

=


u11 u12 · · · u1p

u21 u22 · · · u2p

...
...

. . .
...

un1 un2 · · · unn




γ11 0 · · · 0

0 γ22 · · · 0
...

...
. . .

...

0 0 · · · γnm




v11 v12 · · · v1p

v21 v22 · · · v2p
...

...
. . .

...

vn1 vn2 · · · vmm

 (1)

Yw =UΓVT , (2)260

where U (n×n) contains the left singular vectors (spatial EOFs), V (m×m) contains the right singular vectors (temporal

principal components, PCs), and Γ (n×m) is a diagonal matrix with non-negative singular values γi (Γij = δijγi). The singular

values γi quantify the variance captured by each EOF mode, and ρ=min(n,m) determines the number of non-zero singular

values.

For this analysis, the soil moisture data matrix Yw consists of area-weighted anomaly values simulated by CLM5, where265

the mean at each grid point has been removed to highlight variability. The matrix has n rows representing time steps and
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m columns corresponding to spatial grid points. To reduce redundancy and focus on the most significant patterns, we apply

truncated SVD (tSVD), retaining only the top ρ singular values and their corresponding singular vectors:

Yw ≈ ÛρΓ̂ρV̂
T
ρ , (3)

where Ûρ (n× ρ) contains the leading EOFs, Γ̂ρ (ρ× ρ) is the diagonal matrix of the largest singular values, and V̂T
ρ (ρ×m)270

represents the corresponding principal components. Singular vectors associated with smaller singular values are discarded,

improving computational efficiency while preserving the dominant variability patterns (Figure 3).

Figure 3. tSVD applied to the soil moisture anomaly dataset. The matrix Yw (n×m) is decomposed into Ûρ (n× ρ) for EOFs, Γ̂ρ (ρ× ρ)

for singular values, and V̂T
ρ (ρ×m) for PCs. The truncation level ρ is chosen such that ρ≤min(n,m).

The singular values from tSVD are used to calculate the explained variance (%EVi) for each EOF mode, quantifying their

contribution to the dataset’s variability:

%EVi =
γi
ρ∑

j=1

γj

× 100%, i= 1,2, . . . ,ρ. (4)275

The first EOF mode typically explains the largest fraction of variance, representing the dominant spatial pattern, while subse-

quent modes capture progressively smaller uncorrelated patterns. This hierarchical decomposition provides a powerful frame-

work for analyzing spatiotemporal variability in soil moisture anomalies and assessing the relative contributions of soil hy-

draulic parameters and climate drivers. EOF analysis, through tSVD, ensures that the representation of dominant patterns is

efficient and interpretable, enabling robust physical insights into the factors controlling soil moisture variability.280
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2.3.2 Quantifying Similarity of Spatial EOF Modes using Euclidean Distance

The Euclidean distance metric was employed to assess the similarity or dissimilarity between spatial EOF modes derived

from distinct datasets. This metric, commonly used in mathematics and data analysis, calculates the straight-line distance

between two points in Euclidean space, providing a direct and interpretable measure of the geometric proximity between

patterns (e.g., Elmore and Richman, 2001). Its simplicity and intuitive interpretation make it particularly suitable for comparing285

spatial variability patterns obtained through EOF analysis. A smaller Euclidean distance indicates a high degree of similarity

between the EOF modes, suggesting a closer similarity of the underlying spatial patterns. Conversely, a larger distance reflects

greater dissimilarity, indicating distinct spatial characteristics or variability between the datasets. In this study, the Euclidean

distance was used to compare the spatial EOF modes from the ERA5-Land model output and the CLM5 SP-MIP experiments,

representing different data decomposition results. The Euclidean distance for two spatial EOF modes, X (ERA5-Land) and Y290

(SP-MIP), was computed using the following equation:

EucD(X ,Y) =

√√√√ n∑
i=1

(Xi −Yi)2, (5)

where n is the number of spatial elements (grid points) in each EOF mode.

This approach enabled the identification of regions within the CONUS domain where the spatial EOF patterns differed sig-

nificantly, highlighting areas requiring improved parameterization of soil properties in LSMs. By quantifying these differences,295

the Euclidean distance analysis provides actionable insights into the spatial scales and regions where soil parameter settings

have the most significant impact, thereby supporting targeted model refinements and enhanced soil moisture simulations.

2.3.3 Taylor Diagram for Evaluating Spatial EOF Modes

Taylor Diagrams (TDs) (Taylor, 2001) were employed to evaluate spatial EOF modes, providing a clear and intuitive repre-

sentation of three key statistical measures: correlation (COR), standard deviation (STD), and root mean square error (RMSE).300

These diagrams are extensively employed in geophysical sciences to evaluate and compare model similarity across various

dimensions (e.g., Qiao et al., 2022). Their ability to display, simultaneously, the relationship between modeled and reference

patterns makes them particularly useful for examining the variability and accuracy of spatial EOF modes. In this research, Tay-

lor diagrams were used to compare the spatial EOF modes of the ERA5-Land dataset against the SP-MIP model experiments.

