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Abstract. Land surface models (LSMs) are critical components of Earth system models (ESMs), enabling simulations
:::
the

::::::::
simulation

:
of energy and water fluxes

:::
that

:::
are essential for understanding climate systems. Soil hydraulic parameters, derived

using pedotransfer functions (PTFs), are key to modeling soil-plant-water interactionsbut
:::::
crucial

:::
for

::::::::
modeling

::::::::::::::
soil–plant–water

::::::::::
interactions;

::::
they introduce uncertainties in soil moisture predictions

:::::::::
simulations. However, a key knowledge gap exists in un-

derstanding how specific soil hydraulic properties contribute to these uncertainties and in identifying the regions most affected5

by them. This study assesses the influence of soil parameter settings on soil moisture variability in the
::::::::
conducts

::
an

::::::::::
intra-model

::::::::
sensitivity

:::::::
analysis

::::::
within

:::
the

:
Community Land Model version 5 (CLM5)over

:
,
:::::::::
examining

::::
how

:::::::::
alternative

::::
soil

:::::::::
parameter

::::::
settings

::::::::
influence

::::
soil

:::::::
moisture

:::::::::
variability

::::::
across the contiguous United States (CONUS) using Empirical Orthogonal Func-

tion (EOF) analysis. EOF analysis identified
:::
The

:::::
EOF

:::::::
analysis

:::::::
revealed dominant spatial and temporal soil moisture patterns

::::::
patterns

:::
of

:::
soil

::::::::
moisture across multiple experimental configurationsand highlighted ,

:::::::::::
highlighting the impact of soil param-10

eter variability on hydrological processes. The results revealed
::::::
showed

:
significant discrepancies in soil moisture simulations,

particularly in the central Great Plains, potentially due
:::::
which

::::
may

:::
be

::::::::
attributed to the combination of arid climate conditions

and limitations in modeling saturated hydraulic conductivity and soil water retention curves. Seasonal soil moisture dynamics

aligned broadly with observed patterns but showed biases
::::::
showed

:::::
broad

::::::::
similarity

::
to

:::::::::::
ERA5-Land

:::::::
patterns,

::::
with

::::::::::
differences

in magnitude and phase, emphasizing the need for
::::::::
indicating

:::
the

:::::::::
importance

:::
of refined parameterization, such as improving15

:::::::::
particularly

::
in

:
the representation of infiltration and drainage processes. Comparisons with ERA5-Landreanalysis data revealed

improved alignment ,
:::::
used

::::
here

:::::
solely

::
as

::
a
:::::::::::
model-based

::::::::
reference

:::
for

::::::
pattern

::::::::::
consistency,

:::::::
revealed

:::::::
stronger

:::::::::
similarity in re-

gions with consistent climatic gradientsbut persistent model deficiencies
:
,
:::
but

::::::::
persistent

:::::::::
differences

:
in hydrologically complex

areas, particularly under more arid climates such as the Great Plains, where hydrological processes are notoriously harder to

reproduce. This research highlights
:::::
remain

:::::::
difficult

::
to

::::::::
represent.

:::::::
Because

::::::
CLM5

::
is

::::::
forced

::
by

::::::::
GSWP3,

:::::::
whereas

::::::::::
ERA5-Land

::
is20

1



::
an

::::::
offline

:::::::::
HTESSEL

:::::
replay

::::::
forced

::
by

::::::
ERA5,

::::::::::
differences

:::::
reflect

::::
both

:::::::
forcing

:::
and

::::::::
structural

::::::::
contrasts

::
in

:::::::
addition

::
to

:::::::::
parameter

::::::
effects.

::::
This

:::::::
research

:::::::::::
demonstrates

:
the necessity of refining soil parameter representations, utilizing high-resolution datasets,

and considering climatic variability to boost the performance
::::::
inform

:::::
model

:::::::::::
development of LSMs. Importantly, these findings

also open the door to
:::
pave

::::
the

:::
way

:::
for

:
future efforts that incorporate dynamic soil properties into LSMs. Much of this work

demonstrates the dynamism
::::
This

::::
work

::::::::
illustrates

:::
the

::::::::
influence

:
of soil properties , and while this study advances modeling by25

revealing the importance of their inclusion, the next crucial step will be developing
::
on

:::::::::
simulated

:::::::::
variability.

:::::
While

:::
the

:::::::
analysis

:::::::::
documents

::::
their

::::::::::
importance,

:
a
::::::
future

:::::::
direction

::::
will

::
be

::
to

:::::::
develop

:
approaches that allow these properties to be dynamic within

LSMs. This paper serves as a foundational step toward that goal, paving the way for more complex and
:::
vary

:::::::::::
dynamically

:::::
within

::::
land

::::::
surface

:::::::
models.

::::
This

:::::
study

:::::::::
contributes

::
to
:::::::
ongoing

::::::
efforts

::::::
toward

:::::
more integrated modeling frameworks that better

capture soil-hydrology-climate
::::::
capture

::::::::::::::::::::
soil–hydrology–climate interactions.30

1 Introduction

Land surface models (LSMs) are essential components of Earth system models (ESMs), offering critical insights into the

movement and partitioning of energy and water across the Earth’s surface, which are fundamental processes in understanding

and simulating climate systems accurately (Kang and Hong, 2008; Zhao et al., 2017; Guimberteau et al., 2017; Hagemann

et al., 2013; Dagon et al., 2020). Designed to operate on large spatial scales, LSMs rely on robust parameterizations of land35

processes, including the use of pedotransfer functions (PTFs) to parameterize soil hydraulic properties. PTFs, as described by

Van Looy et al. (2017) and De Lannoy et al. (2014), are mathematical formulations that use extensive soil hydraulic databases

to establish empirical relationships between soil particle-size distribution and soil hydraulic parameters, such as field capacity,

permanent wilting point, saturated hydraulic conductivity, pore-size distribution, and soil water retention curves (McNeill

et al., 2018; Vereecken et al., 2010; Weber et al., 2020). These PTFs range in complexity from basic linear models to advanced40

machine learning algorithms such as artificial neural networks (da Silva et al., 2023; Schaap et al., 1998). These soil hydraulic

parameters are fundamental to
:::
the quantification of soil moisture and water flow, and

:
as

::::
well

:::
as soil-plant-water interactions

and their effects on climate, agriculture, hydrology, and environmental engineering.

PTFs play a crucial role in converting readily available soil texture data into soil hydraulic parameters, addressing the

difficulties of acquiring accurate soil moisture data at larger scales (Fu et al., 2023). However, many soil hydraulic parameters45

are derived from laboratory or small-scale field studies, which often fail to capture the full heterogeneity of larger areas, limiting

their representativeness (Lai and Ren, 2016; Godoy et al., 2018). To overcome this limitation, global soil texture maps enhance

PTFs’ predictive capabilities, enabling their application in regions where field measurements are unavailable and making them

indispensable for land modeling (Tafasca et al., 2020; Dai et al., 2019). Soil moisture, a key output of these models, is a

vital variable governing the exchange of water and energy between land and atmosphere. It has profound impacts on climate50

systems, vegetation dynamics, and extreme events, including droughts and floods (Zhang et al., 2021).

