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Abstract. Land surface models (LSMs) are critical components of Earth system models (ESMs), enabling simulations-the
simulation of energy and water fluxes that are essential for understanding climate systems. Soil hydraulic parameters, derived
using pedotransfer functions (PTFs), are key-to-modetingsot-plant-water interactionsbut-crucial for modeling soil—plant—water
interactions; they introduce uncertainties in soil moisture predictionssimulations. However, a key knowledge gap exists in un-
derstanding how specific soil hydraulic properties contribute to these uncertainties and in identifying the regions most affected
by them. This study assesses i i
sensitivity analysis within the Community Land Model version 5 (CLMS5)ever—, examining how alternative soil parameter
settings influence soil moisture variability across the contiguous United States (CONUS) using Empirical Orthogonal Func-

tion (EOF) analysis. EOF-analysisidentified-The EOF analysis revealed dominant spatial and temporal seil-meisture-patterns
patterns of soil moisture across multiple experimental configurationsand-highlighted-, highlighting the impact of soil param-

eter variability on hydrological processes. The results revealed-showed significant discrepancies in soil moisture simulations,

he-conducts an intra-model

particularly in the central Great Plains, petentially-due-which may be attributed to the combination of arid climate conditions

and limitations in modeling saturated hydraulic conductivity and soil water retention curves. Seasonal soil moisture dynamics

in magnitude and phase, emphasizing-the-need-for-indicating the importance of refined parameterization, such-as-improving
particularly in the representation of infiltration and drainage processes. Comparisons with ERA5-Landreanalysis-datarevealed
improved-alighment, used here solely as a model-based reference for pattern consistency, revealed stronger similarity in re-
gions with consistent climatic gradientsbutpersistent-model-deficieneies-, but persistent differences in hydrologically complex
areas, particularly under mere-arid climates such as the Great Plains, where hydrological processes are-netoeriously-harderte

reproduece—Thisresearch-highlights-remain difficult to represent. Because CLMS is forced by GSWP3, whereas ERAS-Land is
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an offline HTESSEL replay forced by ERAS, differences reflect both forcing and structural contrasts in addition to parameter
effects. This research demonstrates the necessity of refining soil parameter representations, utilizing high-resolution datasets,

and considering climatic variability to beest-the-performanee-inform model development of LSMs. Importantly, these findings
also open-the-doorto-pave the way for future efforts that incorporate dynamic soil properties into LSMs. Much-of-this-work
W%W@Wof soil properties ﬁﬁdéwhﬂehﬂm&s&tdﬁkae}vaﬂeefmede}mgby
@m@mmappmmhes that allow these properties to be-dynamie-within
vary dynamically
within land surface models. This study contributes to ongoing efforts toward more integrated modeling frameworks that better
capture-soil-hydrelogy-elimate-capture soil-hydrology—climate interactions.

1 Introduction

Land surface models (LSMs) are essential components of Earth system models (ESMs), offering critical insights into the
movement and partitioning of energy and water across the Earth’s surface, which are fundamental processes in understanding
and simulating climate systems accurately (Kang and Hong, 2008; Zhao et al., 2017; Guimberteau et al., 2017; Hagemann
et al., 2013; Dagon et al., 2020). Designed to operate on large spatial scales, LSMs rely on rebust-parameterizations of land
processes, including the use of pedotransfer functions (PTFs) to parameterize soil hydraulic properties. PTFs, as described by
Van Looy et al. (2017) and De Lannoy et al. (2014), are mathematical formulations that use extensive soil hydraulic databases
to establish empirical relationships between soil particle-size distribution and soil hydraulic parameters, such as field capacity,
permanent wilting point, saturated hydraulic conductivity, pore-size distribution, and soil water retention curves (McNeill
et al., 2018; Vereecken et al., 2010; Weber et al., 2020). These PTFs range in complexity from basic linear models to advanced
machine learning algorithms such as artificial neural networks (da Silva et al., 2023; Schaap et al., 1998). These soil hydraulic
parameters are fundamental to the quantification of soil moisture and water flow, and-as well as soil-plant-water interactions
and their effects on climate, agriculture, hydrology, and environmental engineering.

PTFs play a crucial role in converting readily available soil texture data into soil hydraulic parameters, addressing the
difficulties of acquiring accurate soil moisture data at larger scales (Fu et al., 2023). However, many soil hydraulic parameters
are derived from laboratory or small-scale field studies, which often fail to capture the full heterogeneity of larger areas, limiting
their representativeness (Lai and Ren, 2016; Godoy et al., 2018). To overcome this limitation, global soil texture maps enhance
PTFs’ predictive capabilities, enabling their application in regions where field measurements are unavailable and making them
indispensable for land modeling (Tafasca et al., 2020; Dai et al., 2019). Soil moisture, a key output of these models, is a
vital variable governing the exchange of water and energy between land and atmosphere. It has profound impacts on climate
systems, vegetation dynamics, and extreme events, including droughts and floods (Zhang et al., 2021).

The influence of soil hydraulic properties on soil moisture simulations is well documented. For example, Fu et al. (2023)

demonstrated that these properties significantly affect soil moisture simulations at the ELBARA field site in the northeast of
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the Tibetan Plateau, using the one-dimensional (1D) Richards equation. Similarly, Fu et al. (2022) noted that the numerical
solution approach of the Community Land Model (Lawrence et al., 2019) produces a narrow range of soil hydraulic property
values, which suggests a relatively weak influence on soil moisture simulations within this range. However, when optimized
hydraulic properties are used, potentially derived to capture site-specific variability or improve model performanee-similarity
beyond this narrow range they can exert a more substantial influence on soil moisture dynamics. Furthermore, Feki et al.
(2018) highlighted-showed that saturated hydraulic conductivity exhibits the highest sensitivity to temporal changes in envi-
ronmental factors, such as precipitation or temperature variability significantly affecting soil moisture variability, as shown in
FEST-WB model simulation of a maize field in the Secugnago region. These findings underseore-underline the importance
of accurately representing soil hydraulic properties, which directly influence the partitioning of water into runoff, infiltration,
and evapotranspiration (Ye et al., 2023), as well as the temporal and spatial variability of soil moisture. However, uncertainties
in parameterizations, such as the soil water retention curve that links water potential to volumetric soil moisture, continue to
challenge the predictive capacity of LSMs, especially under extreme climatic conditions (Koster et al., 2004; De Lannoy et al.,
2014). Improving the representation of soil moisture and its underlying hydraulic properties is critical, as it affects global hy-
drological cycles, vegetation health, and energy flows, all of which are essential for understanding and mitigating the impacts
of climate events (Oleson et al., 2010).

In addition to these complexities, scaling point-scale or regional observations of soil moisture to the coarser resolutions of
LSM outputs presents a persistent challenge. While observational networks and remote sensing missions have expanded the
availability of soil moisture data, the heterogeneous nature of soil properties combined with varying retrieval algorithms and
coverage gaps can introduce significant uncertainties, both in terms of the accuracy of satellite products and their limitations for
validating LSM outputs (Famiglietti, 2014; Brocca et al., 2017). Moreover, uncertainties in parameterization make it challeng-
ing to accurately simulate soil moisture dynamics, as noted by Reichle et al. (2004) and Kato et al. (2007), limiting the ability
of LSMs to replicate observed soil moisture datasets. This discrepancy in spatial resolution and data precision can make model
calibration more challenging, increase uncertainties in estimating parameters, and, as a result, weaken confidence in simulation
outputs. Emerging evidence further complicates this issue by highlighting that soil properties can change over relatively short
time scales due to shifts in climate and land cover. The dynamic nature of soil properties introduces additional pressure to better
understand soil-hydraulic relationships better and integrate these temporal dynamics into LSMs, as demonstrated by studies
highlighting-indicates how climate and land cover changes influence soil processes (Hirmas et al., 2018; Koop et al., 2023;
Caplan et al., 2019; Sullivan et al., 2022; Hauser et al., 2022). Addressing these complexities demands—robust-data-eriented
requires robust, data-driven approaches and dimensionality reduction techniques to disentangle the effects of parameterization
on soil moisture patterns across various ecosystems and climate conditions.

A major challenge to addressing these uncertainties is the high dimensionality of LSM simulations when applied to conti-
nental or global scales, making it difficult to isolate the effects of specific parameters on soil moisture from other factors such

as meteorological forcings and modes of climate variability (Ji et al., 2023; Li et al., 2013; Zeng et al., 2021). Fhisresearch

investigates-two-eritical-questionsTherefore, we present an intra-model sensitivity analysis within CLMS3, focusing on how
alternative soil hydraulic parameter datasets propagate into regional soil moisture patterns and variability, without treating an
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external product as ground truth. Specifically, we ask: (1) How do soil hydraulic parameters influence large-scale spatial pat-
terns in soil moisture associated with well-characterized climate variability modes? (2) How do these parameters affeet-shape
the temporal dynamics of soil moisture during climate extremes, such as droughts and floods? Using EOF-analysis;-thestudy

systematieally-evaluates-empirical orthogonal function (EOF) analysis, we systematically evaluate the impact of soil hydraulic
parameterizations in CLMS5 simulations in-over the contiguous United States (CONUS). This-study-enhances-comprehension

Euclidean distance). ERAS-Land is used solely as a model-based reference for patterns: it does not assimilate soil moisture
observations and is not treated as ground truth. We note an upfront forcing and structural mismatch: our CLMS experiments
are driven by GSWP3, whereas ERAS-Land is an offline HTESSEL replay forced by ERAS; therefore, the differences reflect
both forcing and structural contrasts, as well as parameter effects. (Neither product includes irrigation, so agricultural hotspots
should not be over-interpreted.) We aim to transparently document where parameter uncertainty most affects simulated soil
moisture patterns and variability across CONUS, and to provide disciplined evidence to inform model use and development.
We next outline the data sources, EOF methods, and computational steps, and then present principal findings on soil moisture

variability and parameter sensitivity—Additionally-the-sections-diseuss-the-broaderimpact-of these-findings-on-the-advanecemen

of-, followed by broader implications for land surface modeling and the-comprehension—of-climate dynamics. Finally;—they