The standard deviation of the ERA5-Land spatial modes served as a reference for assessing the variability of the SP-MIP305

modes. The diagrams assessed the similarity of the patterns by using three metrics: the correlation coefficient, which evaluates

the similarity of spatial patterns; the centered RMSE, which measures the magnitude of pattern differences; and the standard

deviation, which indicates the amplitude of variability within each mode. These combined metrics offer a thorough assessment

of spatial pattern differences. Taylor diagrams help identify specific EOF modes where SP-MIP experiments differ from the

ERA5-Land reference, pinpointing areas for possible model improvement. By incorporating these metrics into a single frame-310

work, the diagrams facilitate focused improvement of soil parameterizations in LSMs, thereby better capturing essential spatial

variability patterns in soil moisture.
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3 Results and Discussion

3.1 Spatial Variability in Annual Mean Soil Moisture Across CONUS

Despite consistent forcing data (GSWP3) and model resolution (0.5◦), the experiments reveal notable differences in soil mois-315

ture spatial patterns due to variations in soil parameter derivation, which underline the critical role of soil parameters in shaping

simulations. These differences are reflected in the annual mean soil moisture across the CONUS region, which ranged from

≈ 195kg m−2 to 380kg m−2, calculated by averaging daily soil moisture from 1980 to 2010 (Figure 4). The spatial distribution

of soil moisture across all experiments reflects well-established precipitation gradients and temperature variability, with higher

soil moisture levels over the central Great Plains and ENA regions and lower values in the arid southwest. These findings align320

with previous studies that have documented the relationship between soil moisture, precipitation, and temperature in these

regions (Welty and Zeng, 2018; Koster et al., 2004; Koukoula et al., 2021; Melillo et al., 2014; Chatterjee et al., 2022). The

pronounced variability in soil moisture in the Great Plains is consistent with continentality, where greater distances from large

water bodies amplify seasonal precipitation and evaporation differences (Gimeno et al., 2010). Among the experiments, EXP3

(Figure 4d) simulates the highest soil moisture levels, followed by EXP2 (Figure 4c) and EXP1 (Figure 4b). These differ-325

ences reflect the impact of soil parameter treatments, with EXP1 producing lower soil moisture magnitudes, EXP2 resulting in

moderate values, and EXP3 yielding the highest levels.

The results of EXP4 highlight the role of soil texture in modulating soil moisture distribution. For example, EXP4a (loamy

sand, Figure 4e) exhibits low soil moisture in the arid southwest and NCA, consistent with the limited water retention capacity

of loamy sand. EXP4b (loam, Figure 4f) shows a more balanced soil moisture distribution, with drier conditions in WNA and330

wetter conditions in ENA, reflecting the moderate water-holding characteristics of the loam. EXP4c (clay, Figure 4g) shows

higher soil moisture levels over ENA due to the high water retention capacity of clay. In contrast, EXP4d (silt, Figure 4h) ex-

hibits heterogeneous soil moisture patterns influenced by environmental variability and the intermediate hydraulic properties of

the silt. These results indicate that uncertainties in soil parameterization have a significant impact on soil moisture simulations

in the CLM5 model, consistent with the findings of Brimelow et al. (2010). Our work furthers this research area by systemat-335

ically evaluating the role of distinct soil textures (loamy sand, loam, clay, and silt) in shaping soil moisture variability across

different climatic zones. Unlike previous studies, this analysis integrates the spatial distribution of soil moisture with climatic

gradients, providing a more comprehensive assessment of how parameterization impacts hydrological processes at a continen-

tal scale. Variations in soil parameter settings not only influence soil moisture magnitudes but also alter spatial distributions,

affecting the model’s ability to capture hydrological processes at the continental scale. The findings of EXP4 further emphasize340

the importance of soil texture in controlling soil moisture distribution, highlighting the need for precise parameterization in

LSMs. This has important implications for improving water resource management, agricultural planning, and climate impact

assessments.
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Figure 4. Annual mean soil moisture (1980 to 2010) over the CONUS region, simulated from four experiment types with differing soil

parameter settings: EXP1 (b; uniform SP-MIP parameters), EXP2 (c; texture-derived, spatially varying), EXP3 (d; CLM5 defaults, spatially

varying), and EXP4 (sub-experiments: EXP4a loamy sand (e), EXP4b loam (f), EXP4c clay (g), and EXP4d silt (h); each uniform by texture

class). The color bar represents the range of soil moisture values (kg m−2), with warmer colors (red and orange) indicating lower soil

moisture levels and cooler colors (blue and purple) representing higher soil moisture levels.
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3.2 Interannual Soil Moisture Anomalies

Interannual root-zone soil moisture anomalies over the CONUS region from 1980 to 2010, derived from CLM5 simulation345

experiments (EXP1, EXP2, EXP3, and multiple EXP4 configurations) and ERA5-Land model output (model-based pattern

reference), are shown in Figure 5. Anomalies are computed as deviations from the daily annual mean over the 30-year reference

period, following established methodologies for hydrological variability assessment (Tuttle and Salvucci, 2016; Koster et al.,

2004; Welty and Zeng, 2018). The top panel of Figure 5 presents anomalies for EXP1, EXP2, EXP3, and ERA5-Land, while

the bottom panel includes additional EXP4 parameterizations representing different soil textures (loamy sand, loam, clay, and350

silt).

Across all configurations, soil moisture anomalies fluctuate around a long-term mean of zero, with values ranging approx-

imately from −20kg m−2 to +40kg m−2. Positive anomalies signify wetter-than-average conditions, while negative values

indicate drier conditions. The CLM5 experiments exhibit pronounced interannual variability, capturing key hydrological ex-

tremes, including droughts and wet periods, as represented in ERA5-Land patterns. CLM5 simulations reproduce the timing355

of major interannual features present in ERA5-Land patterns, such as drought and wet periods, but consistently underestimate

their magnitude. As shown in Figure 5, all CLM5 configurations produce tightly clustered time series, lacking the broader

spread in ERA5-Land. This visual clustering illustrates a key discrepancy: ERA5-Land exhibits a broader interannual ampli-

tude, with anomalies reaching up to ±40kg m−2, whereas CLM5 simulations are typically confined to a ±20kg m−2 range;

note that differences can also reflect forcing and structural contrasts (GSWP3-forced CLM5 vs. ERA5-forced HTESSEL in360

ERA5-Land) in addition to parameter effects.