The influence of soil hydraulic properties on soil moisture simulations is well documented. For example, Fu et al. (2023)

demonstrated that these properties significantly affect soil moisture simulations at the ELBARA field site in the northeast of
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the Tibetan Plateau, using the one-dimensional (1D) Richards equation. Similarly, Fu et al. (2022) noted that the numerical

solution approach of the Community Land Model (Lawrence et al., 2019) produces a narrow range of soil hydraulic property55

values, which suggests a relatively weak influence on soil moisture simulations within this range. However, when optimized

hydraulic properties are used, potentially derived to capture site-specific variability or improve model performance
::::::::
similarity

beyond this narrow range they can exert a more substantial influence on soil moisture dynamics. Furthermore, Feki et al.

(2018) highlighted
::::::
showed that saturated hydraulic conductivity exhibits the highest sensitivity to temporal changes in envi-

ronmental factors, such as precipitation or temperature variability significantly affecting soil moisture variability, as shown in60

FEST-WB model simulation of a maize field in the Secugnago region. These findings underscore
::::::::
underline

:
the importance

of accurately representing soil hydraulic properties, which directly influence the partitioning of water into runoff, infiltration,

and evapotranspiration (Ye et al., 2023), as well as the temporal and spatial variability of soil moisture. However, uncertainties

in parameterizations, such as the soil water retention curve that links water potential to volumetric soil moisture, continue to

challenge the predictive capacity of LSMs, especially under extreme climatic conditions (Koster et al., 2004; De Lannoy et al.,65

2014). Improving the representation of soil moisture and its underlying hydraulic properties is critical, as it affects global hy-

drological cycles, vegetation health, and energy flows, all of which are essential for understanding and mitigating the impacts

of climate events (Oleson et al., 2010).

In addition to these complexities, scaling point-scale or regional observations of soil moisture to the coarser resolutions of

LSM outputs presents a persistent challenge. While observational networks and remote sensing missions have expanded the70

availability of soil moisture data, the heterogeneous nature of soil properties combined with varying retrieval algorithms and

coverage gaps can introduce significant uncertainties, both in terms of the accuracy of satellite products and their limitations for

validating LSM outputs (Famiglietti, 2014; Brocca et al., 2017). Moreover, uncertainties in parameterization make it challeng-

ing to accurately simulate soil moisture dynamics, as noted by Reichle et al. (2004) and Kato et al. (2007), limiting the ability

of LSMs to replicate observed soil moisture datasets. This discrepancy in spatial resolution and data precision can make model75

calibration more challenging, increase uncertainties in estimating parameters, and, as a result, weaken confidence in simulation

outputs. Emerging evidence further complicates this issue by highlighting that soil properties can change over relatively short

time scales due to shifts in climate and land cover. The dynamic nature of soil properties introduces additional pressure to better

understand soil-hydraulic relationships
:::::
better and integrate these temporal dynamics into LSMs, as demonstrated by studies

highlighting
::::::::
indicates how climate and land cover changes influence soil processes (Hirmas et al., 2018; Koop et al., 2023;80

Caplan et al., 2019; Sullivan et al., 2022; Hauser et al., 2022). Addressing these complexities demands robust, data-oriented

::::::
requires

::::::
robust,

::::::::::
data-driven approaches and dimensionality reduction techniques to disentangle the effects of parameterization

on soil moisture patterns across
::::::
various ecosystems and climate conditions.

A major challenge to addressing these uncertainties is the high dimensionality of LSM simulations when applied to conti-

nental or global scales, making it difficult to isolate the effects of specific parameters on soil moisture from other factors such85

as meteorological forcings and modes of climate variability (Ji et al., 2023; Li et al., 2013; Zeng et al., 2021). This research

investigates two critical questions
::::::::
Therefore,

:::
we

::::::
present

:::
an

::::::::::
intra-model

:::::::::
sensitivity

:::::::
analysis

::::::
within

::::::
CLM5,

::::::::
focusing

:::
on

::::
how

::::::::
alternative

::::
soil

::::::::
hydraulic

::::::::
parameter

:::::::
datasets

::::::::
propagate

::::
into

:::::::
regional

:::
soil

::::::::
moisture

:::::::
patterns

:::
and

:::::::::
variability,

:::::::
without

::::::
treating

::::
any
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::::::
external

:::::::
product

::
as

:::::::
ground

::::
truth.

:::::::::::
Specifically,

:::
we

:::
ask: (1) How do soil hydraulic parameters influence large-scale spatial pat-

terns in soil moisture associated with well-characterized climate variability modes? (2) How do these parameters affect
:::::
shape90

the temporal dynamics of soil moisture during climate extremes, such as droughts and floods? Using EOF analysis, the study

systematically evaluates
:::::::
empirical

:::::::::
orthogonal

::::::::
function

:::::
(EOF)

::::::::
analysis,

::
we

::::::::::::
systematically

:::::::
evaluate

:
the impact of soil hydraulic

parameterizations in CLM5 simulations in
:::
over

:
the contiguous United States (CONUS). This study enhances comprehension

of soil-plant-water dynamics by isolating parameter effects, thereby improving predictions of ecohydrologic responses to

climate variability and change, tackling a crucial challenge in land modeling and climate forecasting. We elaborate on the95

methodologies employed in Empirical Orthogonal Function (EOF) analysis, covering data sourcesand computational methods,

and present the principal findings derived from the
:::
We

::::::::
compare

:::
the

::::::
spatial

::::
and

:::::::
temporal

::::::::
patterns

::
of

:
CLM5 simulations,

highlighting their relevance to
::::
with

::::
those

:::
in

::::::::::
ERA5-Land

:::::
using

:::::::::::::::
pattern-similarity

::::::
metrics

:::::
(e.g.,

:::::::::
correlation,

::::::
Taylor

:::::::::
diagrams,

::::::::
Euclidean

::::::::
distance).

:::::::::::
ERA5-Land

::
is

::::
used

:::::
solely

:::
as

:
a
:::::::::::
model-based

::::::::
reference

:::
for

::::::::
patterns;

:
it
:::::

does
:::
not

:::::::::
assimilate

:::
soil

::::::::
moisture

::::::::::
observations

::::
and

:
is
::::

not
::::::
treated

::
as

::::::
ground

:::::
truth.

:::
We

::::
note

:::
an

::::::
upfront

:::::::
forcing

:::
and

::::::::
structural

:::::::::
mismatch:

:::
our

::::::
CLM5

:::::::::::
experiments100

::
are

::::::
driven

:::
by

:::::::
GSWP3,

:::::::
whereas

:::::::::::
ERA5-Land

:
is
:::

an
::::::
offline

:::::::::
HTESSEL

:::::
replay

::::::
forced

::
by

:::::::
ERA5;

::::::::
therefore,

:::
the

:::::::::
differences

::::::
reflect

::::
both

::::::
forcing

:::
and

::::::::
structural

::::::::
contrasts,

::
as
::::
well

:::
as

::::::::
parameter

::::::
effects.

:::::::
(Neither

:::::::
product

:::::::
includes

:::::::::
irrigation,

::
so

::::::::::
agricultural

:::::::
hotspots

:::::
should

::::
not

::
be

:::::::::::::::
over-interpreted.)

:::
We

::::
aim

::
to

:::::::::::
transparently

::::::::
document

::::::
where

:::::::::
parameter

:::::::::
uncertainty

:::::
most

::::::
affects

::::::::
simulated

::::
soil

:::::::
moisture

:::::::
patterns

:::
and

:::::::::
variability

::::::
across

::::::::
CONUS,

:::
and

::
to

:::::::
provide

:::::::::
disciplined

::::::::
evidence

::
to

::::::
inform

::::::
model

:::
use

:::
and

::::::::::::
development.

