
Soil Parameterization in Land Surface Models Drives Large
Discrepancies in Soil Moisture Predictions Across Hydrologically
Complex Regions of the Contiguous United States
Kachinga Silwimba1, Alejandro N. Flores1, Irene Cionni1, Sharon A. Billings2, Pamela L. Sullivan3,
Hoori Ajami4, Daniel R. Hirmas5, and Li Li6

1Department of Geosciences, Boise State University, Boise, ID, USA
2Department of Ecology and Evolutionary Biology and Kansas Biological Survey & Center for Ecological Research,
University of Kansas, Lawrence, KS, USA
3College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, OR, USA
4Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
5Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
6Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA, USA

Correspondence: Kachinga Silwimba (kachingasilwimba@u.boisestate.edu)

Abstract. Land surface models (LSMs) are critical components of Earth system models (ESMs), enabling simulations of

energy and water fluxes essential for understanding climate systems. Soil hydraulic parameters, derived using pedotransfer

functions (PTFs), are key to modeling soil-plant-water interactions but introduce uncertainties in soil moisture predictions.

However, a key knowledge gap exists in understanding how specific soil hydraulic properties contribute to these uncertainties

and in identifying the regions most affected by them. This study assesses the influence of soil parameter settings on soil5

moisture variability in the Community Land Model version 5 (CLM5) over the contiguous United States (CONUS) using

Empirical Orthogonal Function (EOF) analysis. EOF analysis identified dominant spatial and temporal soil moisture patterns

across multiple experimental configurations and highlighted the impact of soil parameter variability on hydrological processes.

The results revealed significant discrepancies in soil moisture simulations, particularly in the central Great Plains, potentially

due to the combination of arid climate conditions and limitations in modeling saturated hydraulic conductivity and soil water10

retention curves. Seasonal soil moisture dynamics aligned broadly with observed patterns but showed biases in magnitude and

phase, emphasizing the need for refined parameterization, such as improving the representation of infiltration and drainage

processes. Comparisons with ERA5-Land reanalysis data revealed improved alignment in regions with consistent climatic

gradients but persistent model deficiencies in hydrologically complex areas, particularly under more arid climates such as

the Great Plains, where hydrological processes are notoriously harder to reproduce. This research highlights the necessity15

of refining soil parameter representations, utilizing high-resolution datasets, and considering climatic variability to boost the

performance of LSMs. Importantly, these findings also open the door to future efforts that incorporate dynamic soil properties

into LSMs. Much of this work demonstrates the dynamism of soil properties, and while this study advances modeling by

revealing the importance of their inclusion, the next crucial step will be developing approaches that allow these properties to
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be dynamic within LSMs. This paper serves as a foundational step toward that goal, paving the way for more complex and20

integrated modeling frameworks that better capture soil-hydrology-climate interactions.

1 Introduction

Land surface models (LSMs) are essential components of Earth system models (ESMs), offering critical insights into the

movement and partitioning of energy and water across the Earth’s surface, which are fundamental processes in understanding

and simulating climate systems accurately (Kang and Hong, 2008; Zhao et al., 2017; Guimberteau et al., 2017; Hagemann25

et al., 2013; Dagon et al., 2020). Designed to operate on large spatial scales, LSMs rely on robust parameterizations of land

processes, including the use of pedotransfer functions (PTFs) to parameterize soil hydraulic properties. PTFs, as described by

Van Looy et al. (2017) and De Lannoy et al. (2014), are mathematical formulations that use extensive soil hydraulic databases

to establish empirical relationships between soil particle-size distribution and soil hydraulic parameters, such as field capacity,

permanent wilting point, saturated hydraulic conductivity, pore-size distribution, and soil water retention curves (McNeill30

et al., 2018; Vereecken et al., 2010; Weber et al., 2020). These PTFs range in complexity from basic linear models to advanced

machine learning algorithms such as artificial neural networks (da Silva et al., 2023; Schaap et al., 1998). These soil hydraulic

parameters are fundamental to quantification of soil moisture and water flow, and soil-plant-water interactions and their effects

on climate, agriculture, hydrology, and environmental engineering.

PTFs play a crucial role in converting readily available soil texture data into soil hydraulic parameters, addressing the35

difficulties of acquiring accurate soil moisture data at larger scales (Fu et al., 2023). However, many soil hydraulic parameters

are derived from laboratory or small-scale field studies, which often fail to capture the full heterogeneity of larger areas, limiting

their representativeness (Lai and Ren, 2016; Godoy et al., 2018). To overcome this limitation, global soil texture maps enhance

PTFs’ predictive capabilities, enabling their application in regions where field measurements are unavailable and making them

indispensable for land modeling (Tafasca et al., 2020; Dai et al., 2019). Soil moisture, a key output of these models, is a40

vital variable governing the exchange of water and energy between land and atmosphere. It has profound impacts on climate

systems, vegetation dynamics, and extreme events, including droughts and floods (Zhang et al., 2021).

The influence of soil hydraulic properties on soil moisture simulations is well documented. For example, Fu et al. (2023)

demonstrated that these properties significantly affect soil moisture simulations at the ELBARA field site in the northeast of

the Tibetan Plateau, using the one-dimensional (1D) Richards equation. Similarly, Fu et al. (2022) noted that the numerical45

solution approach of the Community Land Model (Lawrence et al., 2019) produces a narrow range of soil hydraulic property

values, which suggests a relatively weak influence on soil moisture simulations within this range. However, when optimized

hydraulic properties are used, potentially derived to capture site-specific variability or improve model performance beyond

this narrow range they can exert a more substantial influence on soil moisture dynamics. Furthermore, Feki et al. (2018)

highlighted that saturated hydraulic conductivity exhibits the highest sensitivity to temporal changes in environmental factors,50

such as precipitation or temperature variability significantly affecting soil moisture variability, as shown in FEST-WB model

simulation of a maize field in the Secugnago region. These findings underscore the importance of accurately representing soil
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hydraulic properties, which directly influence the partitioning of water into runoff, infiltration, and evapotranspiration (Ye et al.,

2023), as well as the temporal and spatial variability of soil moisture. However, uncertainties in parameterizations, such as the

soil water retention curve that links water potential to volumetric soil moisture, continue to challenge the predictive capacity of55

LSMs, especially under extreme climatic conditions (Koster et al., 2004; De Lannoy et al., 2014). Improving the representation

of soil moisture and its underlying hydraulic properties is critical, as it affects global hydrological cycles, vegetation health, and

energy flows, all of which are essential for understanding and mitigating the impacts of climate events (Oleson et al., 2010).

In addition to these complexities, scaling point-scale or regional observations of soil moisture to the coarser resolutions of

LSM outputs presents a persistent challenge. While observational networks and remote sensing missions have expanded the60

availability of soil moisture data, the heterogeneous nature of soil properties combined with varying retrieval algorithms and

coverage gaps can introduce significant uncertainties, both in terms of the accuracy of satellite products and their limitations for

validating LSM outputs (Famiglietti, 2014; Brocca et al., 2017). Moreover, uncertainties in parameterization make it challeng-

ing to accurately simulate soil moisture dynamics, as noted by Reichle et al. (2004) and Kato et al. (2007), limiting the ability

of LSMs to replicate observed soil moisture datasets. This discrepancy in spatial resolution and data precision can make model65

calibration more challenging, increase uncertainties in estimating parameters, and, as a result, weaken confidence in simulation

outputs. Emerging evidence further complicates this issue by highlighting that soil properties can change over relatively short

time scales due to shifts in climate and land cover. The dynamic nature of soil properties introduces additional pressure to

better understand soil-hydraulic relationships and integrate these temporal dynamics into LSMs, as demonstrated by studies

highlighting how climate and land cover changes influence soil processes (Hirmas et al., 2018; Koop et al., 2023; Caplan et al.,70

2019; Sullivan et al., 2022; Hauser et al., 2022). Addressing these complexities demands robust, data-oriented approaches and

dimensionality reduction techniques to disentangle the effects of parameterization on soil moisture patterns across ecosystems

and climate conditions.

A major challenge to addressing these uncertainties is the high dimensionality of LSM simulations when applied to conti-

nental or global scales, making it difficult to isolate the effects of specific parameters on soil moisture from other factors such75

as meteorological forcings and modes of climate variability (Ji et al., 2023; Li et al., 2013; Zeng et al., 2021). This research

investigates two critical questions: (1) How do soil hydraulic parameters influence large-scale spatial patterns in soil moisture

associated with well-characterized climate variability modes? (2) How do these parameters affect the temporal dynamics of

soil moisture during climate extremes, such as droughts and floods? Using EOF analysis, the study systematically evaluates

the impact of soil hydraulic parameterizations in CLM5 simulations in the contiguous United States (CONUS). This study80

enhances comprehension of soil-plant-water dynamics by isolating parameter effects, thereby improving predictions of eco-

hydrologic responses to climate variability and change, tackling a crucial challenge in land modeling and climate forecasting.