2 Data and Methods
2.1 Study Region

The study region for this analysis encompasses the CONUS, spanning from the Atlantic to the Pacific Ocean and bounded by
Canada to the north and Mexico to the south (Figure 1). This domain eevers-encompasses a wide range of latitudes, elevations,
and climatic regimes, offering-providing an ideal natural laboratory for evaluating-assessing spatial variability in land surface
processes. The CONUS inchides—encompasses major climate zonessteh—as—, including humid continental, Mediterranean,
subtropical, arid, and alpine, all of which emerge-due—to-are influenced by differences in latitude, topographic relief, and
proximity to moisture sources such as the Gulf of Mexico and the Pacific Ocean. These climatic gradients play a critical role in
controlling soil moisture dynamics by modulating processes such as infiltration, evaporation, and water retention. Topographic
features, including the Rocky Mountains, Sierra Nevada, Cascade Range, and Appalachian Mountains, significantly-inflaenee
have a significant influence on precipitation regimes and surface hydrology. These orographic barriers modify storm tracks

and induce spatial variability in rainfall and snowpack accumulation, ultimately affecting soil water availability. The land
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cover across the CONUS is equally heterogeneous, ranging from forested regions in the Northeast and Pacific Northwest
to urbanized corridors and sparsely vegetated deserts in the Southwest. This heterogeneity in land cover introduces additional
complexity into soil moisture behavior, as vegetation, impervious surfaces, and soil types interact to determine local infiltration
and storage dynamics.

To support spatially disaggregated analysis of soil moisture variability and its driving mechanisms, we adopt the regional
classification scheme proposed by Giorgi and Francisco (2000), which partitions CONUS into four climatically and geographi-
cally coherent macro-regions: Western North America (WNA), Central North America (CNA), Eastern North America (ENA),
and North Central America (NCA). This classification provides a physically grounded framework for evaluating the sensitivity
of modeled soil moisture to soil hydraulic parameterizations across distinct hydroclimatic zones. As shown in Figure 1, each re-
gion captures dominant-distinct physiographic and climatic attributes, sueh-as-including the arid basins and mountain ranges of
WNA, the agricultural plains and grasslands of CNA, the humid subtropical and deciduous forest zones of ENA, and the transi-
tional climatic conditions present in NCA. The utility of this framework is two-fold. First, it facilitates regional intercomparison
of soil moisture patterns and their controls, enabling consistent evaluation across diverse landscapes. Second, it improves the
interpretability of EOF modes by linking observed spatial variability to regional climatic drivers, soil texture distributions, and
vegetation structure. This regionalized approach is particularly valuable given the goal of disentangling parameter driven soil
moisture responses from broader meteorological forcings. By leveraging the CONUS domain and its subdivisions, the study
advances understanding of how soil hydraulic parameter uncertainty manifests across large-scale gradients and informs the

development of improved land surface model parameterizations.
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Figure 1. Regional divisions of the CONUS area into four major zones: Western North America (WNA), Central North America (CNA),
Eastern North America (ENA), and North Central America (NCA), as defined by Giorgi and Francisco (2000), based on climate variability

and geographical features. Prominent subregions and geographical landmarks, such as mountain ranges and plains, are also depicted.



140 2.2 Data Description

The Soil Parameter Intercomparison Project (SP-MIP), initiated at the GEWEX-SoilWat workshop in Leipzig (2016), aims to
quantify the variability in land surface model (LSM) output caused by differences in soil parameters and structures. Following
the Land Surface, Snow, and Soil Moisture Model Intercomparison Project (LS3MIP) protocol (Van den Hurk et al., 2016), SP-
MIP brought together eight leading elimatetand-models LSMs: CLMS5, ISBA, JSBACH, JULES, MATSIRO, MATSIRO-GW,
145 NOAH-MP, and ORCHIDEE for a series of global simulation experiments (Gundmundsson and Cuntz, 2017). These models
were run on a 0.5° grid using-and forced with Global Soil Wetness Project Phase 3 (GSWP3) meteorological fereing-data for

1980 to 2010. We use CLMS output produced by the NSE National Center for Atmospheric Research (NCAR) for SP-MIP
(Thornton, 2010; Lawrence et al.,, 2019). The dataset covers global landmasses at 0.5° resolution (25,920 grid cells, excluding
water bodies and permanent snow/ice) and includes 41 land surface variables such as evapotranspiration, soil temperature,
150 and runoff, spanning 30 years (1980 to 2010). The global soil profile reaches a depth of 41.998 m with 25 layers, but for this
study, soil moisture was extracted from depths (0-1.0 m) containing most roots (root-zone) of the CONUS region, covering

6,413 grid cells. The focus is on the variable water content of soil layers (mrsol) to explore soil moisture variability and

. irrigation is not represented; all simulations are under rainfed (naturalized) conditions to isolate the

ERAS5-Land (ECMWEF) is also

155 used as a model-based pattern reference (not ground truth). It is an offline land-surface replay forced by ERAS and does not
assimilate soil moisture observations. For consistency, ERAS-Land fields were regridded to 0.5° to match CLMS. Note the
forcing mismatch (CLM5: GSWP3; ERAS-Land: ERAS), so differences reflect both forcing and structural contrasts as well as
parameter effects.

distribution. Importantl

influence of soil hydraulic parameterizations without additional anthropogenic water inputs.

2.2.1 Experimental Designs

160 Four experimental designs were implemented to isolate the effects of soil properties on hydrological and energy balance
variables. Soil parameters for Experiment 1 and soil textures for Experiment 2 (EXP2) were derived at a 0.5° resolution,
based on dominant soil classifications within the 0-5 cm layer of SoilGrids data (Hengl et al., 2014) at a 5 km resolution. The
Brooks and Corey parameters are derived from Table +-2 of Clapp and Hornberger (1978), while the Mualem-van Genuchten
parameters represent ROSETTA class average hydraulic values as cited by Schaap et al. (2001), with soil textures taken from

165 Table 1 of Cosby et al. (1984). For Experiments 4a-d (EXP4a—4d), the USDA soil categories used are Loamy Sand, Loam, Silt,
and Clay, as defined by Montzka et al. (2011);-employing-. These experiments employ identical transfer functions for Brooks
and Coreyand, as well as Mualem-van Genuchten parameters, as applied in Experiment 1 (EXP1). AHt-models-are-assumed-to
sotve-CLMS solves the Richards equation for seil-water-movementthe movement of soil water. The provided soil parameters
and textures are uniform throughout the entire soil column. For a detailed description of the SP-MIP dataset, please refer to

170  (Gundmundsson and Cuntz, 2017y

INCAR)(Thernton; 2040; Lawrenee-et-al5-2049)-Gundmundsson and Cuntz (2017). The schematic (Figure 2) iHtustrates-summarizes
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soil moisture variability.

2.2.2 Experimental-Designs

185 To assess the influence of soil hydraulic parameterizations on soil moisture variability within the CLMS, a series of simulations
was conducted following the SP-MIP framework (Gundmundsson and Cuntz, 2017). Although SP-MIP was designed for
multi-model comparisons, we adapted it to evaluate intra-model variability within CLMS by varying soil hydraulic parameter
sets. All simulations used consistent meteorological forcing (GSWP3), spatial resolution (0.5°), and spanned 1980 to 2010,
with a standardized spin-up routine to ensure reliable initial conditions. Below, we describe the four experimental setups,

190 their objectives, configurations, hypotheses, and expected outcomes, focusing on how parameters are applied within CLMS5.
Each experiment followed the standard CLMS5 spin-up procedure to ensure that carbon, water, and energy state variables
reached quasi-equilibrium prior to the simulation period, thereby minimizing the influence of initial conditions on soil moisture
dynamics (Lawrence et al., 2019). Spin-up followed SP-MIP protocol guidelines to ensure equilibrium prior to the 1980 to 2010
simulation period (Gundmundsson and Cuntz, 2017). For clarity, Table 3 summarizes the soil inputs, parameter settings, and
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Figure 2. Experimental setup for evaluating soil moisture variability in CLMS. The model utilizes GSWP3 forcing data and conducts

multiple experiments with varying soil hydraulic parameterizations. EXP1 applies standardized parameters, EXP2 derives parameters from

soil texture, EXP3 uses default CLMS5 settings, and EXP4a—4d assign uniform parameters for different soil types.
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EXP1 - Soil Hydraulic Parameters Provided by SP-MIP: This experiment serves as a baseline simulation, applying
soil hydraulic parameters provided by SP-MIP (Table 1). These parameters, derived from PTFs such as Brooks and
Corey (Clapp and Hornberger, 1978) and Mualem-van Genuchten (Schaap et al., 2001), are applied uniformly across all
grid cells in the CONUS at a 0.5° resolution using GSWP3 meteorological forcing data (1980 to 2010). The objective
is to establish a-an internal reference for soil moisture predietions-simulations by eliminating spatial variability in soil
properties, allowing isolation of CLMS5’s response to a consistent soil parameter set. The hypothesis is that SP-MIP soil
hydraulic parameters will produce uniform soil moisture patterns, serving as a control to quantify the effects of parameter
variations in other experiments. The expected outcome is a consistent baseline for intra-model comparisons, highlighting

CLMS5’s sensitivity to parameter changes rather than inter-model differences.

EXP2 - Texture-Derived Soil Hydraulic Parameters: In this experiment, CLMS5 uses SP-MIP-provided soil texture
inputs (Table 2), such as fractions of clay, silt, sand, dry bulk density, and organic matter content, to derive soil hy-
draulic parameters internally via its native PTFs and lookup tables. These parameters vary spatially across the CONUS
domain based on textural classes. The objective is to assess how CLMS5’s standard approach to translating soil texture
into hydraulic properties influences soil moisture outputs. The hypothesis is that spatial variability in texture-derived pa-
rameters will introduce heterogeneity in soil moisture patterns, reflecting €=M5s-the default parameterization practices
of CLMS. The expected outcome is a simulation that mirrors operational CLMS5 runs, enabling-allowing for comparison

with EXP1 to evaluate-assess the impact of texture-to-parameter translation on hydrological variability.