:::
We

::::
next

::::::
outline

:::
the

:::
data

:::::::
sources,

:::::
EOF

::::::::
methods,

:::
and

::::::::::::
computational

:::::
steps,

:::
and

::::
then

:::::::
present

:::::::
principal

:::::::
findings

:::
on soil moisture105

variability and parameter sensitivity. Additionally, the sections discuss the broader impact of these findings on the advancement

of
:
,
::::::::
followed

::
by

:::::::
broader

:::::::::::
implications

:::
for land surface modeling and the comprehension of climate dynamics. Finally, they

conclude with practical recommendations for upcoming research and applications in the fields of ecohydrology and climate

science.

2 Data and Methods110

2.1 Study Region

The study region for this analysis encompasses the CONUS, spanning from the Atlantic to the Pacific Ocean and bounded by

Canada to the north and Mexico to the south (Figure 1). This domain covers
::::::::::
encompasses

:
a wide range of latitudes, elevations,

and climatic regimes, offering
:::::::
providing

:
an ideal natural laboratory for evaluating

::::::::
assessing spatial variability in land surface

processes. The CONUS includes
::::::::::
encompasses

:
major climate zonessuch as ,

:::::::::
including humid continental, Mediterranean,115

subtropical, arid, and alpine, all of which emerge due to
::
are

:::::::::
influenced

:::
by

:
differences in latitude, topographic relief, and

proximity to moisture sources such as the Gulf of Mexico and
::
the Pacific Ocean. These climatic gradients play a critical role in

controlling soil moisture dynamics by modulating processes such as infiltration, evaporation, and water retention. Topographic

features, including the Rocky Mountains, Sierra Nevada, Cascade Range, and Appalachian Mountains, significantly influence

::::
have

:
a
:::::::::
significant

::::::::
influence

:::
on

:
precipitation regimes and surface hydrology. These orographic barriers modify storm tracks120

and induce spatial variability in rainfall and snowpack accumulation, ultimately affecting soil water availability. The land
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cover across the CONUS is equally heterogeneous, ranging from forested regions in the Northeast and Pacific Northwest

to urbanized corridors and sparsely vegetated deserts in the Southwest. This heterogeneity in land cover introduces additional

complexity into soil moisture behavior, as vegetation, impervious surfaces, and soil types interact to determine local infiltration

and storage dynamics.125

To support spatially disaggregated analysis of soil moisture variability and its driving mechanisms, we adopt the regional

classification scheme proposed by Giorgi and Francisco (2000), which partitions CONUS into four climatically and geographi-

cally coherent macro-regions: Western North America (WNA), Central North America (CNA), Eastern North America (ENA),

and North Central America (NCA). This classification provides a physically grounded framework for evaluating the sensitivity

of modeled soil moisture to soil hydraulic parameterizations across distinct hydroclimatic zones. As shown in Figure 1, each re-130

gion captures dominant
::::::
distinct physiographic and climatic attributes, such as

::::::::
including the arid basins and mountain ranges of

WNA, the agricultural plains and grasslands of CNA, the humid subtropical and deciduous forest zones of ENA, and the transi-

tional climatic conditions present in NCA. The utility of this framework is two-fold. First, it facilitates regional intercomparison

of soil moisture patterns and their controls, enabling consistent evaluation across diverse landscapes. Second, it improves the

interpretability of EOF modes by linking observed spatial variability to regional climatic drivers, soil texture distributions, and135

vegetation structure. This regionalized approach is particularly valuable given the goal of disentangling parameter driven soil

moisture responses from broader meteorological forcings. By leveraging the CONUS domain and its subdivisions, the study

advances understanding of how soil hydraulic parameter uncertainty manifests across large-scale gradients and informs the

development of improved land surface model parameterizations.

Figure 1. Regional divisions of the CONUS area into four major zones: Western North America (WNA), Central North America (CNA),

Eastern North America (ENA), and North Central America (NCA), as defined by Giorgi and Francisco (2000), based on climate variability

and geographical features. Prominent subregions and geographical landmarks, such as mountain ranges and plains, are also depicted.
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2.2 Data Description140

The Soil Parameter Intercomparison Project (SP-MIP), initiated at the GEWEX-SoilWat workshop in Leipzig (2016), aims to

quantify the variability in land surface model (LSM) output caused by differences in soil parameters and structures. Following

the Land Surface, Snow, and Soil Moisture Model Intercomparison Project (LS3MIP) protocol (Van den Hurk et al., 2016), SP-

MIP brought together eight leading climate land models
::::::
LSMs: CLM5, ISBA, JSBACH, JULES, MATSIRO, MATSIRO-GW,

NOAH-MP, and ORCHIDEE for a series of global simulation experiments (Gundmundsson and Cuntz, 2017). These models145

were run on a 0.5◦ grid using
:::
and

::::::
forced

::::
with Global Soil Wetness Project Phase 3 (GSWP3) meteorological forcing data for

1980 to 2010.
:::
We

:::
use

::::::
CLM5

::::::
output

::::::::
produced

::
by

:::
the

:::::
NSF

:::::::
National

::::::
Center

:::
for

:::::::::::
Atmospheric

::::::::
Research

::::::::
(NCAR)

:::
for

:::::::
SP-MIP

::::::::::::::::::::::::::::::::
(Thornton, 2010; Lawrence et al., 2019)

:
.
:::
The

::::::
dataset

::::::
covers

:::::
global

::::::::::
landmasses

::
at

::::
0.5◦

::::::::
resolution

:::::::
(25,920

::::
grid

::::
cells,

:::::::::
excluding

::::
water

::::::
bodies

::::
and

:::::::::
permanent

:::::::::
snow/ice)

:::
and

:::::::
includes

:::
41

::::
land

:::::::
surface

::::::::
variables

::::
such

::
as

::::::::::::::::
evapotranspiration,

::::
soil

:::::::::::
temperature,

:::
and

::::::
runoff,

::::::::
spanning

::
30

:::::
years

:::::
(1980

::
to

::::::
2010).

::::
The

:::::
global

::::
soil

:::::
profile

:::::::
reaches

:
a
:::::

depth
:::

of
::::::
41.998

::
m

::::
with

::
25

::::::
layers,

:::
but

:::
for

::::
this150

:::::
study,

:::
soil

::::::::
moisture

::::
was

::::::::
extracted

::::
from

::::::
depths

:::::
(0-1.0

:::
m)

:::::::::
containing

:::::
most

::::
roots

::::::::::
(root-zone)

::
of

::::
the

:::::::
CONUS

::::::
region,

::::::::
covering

:::::
6,413

:::
grid

:::::
cells.

::::
The

:::::
focus

::
is

:::
on

:::
the

:::::::
variable

:::::
water

:::::::
content

::
of

::::
soil

:::::
layers

:
(
::::::
mrsol

:
)
::
to
:::::::

explore
::::
soil

:::::::
moisture

:::::::::
variability

::::
and

::::::::::
distribution.