We elaborate on the methodologies employed in Empirical Orthogonal Function (EOF) analysis, covering data sources and

computational methods, and present the principal findings derived from the CLM5 simulations, highlighting their relevance to

soil moisture variability and parameter sensitivity. Additionally, the sections discuss the broader impact of these findings on85

the advancement of land surface modeling and the comprehension of climate dynamics. Finally, they conclude with practical

recommendations for upcoming research and applications in the fields of ecohydrology and climate science.
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2 Data and Methods

2.1 Study Region

The study region for this analysis encompasses the CONUS, spanning from the Atlantic to the Pacific Ocean and bounded90

by Canada to the north and Mexico to the south (Figure 1). This domain covers a wide range of latitudes, elevations, and

climatic regimes, offering an ideal natural laboratory for evaluating spatial variability in land surface processes. The CONUS

includes major climate zones such as humid continental, Mediterranean, subtropical, arid, and alpine, all of which emerge

due to differences in latitude, topographic relief, and proximity to moisture sources such as the Gulf of Mexico and Pacific

Ocean. These climatic gradients play a critical role in controlling soil moisture dynamics by modulating processes such as95

infiltration, evaporation, and water retention. Topographic features, including the Rocky Mountains, Sierra Nevada, Cascade

Range, and Appalachian Mountains, significantly influence precipitation regimes and surface hydrology. These orographic

barriers modify storm tracks and induce spatial variability in rainfall and snowpack accumulation, ultimately affecting soil

water availability. The land cover across the CONUS is equally heterogeneous, ranging from forested regions in the Northeast

and Pacific Northwest to urbanized corridors and sparsely vegetated deserts in the Southwest. This heterogeneity in land cover100

introduces additional complexity into soil moisture behavior, as vegetation, impervious surfaces, and soil types interact to

determine local infiltration and storage dynamics.

To support spatially disaggregated analysis of soil moisture variability and its driving mechanisms, we adopt the regional

classification scheme proposed by Giorgi and Francisco (2000), which partitions CONUS into four climatically and geographi-

cally coherent macro-regions: Western North America (WNA), Central North America (CNA), Eastern North America (ENA),105

and North Central America (NCA). This classification provides a physically grounded framework for evaluating the sensitiv-

ity of modeled soil moisture to soil hydraulic parameterizations across distinct hydroclimatic zones. As shown in Figure 1,

each region captures dominant physiographic and climatic attributes, such as the arid basins and mountain ranges of WNA,

the agricultural plains and grasslands of CNA, the humid subtropical and deciduous forest zones of ENA, and the transitional

climatic conditions present in NCA. The utility of this framework is two-fold. First, it facilitates regional intercomparison of110

soil moisture patterns and their controls, enabling consistent evaluation across diverse landscapes. Second, it improves the

interpretability of EOF modes by linking observed spatial variability to regional climatic drivers, soil texture distributions, and

vegetation structure. This regionalized approach is particularly valuable given the goal of disentangling parameter driven soil

moisture responses from broader meteorological forcings. By leveraging the CONUS domain and its subdivisions, the study

advances understanding of how soil hydraulic parameter uncertainty manifests across large-scale gradients and informs the115

development of improved land surface model parameterizations.
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Figure 1. Regional divisions of the CONUS area into four major zones: Western North America (WNA), Central North America (CNA),

Eastern North America (ENA), and North Central America (NCA), as defined by Giorgi and Francisco (2000), based on climate variability

and geographical features. Prominent subregions and geographical landmarks, such as mountain ranges and plains, are also depicted.

2.2 Data Description

The Soil Parameter Intercomparison Project (SP-MIP), initiated at the GEWEX-SoilWat workshop in Leipzig (2016), aims to

quantify the variability in land surface model (LSM) output caused by differences in soil parameters and structures. Following

the Land Surface, Snow, and Soil Moisture Model Intercomparison Project (LS3MIP) protocol (Van den Hurk et al., 2016),120

SP-MIP brought together eight leading climate land models CLM5, ISBA, JSBACH, JULES, MATSIRO, MATSIRO-GW,

NOAH-MP, and ORCHIDEE for a series of global simulation experiments (Gundmundsson and Cuntz, 2017). These models

were run on a 0.5◦ grid using Global Soil Wetness Project Phase 3 (GSWP3) meteorological forcing data for 1980 to 2010.

Four experimental designs were implemented to isolate the effects of soil properties on hydrological and energy balance

variables. Soil parameters for Experiment 1 and soil textures for Experiment 2 (EXP2) were derived at a 0.5◦ resolution,125

based on dominant soil classifications within the 0-5 cm layer of SoilGrids data (Hengl et al., 2014) at a 5 km resolution. The

Brooks and Corey parameters are derived from Table 1 of Clapp and Hornberger (1978), while the Mualem-van Genuchten

parameters represent ROSETTA class average hydraulic values as cited by Schaap et al. (2001), with soil textures taken from

Table 1 of Cosby et al. (1984). For Experiments 4a-d (EXP4a–4d), the USDA soil categories used are Loamy Sand, Loam, Silt,

and Clay, as defined by Montzka et al. (2011), employing identical transfer functions for Brooks and Corey and Mualem-van130

Genuchten parameters as applied in Experiment 1 (EXP1). All models are assumed to solve the Richards equation for soil water

movement. The provided soil parameters and textures are uniform throughout the entire soil column. For a detailed description

of the SP-MIP dataset, please refer to (Gundmundsson and Cuntz, 2017).

This study uses soil moisture data from the CLM5 experiments developed by the National Center for Atmospheric Re-

search (NCAR) (Thornton, 2010; Lawrence et al., 2019). The schematic (Figure 2) illustrates the CLM5 modeling framework,135

depicting the experimental setup for seven different model runs, each designed to evaluate the influence of soil hydraulic param-

eterizations on soil moisture variability. The dataset covers global landmasses at 0.5◦ resolution (25,920 grid cells, excluding
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water bodies and permanent snow/ice) and includes 41 land surface variables such as evapotranspiration, soil temperature,

and runoff, spanning 30 years (1980 to 2010). The global soil profile reaches a depth of 41.998 m with 25 layers, but for this

study, soil moisture was extracted from depths (0-1.0 m) containing most roots (root zone) of the CONUS region, covering140

6,413 grid cells. The focus is on the variable water content of soil layers (mrsol) to explore soil moisture variability and

distribution. Importantly, irrigation processes were not represented in any of the CLM5 simulations, as all experiments were

conducted under naturalized (rainfed) conditions to isolate the influence of soil hydraulic parameterizations without additional

anthropogenic water inputs.

2.2.1 Experimental Designs145

To assess the influence of soil hydraulic parameterizations on soil moisture variability within the CLM5, a series of simulations

was conducted following the SP-MIP framework (Gundmundsson and Cuntz, 2017). Although SP-MIP was designed for

multi-model comparisons, we adapted it to evaluate intra-model variability within CLM5 by varying soil hydraulic parameter

sets. All simulations used consistent meteorological forcing (GSWP3), spatial resolution (0.5◦), and spanned 1980 to 2010,

with a standardized spin-up routine to ensure reliable initial conditions. Below, we describe the four experimental setups,150

their objectives, configurations, hypotheses, and expected outcomes, focusing on how parameters are applied within CLM5.

Each experiment followed the standard CLM5 spin-up procedure to ensure that carbon, water, and energy state variables

reached quasi-equilibrium prior to the simulation period, thereby minimizing the influence of initial conditions on soil moisture

dynamics (Lawrence et al., 2019). Spin-up followed SP-MIP protocol guidelines to ensure equilibrium prior to the 1980 to 2010

simulation period (Gundmundsson and Cuntz, 2017).155

(1) EXP1 – Soil Hydraulic Parameters Provided by SP-MIP: This experiment serves as a baseline simulation, applying

soil hydraulic parameters provided by SP-MIP (Table 1). These parameters, derived from PTFs such as Brooks and Corey

(Clapp and Hornberger, 1978) and Mualem-van Genuchten (Schaap et al., 2001), are applied uniformly across all grid

cells in the CONUS at a 0.5◦ resolution using GSWP3 meteorological forcing data (1980 to 2010). The objective is to

establish a reference for soil moisture predictions by eliminating spatial variability in soil properties, allowing isolation of160

CLM5’s response to a consistent soil parameter set. The hypothesis is that SP-MIP soil hydraulic parameters will produce

uniform soil moisture patterns, serving as a control to quantify the effects of parameter variations in other experiments.

The expected outcome is a consistent baseline for intra-model comparisons, highlighting CLM5’s sensitivity to parameter

changes rather than inter-model differences.

(2) EXP2 – Texture-Derived Soil Hydraulic Parameters: In this experiment, CLM5 uses SP-MIP-provided soil texture165

inputs (Table 2), such as fractions of clay, silt, sand, dry bulk density, and organic matter content, to derive soil hy-

draulic parameters internally via its native PTFs and lookup tables. These parameters vary spatially across the CONUS

domain based on textural classes. The objective is to assess how CLM5’s standard approach to translating soil texture

into hydraulic properties influences soil moisture outputs. The hypothesis is that spatial variability in texture-derived

parameters will introduce heterogeneity in soil moisture patterns, reflecting CLM5’s default parameterization practices.170
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The expected outcome is a simulation that mirrors operational CLM5 runs, enabling comparison with EXP1 to evaluate

the impact of texture-to-parameter translation on hydrological variability.