EXP3 — CLMS Default Configuration: This experiment employs CLM5’s default soil hydraulic parameters, as de-
fined by its operational input datasets, applied eensistently-aeress-to all soil layers throughout-the- CONUSdomainacross
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CONUS. Unlike EXP1’s standardized parameters or EXP2’s texture-derived parameters, EXP3 reflects CLMS5’s inherent
configuration without external constraints. The objective is to evaluate the model’s intrinsic variability due to its stan-
dard soil parameter settings, providing a benchmark for CLMS5’s default behavior. The hypothesis is that CLMS5’s default
parameters, which vary spatially based on its native soil maps, will produce distinct soil moisture patterns compared to
the controlled setups in EXP1 and EXP2. The expected outcome is a simulation that highlights the influence of CLM5’s

built-in assumptions on soil moisture, allowing quantification of parameter-driven variability within a single model.

EXP4a—4d - Uniform Soil Texture Simulations: These four experiments (EXP4a: loamy sand, EXP4b: loam, EXP4c:
clay, EXP4d: silt) each involve a separate CLMS5 simulation with uniform soil hydraulic parameters from SP-MIP (Table
1) applied across the entire CONUS domain. The parameters, derived from PTFs for each USDA soil class (Montzka
etal., 2011), are spatially constant within each experiment but differ across the four runs based on soil type. The objective
is to test CLMS’s sensitivity to distinct soil textures and their associated hydraulic properties, such as porosity, saturated
hydraulic conductivity, and water retention curves, and to evaluate their impact on hydrological (e.g., soil moisture) and
energy balance (e.g., evapotranspiration) outputs. The hypothesis is that each soil type will produce unique soil moisture
patterns, reflecting texture-dependent hydrological behavior. The expected outcome is a set of simulations that isolate the

effects of soil texture on CLMS5’s outputs, providing insights into parameter-driven variability across diverse soil types.

Table 1. Soil parameters for the three selected water retention curves were supplied by SP-MIP as input for experiments 1 and 4a-d.

Parameter Name long_name (netCDF) Unit

he air entry potential m

mbc Brooks-Corey m parameter = Clapp-Hornberger b -

thetar residual soil moisture m® m—3
thetas saturated soil moisture, porosity m® m~3
ks Hydraulic conductivity at saturation or at air entry ms !
lambdac Corey lambda parameter -
alphavg van Genuchten alpha parameter m~!
nvg van Genuchten n parameter -

mvg van Genuchten m parameter -
thetafcbc Brooks-Corey field capacity m? m~3
thetafcvg van Genuchten field capacity m® m~3
thetapwpbc Brooks-Corey permanent wilting point m® m~3
thetapwpvg van Genuchten permanent wilting point m® m~3




Table 2. Soil textural characteristics supplied by SP-MIP for experiment 2.

Parameter Name long_name (netCDF) Unit
fclay fraction of clay -

fsilt fraction of silt -

fsand fraction of sand -

rhosoil dry bulk density kgm 3
omsoil organic matter content g(Ckg ™!

Table 3. Summary of SP-MIP experimental configurations analyzed in this study. EXP1-EXP2 use prescribed SP-MIP inputs at 0.5°; EXP3
uses CLMS defaults; EXP4a—d are globally uniform design soils. Analyses use root-zone soil moisture extracted from each experiment from

1980 10 2010,
EXP| Soil Input Parameter Setting Purpose.
1
SP-MIP parameter maps Prescribed parameter maps from SP-MIP; | Baseline with spatially varying prescribed
uniform with depth arameters to isolate CLMS sensitivity.
2
SP-MIP soil texture maps | CLMS5_derives parameters from texture | Assess sensitivity to texture-to-parameter
via native PTF/lookup; spatially varying; | translation in CLMS.
uniform with depth
3
CLMS5 default maps CLMS default parameter datasets; spatiall Benchmark CLMS5 default configuration
varying; uniform with depth against EXP1 and EXP2.
4a
Design soil: loamy sand Globally uniform parameter set (loam Texture sensitivity: low retention/high
sand); uniform with depth conductivity.
4b
Design soil: loam Globally uniform parameter set (loam); | Texture sensitivity: intermediate properties.
uniform with depth
4c
Design soil: clay Globally uniform parameter set (clay); | Texture sensitivity: high retention/low
uniform with depth conductivity.
4d
Design soil: silt Globally uniform parameter set (silt); | Texture sensitivity: intermediate to high
uniform with depth retention,

10
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2.2.2 Model-Based Reference Datasetfor Pattern Comparison: ERAS-Land

Fhe-ERA5-Landdataset; provided-, produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), serves

as-akeyreferencefor-model-evaluation—Unlike-othermodels;is used here as a spatially complete, model-based reference for
attern comparison; it is not treated as ground truth or a validation dataset. Note the forcing and structural contrasts: our CLM5

experiments are forced by GSWP3, whereas ERAS-Land dees
ﬁses—afmespheﬂedﬁ%a—ffem—fhe s an offline HTESSEL replay forced b ERASfeana}ysr&—wlﬁeh—ﬂﬁegﬁ%es—mefeeﬁe}egteal—aﬂd

larger-atmospheric-conditions—In-terms-of-soil-moisture;the—; differences therefore reflect both forcing and model structure

not parameter effects alone. ERA5-Land does not assimilate soil-moisture observations; it is an offline land-surface repla
forced by ERAS system-assimilates inf . . . . ..

atmospheric reanalysis fields (Mufioz-Sabater et al., 2021). Thus, land-surface states are governed by HTESSEL physics and
driven by ERAS meteorology. Although ERAS5-Land uses-an-indirect-method-for-involves no land-data assimilation, it is often

employed-as-areferencefor-validating-sotl-meoisture-data-used as a spatially consistent model product for pattern comparison
due to its global eonsisteney-coverage and frequent updates. However, studies have pointed-outidentified certain discrepancies,

like-such as a wet bias in its soil moisture measurements relative to ground-based and Soil Moisture Active Passive (SMAP)
satellite data, especiatly-particularly in heavily vegetated and humid areas (Lal et al., 2022). Additionally, neither our CLM5
configuration nor ERA5-Land deess i
significantly affect soil moisture levels-in intensively cultivated regions. As documented in previous studies, the absence of

irrigation in the H-FESSEE-HTESSEL land surface model used by ERA5-Land has been linked to underestimation of soil

as-includes irrigation, which can

moisture in irrigated areas and is a known limitation when interpreting results over agricultural landscapes (Wipfler et al.,
2011; Lavers et al., 2022; Tang and McColl, 2023). These biases-highlight-the-importanee-of-characteristics and known biases
underline the need for careful interpretation when applying-using ERAS5-Land to-hydretegieal-tasksfor hydrological analyses
and pattern comparison. Despite these issues, its capacity to reflect broad spatiotemporal patterns ensures its effectiveness
in assessing model performanee-similarity and conducting extensive hydrological research. While alternative datasets such
as the North American Land Data Assimilation System (NLDAS) could provide higher resolution and are region-specific to
CONUS, ERA5-Land was selected for its global consistency, frequent updates, and ability to offer a broader perspective that
facilitates comparison across varying climatic conditions. Additionally, ERA5-Land provides a direct connection to global

atmospheric reanalysis, enabling robust assessments of large-scale interactions between soil moisture and climate processes.

The ERA5-Land data was-regridded-to-fit-were regridded to match the CLM5 0.5° resotutiongrid.

11
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2.3 EOF Analysis for Soil Moisture Variability

EOF analysis is a widely utilized statistical method in geophysical sciences for extracting dominant spatiotemporal patterns
from high-dimensional datasets (Jollife, 2002; Bjornsson and Venegas, 1997). Originatlty-Initially introduced by Lorenz (1956)
in the context of meteorology, EOF analysis has evolved into a foundational tool for analyzing climate and hydrological vari-
ables such as precipitation, evapotranspiration, and soil moisture (Monahan et al., 2009; Korres et al., 2010). The method
works by decomposing a dataset into orthogonal spatial patterns (EOFs) and their corresponding temporal amplitudes (princi-
pal components, PCs) through linear algebra techniques such as Singular Value Decomposition (SVD) (Hannachi et al., 2007;
Dawson, 2016). In this study, EOF analysis is applied to soil moisture outputs from the-CLMS5 across the CONUS domain. The
objective is to assess how varying soil hydraulic parameterizations influence both the spatial structure and temporal evolution
of soil moisture, particularly in the context of seasenal-to-interannual-seasonal to interannual climate variability and hydro-
logic extremestike-, such as droughts and floods. EOF analysis is well-suited to this objective because it captures the internal
covariance structure of spatial fields and retains dominant modes of variability that simpler diagnostics, such as RMSE or mean
bias, may obscure.

EOF analysis provides a unified framework for comparing spatial and temporal patterns across different experimental se-
tups (EXP1, EXP2, EXP3, EXP4a—4d) and agai -relative to a model-based pattern reference
(ERA5-Land; used only for pattern comparison, not ground truth). This facilitates the detection of parameter-sensitive regions

and improves the mechanistic understanding of how soil hydraulic properties modulate model behavior. Such insights are par-

ticularly valuable in hydroclimatically complex regions, including the central Great Plains and the arid western U-S:CONUS,
where soil-climate interactions display high spatial heterogeneity. Moreover, EOF techniques have proven effective for diag-
nosing how land surface processes, especially soil moisture dynamics, interact with large-scale atmospheric teleconnections
such as ENSO, the Pacific Decadal Oscillation (PDO), and the North Atlantic Oscillation (NAO) (Jimma et al., 2023; Kuss and
Gurdak, 2014). In this context, EOFs help reveal persistent spatiotemporal modes and teleconnection pathways that underlie
soil moisture memory and seasonal predictability (Orth and Seneviratne, 2012; Perry and Niemann, 2007). These properties
support both medel-evaluation-pattern-oriented comparison and the interpretation of hydroclimatic variability from a process-
oriented perspective.