::::::::::
Importantly,

::::::::
irrigation

::
is

:::
not

::::::::::
represented;

:::
all

::::::::::
simulations

:::
are

:::::
under

::::::
rainfed

:::::::::::
(naturalized)

:::::::::
conditions

::
to

::::::
isolate

:::
the

:::::::
influence

:::
of

:::
soil

::::::::
hydraulic

:::::::::::::::
parameterizations

:::::::
without

:::::::::
additional

::::::::::::
anthropogenic

:::::
water

::::::
inputs.

::::::::::
ERA5-Land

::::::::::
(ECMWF)

::
is

::::
also

::::
used

::
as

:
a
:::::::::::
model-based

::::::
pattern

::::::::
reference

::::
(not

::::::
ground

::::::
truth).

::
It

::
is

::
an

::::::
offline

::::::::::
land-surface

::::::
replay

::::::
forced

::
by

::::::
ERA5

:::
and

:::::
does

:::
not155

::::::::
assimilate

::::
soil

:::::::
moisture

:::::::::::
observations.

::::
For

::::::::::
consistency,

:::::::::::
ERA5-Land

:::::
fields

::::
were

::::::::
regridded

:::
to

::::
0.5◦

::
to

::::::
match

::::::
CLM5.

:::::
Note

:::
the

::::::
forcing

::::::::
mismatch

:::::::
(CLM5:

::::::::
GSWP3;

::::::::::
ERA5-Land:

:::::::
ERA5),

::
so

::::::::::
differences

:::::
reflect

::::
both

::::::
forcing

::::
and

::::::::
structural

:::::::
contrasts

:::
as

::::
well

::
as

::::::::
parameter

::::::
effects.

:

2.2.1
::::::::::::
Experimental

:::::::
Designs

Four experimental designs were implemented to isolate the effects of soil properties on hydrological and energy balance160

variables. Soil parameters for Experiment 1 and soil textures for Experiment 2 (EXP2) were derived at a 0.5◦ resolution,

based on dominant soil classifications within the 0-5 cm layer of SoilGrids data (Hengl et al., 2014) at a 5 km resolution. The

Brooks and Corey parameters are derived from Table 1
:
2 of Clapp and Hornberger (1978), while the Mualem-van Genuchten

parameters represent ROSETTA class average hydraulic values as cited by Schaap et al. (2001), with soil textures taken from

Table 1 of Cosby et al. (1984). For Experiments 4a-d (EXP4a–4d), the USDA soil categories used are Loamy Sand, Loam, Silt,165

and Clay, as defined by Montzka et al. (2011), employing .
::::::
These

::::::::::
experiments

::::::
employ

:
identical transfer functions for Brooks

and Coreyand ,
::
as

::::
well

::
as

:
Mualem-van Genuchten parameters

:
, as applied in Experiment 1 (EXP1). All models are assumed to

solve
:::::
CLM5

::::::
solves the Richards equation for soil water movement

::
the

:::::::::
movement

:::
of

:::
soil

:::::
water. The provided soil parameters

and textures are uniform throughout the entire soil column. For a detailed description of the SP-MIP dataset, please refer to

(Gundmundsson and Cuntz, 2017).170

This study uses soil moisture data from the CLM5 experiments developed by the National Center for Atmospheric Research

(NCAR) (Thornton, 2010; Lawrence et al., 2019).
:::::::::::::::::::::::::::
Gundmundsson and Cuntz (2017)

:
. The schematic (Figure 2) illustrates

::::::::::
summarizes

6



the CLM5 modeling framework, depicting the experimental setup for seven different model runs, each designed to evaluate

the influence of soil hydraulic parameterizations on soil moisture variability. The dataset covers global landmasses at 0.5◦

resolution (25, 920 grid cells, excluding water bodies and permanent snow/ice)and includes 41 land surface variables such as175

evapotranspiration, soil temperature, and runoff, spanning 30 years (1980 to 2010). The global soil profile reaches a depth of

41.998 m with 25 layers, but for this study, soil moisture was extracted from depths (0-1.0 m) containing most roots (root

zone) of the CONUS region, covering 6
:::::::
workflow

::::
and

:::::::::::
experimental

::::::::
grouping,

::::::
which

:::::::
consists

::
of

::::
four

::::::
designs

::::::::
yielding

:::::
seven

:::
runs

:::::::
(EXP1,

::::::
EXP2,

::::::
EXP3,

:::
and

::::::::::
EXP4a–4d), 413 grid cells. The focus is on the variable water content of soil layers (mrsol)

to explore soil moisture variabilityand distribution. Importantly, irrigation processes were not represented in any of the CLM5180

simulations, as all experiments were conducted under naturalized (rainfed) conditions to isolate the influence of soil hydraulic

parameterizations without additional anthropogenic water inputs.
::::
used

::
to

:::::
assess

::::
how

:::
soil

::::::::
hydraulic

:::::::::::::::
parameterizations

::::::::
influence

:::
soil

:::::::
moisture

:::::::::
variability.

:

2.2.2 Experimental Designs

To assess the influence of soil hydraulic parameterizations on soil moisture variability within the CLM5, a series of simulations185

was conducted following the SP-MIP framework (Gundmundsson and Cuntz, 2017). Although SP-MIP was designed for

multi-model comparisons, we adapted it to evaluate intra-model variability within CLM5 by varying soil hydraulic parameter

sets. All simulations used consistent meteorological forcing (GSWP3), spatial resolution (0.5◦), and spanned 1980 to 2010,

with a standardized spin-up routine to ensure reliable initial conditions. Below, we describe the four experimental setups,

their objectives, configurations, hypotheses, and expected outcomes, focusing on how parameters are applied within CLM5.190

Each experiment followed the standard CLM5 spin-up procedure to ensure that carbon, water, and energy state variables

reached quasi-equilibrium prior to the simulation period, thereby minimizing the influence of initial conditions on soil moisture

dynamics (Lawrence et al., 2019). Spin-up followed SP-MIP protocol guidelines to ensure equilibrium prior to the 1980 to 2010

simulation period (Gundmundsson and Cuntz, 2017).
::
For

::::::
clarity,

:::::
Table

::
3
::::::::::
summarizes

:::
the

::::
soil

:::::
inputs,

:::::::::
parameter

:::::::
settings,

::::
and

:::::::
purposes

::
of

:::::::::::::::::::
EXP1–EXP4a-EXP4d

::::::::
(root-zone

::::
soil

::::::::
moisture,

::::
1980

::
to
::::::
2010).

:
195
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Figure 2.
::::::::::
Experimental

::::
setup

:::
for

::::::::
evaluating

:::
soil

:::::::
moisture

::::::::
variability

::
in
::::::

CLM5.
::::

The
:::::
model

::::::
utilizes

:::::::
GSWP3

::::::
forcing

:::
data

::::
and

:::::::
conducts

::::::
multiple

:::::::::
experiments

::::
with

::::::
varying

:::
soil

:::::::
hydraulic

::::::::::::::
parameterizations.

:::::
EXP1

:::::
applies

::::::::::
standardized

:::::::::
parameters,

:::::
EXP2

:::::
derives

:::::::::
parameters

::::
from

:::
soil

:::::
texture,

:::::
EXP3

::::
uses

:::::
default

:::::
CLM5

:::::::
settings,

:::
and

::::::::
EXP4a–4d

:::::
assign

::::::
uniform

:::::::::
parameters

::
for

:::::::
different

:::
soil

:::::
types.