(3) EXP3 – CLM5 Default Configuration: This experiment employs CLM5’s default soil hydraulic parameters, as defined

by its operational input datasets, applied consistently across all soil layers throughout the CONUS domain. Unlike

EXP1’s standardized parameters or EXP2’s texture-derived parameters, EXP3 reflects CLM5’s inherent configuration175

without external constraints. The objective is to evaluate the model’s intrinsic variability due to its standard soil parameter

settings, providing a benchmark for CLM5’s default behavior. The hypothesis is that CLM5’s default parameters, which

vary spatially based on its native soil maps, will produce distinct soil moisture patterns compared to the controlled setups

in EXP1 and EXP2. The expected outcome is a simulation that highlights the influence of CLM5’s built-in assumptions

on soil moisture, allowing quantification of parameter-driven variability within a single model.180

(4) EXP4a–4d – Uniform Soil Texture Simulations: These four experiments (EXP4a: loamy sand, EXP4b: loam, EXP4c:

clay, EXP4d: silt) each involve a separate CLM5 simulation with uniform soil hydraulic parameters from SP-MIP (Table

1) applied across the entire CONUS domain. The parameters, derived from PTFs for each USDA soil class (Montzka

et al., 2011), are spatially constant within each experiment but differ across the four runs based on soil type. The objective

is to test CLM5’s sensitivity to distinct soil textures and their associated hydraulic properties, such as porosity, saturated185

hydraulic conductivity, and water retention curves, and to evaluate their impact on hydrological (e.g., soil moisture) and

energy balance (e.g., evapotranspiration) outputs. The hypothesis is that each soil type will produce unique soil moisture

patterns, reflecting texture-dependent hydrological behavior. The expected outcome is a set of simulations that isolate the

effects of soil texture on CLM5’s outputs, providing insights into parameter-driven variability across diverse soil types.

Figure 2. Experimental setup for evaluating soil moisture variability in CLM5. The model uses GSWP3 forcing data and runs multiple

experiments with different soil hydraulic parameterizations. EXP1 applies standardized parameters, EXP2 derives parameters from soil

texture, EXP3 uses default CLM5 settings, and EXP4a–4d assign uniform parameters for different soil types.
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Table 1. Soil parameters for the three selected water retention curves were supplied by SP-MIP as input for experiments 1 and 4a-d.

Parameter Name long_name (netCDF) Unit

he air entry potential m

mbc Brooks-Corey m parameter = Clapp-Hornberger b –

thetar residual soil moisture m3 m−3

thetas saturated soil moisture, porosity m3 m−3

ks Hydraulic conductivity at saturation or at air entry ms−1

lambdac Corey lambda parameter –

alphavg van Genuchten alpha parameter m−1

nvg van Genuchten n parameter –

mvg van Genuchten m parameter –

thetafcbc Brooks-Corey field capacity m3 m−3

thetafcvg van Genuchten field capacity m3 m−3

thetapwpbc Brooks-Corey permanent wilting point m3 m−3

thetapwpvg van Genuchten permanent wilting point m3 m−3

Table 2. Soil textural characteristics supplied by SP-MIP for experiment 2.

Parameter Name long_name (netCDF) Unit

fclay fraction of clay –

fsilt fraction of silt –

fsand fraction of sand –

rhosoil dry bulk density kgm−3

omsoil organic matter content g(C)kg−1

2.2.2 Reference Dataset190

The ERA5-Land dataset, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), serves as a key

reference for model evaluation. Unlike other models, ERA5-Land does not directly incorporate soil moisture observations. In-

stead, it uses atmospheric data from the ERA5 reanalysis, which integrates meteorological and satellite observations via a 4-D

variational assimilation system coupled with a simplified extended Kalman filter (Muñoz-Sabater et al., 2021). This method-

ology enables land surface changes to be primarily guided by modeled processes while being affected by larger atmospheric195

conditions. In terms of soil moisture, the ERA5 system assimilates information from a range of satellite sources, such as the

Soil Moisture Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer-2 (AMSR-2), Tropical Rainfall Measuring

Mission Microwave Imager (TRMM-MI), ERS-1/2 Active Microwave Instrument scatterometer, and Meteorological Opera-
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tional Satellite (De Rosnay et al., 2013). Although ERA5-Land uses an indirect method for assimilation, it is often employed as

a reference for validating soil moisture data due to its global consistency and frequent updates. However, studies have pointed200

out certain discrepancies, like a wet bias in its soil moisture measurements relative to ground-based and Soil Moisture Active

Passive (SMAP) satellite data, especially in heavily vegetated and humid areas (Lal et al., 2022). Additionally, ERA5-Land

does not account for anthropogenic water management such as irrigation, which can significantly affect soil moisture levels

in intensively cultivated regions. As documented in previous studies, the absence of irrigation in the H-TESSEL land surface

model used by ERA5-Land has been linked to underestimation of soil moisture in irrigated areas and is a known limitation205

when interpreting results over agricultural landscapes (Wipfler et al., 2011; Lavers et al., 2022; Tang and McColl, 2023). These

biases highlight the importance of careful interpretation when applying ERA5-Land to hydrological tasks. Despite these issues,

its capacity to reflect broad spatiotemporal patterns ensures its effectiveness in assessing model performance and conducting

extensive hydrological research. While alternative datasets such as the North American Land Data Assimilation System (NL-

DAS) could provide higher resolution and are region-specific to CONUS, ERA5-Land was selected for its global consistency,210

frequent updates, and ability to offer a broader perspective that facilitates comparison across varying climatic conditions. Addi-

tionally, ERA5-Land provides a direct connection to global atmospheric reanalysis, enabling robust assessments of large-scale

interactions between soil moisture and climate processes. The ERA5-Land data was regridded to fit the CLM5 0.5◦ resolution.

2.3 EOF Analysis for Soil Moisture Variability

EOF analysis is a widely utilized statistical method in geophysical sciences for extracting dominant spatiotemporal patterns215

from high-dimensional datasets (Jollife, 2002; Björnsson and Venegas, 1997). Originally introduced by Lorenz (1956) in the

context of meteorology, EOF analysis has evolved into a foundational tool for analyzing climate and hydrological variables

such as precipitation, evapotranspiration, and soil moisture (Monahan et al., 2009; Korres et al., 2010). The method works

by decomposing a dataset into orthogonal spatial patterns (EOFs) and their corresponding temporal amplitudes (principal

components, PCs) through linear algebra techniques such as Singular Value Decomposition (SVD) (Hannachi et al., 2007;220

Dawson, 2016). In this study, EOF analysis is applied to soil moisture outputs from the CLM5 across the CONUS domain. The

objective is to assess how varying soil hydraulic parameterizations influence both the spatial structure and temporal evolution

of soil moisture, particularly in the context of seasonal-to-interannual climate variability and hydrologic extremes like droughts

and floods. EOF analysis is well-suited to this objective because it captures the internal covariance structure of spatial fields

and retains dominant modes of variability that simpler diagnostics, such as RMSE or mean bias, may obscure.225

EOF analysis provides a unified framework for comparing spatial and temporal patterns across different experimental setups

(EXP1, EXP3, EXP4a–4d) and against observational benchmarks like ERA5-Land. This facilitates the detection of parameter-

sensitive regions and improves the mechanistic understanding of how soil hydraulic properties modulate model behavior. Such

insights are particularly valuable in hydroclimatically complex regions, including the central Great Plains and the arid western

U.S., where soil–climate interactions display high spatial heterogeneity. Moreover, EOF techniques have proven effective for230

diagnosing how land surface processes, especially soil moisture dynamics, interact with large-scale atmospheric teleconnec-

tions such as ENSO, the Pacific Decadal Oscillation (PDO), and the North Atlantic Oscillation (NAO) (Jimma et al., 2023; Kuss
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and Gurdak, 2014). In this context, EOFs help reveal persistent spatiotemporal modes and teleconnection pathways that under-

lie soil moisture memory and seasonal predictability (Orth and Seneviratne, 2012; Perry and Niemann, 2007). These properties

support both model evaluation and the interpretation of hydroclimatic variability from a process-oriented perspective.235

However, care must be taken in interpreting EOF results. The orthogonality constraint can produce modes that are statistically

optimal but not necessarily tied to discrete physical processes (Hannachi et al., 2007). To address this limitation, our study

complements EOF analysis with additional diagnostics—such as Euclidean distance metrics and Taylor diagrams—to evaluate

spatial pattern fidelity and the sensitivity of model output to parameter perturbations. All EOF analyses are performed using

the open-source Python package eofs (Dawson, 2016), which is optimized for climate and Earth system data. This ensures240

a reproducible, efficient, and physically interpretable workflow for quantifying parameter-driven variability in land surface

model simulations.