However, care must be taken in interpreting EOF results. The orthogonality constraint can produce modes that are statistically
optimal but not necessarily tied to discrete physical processes (Hannachi et al., 2007). To address this limitation, our study
complements EOF analysis with additional diagnosties—pattern-similarity diagnostics, such as Euclidean distance metrics and
Taylor diagrams—, to evaluate spatial pattern fidelity-similarity and the sensitivity of model output to parameter perturbations.
All EOF analyses are performed using the open-source Python package eofs (Dawson, 2016), which is optimized for climate
and Earth system data. This ensures a reproducible, efficient, and physically interpretable workflow for quantifying parameter-

driven variability in land surface model simulations.
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2.3.1 Computation of EOF Using Singular Value Decomposition

Singular Value Decomposition (SVD) is a robust linear algebra technique widely employed for matrix factorization, enabling
the decomposition of any n x m matrix, Y ,,, without explicitly solving an eigenvalue problem or constructing a covariance
matrix (e.g., Linz and Wang, 2003; Dawson, 2016; Bjornsson and Venegas, 1997). In this study, SVD is utilized to compute
the EOF modes by decomposing the matrix of soil moisture anomalies, Y ,, into orthogonal components. The decomposition

is represented as:

uir w2 v Uip| |y 0 -0 U1l Viz ot Uiy
Y, : U2l  Uge o Uzp 0 72 -+ O Va1 V22 ctr Uy )
mxem| Lt o e e
Un1 Un2 e Unn 0 0 T Ynm Uni Un2 e Umm
Y, =UrV7?, 2)

where U (n x n) contains the left singular vectors (spatial EOFs), V (m x m) contains the right singular vectors (temporal
principal components, PCs), and I' (n x m) is a diagonal matrix with non-negative singular values y; (I';; = d;;7;). The singular
values ; quantify the variance captured by each EOF mode, and p = min(n,m) determines the number of non-zero singular
values.

For this analysis, the soil moisture data matrix Y, consists of area-weighted anomaly values simulated by CLMS5, where
the mean at each grid point has been removed to highlight variability. The matrix has n rows representing time steps and
m columns corresponding to spatial grid points. To reduce redundancy and focus on the most significant patterns, we apply

truncated SVD (tSVD), retaining only the top p singular values and their corresponding singular vectors:

Y, ~U,I,V?, 3)

where fjp (n x p) contains the leading EOFs, r » (p X p) is the diagonal matrix of the largest singular values, and Vz; (pxm)
represents the corresponding principal components. Singular vectors associated with smaller singular values are discarded,

improving computational efficiency while preserving the dominant variability patterns (Figure 3).
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Figure 3. tSVD applied to the soil moisture anomaly dataset. The matrix Y, (n x m) is decomposed into U,, (n x p) for EOFs, ', (p X p)

for singular values, and VZ (p x m) for PCs. The truncation level p is chosen such that p < min(n,m).

The singular values from tSVD are used to calculate the explained variance (%EV,) for each EOF mode, quantifying their

contribution to the dataset’s variability:

%EV,; = x 100%, i=1,2,...,p. %)

P
2%
j=1

The first EOF mode typically explains the largest fraction of variance, representing the dominant spatial pattern, while subse-
quent modes capture progressively smaller uncorrelated patterns. This hierarchical decomposition provides a powerful frame-
work for analyzing spatiotemporal variability in soil moisture anomalies and assessing the relative contributions of soil hy-
draulic parameters and climate drivers. EOF analysis, through tSVD, ensures that the representation of dominant patterns is

efficient and interpretable, enabling robust physical insights into the factors controlling soil moisture variability.
2.3.2 Quantifying Similarity of Spatial EOF Modes using Euclidean Distance

The Euclidean distance metric was employed to assess the similarity or dissimilarity between spatial EOF modes derived from
distinct datasets. This metric, commonly used in mathematics and data analysis, calculates the straight-line distance between
two points in Euclidean space, providing a direct and interpretable measure of the geometric proximity between patterns
(e.g., Elmore and Richman, 2001). Its simplicity and intuitive interpretation make it particularly suitable for comparing spatial
variability patterns obtained through EOF analysis. A smaller Euclidean distance indicates a high degree of similarity between
the EOF modes, suggesting a closer alignment-similarity of the underlying spatial patterns. Conversely, a larger distance reflects

greater dissimilarity, indicating distinct spatial characteristics or variability between the datasets. In this study, the Euclidean
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distance was used to compare the spatial EOF modes from the ERA5-Land reanalysis-dataset-and-the-model output and the
CLMS5 SP-MIP medel-experiments, representing different data decomposition results. The Euclidean distance for two spatial

EOF modes, X (ERA5-Land) and ) (SP-MIP), was computed using the following equation:

EucD(X,Y) = (5)

where n is the number of elements-in-each-spatial-spatial elements (grid points) in each EOF mode.
This approach enabled the identification of regions within the CONUS domain where the spatial EOF patterns differed sig-

nificantly, highlighting areas requiring improved parameterization of soil properties in LSMs. By quantifying these differences,
the Euclidean distance analysis provides actionable insights into the spatial scales and regions where soil parameter settings

have the most significant impact, thereby supporting targeted model refinements and enhanced soil moisture simulations.

2.3.3 Taylor Diagram for Evaluating Spatial EOF Modes

Taylor Diagrams (TDs) (Taylor, 2001) were applied-to-assess-employed to evaluate spatial EOF modes, effering-providing a
clear and intuitive visualization-of-three-essential-representation of three key statistical measures: correlation (COR), standard

deviation (STD), and root mean square error (RMSE). These diagrams are extensively employed in geophysical sciences to
evaluate and compare model performanee-similarity across various dimensions (e.g., Qiao et al., 2022). Their eapability-—to
displayability to display, simultaneously, the relationship between modeled and ebserved-patterns—simultaneousty-reference
patterns makes them particularly useful for examining the variability and accuracy of spatial EOF modesderived-from-climate
datasets. In this research, Taylor diagrams were used to compare the spatial EOF modes of the ERA5-Land reanalysis-dataset
against the SP-MIP model experiments. The standard deviation of the ERAS-Land spatial modes served as a benchmark
reference for assessing the variability of the SP-MIP modes. The diagrams assessed the similarity of the patterns by using three
metrics: the correlation coefficient, which evaluates the alignment-similarity of spatial patterns; the centered RMSE, which
measures the magnitude of pattern differences; and the standard deviation, which indicates the amplitude of variability within
each mode. These combined metrics offer a thorough assessment of spatial pattern differences. Taylor diagrams help identify
specific EOF modes where SP-MIP experiments differ from the ERAS-Land reference, pinpointing areas for possible model
enhaneementimprovement. By incorporating these metrics into ene-a single framework, the diagrams facilitate the-focused

improvement of soil parameterizations in LSMs, thereby better capturing essential spatial variability patterns in soil moisture.

3 Results and Discussion
3.1 Spatial Variability in Annual Mean Soil Moisture Across CONUS

Despite consistent forcing data (GSWP3) and model resolution (0.5°), the experiments reveal notable differences in soil mois-
ture spatial patterns due to variations in soil parameter derivation, urderseoring-which underline the critical role of soil param-

eters in eontroling-shaping simulations. These differences are reflected in the annual mean soil moisture across the CONUS
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region, which ranged from ~ 195kg m ™2 to 380kg m ™2, calculated by averaging daily soil moisture from 1980 to 2010 (Fig-
ure 4). The spatial distribution of soil moisture across all experiments reflects well-established precipitation gradients and
temperature variability, with higher soil moisture levels over the central Great Plains and ENA regions and lower values in the
arid southwesttWINA). These findings agree-align with previous studies doeumenting-that have documented the relationship
between soil moisture, precipitation, and temperature in these regions (Welty and Zeng, 2018; Koster et al., 2004; Koukoula
et al., 2021; Melillo et al., 2014; Chatterjee et al., 2022). The pronounced variability in soil moisture in the Great Plains aligns
with-the-prineiples-of-is consistent with continentality, where greater distances from large water bodies amplify seasonal pre-
cipitation and evaporation differences (Gimeno et al., 2010). Among the experiments, EXP3 (Figure 3d)-shows-4d) simulates
the highest soil moisture levels, followed by EXP2 (Figure 4c) and EXP1 (Figure 4b). These differences reflect the impact of
soil parameter derivationtreatments, with EXP1 producing lower soil moisture magnitudes, EXP2 resulting in moderate values,
and EXP3 yielding the highest levels.