(1) EXP1 – Soil Hydraulic Parameters Provided by SP-MIP: This experiment serves as a baseline simulation, applying

soil hydraulic parameters provided by SP-MIP (Table 1). These parameters, derived from PTFs such as Brooks and

Corey (Clapp and Hornberger, 1978) and Mualem-van Genuchten (Schaap et al., 2001), are applied uniformly across all

grid cells in the CONUS at a 0.5◦ resolution using GSWP3 meteorological forcing data (1980 to 2010). The objective

is to establish a
::
an

:::::::
internal reference for soil moisture predictions

:::::::::
simulations

:
by eliminating spatial variability in soil200

properties, allowing isolation of CLM5’s response to a consistent soil parameter set. The hypothesis is that SP-MIP soil

hydraulic parameters will produce uniform soil moisture patterns, serving as a control to quantify the effects of parameter

variations in other experiments. The expected outcome is a consistent baseline for intra-model comparisons, highlighting

CLM5’s sensitivity to parameter changes rather than inter-model differences.

(2) EXP2 – Texture-Derived Soil Hydraulic Parameters: In this experiment, CLM5 uses SP-MIP-provided soil texture205

inputs (Table 2), such as fractions of clay, silt, sand, dry bulk density, and organic matter content, to derive soil hy-

draulic parameters internally via its native PTFs and lookup tables. These parameters vary spatially across the CONUS

domain based on textural classes. The objective is to assess how CLM5’s standard approach to translating soil texture

into hydraulic properties influences soil moisture outputs. The hypothesis is that spatial variability in texture-derived pa-

rameters will introduce heterogeneity in soil moisture patterns, reflecting CLM5’s
::
the

:
default parameterization practices210

::
of

:::::
CLM5. The expected outcome is a simulation that mirrors operational CLM5 runs, enabling

:::::::
allowing

:::
for comparison

with EXP1 to evaluate
:::::
assess

:
the impact of texture-to-parameter translation on hydrological variability.

(3) EXP3 – CLM5 Default Configuration: This experiment employs CLM5’s default soil hydraulic parameters, as de-

fined by its operational input datasets, applied consistently across
:
to

:
all soil layers throughout the CONUSdomain

:::::
across
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:::::::
CONUS. Unlike EXP1’s standardized parameters or EXP2’s texture-derived parameters, EXP3 reflects CLM5’s inherent215

configuration without external constraints. The objective is to evaluate the model’s intrinsic variability due to its stan-

dard soil parameter settings, providing a benchmark for CLM5’s default behavior. The hypothesis is that CLM5’s default

parameters, which vary spatially based on its native soil maps, will produce distinct soil moisture patterns compared to

the controlled setups in EXP1 and EXP2. The expected outcome is a simulation that highlights the influence of CLM5’s

built-in assumptions on soil moisture, allowing quantification of parameter-driven variability within a single model.220

(4) EXP4a–4d – Uniform Soil Texture Simulations: These four experiments (EXP4a: loamy sand, EXP4b: loam, EXP4c:

clay, EXP4d: silt) each involve a separate CLM5 simulation with uniform soil hydraulic parameters from SP-MIP (Table

1) applied across the entire CONUS domain. The parameters, derived from PTFs for each USDA soil class (Montzka

et al., 2011), are spatially constant within each experiment but differ across the four runs based on soil type. The objective

is to test CLM5’s sensitivity to distinct soil textures and their associated hydraulic properties, such as porosity, saturated225

hydraulic conductivity, and water retention curves, and to evaluate their impact on hydrological (e.g., soil moisture) and

energy balance (e.g., evapotranspiration) outputs. The hypothesis is that each soil type will produce unique soil moisture

patterns, reflecting texture-dependent hydrological behavior. The expected outcome is a set of simulations that isolate the

effects of soil texture on CLM5’s outputs, providing insights into parameter-driven variability across diverse soil types.

Experimental setup for evaluating soil moisture variability in CLM5. The model uses GSWP3 forcing data and runs multiple230

experiments with different soil hydraulic parameterizations. EXP1 applies standardized parameters, EXP2 derives parameters

from soil texture, EXP3 uses default CLM5 settings, and EXP4a–4d assign uniform parameters for different soil types.

Table 1. Soil parameters for the three selected water retention curves were supplied by SP-MIP as input for experiments 1 and 4a-d.

Parameter Name long_name (netCDF) Unit

he air entry potential m

mbc Brooks-Corey m parameter = Clapp-Hornberger b –

thetar residual soil moisture m3 m−3

thetas saturated soil moisture, porosity m3 m−3

ks Hydraulic conductivity at saturation or at air entry ms−1

lambdac Corey lambda parameter –

alphavg van Genuchten alpha parameter m−1

nvg van Genuchten n parameter –

mvg van Genuchten m parameter –

thetafcbc Brooks-Corey field capacity m3 m−3

thetafcvg van Genuchten field capacity m3 m−3

thetapwpbc Brooks-Corey permanent wilting point m3 m−3

thetapwpvg van Genuchten permanent wilting point m3 m−3

9



Table 2. Soil textural characteristics supplied by SP-MIP for experiment 2.

Parameter Name long_name (netCDF) Unit

fclay fraction of clay –

fsilt fraction of silt –

fsand fraction of sand –

rhosoil dry bulk density kgm−3

omsoil organic matter content g(C)kg−1

Table 3.
:::::::
Summary

::
of
:::::::
SP-MIP

:::::::::
experimental

:::::::::::
configurations

:::::::
analyzed

::
in

:::
this

::::
study.

::::::::::
EXP1–EXP2

:::
use

::::::::
prescribed

::::::
SP-MIP

:::::
inputs

::
at

::::
0.5◦;

:::::
EXP3

:::
uses

:::::
CLM5

:::::::
defaults;

:::::::
EXP4a–d

:::
are

::::::
globally

::::::
uniform

::::::
design

::::
soils.

:::::::
Analyses

:::
use

:::::::
root-zone

:::
soil

:::::::
moisture

:::::::
extracted

::::
from

:::
each

:::::::::
experiment

::::
from

::::
1980

:
to
:::::

2010.

::::
EXP

:::
Soil

:::::
Input

::::::::
Parameter

::::::
Setting

: ::::::
Purpose

:

:
1

::::::
SP-MIP

:::::::::
parameter

:::::
maps

::::::::
Prescribed

:::::::::
parameter

:::::
maps

::::
from

::::::::
SP-MIP;

::::::
uniform

::::
with

:::::
depth

:

:::::::
Baseline

::::
with

::::::::
spatially

:::::::
varying

:::::::::
prescribed

:::::::::
parameters

::
to

::::::
isolate

:::::
CLM5

:::::::::
sensitivity.

:
2

::::::
SP-MIP

::::
soil

::::::
texture

::::
maps

:::::
CLM5

:::::::
derives

::::::::::
parameters

:::::
from

:::::::
texture

::
via

::::::
native

:::::::::::
PTF/lookup;

::::::::
spatially

:::::::
varying;

::::::
uniform

::::
with

:::::
depth

:

:::::
Assess

::::::::::
sensitivity

:::
to

:::::::::::::::::
texture-to-parameter

::::::::
translation

::
in
:::::::
CLM5.