2.3.1 Computation of EOF Using Singular Value Decomposition

Singular Value Decomposition (SVD) is a robust linear algebra technique widely employed for matrix factorization, enabling

the decomposition of any n×m matrix, Yw, without explicitly solving an eigenvalue problem or constructing a covariance245

matrix (e.g., Linz and Wang, 2003; Dawson, 2016; Björnsson and Venegas, 1997). In this study, SVD is utilized to compute

the EOF modes by decomposing the matrix of soil moisture anomalies, Yw, into orthogonal components. The decomposition

is represented as:
Yw :

n×m

=


u11 u12 · · · u1p

u21 u22 · · · u2p

...
...

. . .
...

un1 un2 · · · unn




γ11 0 · · · 0

0 γ22 · · · 0
...

...
. . .

...

0 0 · · · γnm




v11 v12 · · · v1p

v21 v22 · · · v2p
...

...
. . .

...

vn1 vn2 · · · vmm

 (1)

250

Yw =UΓVT , (2)

where U (n×n) contains the left singular vectors (spatial EOFs), V (m×m) contains the right singular vectors (temporal

principal components, PCs), and Γ (n×m) is a diagonal matrix with non-negative singular values γi (Γij = δijγi). The singular

values γi quantify the variance captured by each EOF mode, and ρ=min(n,m) determines the number of non-zero singular

values.255

For this analysis, the soil moisture data matrix Yw consists of area-weighted anomaly values simulated by CLM5, where

the mean at each grid point has been removed to highlight variability. The matrix has n rows representing time steps and

m columns corresponding to spatial grid points. To reduce redundancy and focus on the most significant patterns, we apply

truncated SVD (tSVD), retaining only the top ρ singular values and their corresponding singular vectors:

Yw ≈ ÛρΓ̂ρV̂
T
ρ , (3)260

10



where Ûρ (n× ρ) contains the leading EOFs, Γ̂ρ (ρ× ρ) is the diagonal matrix of the largest singular values, and V̂T
ρ (ρ×m)

represents the corresponding principal components. Singular vectors associated with smaller singular values are discarded,

improving computational efficiency while preserving the dominant variability patterns (Figure 3).

Figure 3. tSVD applied to the soil moisture anomaly dataset. The matrix Yw (n×m) is decomposed into Ûρ (n× ρ) for EOFs, Γ̂ρ (ρ× ρ)

for singular values, and V̂T
ρ (ρ×m) for PCs. The truncation level ρ is chosen such that ρ≤min(n,m).

The singular values from tSVD are used to calculate the explained variance (%EVi) for each EOF mode, quantifying their

contribution to the dataset’s variability:265

%EVi =
γi
ρ∑

j=1

γj

× 100%, i= 1,2, . . . ,ρ. (4)

The first EOF mode typically explains the largest fraction of variance, representing the dominant spatial pattern, while subse-

quent modes capture progressively smaller uncorrelated patterns. This hierarchical decomposition provides a powerful frame-

work for analyzing spatiotemporal variability in soil moisture anomalies and assessing the relative contributions of soil hy-

draulic parameters and climate drivers. EOF analysis, through tSVD, ensures that the representation of dominant patterns is270

efficient and interpretable, enabling robust physical insights into the factors controlling soil moisture variability.

2.3.2 Quantifying Similarity of Spatial EOF Modes using Euclidean Distance

The Euclidean distance metric was employed to assess the similarity or dissimilarity between spatial EOF modes derived from

distinct datasets. This metric, commonly used in mathematics and data analysis, calculates the straight-line distance between

two points in Euclidean space, providing a direct and interpretable measure of the geometric proximity between patterns275

(e.g., Elmore and Richman, 2001). Its simplicity and intuitive interpretation make it particularly suitable for comparing spatial
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variability patterns obtained through EOF analysis. A smaller Euclidean distance indicates a high degree of similarity between

the EOF modes, suggesting a closer alignment of the underlying spatial patterns. Conversely, a larger distance reflects greater

dissimilarity, indicating distinct spatial characteristics or variability between the datasets. In this study, the Euclidean distance

was used to compare the spatial EOF modes from the ERA5-Land reanalysis dataset and the SP-MIP model experiments,280

representing different data decomposition results. The Euclidean distance for two spatial EOF modes, X (ERA5-Land) and Y
(SP-MIP), was computed using the following equation:

EucD(X ,Y) =

√√√√ n∑
i=1

(Xi −Yi)2, (5)

where n is the number of elements in each spatial EOF mode.

This approach enabled the identification of regions within the CONUS domain where the spatial EOF patterns differed sig-285

nificantly, highlighting areas requiring improved parameterization of soil properties in LSMs. By quantifying these differences,

the Euclidean distance analysis provides actionable insights into the spatial scales and regions where soil parameter settings

have the most significant impact, thereby supporting targeted model refinements and enhanced soil moisture simulations.

2.3.3 Taylor Diagram for Evaluating Spatial EOF Modes

Taylor Diagrams (TDs) (Taylor, 2001) were applied to assess spatial EOF modes, offering a clear and intuitive visualization290

of three essential statistical measures: correlation (COR), standard deviation (STD), and root mean square error (RMSE).

These diagrams are extensively employed in geophysical sciences to evaluate and compare model performance across vari-

ous dimensions (e.g., Qiao et al., 2022). Their capability to display the relationship between modeled and observed patterns

simultaneously makes them particularly useful for examining the variability and accuracy of spatial EOF modes derived from

climate datasets. In this research, Taylor diagrams were used to compare the spatial EOF modes of the ERA5-Land reanalysis295

dataset against the SP-MIP model experiments. The standard deviation of the ERA5-Land spatial modes served as a bench-

mark for assessing the variability of the SP-MIP modes. The diagrams assessed the similarity of the patterns by using three

metrics: the correlation coefficient, which evaluates the alignment of spatial patterns; the centered RMSE, which measures the

magnitude of pattern differences; and the standard deviation, which indicates the amplitude of variability within each mode.

These combined metrics offer a thorough assessment of spatial pattern differences. Taylor diagrams help identify specific EOF300

modes where SP-MIP experiments differ from the ERA5-Land reference, pinpointing areas for possible model enhancement.

By incorporating these metrics into one framework, the diagrams facilitate the focused improvement of soil parameterizations

in LSMs, better capturing essential spatial variability patterns in soil moisture.
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3 Results and Discussion

3.1 Spatial Variability in Annual Mean Soil Moisture Across CONUS305

Despite consistent forcing data (GSWP3) and model resolution (0.5◦), the experiments reveal notable differences in soil mois-

ture spatial patterns due to variations in soil parameter derivation, underscoring the critical role of soil parameters in controlling

simulations. These differences are reflected in the annual mean soil moisture across the CONUS region, which ranged from

≈ 195kg m−2 to 380kg m−2, calculated by averaging daily soil moisture from 1980 to 2010 (Figure 4). The spatial distribu-

tion of soil moisture across all experiments reflects well-established precipitation gradients and temperature variability, with310

higher soil moisture levels over the central Great Plains and ENA regions and lower values in the arid southwest (WNA).

These findings agree with previous studies documenting the relationship between soil moisture, precipitation, and temperature

in these regions (Welty and Zeng, 2018; Koster et al., 2004; Koukoula et al., 2021; Melillo et al., 2014; Chatterjee et al., 2022).

The pronounced variability in soil moisture in the Great Plains aligns with the principles of continentality, where greater dis-

tances from large water bodies amplify seasonal precipitation and evaporation differences (Gimeno et al., 2010). Among the315

experiments, EXP3 (Figure 3d) shows the highest soil moisture levels, followed by EXP2 (Figure 4c) and EXP1 (Figure 4b).

These differences reflect the impact of soil parameter derivation, with EXP1 producing lower soil moisture magnitudes, EXP2

resulting in moderate values, and EXP3 yielding the highest levels.