This variability gap likely stems from structural limitations in CLM5, including the use of static soil hydraulic parameters,

diffusive vertical redistribution, and the absence of data assimilation factors known to constrain the dynamic range and persis-

tence of soil moisture anomalies in LSMs (Koster et al., 2009; Muñoz-Sabater et al., 2021). The underestimation is particularly

concerning for hydrologic extremes, as it suggests that CLM5 may inadequately simulate the severity of soil moisture deficits365

during droughts or surpluses during wet years. These limitations can propagate into downstream processes such as evapotran-

spiration, runoff, and land–atmosphere coupling, thereby reducing the model’s ability to capture feedback mechanisms critical

to hydroclimatic variability (Koster et al., 2004; Berg and Sheffield, 2018). Figure 6 supports this interpretation, showing that

CLM5 anomaly values are compressed along the 1:1 line when compared to ERA5-Land, reinforcing the conclusion that the

model’s soil moisture response is systematically dampened. Finally, while ERA5-Land’s higher peaks—particularly in positive370

extremes, may partly reflect overestimation in vegetated regions due to unresolved processes such as irrigation or enhanced

surface fluxes (Lal et al., 2022), the muted variability in CLM5 indicates the importance of improved parameter calibration and

multi-source reference datasets in future work.

The relationship between daily soil moisture anomalies from CLM5 and ERA5-Land is further examined in Figure 6. These

scatter plots compare CLM5-simulated anomalies with ERA5-Land on a point-by-point basis. The distribution of points is375

closely aligned along the 1:1 line, with coefficient of determination (R2) values ranging from 0.7 to 0.8 across experiments.

These correlations confirm that CLM5 successfully captures much of the variability present in ERA5-Land patterns, albeit with
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some systematic biases. Specifically, ERA5-Land tends to exhibit larger positive anomalies relative to CLM5, reinforcing the

trend seen in the time-series plots. The EXP4 configurations (Figure 6b) show similarity to EXP1–EXP3, indicating that soil

texture variations only moderately impact anomaly correlations at an aggregated scale.380

The results indicate significant interannual variability in soil moisture anomalies, with distinct peaks and troughs corre-

sponding to extreme hydrological events. These fluctuations are likely driven by large-scale climatic influences, such as ENSO,

which modulate regional hydrological conditions (Gimeno et al., 2010; Welty and Zeng, 2018). While periodicity in anomalies

suggests a possible linkage to climate oscillations, further spectral analysis would be required to confirm such relationships.

Additionally, the lack of a discernible long-term trend indicates that soil moisture anomalies remained relatively stable over385

the study period, with variability largely governed by short to medium-term hydrological cycles. This aligns with findings

from Lesinger and Tian (2022), who noted that while interannual fluctuations in soil moisture can be significant, multi-decadal

trends over CONUS tend to be weak or spatially constrained. Overall, the time-series (Figure 5) and scatter plots (Figure 6)

collectively demonstrate that CLM5 reasonably captures the timing and structure of interannual soil moisture variability, but

consistently underestimates its magnitude relative to ERA5-Land patterns, with strong correlations. However, ERA5-Land’s390

systematic overestimation of positive anomalies indicates a potential bias in reanalysis products, necessitating further evalu-

ation of the mechanisms driving such deviations. Accordingly, we interpret the ERA5-Land comparison strictly as a pattern-

based reference. Similarities indicate that CLM5’s parameter choices reproduce timing, phase, and spatial covariance seen in

an independent model product, whereas systematic departures highlight parameter-sensitive regions; neither case is taken as

validation of absolute soil moisture levels. Future work should assess regional patterns in soil moisture dynamics and quantify395

biases across different land cover types to improve pattern similarity.
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Figure 5. Time series of daily root-zone soil moisture anomalies from 1980 to 2010 over the CONUS region. Panel (a) displays anomalies

for CLM5 simulations using EXP1, EXP2, and EXP3 configurations, compared with ERA5-Land (the model-based pattern reference). Panel

(b) includes EXP4 simulations with uniform soil texture classes (loamy sand, loam, clay, and silt), also compared against ERA5-Land.

Anomalies are computed as deviations from the 30-year daily climatological mean. ERA5-Land exhibits a wider anomaly range, while

CLM5 simulations show more constrained variability, highlighting differences in interannual amplitude across configurations.
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Figure 6. Daily mean root-zone soil moisture anomalies for 1980 to 2010 from each CLM5 experiment (EXP1, EXP2, EXP3, and the

EXP4 sub-experiments) plotted against ERA5-Land (model-based pattern reference). All anomalies are expressed in [kg m−2]. Each colored

marker represents daily anomalies from a given experiment, while the black dashed line denotes the 1:1 relationship. In the legend, R2 values

(in parentheses) indicate the degree to which each experiment’s anomalies align with ERA5-Land patterns.