:
3

:::::
CLM5

::::::
default

:::::
maps

: :::::
CLM5

::::::
default

:::::::::
parameter

:::::::
datasets;

:::::::
spatially

:::::::
varying;

:::::::
uniform

::::
with

:::::
depth

:::::::::
Benchmark

:::::::
CLM5

:::::::
default

::::::::::::
configuration

::::::
against

:::::
EXP1

:::
and

::::::
EXP2.

::
4a

::::::
Design

::::
soil:

:::::
loamy

::::
sand

: :::::::
Globally

::::::::
uniform

:::::::::
parameter

:::
set

:::::::
(loamy

:::::
sand);

:::::::
uniform

::::
with

:::::
depth

::::::
Texture

:::::::::::
sensitivity:

:::::
low

:::::::::::::
retention/high

::::::::::
conductivity.

::
4b

::::::
Design

::::
soil:

::::
loam

: :::::::
Globally

::::::::
uniform

:::::::::
parameter

:::
set

:::::::
(loam);

::::::
uniform

::::
with

:::::
depth

:

::::::
Texture

:::::::::
sensitivity:

:::::::::::
intermediate

:::::::::
properties.

::
4c

::::::
Design

::::
soil:

:::
clay

: :::::::
Globally

::::::::
uniform

:::::::::
parameter

::::
set

::::::
(clay);

::::::
uniform

::::
with

:::::
depth

:

::::::
Texture

:::::::::::
sensitivity:

::::::
high

::::::::::::
retention/low

::::::::::
conductivity.

::
4d

::::::
Design

::::
soil:

:::
silt

:::::::
Globally

::::::::
uniform

::::::::::
parameter

:::
set

::::::
(silt);

::::::
uniform

::::
with

:::::
depth

:

::::::
Texture

::::::::::
sensitivity:

:::::::::::
intermediate

:::
to
:::::

high

::::::::
retention.
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2.2.2
:::::::::::
Model-Based

:
Reference Dataset

:::
for

:::::::
Pattern

:::::::::::
Comparison:

:::::::::::
ERA5-Land

The ERA5-Landdataset, provided
:
,
::::::::
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), serves

as a key reference for model evaluation. Unlike other models,
::
is

::::
used

::::
here

::
as

:
a
::::::::
spatially

::::::::
complete,

:::::::::::
model-based

::::::::
reference

:::
for235

::::::
pattern

::::::::::
comparison;

:
it
::
is
:::
not

::::::
treated

::
as

::::::
ground

:::::
truth

::
or

:
a
::::::::
validation

:::::::
dataset.

::::
Note

:::
the

::::::
forcing

::::
and

::::::::
structural

::::::::
contrasts:

:::
our

::::::
CLM5

::::::::::
experiments

:::
are

:::::
forced

:::
by

::::::::
GSWP3,

:::::::
whereas ERA5-Land does not directly incorporate soil moisture observations. Instead, it

uses atmospheric data from the
::
is

::
an

::::::
offline

:::::::::
HTESSEL

:::::
replay

::::::
forced

::
by

:
ERA5reanalysis, which integrates meteorological and

satellite observations via a 4-D variational assimilation system coupled with a simplified extended Kalman filter (Muñoz-Sabater et al., 2021)

. This methodology enables land surface changes to be primarily guided by modeled processes while being affected by240

larger atmospheric conditions. In terms of soil moisture, the
:
;
:::::::::
differences

::::::::
therefore

::::::
reflect

::::
both

::::::
forcing

::::
and

::::::
model

::::::::
structure,

:::
not

::::::::
parameter

::::::
effects

::::::
alone.

::::::::::
ERA5-Land

:::::
does

:::
not

:::::::::
assimilate

:::::::::::
soil-moisture

:::::::::::
observations;

::
it
::
is

:::
an

:::::
offline

:::::::::::
land-surface

::::::
replay

:::::
forced

:::
by ERA5 system assimilates information from a range of satellite sources, such as the Soil Moisture Ocean Salinity

(SMOS), Advanced Microwave Scanning Radiometer-2 (AMSR-2), Tropical Rainfall Measuring Mission Microwave Imager

(TRMM-MI), ERS-1/2 Active Microwave Instrument scatterometer, and Meteorological Operational Satellite (De Rosnay et al., 2013)245

::::::::::
atmospheric

::::::::
reanalysis

:::::
fields

::::::::::::::::::::::::
(Muñoz-Sabater et al., 2021).

:::::
Thus,

:::::::::::
land-surface

:::::
states

:::
are

::::::::
governed

:::
by

:::::::::
HTESSEL

::::::
physics

::::
and

:::::
driven

:::
by

:::::
ERA5

:::::::::::
meteorology. Although ERA5-Land uses an indirect method for

:::::::
involves

::
no

::::::::
land-data

:
assimilation, it is often

employed as a reference for validating soil moisture data
::::
used

::
as

::
a
:::::::
spatially

:::::::::
consistent

:::::
model

:::::::
product

:::
for

::::::
pattern

::::::::::
comparison

due to its global consistency
:::::::
coverage and frequent updates. However, studies have pointed out

:::::::
identified

:
certain discrepancies,

like
:::
such

::
as
:

a wet bias in its soil moisture measurements relative to ground-based and Soil Moisture Active Passive (SMAP)250

satellite data, especially
:::::::::
particularly

:
in heavily vegetated and humid areas (Lal et al., 2022). Additionally,

::::::
neither

:::
our

::::::
CLM5

:::::::::::
configuration

:::
nor

:
ERA5-Land does not account for anthropogenic water management such as

::::::
includes

:
irrigation, which can

significantly affect soil moisture levels in intensively cultivated regions. As documented in previous studies, the absence of

irrigation in the H-TESSEL
:::::::::
HTESSEL

:
land surface model used by ERA5-Land has been linked to underestimation of soil

moisture in irrigated areas and is a known limitation when interpreting results over agricultural landscapes (Wipfler et al.,255

2011; Lavers et al., 2022; Tang and McColl, 2023). These biases highlight the importance of
:::::::::::
characteristics

:::
and

::::::
known

::::::
biases

::::::::
underline

:::
the

::::
need

:::
for careful interpretation when applying

:::::
using ERA5-Land to hydrological tasks

:::
for

::::::::::
hydrological

::::::::
analyses

:::
and

::::::
pattern

::::::::::
comparison. Despite these issues, its capacity to reflect broad spatiotemporal patterns ensures its effectiveness

in assessing model performance
::::::::
similarity and conducting extensive hydrological research. While alternative datasets such

as the North American Land Data Assimilation System (NLDAS) could provide higher resolution and are region-specific to260

CONUS, ERA5-Land was selected for its global consistency, frequent updates, and ability to offer a broader perspective that

facilitates comparison across varying climatic conditions. Additionally, ERA5-Land provides a direct connection to global

atmospheric reanalysis, enabling robust assessments of large-scale interactions between soil moisture and climate processes.