The results of EXP4 highlight the role of soil texture in modulating soil moisture distribution. For example, EXP4a (loamy

sand, Figure 4e) exhibits low soil moisture in the arid southwest (WNA) and NCA, consistent with the limited water retention320

capacity of loamy sand. EXP4b (loam, Figure 4f) shows a more balanced soil moisture distribution, with drier conditions in

WNA and wetter conditions in ENA, reflecting the moderate water holding characteristics of the loam. EXP4c (clay, Figure

4g) shows higher soil moisture levels over ENA due to the high water retention capacity of clay, while EXP4d (silt, Figure 4h)

exhibits heterogeneous soil moisture patterns influenced by environmental variability and the intermediate hydraulic properties

of the silt. These results show that uncertainties in soil parameterization significantly affect soil moisture simulations in the325

CLM5 model, consistent with the findings of Brimelow et al. (2010). Our work furthers this research area by systematically

evaluating the role of distinct soil textures (loamy sand, loam, clay, and silt) in shaping soil moisture variability across different

climatic zones. Unlike previous studies, this analysis integrates the spatial distribution of soil moisture with observed climatic

influences, providing a more comprehensive assessment of how parameterization impacts hydrological processes at a continen-

tal scale. Variations in soil parameter settings not only influence soil moisture magnitudes but also alter spatial distributions,330

affecting the model’s ability to capture hydrological processes at the continental scale. The findings of EXP4 further emphasize

the importance of soil texture in controlling soil moisture distribution, highlighting the need for precise parameterization in

LSMs. This has important implications for improving water resource management, agricultural planning, and climate impact

assessments.
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Figure 4. Annual mean soil moisture (1980–2010) over the CONUS region, simulated from four experiment types with spatially uniform

soil parameter settings: EXP1 (b), EXP2 (c), EXP3 (d), and EXP4 (sub-experiments: EXP4a: loamy sand (e), EXP4b: loam (f), EXP4c: clay

(g), and EXP4d: silt (h)). The color bar represents the range of soil moisture values (kg m−2), with warmer colors (red and orange) indicating

lower soil moisture levels and cooler colors (blue and purple) representing higher soil moisture levels.

3.2 Interannual Soil Moisture Anomalies335

Interannual root-zone soil moisture anomalies over the CONUS region from 1980 to 2010, derived from CLM5 simulation

experiments (EXP1, EXP2, EXP3, and multiple EXP4 configurations) and ERA5-Land reanalysis data, are shown in Figure 5.
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Anomalies are computed as deviations from the daily annual mean over the 30-year reference period, following established

methodologies for hydrological variability assessment (Tuttle and Salvucci, 2016; Koster et al., 2004; Welty and Zeng, 2018).

The top panel of Figure 5 presents anomalies for EXP1, EXP2, EXP3, and ERA5-Land, while the bottom panel includes340

additional EXP4 parameterizations representing different soil textures (loamy sand, loam, clay, and silt).

Across all configurations, soil moisture anomalies fluctuate around a long-term mean of zero, with values ranging approx-

imately from −20kg m−2 to +40kg m−2. Positive anomalies signify wetter-than-average conditions, while negative values

indicate drier conditions. The CLM5 experiments exhibit pronounced interannual variability, capturing key hydrological ex-

tremes, including droughts and wet periods, as observed in ERA5-Land. CLM5 simulations reproduce the timing of major345

interannual features observed in ERA5-Land, such as drought and wet periods, but consistently underestimate their magni-

tude. As shown in Figure 5, all CLM5 configurations produce tightly clustered time series, lacking the broader spread of

ERA5-Land. This visual clustering illustrates a key discrepancy: ERA5-Land exhibits a broader interannual amplitude, with

anomalies reaching up to ±40kg m−2, whereas CLM5 simulations are typically confined to a ±20kg m−2 range.

This variability gap likely stems from structural limitations in CLM5, including the use of static soil hydraulic parameters,350

diffusive vertical redistribution, and the absence of data assimilation—factors known to constrain the dynamic range and persis-

tence of soil moisture anomalies in LSMs (Koster et al., 2009; Muñoz-Sabater et al., 2021). The underestimation is particularly

concerning for hydrologic extremes, as it suggests that CLM5 may inadequately simulate the severity of soil moisture deficits

during droughts or surpluses during wet years. These limitations can propagate into downstream processes such as evapotran-

spiration, runoff, and land–atmosphere coupling, thereby reducing the model’s ability to capture feedback mechanisms critical355

to hydroclimatic variability (Koster et al., 2004; Berg and Sheffield, 2018). Figure 6 supports this interpretation, showing that

CLM5 anomaly values are compressed along the 1:1 line when compared to ERA5-Land, reinforcing the conclusion that the

model’s soil moisture response is systematically dampened. Finally, while ERA5-Land’s higher peaks—particularly in positive

extremes—may partly reflect overestimation in vegetated regions due to unresolved processes such as irrigation or enhanced

surface fluxes (Lal et al., 2022), the muted variability in CLM5 highlights the importance of improved parameter calibration360

and multi-source observational benchmarking in future work.

The relationship between daily soil moisture anomalies from CLM5 and ERA5-Land is further examined in Figure 6. These

scatter plots compare CLM5-simulated anomalies with ERA5-Land on a point-by-point basis. The distribution of points is

closely aligned along the 1:1 line, with coefficient of determination (R2) values ranging from 0.7 to 0.8 across experiments.

These correlations confirm that CLM5 successfully captures the overall variability in ERA5-Land, albeit with some systematic365

biases. Specifically, ERA5-Land tends to exhibit larger positive anomalies relative to CLM5, reinforcing the trend observed in

the time-series plots. The EXP4 configurations (Figure 6b) show similar performance to EXP1-3, indicating that soil texture

variations only moderately impact anomaly correlations at an aggregated scale.

The results indicate significant interannual variability in soil moisture anomalies, with distinct peaks and troughs corre-

sponding to extreme hydrological events. These fluctuations are likely driven by large-scale climatic influences, such as ENSO,370

which modulate regional hydrological conditions (Gimeno et al., 2010; Welty and Zeng, 2018). While periodicity in anomalies

suggests a possible linkage to climate oscillations, further spectral analysis would be required to confirm such relationships.
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Additionally, the lack of a discernible long-term trend suggests that soil moisture anomalies remained relatively stable over

the study period, with variability largely governed by short to medium-term hydrological cycles. This aligns with findings

from Lesinger and Tian (2022), who noted that while interannual fluctuations in soil moisture can be significant, multi-decadal375

trends over CONUS tend to be weak or spatially constrained. Overall, the time-series (Figure 5) and scatter plots (Figure 6)

collectively demonstrate that CLM5 reasonably captures the timing and structure of interannual soil moisture variability, but

consistently underestimates its magnitude relative to ERA5-Land, with strong correlations to ERA5-Land. However, ERA5-

Land’s systematic overestimation of positive anomalies highlights a potential bias in reanalysis products, necessitating further

evaluation of the mechanisms driving such deviations. Future work should assess regional patterns in soil moisture dynamics380

and quantify biases across different land cover types to refine model performance.
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Figure 5. Time series of daily root-zone soil moisture anomalies from 1980 to 2010 over the CONUS region. Panel (a) shows anomalies

for CLM5 simulations using EXP1, EXP2, and EXP3 configurations compared with ERA5-Land. Panel (b) includes EXP4 simulations with

uniform soil texture classes (loamy sand, loam, clay, and silt), also compared against ERA5-Land. Anomalies are computed as deviations

from the 30-year daily climatological mean. ERA5-Land exhibits a wider anomaly range, while CLM5 simulations show more constrained

variability, highlighting differences in interannual amplitude across configurations.
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Figure 6. Daily mean root-zone soil moisture anomalies for 1980 to 2010 from each CLM5 experiment (EXP1, EXP2, EXP3, and the EXP4

sub-experiments) plotted against ERA5-Land. All anomalies are expressed in [kg m−2]. Each colored marker represents daily anomalies

from a given experiment, while the black dashed line denotes the 1:1 relationship. In the legend, R2 values (in parentheses) indicate how

closely each experiment’s anomalies match those of ERA5-Land.

3.3 Seasonal Variability of Soil Moisture

As evident in Figure 7, significant differences emerge between ERA5-Land and CLM5 simulations, particularly in the ampli-

tude of seasonal variability. ERA5-Land exhibits the strongest seasonal cycle, with a sharp rise in soil moisture from February

through May, peaking in June, followed by a pronounced decline into the late summer and early autumn months. In contrast,385

EXP1, EXP2, and EXP3 form a tightly clustered group with relatively flattened seasonal curves. These configurations con-

sistently underestimate the springtime peak and summer drawdown, suggesting that their soil moisture response to seasonal

climate forcing is muted. Among them, EXP2 (green line) shows the lowest amplitude, while EXP3 (red line) offers a slightly

improved but still subdued representation.