3.3 Seasonal Variability of Soil Moisture

As evident in Figure 7, notable differences emerge between ERA5-Land patterns (model-based pattern reference) and CLM5

simulations, particularly in the amplitude of seasonal variability. ERA5-Land exhibits the strongest seasonal cycle, with a sharp

rise in soil moisture from February through May, peaking in June, followed by a pronounced decline into the late summer and400

early autumn months. In contrast, EXP1, EXP2, and EXP3 form a tightly clustered group with relatively flattened seasonal

curves. These configurations consistently underestimate the springtime peak and summer drawdown, suggesting that their soil

moisture response to seasonal climate forcing is muted. Among them, EXP2 (green line) shows the lowest amplitude, while

EXP3 (red line) offers a slightly improved but still subdued representation.

Notably, EXP4a (black dashed line) deviates from this pattern. It shows greater similarity to ERA5-Land seasonal patterns,405

especially from March to September, capturing a steeper ascent in spring and a deeper trough in late summer. This improved

responsiveness is likely due to the loamy sand texture used in EXP4a, which promotes rapid infiltration and drainage, thereby

amplifying soil moisture variability in response to precipitation and evapotranspiration. In contrast, EXP4b-d (loam, clay, silt)

progressively dampen the seasonal signal, with EXP4c and EXP4d showing the lowest variability due to their high water

retention capacities.410
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These differences indicate that while CLM5 reproduces the general phasing of the seasonal cycle, it substantially underrep-

resents the amplitude of variation in ERA5-Land patterns. This underestimation is especially critical during the peak moisture

accumulation (March–June) and depletion (July–October) phases, and highlights the importance of hydraulic conductivity,

retention characteristics, and vertical redistribution in modulating soil moisture seasonality. Although ERA5-Land may over-

estimate soil moisture in certain vegetated regions (Lal et al., 2022; Lesinger and Tian, 2022), its higher amplitude suggests a415

more dynamic land surface response that current CLM5 configurations, particularly EXP1–EXP3, fail to capture adequately.

Addressing this discrepancy through improved parameter tuning and structural adjustments could enhance CLM5’s ability to

simulate land–atmosphere coupling and surface hydrological processes across seasons.
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Figure 7. Monthly mean seasonal cycles of standardized root-zone soil moisture for the period 1980 to 2010 across the CONUS. CLM5 sim-

ulations (EXP1–EXP3 and EXP4a–d) are compared with ERA5-Land (model-based pattern reference). ERA5-Land exhibits the largest

seasonal amplitude, with sharp increases during spring (March–June) and steep declines during summer (July–October). In contrast,

EXP1–EXP3 form a tightly clustered group with flattened seasonal cycles, underestimating both the spring moisture accumulation and

summer drawdown. EXP4a, which uses a loamy sand texture, shows greater seasonal responsiveness and greater similarity to ERA5-Land

seasonal patterns. The remaining EXP4 configurations (loam, clay, silt) progressively dampen seasonal variability, reflecting the influence of

soil texture on water retention and hydrologic dynamics.

3.4 EOF Analysis of Soil Moisture Variability

3.4.1 Explained Variance and Mode Contributions420

This study applies EOF analysis to soil moisture anomalies from the CLM5 simulations (EXP1, EXP2, EXP3) and the ERA5-

Land model output (model-based pattern reference, with no soil moisture assimilation and no ground truth) to investigate how

soil parameterization influences soil moisture variability in the CONUS region. Figure 8 presents the percentage of variance

explained by the first 10 EOF modes for each dataset, illustrating both individual and cumulative contributions. The EOF
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modes are ranked by variance percentage, with EOF-1 capturing the highest variance and representing the most significant425

spatial variability. Across all experiments, EOF-1 explains slightly more variance than EOF-2, suggesting limited separation

between these modes and potential mode mixing. The explained variance gradually declines in subsequent modes, with EOF-

10 contributing less than 2%, as summarized in Table 4. EOF-1 explains a similar percentage of variance in EXP1 (11.45%)

and EXP2 (11.66%), indicating comparable spatial variability patterns. However, in EXP3, EOF-1 captures only 10.84% of the

variance, with mode mixing shifting variance from EOF-1 to EOF-2 (Table 3, arrows). These differences highlight the impact430

of soil parameterization on representing dominant soil moisture variability. ERA5-Land, used here as a pattern reference,

exhibits a larger EOF-1 contribution (17.5%), indicating a more dominant leading mode than in the CLM5 runs; differences

can also reflect forcing (ERA5 vs. GSWP3) and structural (HTESSEL vs. CLM5) contrasts, not parameter effects alone. The

cumulative explained variance (Figure 8, green line) shows how efficiently the leading modes summarize variability in each

dataset.435

While the first five modes account for about 40% of the variance in ERA5-Land, the CLM5 simulations require approx-

imately six modes to reach the same threshold. This distribution suggests that the simulations spread variance more evenly

across modes, reflecting differences in spatial patterns between CLM5 simulations and ERA5-Land. To facilitate cross-dataset

comparison, we re-ordered EOF modes where necessary so that the dominant spatial patterns were aligned across datasets. For

instance, shifts in EXP3 and ERA5-Land were necessary to match the dominant spatial patterns, such as the swaps of EOF-1440

and EOF-2 (indicated by arrows in Table 3). These adjustments highlight the sensitivity of EOF rankings to mode mixing and

the challenges of directly comparing different model products (CLM5 and ERA5-Land). In addition, Appendix A (Figure A1)

provides additional EOF analysis results for EXP4a–d, detailing variance explained across experiments. The findings reinforce

the influence of soil parameterization on the spatial distribution of soil moisture, emphasizing that comparisons are interpreted

in terms of similarity to ERA5-Land patterns rather than validation of absolute levels.445
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Figure 8. The variance explained by each EOF (red bars) and the cumulative variance (green line) shows the cumulative proportion for the

initial 10 EOF modes.
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Table 4. Percentage of variance explained (%Expl. Var.) by the first 10 EOF modes for EXP1, EXP2, and EXP3 model runs, and ERA5-Land

reference data. Arrows and superscripts indicate EOF mode swaps for consistent comparisons across datasets (see Figure 9).