The ERA5-Land data was regridded to fit
::::
were

::::::::
regridded

::
to

:::::
match

:
the CLM5 0.5◦ resolution

::::
grid.
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2.3 EOF Analysis for Soil Moisture Variability265

EOF analysis is a widely utilized statistical method in geophysical sciences for extracting dominant spatiotemporal patterns

from high-dimensional datasets (Jollife, 2002; Björnsson and Venegas, 1997). Originally
::::::
Initially

:
introduced by Lorenz (1956)

in the context of meteorology, EOF analysis has evolved into a foundational tool for analyzing climate and hydrological vari-

ables such as precipitation, evapotranspiration, and soil moisture (Monahan et al., 2009; Korres et al., 2010). The method

works by decomposing a dataset into orthogonal spatial patterns (EOFs) and their corresponding temporal amplitudes (princi-270

pal components, PCs) through linear algebra techniques such as Singular Value Decomposition (SVD) (Hannachi et al., 2007;

Dawson, 2016). In this study, EOF analysis is applied to soil moisture outputs from the CLM5 across the CONUS domain. The

objective is to assess how varying soil hydraulic parameterizations influence both the spatial structure and temporal evolution

of soil moisture, particularly in the context of seasonal-to-interannual
:::::::
seasonal

::
to

::::::::::
interannual

:
climate variability and hydro-

logic extremeslike
:
,
::::
such

::
as

:
droughts and floods. EOF analysis is well-suited to this objective because it captures the internal275

covariance structure of spatial fields and retains dominant modes of variability that simpler diagnostics, such as RMSE or mean

bias, may obscure.

EOF analysis provides a unified framework for comparing spatial and temporal patterns across different experimental se-

tups (EXP1,
::::::
EXP2, EXP3, EXP4a–4d) and against observational benchmarks like

::::::
relative

::
to
::

a
:::::::::::
model-based

::::::
pattern

::::::::
reference

:
(ERA5-Land

:
;
::::
used

::::
only

:::
for

::::::
pattern

::::::::::
comparison,

:::
not

:::::::
ground

:::::
truth). This facilitates the detection of parameter-sensitive regions280

and improves the mechanistic understanding of how soil hydraulic properties modulate model behavior. Such insights are par-

ticularly valuable in hydroclimatically complex regions, including the central Great Plains and the arid western U.S.
:::::::
CONUS,

where soil–climate interactions display high spatial heterogeneity. Moreover, EOF techniques have proven effective for diag-

nosing how land surface processes, especially soil moisture dynamics, interact with large-scale atmospheric teleconnections

such as ENSO, the Pacific Decadal Oscillation (PDO), and the North Atlantic Oscillation (NAO) (Jimma et al., 2023; Kuss and285

Gurdak, 2014). In this context, EOFs help reveal persistent spatiotemporal modes and teleconnection pathways that underlie

soil moisture memory and seasonal predictability (Orth and Seneviratne, 2012; Perry and Niemann, 2007). These properties

support both model evaluation
:::::::::::::
pattern-oriented

::::::::::
comparison and the interpretation of hydroclimatic variability from a process-

oriented perspective.

However, care must be taken in interpreting EOF results. The orthogonality constraint can produce modes that are statistically290

optimal but not necessarily tied to discrete physical processes (Hannachi et al., 2007). To address this limitation, our study

complements EOF analysis with additional diagnostics—
::::::::::::::
pattern-similarity

:::::::::
diagnostics,

:
such as Euclidean distance metrics and

Taylor diagrams—,
:
to evaluate spatial pattern fidelity

::::::::
similarity and the sensitivity of model output to parameter perturbations.

All EOF analyses are performed using the open-source Python package eofs (Dawson, 2016), which is optimized for climate

and Earth system data. This ensures a reproducible, efficient, and physically interpretable workflow for quantifying parameter-295

driven variability in land surface model simulations.
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2.3.1 Computation of EOF Using Singular Value Decomposition

Singular Value Decomposition (SVD) is a robust linear algebra technique widely employed for matrix factorization, enabling

the decomposition of any n×m matrix, Yw, without explicitly solving an eigenvalue problem or constructing a covariance

matrix (e.g., Linz and Wang, 2003; Dawson, 2016; Björnsson and Venegas, 1997). In this study, SVD is utilized to compute300

the EOF modes by decomposing the matrix of soil moisture anomalies, Yw, into orthogonal components. The decomposition

is represented as:
Yw :

n×m

=


u11 u12 · · · u1p

u21 u22 · · · u2p

...
...

. . .
...

un1 un2 · · · unn




γ11 0 · · · 0

0 γ22 · · · 0
...

...
. . .

...

0 0 · · · γnm




v11 v12 · · · v1p

v21 v22 · · · v2p
...

...
. . .

...

vn1 vn2 · · · vmm

 (1)

Yw =UΓVT , (2)305

where U (n×n) contains the left singular vectors (spatial EOFs), V (m×m) contains the right singular vectors (temporal

principal components, PCs), and Γ (n×m) is a diagonal matrix with non-negative singular values γi (Γij = δijγi). The singular

values γi quantify the variance captured by each EOF mode, and ρ=min(n,m) determines the number of non-zero singular

values.

For this analysis, the soil moisture data matrix Yw consists of area-weighted anomaly values simulated by CLM5, where310

the mean at each grid point has been removed to highlight variability. The matrix has n rows representing time steps and

m columns corresponding to spatial grid points. To reduce redundancy and focus on the most significant patterns, we apply

truncated SVD (tSVD), retaining only the top ρ singular values and their corresponding singular vectors:

Yw ≈ ÛρΓ̂ρV̂
T
ρ , (3)

where Ûρ (n× ρ) contains the leading EOFs, Γ̂ρ (ρ× ρ) is the diagonal matrix of the largest singular values, and V̂T
ρ (ρ×m)315

represents the corresponding principal components. Singular vectors associated with smaller singular values are discarded,

improving computational efficiency while preserving the dominant variability patterns (Figure 3).
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Figure 3. tSVD applied to the soil moisture anomaly dataset. The matrix Yw (n×m) is decomposed into Ûρ (n× ρ) for EOFs, Γ̂ρ (ρ× ρ)

for singular values, and V̂T
ρ (ρ×m) for PCs. The truncation level ρ is chosen such that ρ≤min(n,m).

The singular values from tSVD are used to calculate the explained variance (%EVi) for each EOF mode, quantifying their

contribution to the dataset’s variability:

%EVi =
γi
ρ∑

j=1

γj

× 100%, i= 1,2, . . . ,ρ. (4)320

The first EOF mode typically explains the largest fraction of variance, representing the dominant spatial pattern, while subse-

quent modes capture progressively smaller uncorrelated patterns. This hierarchical decomposition provides a powerful frame-

work for analyzing spatiotemporal variability in soil moisture anomalies and assessing the relative contributions of soil hy-

draulic parameters and climate drivers. EOF analysis, through tSVD, ensures that the representation of dominant patterns is

efficient and interpretable, enabling robust physical insights into the factors controlling soil moisture variability.325

2.3.2 Quantifying Similarity of Spatial EOF Modes using Euclidean Distance

The Euclidean distance metric was employed to assess the similarity or dissimilarity between spatial EOF modes derived from

distinct datasets. This metric, commonly used in mathematics and data analysis, calculates the straight-line distance between

two points in Euclidean space, providing a direct and interpretable measure of the geometric proximity between patterns

(e.g., Elmore and Richman, 2001). Its simplicity and intuitive interpretation make it particularly suitable for comparing spatial330

variability patterns obtained through EOF analysis. A smaller Euclidean distance indicates a high degree of similarity between

the EOF modes, suggesting a closer alignment
::::::::
similarity of the underlying spatial patterns. Conversely, a larger distance reflects

greater dissimilarity, indicating distinct spatial characteristics or variability between the datasets. In this study, the Euclidean
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distance was used to compare the spatial EOF modes from the ERA5-Land reanalysis dataset and the
:::::
model

::::::
output

::::
and

:::
the

:::::
CLM5

:
SP-MIP model experiments, representing different data decomposition results. The Euclidean distance for two spatial335

EOF modes, X (ERA5-Land) and Y (SP-MIP), was computed using the following equation:

EucD(X ,Y) =

√√√√ n∑
i=1

(Xi −Yi)2, (5)

where n is the number of elements in each spatial
:::::
spatial

::::::::
elements

::::
(grid

::::::
points)

:::
in

::::
each EOF mode.