Notably, EXP4a (black dashed line) deviates from this pattern. It more closely mirrors ERA5-Land’s seasonal dynamics,390

especially from March to September, capturing a steeper ascent in spring and a deeper trough in late summer. This improved

responsiveness is likely due to the loamy sand texture used in EXP4a, which promotes rapid infiltration and drainage, thereby

amplifying soil moisture variability in response to precipitation and evapotranspiration. In contrast, EXP4b-d (loam, clay, silt)

progressively dampen the seasonal signal, with EXP4c and EXP4d showing the lowest variability due to their high water

retention capacities.395
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These differences indicate that while CLM5 is able to reproduce the general phasing of the seasonal cycle, it substantially

underrepresents the amplitude of variation observed in ERA5-Land. This underestimation is especially critical during the

peak moisture accumulation (March–June) and depletion (July–October) phases, and highlights the importance of hydraulic

conductivity, retention characteristics, and vertical redistribution in modulating soil moisture seasonality. Although ERA5-Land

may overestimate soil moisture in certain vegetated regions (Lal et al., 2022; Lesinger and Tian, 2022), its higher amplitude400

suggests a more dynamic land surface response that current CLM5 configurations, particularly EXP1–EXP3 fail to capture

adequately. Addressing this discrepancy through improved parameter tuning and structural adjustments could enhance CLM5’s

ability to simulate land–atmosphere coupling and surface hydrological processes across seasons.
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Figure 7. Monthly mean seasonal cycles of standardized root-zone soil moisture for the period 1980–2010 across the CONUS. CLM5

simulations (EXP1–EXP3 and EXP4a–d) are compared with ERA5-Land reanalysis. ERA5-Land exhibits the largest seasonal amplitude,

with sharp increases during spring (March–June) and steep declines during summer (July–October). In contrast, EXP1–EXP3 form a tightly

clustered group with flattened seasonal cycles, underestimating both the spring moisture accumulation and summer drawdown. EXP4a, which

uses a loamy sand texture, shows greater seasonal responsiveness and more closely tracks ERA5-Land. The remaining EXP4 configurations

(loam, clay, silt) progressively dampen seasonal variability, reflecting the influence of soil texture on water retention and hydrologic dynamics.

3.4 EOF Analysis of Soil Moisture Variability

3.4.1 Explained Variance and Mode Contributions405

This study applies EOF analysis to soil moisture anomalies from the CLM5 simulations (EXP1, EXP2, EXP3) and ERA5-

Land data to investigate how soil parameterization influences soil moisture variability in the CONUS region. Figure 8 presents

the percentage of variance explained by the first 10 EOF modes for each dataset, illustrating both individual and cumulative

contributions. The EOF modes are ranked by variance percentage, with EOF-1 capturing the highest variance and representing

the most significant spatial variability. Across all experiments, EOF-1 explains slightly more variance than EOF-2, suggesting410
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limited separation between these modes and potential mode mixing. The explained variance gradually declines in subsequent

modes, with EOF-10 contributing less than 2%, as summarized in Table 3. EOF-1 explains a similar percentage of variance in

EXP1 (11.45%) and EXP2 (11.66%), indicating comparable spatial variability patterns. However, in EXP3, EOF-1 captures

only 10.84% of the variance, with mode mixing shifting variance from EOF-1 to EOF-2 (Table 3, arrows). These differences

highlight the impact of soil parameterization on representing dominant soil moisture variability. ERA5-Land, serving as a415

benchmark, exhibits a much stronger EOF-1 contribution (17.5%), emphasizing a more dominant leading mode in observed

data compared to modeled datasets. The cumulative explained variance (Figure 8, green line) further demonstrates the efficiency

of the EOF modes in capturing soil moisture variability.

While the first five modes account for about 40% of the variance in ERA5-Land, modeled datasets require approximately

six modes to reach the same threshold. This distribution suggests that simulations spread variance more evenly across modes,420

reflecting differences in spatial patterns between models and observations. To ensure comparability, adjustments aligned the

EOF modes across datasets. For instance, shifts in EXP3 and ERA5-Land were necessary to match dominant spatial patterns,

such as EOF-1 and EOF-2 swaps (indicated by arrows in Table 3). These adjustments highlight the sensitivity of EOF rankings

to mode mixing and the challenges of directly comparing modeled and observed datasets. In addition, Appendix A (Figure A1)

provides additional EOF analysis results for EXP4a-d, detailing variance explained across experiments. The findings reinforce425

the influence of soil parameterization on the spatial distribution of soil moisture and emphasize the need for improved alignment

with observed patterns, as reflected in ERA5-Land.

Table 3. Percentage of variance explained (%Expl. Var.) by the first 10 EOF modes for EXP1, EXP2, and EXP3 model runs, and ERA5-Land

benchmark data. Arrows and superscripts indicate EOF mode swaps for consistent comparisons across datasets (see Figure 9).

EOF Mode EXP1 %Expl. Var. EXP2 %Expl. Var. EXP3 %Expl. Var. ERA5-Land %Expl. Var.

EOF-1 11.45 11.66 10.84 ↓2 17.5 ↓2

EOF-2 10.40 10.60 9.85 ↑1 8.48 ↓3

EOF-3 8.81 8.25 9.08 7.83 ↑1

EOF-4 5.69 5.83 5.73 5.75

EOF-5 4.37 4.59 4.48 5.61

EOF-6 3.49 3.56 3.48 3.64

EOF-7 3.26 3.23 3.24 3.10

EOF-8 2.51 2.53 2.63 2.86

EOF-9 2.14 2.16 2.22 2.76

EOF-10 1.96 1.99 1.95 2.22

Total Cumm. %Expl. Var. 54.07 54.4 53.49 59.77
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Figure 8. The variance explained by each separate and combined EOF in the CLM5 soil moisture experiment is depicted. Red bars represent

the contribution of each EOF individually, while the green line shows the cumulative proportion for the initial 10 EOF modes.

3.4.2 Spatial and Temporal Analysis of EOF Modes for Soil Moisture Variability

Spatial distribution of the first three EOF modes from soil moisture anomalies in CLM5 simulations (EXP1, EXP2, EXP3) and

ERA5-Land (reference). The maps in Figure 9 show correlation coefficients between the PC time series of each EOF mode430

and the soil moisture anomaly time series at each grid point. These correlation maps indicate the spatial strength and direction

of association between local anomalies and the broader temporal mode represented by the PC. This representation facilitates
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interpretation by highlighting regions that co-vary in phase (positive correlation) or in anti-phase (negative correlation) with

the dominant temporal pattern, thereby revealing the spatial structure of soil moisture variability linked to each EOF mode.

EOF-1 patterns (Figures 9d, g, j) reveal strong positive correlations in central and southeastern ENA, highlighting a dominant435

mode of variability. Negative correlations are observed in WNA and CNA, indicating contrasting modes of soil moisture

variability in the CONUS region. The variance explained by EOF-1 ranges from 9.85% (EXP3) to 11.66% (EXP2), with

ERA5-Land explaining significantly more variance at 17.5%. These spatial patterns align with large-scale climatic influences

such as precipitation gradients and geographic features. For example, Gaffin and Hotz (2000) noted that the Appalachian

Mountains exhibit strong precipitation gradients due to storm systems lifting moist southerly winds, enhancing soil moisture440

in ENA. The corresponding principal components (PC-1; Figure 10a) indicate temporal variability, with notable peaks during

2003 to 2004 and 1988 to 1999, corresponding to documented climatic events such as ENSO-driven precipitation anomalies

(Ye et al., 2023; Gimeno et al., 2010). The close agreement of PC-1 across all experiments highlights the robustness of EOF-1

in representing dominant soil moisture variability, although slight differences suggest sensitivity to parameterizations.

EOF-2 (Figures 9e, h, k) exhibits a distinct dipole pattern, with positive correlations in the central Great Plains and negative445

correlations over ENA, reflecting a wide spread in soil moisture variability. This dipole nature, which explains 10.40% to

10.84% of the variance, is consistent with regional climatic processes such as precipitation and evapotranspiration dynamics

influenced by terrain and hydrological conditions. For example, positive correlations in the central Great Plains may result from

localized convective precipitation; however, isotope studies indicate that precipitation in this region is influenced by moisture

transported from external sources, such as the Gulf of Mexico, rather than solely from local convection (Sanchez-Murillo et al.,450

2023). Negative correlations in ENA could reflect the influence of evapotranspiration or soil drainage patterns (Famiglietti,

2014). In particular, EXP3 shows a stronger positive correlation in the desert southwest, indicating a greater sensitivity to

soil parameters in arid regions, which can alter soil water retention and infiltration rates. Furthermore, EOF-3 (Figures 9f, i,

l) highlights localized variability, with positive correlations in the Pacific Northwest and negative correlations over Texas in

CNA. This mode explains less variance than EOF-1 and EOF-2, ranging from 8.25% (EXP2) to 9.85% (EXP3), but captures455

important regional processes. The Pacific Northwest patterns may be influenced by orographic precipitation, while negative

correlations in Texas could reflect drought conditions dominated by soil type and fine texture which have a high potential

for water retention (Haverkamp et al., 2005) and fine-texture which have a high potential for water retention. Although the

spatial patterns of EOF-3 are broadly similar between experiments, slight shifts in correlation intensity and location suggest

localized impacts of soil parameterizations. The PCs (Figure 10c) show weaker temporal variability, with occasional peaks460

corresponding to distinct climate events, which emphasizes the regional specificity of EOF-3. The appendix includes Figures

A2 and A3, which offer additional results highlighting the spatial and temporal variability of EXP4a-d EOF across experiments,

further supporting the findings discussed. Lastly, the results emphasize the significant role that soil parameterizations play in

soil moisture variability within the CLM5 model. Differences in the spatial and temporal patterns of EOFs indicate the model’s

sensitivity to these parameterizations, especially in areas with intricate terrain or significant climate variability. The alignment465

of EOF-1 with ERA5-Land underscores the robustness of the model’s primary modes, while discrepancies in EOF-2 and

EOF-3 highlight regions where model refinements could enhance localized soil moisture predictions. This study stresses the
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importance of improving soil parameterizations to increase the precision of hydrological simulations and effectively capture

the interaction between soil moisture and climatic elements.
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Figure 9. Spatial correlation maps of the first three EOFs of soil moisture anomalies for the CONUS, derived from ERA5-Land reanalysis

data and three CLM5 experiments (EXP1, EXP2, EXP3). Panels (a) to (c) represent EOF-1, EOF-2, and EOF-3 from ERA5-Land, respec-

tively. Panels (d–f), (g–i), and (j–l) show corresponding modes from EXP1, EXP2, and EXP3. The color shading represents the correlation

coefficient between the PC time series of each EOF mode and the soil moisture anomaly time series at each grid point. Positive values

indicate in-phase variability with the PC (regions that co-vary with the dominant mode), while negative values indicate anti-phase behavior.