The results of EXP4 highlight the role of soil texture in modulating soil moisture distribution. For example, EXP4a (loamy
sand, Figure 4e) exhibits low soil moisture in the arid southwest and NCA, consistent with the limited water retention capacity
of loamy sand. EXP4b (loam, Figure 4f) shows a more balanced soil moisture distribution, with drier conditions in WNA and
wetter conditions in ENA, reflecting the moderate water-holding characteristics of the loam. EXP4c (clay, Figure 4g) shows
higher soil moisture levels over ENA due to the high water retention capacity of clay;while-. In contrast, EXP4d (silt, Figure 4h)
exhibits heterogeneous soil moisture patterns influenced by environmental variability and the intermediate hydraulic properties
of the silt. These results shew-indicate that uncertainties in soil parameterization significantly-affeet-have a significant impact
on soil moisture simulations in the CLMS5 model, consistent with the findings of Brimelow et al. (2010). Our work furthers
this research area by systematically evaluating the role of distinct soil textures (loamy sand, loam, clay, and silt) in shaping
soil moisture variability across different climatic zones. Unlike previous studies, this analysis integrates the spatial distribution
of soil moisture with observed-elimaticinflueneesclimatic gradients, providing a more comprehensive assessment of how
parameterization impacts hydrological processes at a continental scale. Variations in soil parameter settings not only influence
soil moisture magnitudes but also alter spatial distributions, affecting the model’s ability to capture hydrological processes
at the continental scale. The findings of EXP4 further emphasize the importance of soil texture in controlling soil moisture
distribution, highlighting the need for precise parameterization in LSMs. This has important implications for improving water

resource management, agricultural planning, and climate impact assessments.
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Figure 4. Annual mean soil moisture (1980 —to 2010) over the CONUS region, simulated from four experiment types with spatiathy-uniform

differing soil parameter settings: EXP1 (b; uniform SP-MIP parameters), EXP2 (c; texture-derived, spatially varying), EXP3 (d; CLM5
defaults, spatially varying), and EXP4 (sub-experiments: EXP4a +-loamy sand (e), EXP4b loam (f), EXP4c +clay (g), and EXP4d +silt (h);
each uniform by texture class). The color bar represents the range of soil moisture values (kg m~2), with warmer colors (red and orange)

indicating lower soil moisture levels and cooler colors (blue and purple) representing higher soil moisture levels.
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3.2 Interannual Soil Moisture Anomalies

Interannual root-zone soil moisture anomalies over the CONUS region from 1980 to 2010, derived from CLMS simula-
tion experiments (EXP1, EXP2, EXP3, and multiple EXP4 configurations) and ERAS5-Land reanalysis—datamodel output
(model-based pattern reference), are shown in Figure 5. Anomalies are computed as deviations from the daily annual mean over
the 30-year reference period, following established methodologies for hydrological variability assessment (Tuttle and Salvucci,
2016; Koster et al., 2004; Welty and Zeng, 2018). The top panel of Figure 5 presents anomalies for EXP1, EXP2, EXP3, and
ERAS5-Land, while the bottom panel includes additional EXP4 parameterizations representing different soil textures (loamy
sand, loam, clay, and silt).

Across all configurations, soil moisture anomalies fluctuate around a long-term mean of zero, with values ranging approx-
imately from —20kg m~? to +40kg m 2. Positive anomalies signify wetter-than-average conditions, while negative values
indicate drier conditions. The CLMS5 experiments exhibit pronounced interannual variability, capturing key hydrological ex-
tremes, including droughts and wet periods, as ebserved-represented in ERA5-Land patterns. CLMS5 simulations reproduce the
timing of major interannual features ebserved-present in ERAS-Land patterns, such as drought and wet periods, but consis-
tently underestimate their magnitude. As shown in Figure 5, all CLMS5 configurations produce tightly clustered time series,
lacking the broader spread of-in ERAS5-Land. This visual clustering illustrates a key discrepancy: ERAS-Land exhibits a

broader interannual amplitude, with anomalies reaching up to +40kg m™2, whereas CLM5 simulations are typically confined

to a +20kg m~? range—; note that differences can also reflect forcing and structural contrasts (GSWP3-forced CLMS5 vs.
ERAS-forced HTESSEL in ERAS-Land) in addition to parameter effects.

This variability gap likely stems from structural limitations in CLMS5, including the use of static soil hydraulic parameters,
diffusive vertical redistribution, and the absence of data assimilation —factors known to constrain the dynamic range and persis-
tence of soil moisture anomalies in LSMs (Koster et al., 2009; Muifioz-Sabater et al., 2021). The underestimation is particularly
concerning for hydrologic extremes, as it suggests that CLMS5 may inadequately simulate the severity of soil moisture deficits
during droughts or surpluses during wet years. These limitations can propagate into downstream processes such as evapotran-
spiration, runoff, and land—atmosphere coupling, thereby reducing the model’s ability to capture feedback mechanisms critical
to hydroclimatic variability (Koster et al., 2004; Berg and Sheffield, 2018). Figure 6 supports this interpretation, showing that
CLMS5 anomaly values are compressed along the 1:1 line when compared to ERAS5-Land, reinforcing the conclusion that the
model’s soil moisture response is systematically dampened. Finally, while ERAS-Land’s higher peaks—particularly in positive
extremes—, may partly reflect overestimation in vegetated regions due to unresolved processes such as irrigation or enhanced
surface fluxes (Lal et al., 2022), the muted variability in CLM5 highlights-indicates the importance of improved parameter
calibration and multi-source ebservational-benchmarkingreference datasets in future work.

The relationship between daily soil moisture anomalies from CLMS and ERAS5-Land is further examined in Figure 6. These
scatter plots compare CLM5-simulated anomalies with ERAS-Land on a point-by-point basis. The distribution of points is

closely aligned along the 1:1 line, with coefficient of determination (R?) values ranging from 0.7 to 0.8 across experiments.

These correlations confirm that CLMS5 successfully captures the-everall-variability-much of the variability present in ERAS5-
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Land patterns, albeit with some systematic biases. Specifically, ERA5-Land tends to exhibit larger positive anomalies relative
to CLMS5, reinforcing the trend observed-seen in the time-series plots. The EXP4 configurations (Figure 6b) show similar
performanee—to-EXPH-3similarity to EXP1-EXP3, indicating that soil texture variations only moderately impact anomaly
correlations at an aggregated scale.

The results indicate significant interannual variability in soil moisture anomalies, with distinct peaks and troughs corre-
sponding to extreme hydrological events. These fluctuations are likely driven by large-scale climatic influences, such as ENSO,
which modulate regional hydrological conditions (Gimeno et al., 2010; Welty and Zeng, 2018). While periodicity in anomalies
suggests a possible linkage to climate oscillations, further spectral analysis would be required to confirm such relationships.
Additionally, the lack of a discernible long-term trend suggests-indicates that soil moisture anomalies remained relatively stable
over the study period, with variability largely governed by short to medium-term hydrological cycles. This aligns with findings
from Lesinger and Tian (2022), who noted that while interannual fluctuations in soil moisture can be significant, multi-decadal
trends over CONUS tend to be weak or spatially constrained. Overall, the time-series (Figure 5) and scatter plots (Figure 6)
collectively demonstrate that CLMS5 reasonably captures the timing and structure of interannual soil moisture variability, but
consistently underestimates its magnitude relative to ERAS5-Land patterns, with strong correlationste-ERAS-Eand. However,
ERAS5-Land’s systematic overestimation of positive anomalies highlights-indicates a potential bias in reanalysis products, ne-

cessitating further evaluation of the mechanisms driving such deviations. Accordingly, we interpret the ERAS5-Land comparison

strictly as a pattern-based reference. Similarities indicate that CLMS’s parameter choices reproduce timing, phase, and spatial

covariance seen in an independent model product, whereas systematic departures highlight parameter-sensitive regions; neither
case is taken as validation of absolute soil moisture levels. Future work should assess regional patterns in soil moisture dynam-

ics and quantify biases across different land cover types to refine-model-performaneeimprove pattern similarity.
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Figure 5. Time series of daily root-zone soil moisture anomalies from 1980 to 2010 over the CONUS region. Panel (a) shews-displays anoma-
lies for CLM5 simulations using EXP1, EXP2, and EXP3 configurations, compared with ERAS-Land (the model-based pattern reference).
Panel (b) includes EXP4 simulations with uniform soil texture classes (loamy sand, loam, clay, and silt), also compared against ERA5-Land.
Anomalies are computed as deviations from the 30-year daily climatological mean. ERAS5-Land exhibits a wider anomaly range, while

CLMS simulations show more constrained variability, highlighting differences in interannual amplitude across configurations.
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Figure 6. Daily mean root-zone soil moisture anomalies for 1980 to 2010 from each CLMS experiment (EXP1, EXP2, EXP3, and the
EXP4 sub-experiments) plotted against ERA5-Land (model-based pattern reference). All anomalies are expressed in [kg m~2]. Each colored
marker represents daily anomalies from a given experiment, while the black dashed line denotes the 1:1 relationship. In the legend, R? values

(in parentheses) indicate how-elosely-the degree to which each experiment’s anomalies mateh-these-of-align with ERAS5-Land patterns.

3.3 Seasonal Variability of Soil Moisture

As evident in Figure 7, signifieant-notable differences emerge between ERAS5-Land patterns (model-based pattern reference
and CLMS simulations, particularly in the amplitude of seasonal variability. ERAS-Land exhibits the strongest seasonal cycle,

with a sharp rise in soil moisture from February through May, peaking in June, followed by a pronounced decline into the late
summer and early autumn months. In contrast, EXP1, EXP2, and EXP3 form a tightly clustered group with relatively flattened
seasonal curves. These configurations consistently underestimate the springtime peak and summer drawdown, suggesting that
their soil moisture response to seasonal climate forcing is muted. Among them, EXP2 (green line) shows the lowest amplitude,
while EXP3 (red line) offers a slightly improved but still subdued representation.

Notably, EXP4a (black dashed line) deviates from this pattern. It more-closely-mirrors-shows greater similarity to ERAS-
Land *s-seas

iesseasonal patterns, especially from March to September, capturing a steeper ascent in spring and
a deeper trough in late summer. This improved responsiveness is likely due to the loamy sand texture used in EXP4a, which
promotes rapid infiltration and drainage, thereby amplifying soil moisture variability in response to precipitation and evapotran-
spiration. In contrast, EXP4b-d (loam, clay, silt) progressively dampen the seasonal signal, with EXP4c and EXP4d showing

the lowest variability due to their high water retention capacities.
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These differences indicate that while CLM5 is-able-te-reproduee-reproduces the general phasing of the seasonal cycle, it
substantially underrepresents the amplitude of variation ebserved-in ERA5-Land patterns. This underestimation is especially
critical during the peak moisture accumulation (March—June) and depletion (July—October) phases, and highlights the impor-
tance of hydraulic conductivity, retention characteristics, and vertical redistribution in modulating soil moisture seasonality. Al-
though ERAS5-Land may overestimate soil moisture in certain vegetated regions (Lal et al., 2022; Lesinger and Tian, 2022), its
higher amplitude suggests a more dynamic land surface response that current CLM5 configurations, particularly EXP1-EXP3,
fail to capture adequately. Addressing this discrepancy through improved parameter tuning and structural adjustments could

enhance CLMS5’s ability to simulate land—atmosphere coupling and surface hydrological processes across seasons.