EOF Mode EXP1 %Expl. Var. EXP2 %Expl. Var. EXP3 %Expl. Var. ERA5-Land %Expl. Var.

EOF-1 11.45 11.66 10.84 ↓2 17.5 ↓2

EOF-2 10.40 10.60 9.85 ↑1 8.48 ↓3

EOF-3 8.81 8.25 9.08 7.83 ↑1

EOF-4 5.69 5.83 5.73 5.75

EOF-5 4.37 4.59 4.48 5.61

EOF-6 3.49 3.56 3.48 3.64

EOF-7 3.26 3.23 3.24 3.10

EOF-8 2.51 2.53 2.63 2.86

EOF-9 2.14 2.16 2.22 2.76

EOF-10 1.96 1.99 1.95 2.22

Total Cumul. %Expl. Var. 54.07 54.4 53.49 59.77

3.4.2 Spatial and Temporal Analysis of EOF Modes for Soil Moisture Variability

We show the spatial distribution of the first three EOF modes from soil moisture anomalies in CLM5 simulations (EXP1, EXP2,

EXP3) and ERA5-Land (model-based pattern reference). The maps in Figure 9 show correlation coefficients between the PC

time series of each EOF mode and the soil moisture anomaly time series at each grid point. These correlation maps indicate the

spatial strength and direction of association between local anomalies and the broader temporal mode represented by the PC.450

This representation facilitates interpretation by highlighting regions that co-vary in phase (positive correlation) or in antiphase

(negative correlation) with the dominant temporal pattern, thereby revealing the spatial structure of soil moisture variability

linked to each EOF mode. EOF-1 patterns (Figures 9d, g, j) reveal strong positive correlations in central and southeastern ENA,

highlighting a dominant mode of variability. Negative correlations are seen in WNA and CNA, indicating contrasting modes

of soil moisture variability in the CONUS region. The variance explained by EOF-1 ranges from 9.85% (EXP3) to 11.66%455

(EXP2), with ERA5-Land showing a larger variance contribution (17.5%). These spatial patterns align with large-scale climatic

influences, such as precipitation and temperature gradients, as well as geographic features. For example, Gaffin and Hotz (2000)

noted that the Appalachian Mountains exhibit strong precipitation gradients due to storm systems lifting moist southerly winds,

enhancing soil moisture in ENA. The corresponding principal components (PC-1; Figure 10a) indicate temporal variability,

with notable peaks during 2003 to 2004 and 1988 to 1999, corresponding to documented climatic events such as ENSO-driven460

precipitation anomalies (Ye et al., 2023; Gimeno et al., 2010). The close agreement of PC-1 across all experiments indicates

the robustness of EOF-1 in representing the dominant variability in soil moisture, although slight differences suggest some

sensitivity to parameterizations.
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EOF-2 (Figures 9e, h, k) exhibits a distinct dipole pattern, with positive correlations in the central Great Plains and nega-

tive correlations over ENA, reflecting a wide spread in soil moisture variability. This dipole nature, which explains 10.40% to465

10.84% of the variance, is consistent with regional climatic processes such as precipitation and evapotranspiration dynamics

influenced by terrain and hydrological conditions. For example, positive correlations in the central Great Plains may result from

localized convective precipitation; however, isotope studies indicate that precipitation in this region is influenced by moisture

transported from external sources, such as the Gulf of Mexico, rather than solely from local convection (Sanchez-Murillo

et al., 2023). Negative correlations in ENA could reflect the influence of evapotranspiration or soil drainage patterns (Famigli-470

etti, 2014). In particular, EXP3 exhibits a stronger positive correlation in the desert southwest, suggesting a greater sensitivity

to soil parameters in arid regions, which can influence soil water retention and infiltration rates. Furthermore, EOF-3 (Figures

9f, i, l) highlights localized variability, with positive correlations in the Pacific Northwest and negative correlations over Texas

in CNA. This mode explains less variance than EOF-1 and EOF-2 (8.25% in EXP2 to 9.85% in EXP3) but captures important

regional processes. The Pacific Northwest patterns may be influenced by orographic precipitation. At the same time, nega-475

tive correlations in Texas could reflect drought conditions and the influence of fine-textured soils with higher water-retention

potential (Haverkamp et al., 2005). Although the spatial patterns of EOF-3 are broadly similar between experiments, slight

shifts in correlation intensity and location suggest localized impacts of soil parameterizations. The PCs (Figure 10c) show

weaker temporal variability with occasional peaks tied to distinct climate events, emphasizing the regional specificity of EOF-

3. The appendix includes Figures A2 and A3, which offer additional results highlighting the spatial and temporal variability of480

EXP4a-EXP4d EOF across experiments, further supporting the findings discussed. Lastly, the results emphasize the significant

role that soil parameterizations play in soil moisture variability within the CLM5 model. Differences in the spatial and tem-

poral patterns of EOFs indicate the model’s sensitivity to these parameterizations, especially in areas with intricate terrain or

significant climate variability. The greater similarity of EOF-1 to ERA5-Land patterns underlines the robustness of the model’s

primary modes, while discrepancies in EOF-2 and EOF-3 highlight regions where model refinements could enhance localized485

soil moisture predictions. This study stresses the importance of improving soil parameterizations to improve the representation

of hydrological variability and effectively capture the interaction between soil moisture and climatic elements.
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Figure 9. Spatial correlation maps of the first three EOFs of soil moisture anomalies for the CONUS, derived from ERA5-Land (model-based

pattern reference) and three CLM5 experiments (EXP1, EXP2, EXP3). Panels (a) to (c) represent EOF-1, EOF-2, and EOF-3 from ERA5-