These maps illustrate the spatial coherence and phase relationships of soil moisture variability associated with each mode.
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Figure 10. Temporal Variability (PC) of corresponding EOF over time (1980-2010) displaying the amplitude of the first four PCs: EXP1

(blue), EXP2 (green), and EXP3 (orange) derived from the soil moisture decomposition respective of their simulation experiments.

3.4.3 EOF Modes: Euclidean Distance Analysis470

The Euclidean distance between the spatial patterns of EOF modes derived from soil moisture anomalies in CLM5 SP-MIP

model experiments (EXP1, EXP2, and EXP3) and the corresponding EOF modes from the ERA5-Land reanalysis (Figure 11).

The Euclidean distance quantifies the dissimilarity between the spatial modes, with smaller values indicating closer agree-

ment with the ERA5-Land benchmark. Regions with hatched lines represent areas where the Euclidean distance falls below

a threshold of 5, suggesting a strong alignment between the model-derived EOFs and the observed EOFs in these locations.475

EOF-1 exhibits the most consistent alignment across experiments, particularly in the western and northwestern portions of the

CONUS region (WNA). The hatched areas in these regions indicate that the spatial variability of soil moisture in these areas

is well-represented by the model, reflecting accurate capture of large-scale hydrological processes influenced by precipitation

gradients and topographic features (Gaffin and Hotz, 2000; Famiglietti, 2014). In contrast, the central Great Plains consistently

shows larger Euclidean distances for all three EOF modes across experiments, suggesting significant discrepancies between480
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the modeled and observed soil moisture patterns in this region. This discrepancy may be attributed to limitations in soil pa-

rameterizations or the complexity of hydrological and climatic processes, such as precipitation variability and soil moisture

precipitation feedbacks, as highlighted by Koster et al. (2004) and Welty and Zeng (2018). Compared to ERA5-Land, EXP1

shows a better agreement with ERA5-Land in the WNA region for EOF-1, while the performance in other regions remains

mixed across the experiments. EOF-2 and EOF-3 exhibit increased variability in Euclidean distances, with fewer hatched ar-485

eas, indicating challenges in capturing smaller-scale processes and dipole patterns present in these modes (Hannachi et al.,

2007; Monahan et al., 2009). These findings underscore the model’s sensitivity to parameterizations and highlight the need

for targeted improvements in the central Great Plains and other regions with persistent discrepancies. By refining soil param-

eter settings and incorporating additional observational constraints, future experiments could achieve better alignment with

ERA5-Land, thereby enhancing the accuracy of regional soil moisture simulations (Lawrence et al., 2019; Tuttle and Salvucci,490

2016).

24°N

29°N

34°N

39°N

44°N

49°N
[a] EXP1-ERA5-Land: EOF-1 EucD [b] EXP1-ERA5-Land: EOF-2 EucD [c] EXP1-ERA5-Land: EOF-3 EucD

24°N

29°N

34°N

39°N

44°N

49°N
[d] EXP2-ERA5-Land: EOF-1 EucD [e] EXP2-ERA5-Land: EOF-2 EucD [f] EXP2-ERA5-Land: EOF-3 EucD

120°W 110°W 100°W 90°W 80°W 70°W
24°N

29°N

34°N

39°N

44°N

49°N
[g] EXP3-ERA5-Land: EOF-1 EucD

120°W 110°W 100°W 90°W 80°W 70°W

[h] EXP3-ERA5-Land: EOF-2 EucD

120°W 110°W 100°W 90°W 80°W 70°W

[i] EXP3-ERA5-Land: EOF-3 EucD

5 10 15 20 25 30
Euclidean Distance

Figure 11. Euclidean distance between EOF modes from SP-MIP experiments (EXP1, EXP2, EXP3) and ERA5-Land. Hatched areas indicate

regions where the distance is below the threshold of 5, showing closer agreement with ERA5-Land.
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3.4.4 EOF Modes: Taylor Diagram Analysis

TDs (Figure 12) provide a comprehensive statistical summary of how well EOF patterns from different experiments match

those of ERA5-Land by depicting three key statistics: the standard deviation (dotted lines), the correlation coefficient, and the

centered root mean square error (RMSE). Each marker’s position on the plot indicates how accurately the soil moisture EOF495

mode pattern aligns with the ERA5-Land EOF mode. For EOF-1 (Figure 12a), the standard deviations of the EOF modes for

all model experiments are relatively close to the reference EOF mode, ranging between 4.0 and 6.5, which suggests a good

match in terms of variability. The pattern correlations range between 0.6 and 0.95, with EXP4d demonstrating the highest

pattern correlation. This indicates that the spatial pattern of EXP4d aligns more closely with the ERA5-Land EOF mode. In

EOF-2 (Figure 12b), the standard deviations remain consistent with the reference EOF mode, while the pattern correlations500

cluster between 0.4 and 0.7. This highlights a moderate similarity in the spatial patterns of EOF across the experiments and

in the reference EOF mode for the second mode of variability. For EOF-3 (Figure 12c), the EOF modes generally exhibit a

pattern correlation of around 0.8 and a standard deviation of approximately 5.0. However, the EXP4d EOF deviates, centered

around a lower standard deviation of 3.5. These variations emphasize the influence of soil parameter settings in the simulations

of the CLM5 model, illustrating how adjustments in these settings affect the alignment of the EOF mode patterns with the505

ERA5-Land reference EOF mode.
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Figure 12. Taylor Diagrams (TDs) for the leading three EOFs from multiple experiments (EXP1, EXP2, EXP3, EXP4a, EXP4b, EXP4c,

EXP4d) and ERA5-Land. The diagrams summarize standard deviation, correlation coefficient, and RMSE, with marker placement indicating

the alignment of modeled EOF modes with ERA5-Land.

4 Conclusion and Recommendations

This study investigates the influence of soil parameterizations on soil moisture simulations in the CLM5 across the CONUS for

the period 1980 to 2010 using EOF analysis. The analysis compared the CLM5 outputs with the ERA5-Land reanalysis data to
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identify spatial and temporal variability in soil moisture patterns arising from differences in soil parameter configurations. The510

results highlighted that EXP3, which used the default CLM5 soil parameters, consistently simulated higher soil moisture levels

than other experiments. This finding underscores the model’s sensitivity to variations in soil hydraulic properties, such as satu-

rated hydraulic conductivity, soil water retention characteristics, and porosity. Seasonal soil moisture dynamics showed broad

consistency across experiments, peaking in winter due to reduced evapotranspiration, and declining in summer when higher

temperatures intensified soil drying. However, distinct differences emerged in the magnitude and phase of seasonal cycles,515

revealing how variations in soil properties can influence processes such as water retention, drainage, and evapotranspiration

fluxes. These insights align with previous research, which demonstrated that soil moisture significantly affects hydrological

processes and land-atmosphere interactions, particularly through feedback mechanisms that vary regionally across the United

States ((Tuttle and Salvucci, 2016; Koster et al., 2004). Furthermore, the amplified sensitivity observed in the arid and semi-arid

regions of the CONUS suggests that these areas may be particularly vulnerable to uncertainties in soil parameterization.520

This study directly addressed two key research questions: (1) how soil hydraulic parameters influence large-scale spatial soil

moisture patterns, and (2) how these parameters affect temporal dynamics during climate extremes. Regarding the first ques-

tion, EOF analysis revealed that changes in soil hydraulic properties significantly altered the spatial distribution of dominant

EOF modes, particularly in regions like the Great Plains and ENA, indicating that parameterizations strongly shape modeled

soil moisture gradients. For the second question, principal component time series linked to major EOFs captured interannual525

anomalies and periods of extreme wetness or dryness that aligned with known climate events, such as ENSO phases. Varia-

tions in the amplitude and persistence of these temporal patterns across experiments underscored the role of soil parameters in

modulating the hydrologic response to climate variability. These findings affirm that parameter choice not only controls spa-

tial representation but also governs the sensitivity of soil moisture to climatic extremes, highlighting the dual spatial-temporal

impact of soil parameterization in land surface modeling.530

EOF analysis further revealed that the first few modes accounted for the majority of the variance in soil moisture between

experiments, and the EOF-1 mode, decomposed from soil moisture consistently explained the largest proportion. The spatial

patterns of the first three EOF modes exhibited similar broad-scale features among the experiments, such as dominant moisture

gradients across climatic zones. However, notable differences in explained variance and spatial correlations pointed to the influ-

ence of soil parameters on the physical processes driving regional moisture variability. Compared with ERA5-Land data using535

Euclidean distances and Taylor diagrams, the CLM5 output aligned more closely with observations in WNA, reflecting better

model performance in capturing the dynamics of mountainous and arid regions. In contrast, persistent discrepancies in the

central Great Plains revealed challenges in representing complex interactions between soil hydraulic properties, precipitation

variability, and surface-atmosphere feedbacks. These discrepancies are particularly concerning given the region’s susceptibil-

ity to extreme hydrological events, including droughts and floods (Koster et al., 2004; Ye et al., 2023). The Great Plains is540

characterized by a highly variable continental climate, with strong seasonal and interannual fluctuations in precipitation and

temperature, leading to frequent shifts between wet and dry extremes (Basara and Christian, 2018; McDonough et al., 2020).