SP-MIP and ERA5-Land SM: Monthly Mean Seasonal Cycles (1980 -- 2010)
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Figure 7. Monthly mean seasonal cycles of standardized root-zone soil moisture for the period 1980 —to 2010 across the CONUS. CLM5
simulations (EXP1-EXP3 and EXP4a—d) are compared with ERAS-Land reanalysis(model-based pattern reference). ERAS5-Land exhibits
the largest seasonal amplitude, with sharp increases during spring (March—June) and steep declines during summer (July—October). In
contrast, EXP1-EXP3 form a tightly clustered group with flattened seasonal cycles, underestimating both the spring moisture accumulation
and summer drawdown. EXP4a, which uses a loamy sand texture, shows greater seasonal responsiveness and more-elosety-tracks-greater
similarity to ERAS5-Land seasonal patterns. The remaining EXP4 configurations (loam, clay, silt) progressively dampen seasonal variability,

reflecting the influence of soil texture on water retention and hydrologic dynamics.

3.4 EOF Analysis of Soil Moisture Variability
3.4.1 Explained Variance and Mode Contributions

This study applies EOF analysis to soil moisture anomalies from the CLMS5 simulations (EXP1, EXP2, EXP3) and the ERAS-
Land data-model output (model-based pattern reference, with no soil moisture assimilation and no ground truth) to investigate

how soil parameterization influences soil moisture variability in the CONUS region. Figure 8 presents the percentage of vari-

ance explained by the first 10 EOF modes for each dataset, illustrating both individual and cumulative contributions. The EOF
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modes are ranked by variance percentage, with EOF-1 capturing the highest variance and representing the most significant
spatial variability. Across all experiments, EOF-1 explains slightly more variance than EOF-2, suggesting limited separation
between these modes and potential mode mixing. The explained variance gradually declines in subsequent modes, with EOF-
10 contributing less than 2%, as summarized in Table 3-4. EOF-1 explains a similar percentage of variance in EXP1 (11.45%)
and EXP2 (11.66%), indicating comparable spatial variability patterns. However, in EXP3, EOF-1 captures only 10.84% of the
variance, with mode mixing shifting variance from EOF-1 to EOF-2 (Table 3, arrows). These differences highlight the impact
of soil parameterization on representing dominant soil moisture variability. ERA5-Land, serving-as-a-benchmarkused here as a

pattern reference, exhibits a mueh-stronger-larger EOF-1 contribution (17.5%), emphasizing-indicating a more dominant lead-
ing mode in-ebserved-datacompared-to-modeled-datasets—than in the CLMS runs; differences can also reflect forcing (ERAS
vs. GSWP3) and structural (HTESSEL vs. CLMS) contrasts, not parameter effects alone. The cumulative explalned variance

(Figure 8, green line)

efficiently the leading modes summarize variability in each dataset.
While the first five modes account for about 40% of the variance in ERAS-Land, medeled-datasets-the CLMS5 simulations

ity-shows how

require approximately six modes to reach the same threshold. This distribution suggests that the simulations spread variance

more evenly across modes, reflecting differences in spatial patterns between models-and-observations—To-ensure-comparability;
adjustments-aligned-the EOF-medes-CLMS simulations and ERAS5-Land. To facilitate cross-dataset comparison, we re-ordered

EOF modes where necessary so that the dominant spatial patterns were aligned across datasets. For instance, shifts in EXP3 and
ERAS5-Land were necessary to match the dominant spatial patterns, such as the swaps of EOF-1 and EOF-2 swaps-(indicated by

arrows in Table 3). These adjustments highlight the sensitivity of EOF rankings to mode mixing and the challenges of directly
comparing medeled-and-observed-datasetsdifferent model products (CLM5 and ERA5-Land). In addition, Appendix A (Figure
Al) provides additional EOF analysis results for EXP4a-dEXP4a—d, detailing variance explained across experiments. The
findings reinforce the influence of soil parameterization on the spatial distribution of soil moistureand-emphasize-the-need-for
improved-alignment with-observed patterns; asrefleeted-in, emphasizing that comparisons are interpreted in terms of similarity.
to ERAS-Land patterns rather than validation of absolute levels.
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Figure 8. The variance explained by each separate-and—combined-EOF in—the-CEMS5soil-meisture—experimentis—depieted—Red—(red
barsrepresent-) and the eontribution-of-each-EOF-individuatty,—white-the_cumulative variance (green line) shows the cumulative propor-

tion for the initial 10 EOF modes.
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Table 4. Percentage of variance explained (%Expl. Var.) by the first 10 EOF modes for EXP1, EXP2, and EXP3 model runs, and ERAS5-Land

benehmark reference data. Arrows and superscripts indicate EOF mode swaps for consistent comparisons across datasets (see Figure 9).

EOF Mode EXP1 %Expl. Var. | EXP2 %Expl. Var. | EXP3 %Expl. Var. | ERA5-Land %Expl. Var.
EOF-1 11.45 11.66 10.84 |2 17.5 |2
EOF-2 10.40 10.60 9.85 11 8.48 |3
EOF-3 8.81 8.25 9.08 7.83 11
EOF-4 5.69 5.83 5.73 5.75
EOF-5 4.37 4.59 4.48 5.61
EOF-6 3.49 3.56 3.48 3.64
EOF-7 3.26 3.23 3.24 3.10
EOF-8 2.51 2.53 2.63 2.86
EOF-9 2.14 2.16 2.22 2.76
EOF-10 1.96 1.99 1.95 222
Total CammCumul. %Expl. Var. 54.07 54.4 53.49 59.77

3.4.2 Spatial and Temporal Analysis of EOF Modes for Soil Moisture Variability

Spatial-We show the spatial distribution of the first three EOF modes from soil moisture anomalies in CLMS simulations (EXP1,
EXP2, EXP3) and ERA5-Land (model-based pattern reference). The maps in Figure 9 show correlation coefficients between
the PC time series of each EOF mode and the soil moisture anomaly time series at each grid point. These correlation maps
indicate the spatial strength and direction of association between local anomalies and the broader temporal mode represented
by the PC. This representation facilitates interpretation by highlighting regions that co-vary in phase (positive correlation) or
in anti se-antiphase (negative correlation) with the dominant temporal pattern, thereby revealing the spatial structure of
soil moisture variability linked to each EOF mode. EOF-1 patterns (Figures 9d, g, j) reveal strong positive correlations in
central and southeastern ENA, highlighting a dominant mode of variability. Negative correlations are ebserved-seen in WNA
and CNA, indicating contrasting modes of soil moisture variability in the CONUS region. The variance explained by EOF-1
ranges from 9.85% (EXP3) to 11.66% (EXP2), with ERAS5-Land exptainingstgnificantly-more-vartance-at-showing a larger
variance contribution (17.5%). These spatial patterns align with large-scale climatic influences, such as precipitation gradients
and-and temperature gradients, as well as geographic features. For example, Gaffin and Hotz (2000) noted that the Appalachian
Mountains exhibit strong precipitation gradients due to storm systems lifting moist southerly winds, enhancing soil moisture
in ENA. The corresponding principal components (PC-1; Figure 10a) indicate temporal variability, with notable peaks during
2003 to 2004 and 1988 to 1999, corresponding to documented climatic events such as ENSO-driven precipitation anomalies
(Ye et al., 2023; Gimeno et al., 2010). The close agreement of PC-1 across all experiments highlights-indicates the robustness of
EOF-1 in representing deminant-soil-moisture-variabilitythe dominant variability in soil moisture, although slight differences

suggest some sensitivity to parameterizations.
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EOF-2 (Figures 9e, h, k) exhibits a distinct dipole pattern, with positive correlations in the central Great Plains and nega-
tive correlations over ENA, reflecting a wide spread in soil moisture variability. This dipole nature, which explains 10.40% to
10.84% of the variance, is consistent with regional climatic processes such as precipitation and evapotranspiration dynamics
influenced by terrain and hydrological conditions. For example, positive correlations in the central Great Plains may result from
localized convective precipitation; however, isotope studies indicate that precipitation in this region is influenced by moisture
transported from external sources, such as the Gulf of Mexico, rather than solely from local convection (Sanchez-Murillo
et al., 2023). Negative correlations in ENA could reflect the influence of evapotranspiration or soil drainage patterns (Famigli-
etti, 2014). In particular, EXP3 shews-exhibits a stronger positive correlation in the desert southwest, indicating-suggesting a
greater sensitivity to soil parameters in arid regions, which can alter-influence soil water retention and infiltration rates. Further-
more, EOF-3 (Figures 9f, i, 1) highlights localized variability, with positive correlations in the Pacific Northwest and negative
correlations over Texas in CNA. This mode explains less variance than EOF-1 and EOF-2 sranging-from-(8.25% in EXP2 )-to
9.85% ¢in EXP3) ;-but captures important regional processes. The Pacific Northwest patterns may be influenced by orographic

precipitation;-while- Wnegatwe correlations in Texas could reflect drought conditions deminated-by-soit-type

potential-for-waterretentionthe influence of fine-textured soils with higher water-retention potential (Haverkamp et al., 2005