Land, respectively. Panels (d–f), (g–i), and (j–l) show corresponding modes from EXP1, EXP2, and EXP3. The color shading represents the

correlation coefficient between the PC time series of each EOF mode and the soil moisture anomaly time series at each grid point. Positive

values indicate in-phase variability with the PC (regions that co-vary with the dominant mode), while negative values indicate anti-phase

behavior. These maps illustrate the spatial coherence and phase relationships of soil moisture variability associated with each mode.
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Figure 10. Temporal Variability (PC) of corresponding EOF over time (1980-2010) displaying the amplitude of the first four PCs: EXP1

(blue), EXP2 (green), and EXP3 (orange) derived from the soil moisture decomposition for each simulation experiment.

3.4.3 EOF Modes: Euclidean Distance Analysis

We compute the Euclidean distance between the spatial patterns of EOF modes derived from soil moisture anomalies in the

CLM5 SP-MIP experiments (EXP1, EXP2, EXP3) and the corresponding modes from ERA5-Land model output (model-based490

pattern reference; not ground truth). Euclidean distance quantifies dissimilarity between spatial modes, with smaller values in-

dicating greater similarity to ERA5-Land patterns. Regions with hatched lines denote areas where the distance falls below

a threshold of 5, suggesting strong pattern similarity between the CLM5-derived EOFs and the ERA5-Land EOFs. EOF-

1 exhibits the most consistent similarity across experiments, particularly in the western and northwestern CONUS (WNA).

The hatched areas there indicate that the modeled spatial variability shows close similarity to ERA5-Land patterns, consis-495

tent with large-scale hydrologic controls such as precipitation gradients and topography (Gaffin and Hotz, 2000; Famiglietti,

2014). In contrast, the central Great Plains consistently shows larger Euclidean distances for all three EOF modes, indicating

notable pattern differences between CLM5 and ERA5-Land in this region. These differences may reflect limitations in soil
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parameterizations and the complexity of hydroclimatic processes (e.g., precipitation variability and soil moisture–precipitation

feedbacks) (Koster et al., 2004; Welty and Zeng, 2018), as well as forcing and structural contrasts between datasets (CLM5500

forced by GSWP3 vs. ERA5-Land as an offline HTESSEL replay forced by ERA5). Relative to ERA5-Land patterns, EXP1

shows greater similarity in WNA for EOF-1, while similarity in other regions is mixed across experiments. EOF-2 and EOF-3

display larger distances with fewer hatched areas, indicating challenges in capturing smaller-scale structures and dipole patterns

(Hannachi et al., 2007; Monahan et al., 2009). These findings underline the model’s sensitivity to soil parameter choices and

highlight the need for targeted improvements in the central Great Plains and other regions with persistent pattern differences.505

Refining soil parameter settings and incorporating independent datasets (e.g., SMAP, in situ networks) as complementary

references could help improve the representation of regional soil moisture patterns.
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Figure 11. Euclidean distance between EOF modes from SP-MIP experiments (EXP1, EXP2, EXP3) and ERA5-Land (model-based pattern

reference). Hatched areas indicate regions where the distance is below 5, indicating greater similarity to ERA5-Land patterns.
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3.4.4 EOF Modes: Taylor Diagram Analysis

TDs (Figure 12) summarize the similarity of EOF patterns from different experiments to those in ERA5-Land (model-based

pattern reference) using three statistics: standard deviation (dotted arcs), correlation coefficient, and centered root mean square510

error (RMSE). Each marker’s position indicates the degree of pattern similarity between a modeled EOF mode and the ERA5-

Land EOF mode. For EOF-1 (Figure 12a), the standard deviations of the EOF modes for all model experiments are relatively

close to the reference EOF mode, ranging between 4.0 and 6.5, which suggests close similarity in variability. The pattern cor-

relations range between 0.6 and 0.95, with EXP4d demonstrating the highest pattern correlation. This indicates that the spatial

pattern of EXP4d shows greater similarity to the ERA5-Land EOF mode. In EOF-2 (Figure 12b), the standard deviations are515

comparable to the reference EOF mode, while pattern correlations cluster between 0.4 and 0.7, indicating moderate similarity

for the second mode. For EOF-3 (Figure 12c), the EOF modes generally exhibit a pattern correlation of around 0.8 and a

standard deviation of approximately 5.0. However, the EXP4d EOF deviates, centered around a lower standard deviation of

3.5. These variations highlight the impact of soil parameter settings in CLM5, demonstrating how parameter choices influence

the similarity to ERA5-Land EOF patterns.520
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Figure 12. Taylor Diagrams (TDs) for the leading three EOFs from multiple experiments (EXP1, EXP2, EXP3, EXP4a, EXP4b, EXP4c,

EXP4d) and ERA5-Land. The diagrams summarize standard deviation, correlation coefficient, and RMSE, with marker placement indicating

pattern similarity relative to ERA5-Land (model-based pattern reference).