This climatic variability makes the region hydrologically complex, requiring accurate representation of soil moisture dynamics

for land surface hydrology modeling. Errors in soil moisture estimation can propagate into predictions of crop productivity,
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water resource availability, and flood risk. The findings suggest that refining soil hydraulic parameterizations, such as incorpo-545

rating high-resolution soil texture data and accounting for heterogeneity, can significantly improve the predictive capacity of

CLM5 and other LSMs for climate studies, ecosystem assessments, and resource management. While our comparative frame-

work assessed the aggregate effects of parameter set differences, we did not perform a formal sensitivity analysis to isolate the

influence of individual soil hydraulic properties (e.g., saturated hydraulic conductivity, porosity, van Genuchten parameters),

which remains an important area for future investigation.550

While ERA5-Land was used as the reference dataset in this study, we emphasize that our objective was not to perform

a traditional comparison of CLM5 soil moisture outputs, but to evaluate the intra-model sensitivity of spatial and temporal

variability to different soil hydraulic parameterizations. ERA5-Land served as a physically consistent and spatially continuous

benchmark to assess whether CLM5’s simulated patterns of variability were realistic and coherent. Its compatibility with the

model’s spatial and temporal resolution, broad spatial coverage, and representation of seasonal and interannual dynamics made555

it appropriate for the pattern-oriented objectives of this work. We acknowledge the limitations of ERA5-Land, particularly its

lack of direct in-situ soil moisture assimilation and potential biases in humid regions (Muñoz-Sabater et al., 2021; Wu et al.,

2021; Zhang et al., 2023), but used it primarily to benchmark the structure of variability, not the absolute magnitude of soil

moisture. Future research will build upon this diagnostic framework by incorporating observational datasets such as SMAP,

GLEAM (Martens et al., 2017), SMERGE (Tobin et al., 2019), or MERRA-2 (Reichle et al., 2017), which will enable a more560

comprehensive comparison and facilitate targeted calibration of model parameters. For the present study, however, ERA5-Land

provided a robust and consistent backdrop for assessing how parameter choices influence modeled variability patterns across

diverse hydroclimatic regions.

To address these challenges and improve the accuracy of soil moisture simulation in CLM5, several strategies are recom-

mended. Refinement of soil moisture variability representation using advanced PTFs or machine learning-based approaches565

can address uncertainties in soil hydraulic parameters, especially in hydrologically complex regions such as the Great Plains.

Expanding the use of high-resolution datasets from satellite missions such as the SMAP mission and in situ soil moisture net-

works will provide robust benchmarks for calibration and comparison, reducing biases in model outputs (Famiglietti, 2014).

Conducting region-specific calibration of soil parameters and comparative multi-model analyses will help address intra-model

variability and optimize simulations for diverse climatic zones. Linking soil moisture variability to dynamic vegetation feed-570

backs can improve the representation of evapotranspiration processes, as vegetation significantly influences soil moisture and

water exchange dynamics (Oleson et al., 2010; Ye et al., 2023). Establishing stronger connections between soil moisture vari-

ability and large-scale climatic drivers such as the ENSO can enhance seasonal forecasts and long-term predictive capabilities

(Gimeno et al., 2010; Tuttle and Salvucci, 2016). Understanding these links will facilitate better integration of climatic vari-

ability into land surface modeling frameworks.575

Importantly, these findings also open the door to future efforts that incorporate dynamic soil properties into LSMs. Much of

this work demonstrates the dynamism of soil properties, and while this study advances modeling by revealing the importance of

their inclusion, the next crucial step will be developing approaches that allow these properties to be dynamic within LSMs. This

paper serves as a foundational step toward that goal, paving the way for more complex and integrated modeling frameworks
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that better capture soil-hydrology-climate interactions. These recommendations aim to address existing challenges in soil580

moisture modeling and improve the predictive capabilities of LSMs such as CLM5. Advancing soil hydraulic parameterization

and leveraging state-of-the-art observational datasets will enable models to more accurately capture large-scale hydrological

dynamics and localized soil-climate interactions. This, in turn, will support improved water resource management, agricultural

planning, and climate adaptation strategies, ultimately contributing to the larger goals of sustainable development and climate

resilience.585

Code and data availability. All datasets used in this study are publicly for download at Zenodo https://doi.org/10.5281/zenodo.15078448

(Silwimba, 2025b). This includes files on soil parameters and soil texture for EXP1, EXP2, and EXP4a–d. Additionally, the ERA5-Land

can be freely accessed at https://doi.org/10.24381/cds.e9c9c792 (Muñoz-Sabater et al., 2021). The code used to process the data, perform

the EOF analyses, and generate the results is available on Zenodo at https://doi.org/10.5281/zenodo.14888812 (Silwimba, 2025a). The

Zenodo repository provides comprehensive documentation and instructions for reproducing the analysis, and any future updates or additional590

scripts will be hosted there. For any difficulties in accessing these data or code, or for requests for further information, please contact the

corresponding author.
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Figure A1. Contribution of Variance by Individual and Cumulative EOFs in CLM5 Soil Moisture Experiments. The red bars indicate the

portion of variance each separate EOF mode accounts for, whereas the green line depicts the cumulative percentage of variance explained by

the first ten EOF modes. These plots reveal the significant impact of the early EOF modes in accounting for variance. Panels (a) to (d) relate

to different experimental configurations or scenarios, offering a comparative assessment of EOF variance contributions.
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Figure A2. Spatial correlation maps of the first three Empirical Orthogonal Functions (EOFs) of soil moisture anomalies across the CONUS

domain for the EXP4 simulations. Panels (a–c) correspond to Experiment 4a (Loamy Sand), (d–f) to Experiment 4b (Loam), (g–i) to Ex-

periment 4c (Clay), and (j–l) to Experiment 4d (Silt). Each set shows EOF-1, EOF-2, and EOF-3, respectively. The color shading represents

the correlation coefficient between the principal component (PC) time series of each EOF mode and the soil moisture anomaly time series at

each grid point. Positive values (red) indicate locations that vary in phase with the mode’s temporal evolution, while negative values (blue)

indicate anti-phase behavior. The variance explained (VE) by each mode is noted in each panel. These correlation maps illustrate how the

spatial structure of soil moisture variability is influenced by distinct soil hydraulic properties associated with each texture class.
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Figure A3. Temporal variability of principal components (PCs) derived from the EOF analysis. The plots display the amplitude of the first

three principal components: PC-1, PC-2, and PC-3. Each line corresponds to one of the four experimental setups (EXP4a, EXP4b, EXP4c,

and EXP4d) or the ERA5-Land reanalysis. PC-1 (top panel) captures the dominant mode of variability, while PC-2 (middle panel) and

PC-3 (bottom panel) represent the secondary and tertiary modes, respectively. The x-axis shows the time period (1979–2012), and the y-

axis indicates the standardized amplitude. These plots highlight the temporal dynamics of soil moisture variability as captured by different

experimental configurations, providing insights into their agreement and divergence relative to the ERA5-Land reference data.
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Figure A4. The Euclidean distance between EOF modes from SP-MIP experiments (EXP4a, EXP4b, EXP4c, EXP4d) and ERA5-Land

is depicted. Panels (a–c) illustrate results for Experiment 4a (Loamy Sand), while panels (d–f), (g–i), and (j–l) pertain to Experiments

4b (Loam), 4c (Clay), and 4d (Silt), respectively. Each column showcases one of the first three EOF modes: EOF-1, EOF-2, and EOF-3.

The color bar represents the Euclidean distance, where lower values (yellow) reflect stronger alignment with ERA5-Land, whereas higher

values (red) denote more significant discrepancies. Regions with hatched patterns signify distances less than 5, emphasizing areas where the

experiments closely align with the ERA5-Land data. These observations reveal the spatial variability in model performance across different

soil hydraulic parameter settings and EOF modes.
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