. Although the spatial patterns of EOF-3 are broadly similar between experiments, slight shifts in correlation intensity and
location suggest localized impacts of soil parameterizations. The PCs (Figure 10c) show weaker temporal variability ;-with oc-
casional peaks eorresponding-tied to distinct climate events, which-emphasizes-emphasizing the regional specificity of EOF-3.
The appendix includes Figures A2 and A3, which offer additional results highlighting the spatial and temporal variability of
EXP4a-d-EXP4a-EXP4d EOF across experiments, further supporting the findings discussed. Lastly, the results emphasize the
significant role that soil parameterizations play in soil moisture variability within the CLMS model. Differences in the spatial
and temporal patterns of EOFs indicate the model’s sensitivity to these parameterizations, especially in areas with intricate
terrain or significant climate variability. The alignment-greater similarity of EOF-1 with-to ERA5-Land underseores-patterns
underlines the robustness of the model’s primary modes, while discrepancies in EOF-2 and EOF-3 highlight regions where
model refinements could enhance localized soil moisture predictions. This study stresses the importance of improving soil

parameterizations to inerease-the-preeision-of-hydrological-simulations-improve the representation of hydrological variabilit

and effectively capture the interaction between soil moisture and climatic elements.
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Figure 9. Spatial correlation maps of the first three EOFs of soil moisture anomalies for the CONUS, derived from ERAS5-Land reanalysis
data-(model-based pattern reference) and three CLMS5 experiments (EXP1, EXP2, EXP3). Panels (a) to (c) represent EOF-1, EOF-2, and
EOF-3 from ERAS-Land, respectively. Panels (d—f), (g-i), and (j-1) show corresponding modes from EXP1, EXP2, and EXP3. The color
shading represents the correlation coefficient between the PC time series of each EOF mode and the soil moisture anomaly time series at each
grid point. Positive values indicate in-phase variability with the PC (regions that co-vary with the dominant mode), while negative values
indicate anti-phase behavior. These maps illustrate the spatial coherence and phase relationships of soil moisture variability associated with

each mode.
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Figure 10. Temporal Variability (PC) of corresponding EOF over time (1980-2010) displaying the amplitude of the first four PCs:
EXP1 (blue), EXP2 (green), and EXP3 (orange) derived from the soil moisture decomposition respeetive-of—theirfor each simulation

3.4.3 EOF Modes: Euclidean Distance Analysis

Fhe-We compute the Euclidean distance between the spatial patterns of EOF modes derived from soil moisture anomalies
in the CLM5 SP-MIP medel-experiments (EXP1, EXP2, and-EXP3) and the corresponding EOF-medes—from-the-modes

from ERAS5-Land reanalysis—<(Figure—)—The-model output (model-based pattern reference; not ground truth). Euclidean
distance quantifies the-dissimilarity-between-the-dissimilarity between spatial modes, with smaller values indicating eloser
agreement-with-the-greater similarity to ERA5-Land benehmarkpatterns. Regions with hatched lines represent-denote areas

where the Euelidean-distance falls below a threshold of 5, suggesting a-strong-alignment-between-the-model-derived-strong
attern similarity between the CLMS5-derived EOFs and the ebserved-EOFsin-theseloeationsERAS-Land EOFs. EOF-1 ex-

hibits the most consistent alignment-similarity across experiments, particularly in the western and northwestern pertions—of
the-CONUS—region-CONUS (WNA). The hatched areas in—these—regions—there indicate that the spatial—variabitity-ofsoit
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close similarity to ERAS-Land patterns, consistent with large-scale hydrological-processes-influenced-by-hydrologic controls
such as precipitation gradients and tepegraphte—features—topography (Gaffin and Hotz, 2000; Famiglietti, 2014). In con-
trast, the central Great Plains consistently shows larger Euclidean distances for all three EOF modesaeross—experiments;
differences between CLMS5 and ERAS-Land in this region. Fhis-diserepaney-may-be-attributed-to These differences may reflect
limitations in soil parameterizations ef-and the complexity of hydfe}egiea}ﬂﬂdrehmaﬁc—pfeee%e%—weh%kwvrgggrvnﬁ&
processes (e.g., precipitation variability and soil moisturepreei
M&MMM&W&

by ERAS). Relative to ERA5-Land patterns, EXP1 shows a-better-agreement-with- ERAS-Land-in-the-WiNA-region-greater
similarity in WNA for EOF-1, while fhe—peffefmaﬂeegggvﬂgrvlgx in other regions remains-mixed-across-the-is mixed across ex-

periments. EOF-2 and EOF-3 s—-display larger distances with fewer hatched
areas, indicating challenges in capturing smaller-scale proeesses-structures and dipole patterns presentin-these-modes-(Han-

nachi et al., 2007; Monahan et al., 2009). These findings underseore-underline the model’s sensitivity to parameterizations-soil
parameter choices and highlight the need for targeted improvements in the central Great Plains and other regions with persis-
tent msmmm%%mgmmm% soil parameter settings and mcorporatmg additional-observational

acy-independent

datasets (e.g., SMAP, in situ networks) as complementary references could help improve the representation of regional soil

moisture simulations-(Lawrenee-et-al; 2019 Tuttde-and-Salvuee; 2046)—patterns.
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Figure 11. Euclidean distance between EOF modes from SP-MIP experiments (EXP1, EXP2, EXP3) and ERAS5-Land (model-based pattern
reference). Hatched areas indicate regions where the distance is below the-thresheld-of-5, showing-eloser-agreement-with-indicating greater

similarity to ERA5-Land patterns.
3.4.4 EOF Modes: Taylor Diagram Analysis

TDs (Figure 12) provide-a-comprehensivestatistical-summary-of-how-well-summarize the similarity of EOF patterns from dif-
ferent experiments mateh-those-of-to those in ERAS5-Land by-depicting-three key-statisties:-the-(model-based pattern reference)
using three statistics: standard deviation (dotted lines);-the-arcs), correlation coefficient, and the-centered root mean square
error (RMSE). Each marker’s position en-the-plotindicates-how-aceurately-thesoil-meisture EOF-medepattern-aligns—wi
indicates the degree of pattern similarity between a modeled EOF mode and the ERAS5-Land EOF mode. For EOF-1 (Figure

12a), the standard deviations of the EOF modes for all model experiments are relatively close to the reference EOF mode,

ranging between 4.0 and 6.5, which suggests a-good-mateh-in-terms-ef-close similarity in variability. The pattern correlations
range between 0.6 and 0.95, with EXP4d demonstrating the highest pattern correlation. This indicates that the spatial pattern of
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EXP4d aligns-mere-closely-with-shows greater similarity to the ERAS5-Land EOF mode. In EOF-2 (Figure 12b), the standard
deviations remain-consistent-with-a Whe reference EOF mode, while *chepattern correlations cluster between 0.4

mode-, indicating moderate similarity for the second modeof-variability. For EOF-3 (Figure 12c), the EOF modes generally
exhibit a pattern correlation of around 0.8 and a standard deviation of approximately 5.0. However, the EXP4d EOF deviates,

centered around a lower standard deviation of 3.5. These variations emphaﬁze—theﬂﬂﬂﬂeae&m hlight the impact of soil pa-
rameter settings in the-simulations-of-the-CLMS5 i

the EOF-medepatterns-with-the-, demonstrating how parameter choices influence the similarity to ERA5-Land referenee- EOF
modeBEOF patterns.
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Figure 12. Taylor Diagrams (TDs) for the leading three EOFs from multiple experiments (EXP1, EXP2, EXP3, EXP4a, EXP4b, EXP4c,

EXP4d) and ERAS-Land. The diagrams summarize standard deviation, correlation coefficient, and RMSE, with marker placement indicating

the-alignmentof-modeled-EOF-modes-with-pattern similarity relative to ERAS-Land (model-based pattern reference).

4 Conclusion and Recommendations

This study investigates-the-influence-examines the impact of soil parameterizations on soil moisture simulations in the CLMS5
across the CONUS for the period 1980 to 2010using-, utilizing EOF analysis. The-analysis-compared-the-We compared CLM5
outputs-with-the-simulations to ERAS- Landfeaﬂalrysr&daa%eﬁdeﬁ&fyb used solely as a model-based pattern reference, and

uantified the similarity of spatial and temporal patterns across
soil parameter configurations. The results hightighted-showed that EXP3, which used the default CLM5 soil parameters, consis-

tently simulated higher soil moisture levels than other experiments. This finding underseores-highlights the model’s sensitivity
to variations in soil hydraulic properties, sueh-as-including saturated hydraulic conductivity, soil water retention characteristics,

and porosity. Seasonal soil moisture dynamics showed broad consistency across experiments, peaking in winter due to reduced
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evapotranspiration, and declining in summer when higher temperatures intensified soil drying. However, distinct differences
emerged in the magnitude and phase of seasonal cycles, revealing how variations in soil properties can influence processes such
as water retention, drainage, and evapotranspiration fluxes. These insights align with previous research, which demonstrated
that soil moisture significantly affects hydrological processes and land-atmosphere interactions, particularly through feedback
mechanisms that vary regionally across the United States ((Tuttle and Salvucci, 2016; Koster et al., 2004). Furthermore, the am-

plified sensitivity observed-seen in the arid and semi-arid regions of the CONUS suggests that these areas may be particularly

vulnerable to uncertainties in soil parameterization.

question, EOF analysis revealed that changes in soil hydraulic properties significantly altered the spatial distribution of the
dominant EOF modes, particularly in regions tike-such as the Great Plains and ENA, indicating that parameterizations strongly
shape-influence modeled soil moisture gradients. For the second question, principal component time series linked-to-major
associated with the leading EOFs captured interannual anomalies and periods of extreme wetness or dryness that aligned
coincided with known climate events ;such-as-ENSO-phases(e.g., ENSO phases). Variations in the amplitude and persistence
of these temporal patterns across experiments trderseored-underlined the role of soil parameters in modulating the hydrologic
response to climate variability. These findings affirm that parameter choice not only controls spatial representation but also
governs-influences the sensitivity of soil moisture to climatic extremes, highlighting the dual spatial-temporal impact of soil
parameterization in land surface modeling.