4 Conclusion and Recommendations

This study examines the impact of soil parameterizations on soil moisture simulations in the CLM5 across the CONUS for

the period 1980 to 2010, utilizing EOF analysis. We compared CLM5 simulations to ERA5-Land, used solely as a model-

based pattern reference, and quantified the similarity of spatial and temporal patterns across soil parameter configurations. The

results showed that EXP3, which used the default CLM5 soil parameters, consistently simulated higher soil moisture levels525
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than other experiments. This finding highlights the model’s sensitivity to variations in soil hydraulic properties, including satu-

rated hydraulic conductivity, soil water retention characteristics, and porosity. Seasonal soil moisture dynamics showed broad

consistency across experiments, peaking in winter due to reduced evapotranspiration, and declining in summer when higher

temperatures intensified soil drying. However, distinct differences emerged in the magnitude and phase of seasonal cycles,

revealing how variations in soil properties can influence processes such as water retention, drainage, and evapotranspiration530

fluxes. These insights align with previous research, which demonstrated that soil moisture significantly affects hydrological

processes and land-atmosphere interactions, particularly through feedback mechanisms that vary regionally across the United

States (Tuttle and Salvucci, 2016; Koster et al., 2004). Furthermore, the amplified sensitivity seen in the arid and semi-arid

regions of the CONUS suggests that these areas may be particularly vulnerable to uncertainties in soil parameterization.

Regarding the first question, EOF analysis revealed that changes in soil hydraulic properties significantly altered the spatial535

distribution of the dominant EOF modes, particularly in regions such as the Great Plains and ENA, indicating that parameteri-

zations strongly influence modeled soil moisture gradients. For the second question, principal component time series associated

with the leading EOFs captured interannual anomalies and periods of extreme wetness or dryness that coincided with known

climate events (e.g., ENSO phases). Variations in the amplitude and persistence of these temporal patterns across experiments

underlined the role of soil parameters in modulating the hydrologic response to climate variability. These findings affirm that540

parameter choice not only controls spatial representation but also influences the sensitivity of soil moisture to climatic extremes,

highlighting the dual spatial-temporal impact of soil parameterization in land surface modeling.

EOF analysis further revealed that the first few modes accounted for most of the variance across experiments, and EOF-1

consistently explained the most significant proportion of variance. The spatial patterns of the first three EOF modes exhibited

similar broad-scale features among the experiments, such as dominant moisture gradients across climatic zones. However,545

notable differences in explained variance and spatial correlations pointed to the influence of soil parameters on the physical

processes driving regional moisture variability. Compared with ERA5-Land patterns using Euclidean distances and Taylor dia-

grams, the CLM5 output showed greater similarity in WNA, indicating closer correspondence to ERA5-Land’s representation

of mountainous and arid region dynamics. In contrast, persistent discrepancies in the central Great Plains revealed challenges

in representing complex interactions between soil hydraulic properties, precipitation variability, and surface-atmosphere feed-550

backs. These discrepancies are particularly concerning given the region’s susceptibility to extreme hydrological events, includ-

ing droughts and floods (Koster et al., 2004; Ye et al., 2023). The Great Plains is characterized by a highly variable continental

climate, with strong seasonal and interannual fluctuations in precipitation and temperature, leading to frequent shifts between

wet and dry extremes (Basara and Christian, 2018; McDonough et al., 2020). This climatic variability makes the region hy-

drologically complex, requiring an accurate representation of soil moisture dynamics for land surface hydrology modeling.555

Errors in soil moisture estimation can propagate into predictions of crop productivity, water resource availability, and flood

risk. The findings suggest that refining soil hydraulic parameterizations, such as incorporating high-resolution soil texture data

and accounting for heterogeneity, can significantly improve the predictive capacity of CLM5 and other LSMs for climate stud-

ies, ecosystem assessments, and resource management. While our comparative framework assessed the aggregate effects of

parameter set differences, we did not perform a formal sensitivity analysis to isolate the influence of individual soil hydraulic560
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properties (e.g., saturated hydraulic conductivity, porosity, van Genuchten parameters), which remains an important area for

future investigation.

This study is an intra-model sensitivity analysis; all comparisons are model-to-model and pattern-based, not validations

against observations. We use ERA5-Land only as a spatially complete, temporally consistent, model-based pattern reference to

gauge similarity of CLM5 spatial and temporal modes; it does not assimilate soil-moisture observations and shows documented565

regional biases (e.g., wet bias in humid and vegetated areas), so it is not ground truth (Muñoz-Sabater et al., 2021; Wu et al.,

2021; Zhang et al., 2023). Forcing and structural mismatches also limit attribution: CLM5 is forced by GSWP3, whereas ERA5-

Land is an offline HTESSEL replay forced by ERA5, so differences can reflect forcing and model-structure contrasts in addition

to parameter effects. We chose ERA5-Land because it provides CONUS-wide coverage at a resolution compatible with CLM5

(after regridding to 0.5◦) and exhibits coherent seasonal–interannual variability that aligns with our pattern-oriented objectives.570

Finally, neither CLM5 nor ERA5-Land includes irrigation; agricultural hotspots should therefore be interpreted cautiously.

Future work will extend this diagnostic framework by incorporating independent observational datasets (e.g., SMAP, GLEAM,

SMERGE, MERRA-2) to enable more comprehensive comparisons and targeted parameter calibration (Martens et al., 2017;

Tobin et al., 2019; Reichle et al., 2017). For the present analysis, however, ERA5-Land provides a spatially complete, model-

based reference for assessing the similarity of CLM5 patterns across diverse hydroclimatic regimes.575

To address these challenges and improve the representation of soil moisture in CLM5, several strategies are recommended.

Refining the representation of soil moisture variability using advanced PTFs or machine learning-based approaches can help

address uncertainties in soil hydraulic parameters, particularly in hydrologically complex regions like the Great Plains. Expand-

ing the use of high-resolution datasets from satellite missions, such as SMAP, together with in situ soil moisture networks, will

provide complementary information for calibration and comparison, supporting more targeted parameter adjustment, support-580

ing the targeted calibration of model parameters (Famiglietti, 2014). Conducting region-specific calibration of soil parameters

and comparative multi-model analyses will help address intra-model variability and optimize simulations for diverse climatic

zones. Accounting for vegetation feedbacks alongside soil moisture variability may improve the representation of evapotran-

spiration processes, given the strong influence of vegetation on water exchange dynamics (Oleson et al., 2010; Ye et al., 2023).

Establishing stronger connections between soil moisture variability and large-scale climatic drivers such as the ENSO can en-585

hance seasonal forecasts and long-term predictive capabilities (Gimeno et al., 2010; Tuttle and Salvucci, 2016). Understanding

these links will facilitate better integration of climatic variability into land surface modeling frameworks.

These findings provide insights that can guide future efforts to incorporate dynamic soil properties into land surface models

such as CLM5. The analysis indicates how soil property representations influence simulated variability. A logical next step

will be to develop approaches that allow soil properties to vary dynamically within LSMs. This study adds to ongoing efforts590

toward more integrated modeling frameworks that better capture interactions among soil, hydrology, and climate. Progress in

soil hydraulic parameterization and the use of high-resolution datasets will improve the ability of models to capture both large-

scale hydrological dynamics and localized soil–climate interactions. Such improvements can support applications including

water resource management, agricultural planning, and climate adaptation studies.
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Code and data availability. All datasets used in this study are publicly for download at Zenodo https://doi.org/10.5281/zenodo.15078448595

(Silwimba, 2025b). This includes files on soil parameters and soil texture for EXP1, EXP2, and EXP4a–d. Additionally, the ERA5-Land

can be freely accessed at https://doi.org/10.24381/cds.e9c9c792 (Muñoz-Sabater et al., 2021). The code used to process the data, perform

the EOF analyses, and generate the results is available on Zenodo at https://doi.org/10.5281/zenodo.14888812 (Silwimba, 2025a). The

Zenodo repository provides comprehensive documentation and instructions for reproducing the analysis, and any future updates or additional

scripts will be hosted there. For any difficulties in accessing these data or code, or for requests for further information, please contact the600

corresponding author.
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Figure A1. Contributions of Variance by Individual and Cumulative EOFs in CLM5 Soil Moisture Experiments. The red bars indicate the

portion of variance each separate EOF mode accounts for, whereas the green line depicts the cumulative percentage of variance explained by

the first ten EOF modes. These plots show that the leading EOF modes account for a large fraction of the variance.Panels (a–d) correspond

to EXP4a (loamy sand), EXP4b (loam), EXP4c (clay), and EXP4d (silt).
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Figure A2. Spatial correlation maps of the first three Empirical Orthogonal Functions (EOFs) of soil moisture anomalies across the CONUS

domain for the EXP4 simulations. Panels (a–c) correspond to Experiment 4a (Loamy Sand), (d–f) to Experiment 4b (Loam), (g–i) to Ex-

periment 4c (Clay), and (j–l) to Experiment 4d (Silt). Each set shows EOF-1, EOF-2, and EOF-3, respectively. The color shading represents

the correlation coefficient between the principal component (PC) time series of each EOF mode and the soil moisture anomaly time series at

each grid point. Positive values (red) indicate locations that vary in phase with the mode’s temporal evolution, while negative values (blue)

indicate anti-phase behavior. The variance explained (VE) by each mode is noted in each panel. These correlation maps illustrate how the

spatial structure of soil moisture variability is influenced by distinct soil hydraulic properties associated with each texture class.
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Figure A3. Temporal variability of principal components (PCs) derived from the EOF analysis. The plots display the amplitude of the first

three principal components: PC-1, PC-2, and PC-3. Each line corresponds to one of the four experimental setups (EXP4a, EXP4b, EXP4c,

and EXP4d) or ERA5-Land (model-based pattern reference). PC-1 (top panel) captures the dominant mode of variability, while PC-2 (middle

panel) and PC-3 (bottom panel) represent the secondary and tertiary modes, respectively. The x-axis shows the time period (1980–2010),

and the y-axis indicates the standardized amplitude. These plots highlight the temporal dynamics of soil moisture variability as captured by

different experimental configurations, providing insights into their agreement and divergence relative to ERA5-Land patterns.
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Figure A4. The Euclidean distance between EOF modes from SP-MIP experiments (EXP4a, EXP4b, EXP4c, EXP4d) and ERA5-Land

(model-based pattern reference) is shown. Panels (a–c) illustrate results for Experiment 4a (Loamy Sand), while panels (d–f), (g–i), and (j–l)

pertain to Experiments 4b (Loam), 4c (Clay), and 4d (Silt), respectively. Each column showcases one of the first three EOF modes: EOF-1,

EOF-2, and EOF-3. The color bar represents the Euclidean distance, where lower values (yellow) reflect greater similarity to ERA5-Land

patterns, whereas higher values (red) denote more significant discrepancies. Regions with hatching signify distances less than 5, highlighting

areas with greater similarity to ERA5-Land patterns. These observations reveal the spatial variability in model similarity across different soil

hydraulic parameter settings and EOF modes.
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