EOF analysis further revealed that the first few modes accounted for the-majority-most of the variance in—sot-meoistare

between-across experiments, and the-EOF-1 modedecomposed-from-sotlmeistare-consistently explained the largestprepertion
most significant proportion of variance. The spatial patterns of the first three EOF modes exhibited similar broad-scale features

among the experiments, such as dominant moisture gradients across climatic zones. However, notable differences in explained
variance and spatial correlations pointed to the influence of soil parameters on the physical processes driving regional mois-
ture variability. Compared with ERA5-Land data-patterns using Euclidean distances and Taylor diagrams, the CLM5 output
aligned-more-closely-with-observations-showed greater similarity in WNA, reflecting better model-performance-in-capturing the
dynamies-indicating closer correspondence to ERAS-Land’s representation of mountainous and arid regionsregion dynamics.

In contrast, persistent discrepancies in the central Great Plains revealed challenges in representing complex interactions be-
tween soil hydraulic properties, precipitation variability, and surface-atmosphere feedbacks. These discrepancies are particu-
larly concerning given the region’s susceptibility to extreme hydrological events, including droughts and floods (Koster et al.,
2004; Ye et al., 2023). The Great Plains is characterized by a highly variable continental climate, with strong seasonal and
interannual fluctuations in precipitation and temperature, leading to frequent shifts between wet and dry extremes (Basara and
Christian, 2018; McDonough et al., 2020). This climatic variability makes the region hydrologically complex, requiring an
accurate representation of soil moisture dynamics for land surface hydrology modeling. Errors in soil moisture estimation can
propagate into predictions of crop productivity, water resource availability, and flood risk. The findings suggest that refining

soil hydraulic parameterizations, such as incorporating high-resolution soil texture data and accounting for heterogeneity, can
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significantly improve the predictive capacity of CLM5 and other LSMs for climate studies, ecosystem assessments, and re-
source management. While our comparative framework assessed the aggregate effects of parameter set differences, we did not

perform a formal sensitivity analysis to isolate the influence of individual soil hydraulic properties (e.g., saturated hydraulic

conductivity, porosity, van Genuchten parameters), which remains an important area for future investigation.

This study is an intra-model sensitivity of

s—analysis; all comparisons are model-to-model
and pattern-based, not validations against observations. We use ERAS-Land served-as-a-physicalty-eonsistent-and-spatiatty
eontintous benehmark to-assess-whether-only as a spatially complete, temporally consistent, model-based pattern reference to
spatial and temporal i i i i i i
appropriate for-the-modes; it does not assimilate soil-moisture observations and shows documented regional biases (e.g., wet
so it is not ground truth (Mufioz-Sabater et al., 2021; Wu et al., 2021; Zhang et al., 2023

bias in humid and vegetated areas

- Forcing and structural mismatches also limit attribution: CLMS is forced by GSWP3, whereas ERAS-Land is an offline
HTESSEL replay forced by ERAS, so differences can reflect forcing and model-structure contrasts in addition to parameter
effects. We chose ERAS-Land because it provides CONUS-wide coverage at a resolution compatible with CLMS (after
regridding to 0.5°) and exhibits coherent seasonal-interannual variability that aligns with our pattern-oriented objeetives-of
itations-of-objectives. Finally, neither CLMS nor ERAS-Land 5

wil-buildupen-includes irrigation; agricultural hotspots should therefore be interpreted cautiously. Future work will extend
this diagnostic framework by incorporating ebservational-datasets—sueh-as-independent observational datasets (e.g., SMAP,

GLEAM(Mattens-et aks2047)- SMERGE(Tobin-et 2k 2019); or, SMERGE, MERRA-2(Reichle et al; 204 7) which willenable

more—comprenens ve-compartson—and—ta ate-targeted—cahbratton—ot-model-paramete )me
Reichle et al., 2017). For the present

stadyanalysis, however, ERA5-Land p
meodeted-variability provides a spatially complete, model-based reference for assessing the similarity of CLMS patterns across
diverse hydroclimatic regionsregimes.

To address these challenges and improve the aceuracy-representation of soil moisture simulation-in CLMS5, several strategies
are recommended. Refinement-Refining the representation of soil moisture variability representation—using advanced PTFs
or machine learning-based approaches can help address uncertainties in soil hydraulic parameters, espeetatty-particularly in
hydrologically complex regions such-as-like the Great Plains. Expanding the use of high-resolution datasets from satellite mis-
sionssuch-as-the-SMAPmisston-and-, such as SMAP, together with in situ soil moisture networkswitl-providerobustbenchmarks
. will provide complementary information for calibration and comparison, redueing-biases-tn-modet-eutptts-supporting more
targeted parameter adjustment, supporting the targeted calibration of model parameters (Famiglietti, 2014). Conducting region-
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specific calibration of soil parameters and comparative multi-model analyses will help address intra-model variability and opti-
mize simulations for diverse climatic zones. Einking-Accounting for vegetation feedbacks alongside soil moisture variability to
dynamic-vegetationfeedbacks-ean-may improve the representation of evapotranspiration processes, as-vegetation-signtficantly
influenees—soil-moisture-and-given the strong influence of vegetation on water exchange dynamics (Oleson et al., 2010; Ye
et al., 2023). Establishing stronger connections between soil moisture variability and large-scale climatic drivers such as the
ENSO can enhance seasonal forecasts and long-term predictive capabilities (Gimeno et al., 2010; Tuttle and Salvucci, 2016).

Understanding these links will facilitate better integration of climatic variability into land surface modeling frameworks.

hat-These findings provide insights that can guide future

such as CLMS. The analysis indicates how soil property representations influence simulated variability. A logical next step
will be develeping-to develop approaches that allow fhes&pfepef&es—fe%e—dﬁ}aimesoﬂ roperties to vary dynamicall
within LSMs. This pa study adds

to ongoing efforts toward more 1ntegrated modehng frameworks that better capture %eﬂ-hydfe}egy-ehmate—m{efae&eﬂ%—'l:he%e

weH&%W&WMMMMWSOH hydraulic parameterization and
-the use of high-resolution
datasets will improve the ability of models to capture both large-scale hydrological dynamics and localized seil-climate
including water resource management, agricultural planning, and climate adaptation strategies;-ultimately-contributing-to-the
larger-goals-of-sustainable-development-and-climateresilieneestudies.

Code and data availability. All datasets used in this study are publicly for download at Zenodo https://doi.org/10.5281/zenodo.15078448
(Silwimba, 2025b). This includes files on soil parameters and soil texture for EXP1, EXP2, and EXP4a—d. Additionally, the ERAS-Land
can be freely accessed at https://doi.org/10.24381/cds.e9c¢9c792 (Muiioz-Sabater et al., 2021). The code used to process the data, perform
the EOF analyses, and generate the results is available on Zenodo at https://doi.org/10.5281/zenodo.14888812 (Silwimba, 2025a). The
Zenodo repository provides comprehensive documentation and instructions for reproducing the analysis, and any future updates or additional
scripts will be hosted there. For any difficulties in accessing these data or code, or for requests for further information, please contact the

corresponding author.
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Appendix A

[a] EXP4a: EOF %Explained Variance [b] EXP4b: EOF %Explained Variance
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Figure Al. Contribution-Contributions of Variance by Individual and Cumulative EOFs in CLMS5 Soil Moisture Experiments. The red bars
indicate the portion of variance each separate EOF mode accounts for, whereas the green line depicts the cumulative percentage of variance
explained by the first ten EOF modes. These plots reveat-show that the significant-impact-of-the-earty-leading EOF modes in-aceounting
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Figure A2. Spatial correlation maps of the first three Empirical Orthogonal Functions (EOFs) of soil moisture anomalies across the CONUS

domain for the EXP4 simulations. Panels (a—c) correspond to Experiment 4a (Loamy Sand), (d—f) to Experiment 4b (Loam), (g—i) to Ex-

periment 4c (Clay), and (j—-1) to Experiment 4d (Silt). Each set shows EOF-1, EOF-2, and EOF-3, respectively. The color shading represents

the correlation coefficient between the principal component (PC) time series of each EOF mode and the soil moisture anomaly time series at

each grid point. Positive values (red) indicate locations that vary in phase with the mode’s temporal evolution, while negative values (blue)

indicate anti-phase behavior. The variance explained (VE) by each mode is noted in each panel. These correlation maps illustrate how the

spatial structure of soil moisture variability is influenced by distinct soil hydraulic properties associated with each texture class.
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Figure A3. Temporal variability of principal components (PCs) derived from the EOF analysis. The plots display the amplitude of the first

three principal components: PC-1, PC-2, and PC-3. Each line corresponds to one of the four experimental setups (EXP4a, EXP4b, EXP4c,
and EXP4d) or the ERA5-Land reanalysis(model-based pattern reference). PC-1 (top panel) captures the dominant mode of variability, while

PC-2 (middle panel) and PC-3 (bottom panel) represent the secondary and tertiary modes, respectively. The x-axis shows the time period

(#9791980-26422010), and the y-axis indicates the standardized amplitude. These plots highlight the temporal dynamics of soil moisture

variability as captured by different experimental configurations, providing insights into their agreement and divergence relative to the ERAS-

Land reference-datapatterns.
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Figure A4. The Euclidean distance between EOF modes from SP-MIP experiments (EXP4a, EXP4b, EXP4c, EXP4d) and ERAS5-Land

(model-based pattern reference) is depietedshown. Panels (a—c) illustrate results for Experiment 4a (Loamy Sand), while panels (d—f), (g—),
and (j-1) pertain to Experiments 4b (Loam), 4c (Clay), and 4d (Silt), respectively. Each column showcases one of the first three EOF modes:
EOF-1, EOF-2, and EOF-3. The color bar represents the Euclidean distance, where lower values (yellow) reflect stronger-alignment-with
greater similarity to ERAS5-Land patterns, whereas higher values (red) denote more significant discrepancies. Regions with hatched-patterns

hatching signify distances less than 5, emphasizing-highlighting areas where-the-experiments—elosely-align-with the-greater similarity to
ERAS-Land datapatterns. These observations reveal the spatial variability in model performanee-similarity across different soil hydraulic

parameter settings and EOF modes.
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