This approach enabled the identification of regions within the CONUS domain where the spatial EOF patterns differed sig-

nificantly, highlighting areas requiring improved parameterization of soil properties in LSMs. By quantifying these differences,340

the Euclidean distance analysis provides actionable insights into the spatial scales and regions where soil parameter settings

have the most significant impact, thereby supporting targeted model refinements and enhanced soil moisture simulations.

2.3.3 Taylor Diagram for Evaluating Spatial EOF Modes

Taylor Diagrams (TDs) (Taylor, 2001) were applied to assess
::::::::
employed

::
to

:::::::
evaluate

:
spatial EOF modes, offering

::::::::
providing

:
a

clear and intuitive visualization of three essential
:::::::::::
representation

::
of

:::::
three

:::
key

:
statistical measures: correlation (COR), standard345

deviation (STD), and root mean square error (RMSE). These diagrams are extensively employed in geophysical sciences to

evaluate and compare model performance
::::::::
similarity across various dimensions (e.g., Qiao et al., 2022). Their capability to

display
:::::
ability

::
to

:::::::
display,

:::::::::::::
simultaneously,

:
the relationship between modeled and observed patterns simultaneously

::::::::
reference

::::::
patterns

:
makes them particularly useful for examining the variability and accuracy of spatial EOF modesderived from climate

datasets. In this research, Taylor diagrams were used to compare the spatial EOF modes of the ERA5-Land reanalysis dataset350

against the SP-MIP model experiments. The standard deviation of the ERA5-Land spatial modes served as a benchmark

:::::::
reference

:
for assessing the variability of the SP-MIP modes. The diagrams assessed the similarity of the patterns by using three

metrics: the correlation coefficient, which evaluates the alignment
:::::::
similarity

:
of spatial patterns; the centered RMSE, which

measures the magnitude of pattern differences; and the standard deviation, which indicates the amplitude of variability within

each mode. These combined metrics offer a thorough assessment of spatial pattern differences. Taylor diagrams help identify355

specific EOF modes where SP-MIP experiments differ from the ERA5-Land reference, pinpointing areas for possible model

enhancement
::::::::::
improvement. By incorporating these metrics into one a

::::::
single

:
framework, the diagrams facilitate the focused

improvement of soil parameterizations in LSMs,
::::::
thereby

:
better capturing essential spatial variability patterns in soil moisture.

3 Results and Discussion

3.1 Spatial Variability in Annual Mean Soil Moisture Across CONUS360

Despite consistent forcing data (GSWP3) and model resolution (0.5◦), the experiments reveal notable differences in soil mois-

ture spatial patterns due to variations in soil parameter derivation, underscoring
::::
which

:::::::::
underline the critical role of soil param-

eters in controlling
::::::
shaping

:
simulations. These differences are reflected in the annual mean soil moisture across the CONUS
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region, which ranged from ≈ 195kg m−2 to 380kg m−2, calculated by averaging daily soil moisture from 1980 to 2010 (Fig-

ure 4). The spatial distribution of soil moisture across all experiments reflects well-established precipitation gradients and365

temperature variability, with higher soil moisture levels over the central Great Plains and ENA regions and lower values in the

arid southwest(WNA). These findings agree
::::
align

:
with previous studies documenting

:::
that

::::
have

:::::::::::
documented the relationship

between soil moisture, precipitation, and temperature in these regions (Welty and Zeng, 2018; Koster et al., 2004; Koukoula

et al., 2021; Melillo et al., 2014; Chatterjee et al., 2022). The pronounced variability in soil moisture in the Great Plains aligns

with the principles of
:
is

:::::::::
consistent

::::
with continentality, where greater distances from large water bodies amplify seasonal pre-370

cipitation and evaporation differences (Gimeno et al., 2010). Among the experiments, EXP3 (Figure 3d) shows
:::
4d)

::::::::
simulates

the highest soil moisture levels, followed by EXP2 (Figure 4c) and EXP1 (Figure 4b). These differences reflect the impact of

soil parameter derivation
::::::::
treatments, with EXP1 producing lower soil moisture magnitudes, EXP2 resulting in moderate values,

and EXP3 yielding the highest levels.

The results of EXP4 highlight the role of soil texture in modulating soil moisture distribution. For example, EXP4a (loamy375

sand, Figure 4e) exhibits low soil moisture in the arid southwest and NCA, consistent with the limited water retention capacity

of loamy sand. EXP4b (loam, Figure 4f) shows a more balanced soil moisture distribution, with drier conditions in WNA and

wetter conditions in ENA, reflecting the moderate water-holding characteristics of the loam. EXP4c (clay, Figure 4g) shows

higher soil moisture levels over ENA due to the high water retention capacity of clay, while
:
.
::
In

:::::::
contrast, EXP4d (silt, Figure 4h)

exhibits heterogeneous soil moisture patterns influenced by environmental variability and the intermediate hydraulic properties380

of the silt. These results show
::::::
indicate that uncertainties in soil parameterization significantly affect

:::
have

::
a
:::::::::
significant

::::::
impact

::
on

:
soil moisture simulations in the CLM5 model, consistent with the findings of Brimelow et al. (2010). Our work furthers

this research area by systematically evaluating the role of distinct soil textures (loamy sand, loam, clay, and silt) in shaping

soil moisture variability across different climatic zones. Unlike previous studies, this analysis integrates the spatial distribution

of soil moisture with observed climatic influences
::::::
climatic

::::::::
gradients, providing a more comprehensive assessment of how385

parameterization impacts hydrological processes at a continental scale. Variations in soil parameter settings not only influence

soil moisture magnitudes but also alter spatial distributions, affecting the model’s ability to capture hydrological processes

at the continental scale. The findings of EXP4 further emphasize the importance of soil texture in controlling soil moisture

distribution, highlighting the need for precise parameterization in LSMs. This has important implications for improving water

resource management, agricultural planning, and climate impact assessments.390
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Figure 4. Annual mean soil moisture (1980 –
:
to 2010) over the CONUS region, simulated from four experiment types with spatially uniform

::::::
differing

:
soil parameter settings: EXP1 (b

:
;
::::::
uniform

:::::::
SP-MIP

::::::::
parameters), EXP2 (c

:
;
::::::::::::
texture-derived,

::::::
spatially

:::::::
varying), EXP3 (d;

::::::
CLM5

::::::
defaults,

:::::::
spatially

::::::
varying), and EXP4 (sub-experiments: EXP4a : loamy sand (e), EXP4b : loam (f), EXP4c : clay (g), and EXP4d : silt (h)

:
;

:::
each

:::::::
uniform

::
by

::::::
texture

::::
class). The color bar represents the range of soil moisture values (kg m−2), with warmer colors (red and orange)

indicating lower soil moisture levels and cooler colors (blue and purple) representing higher soil moisture levels.

17



3.2 Interannual Soil Moisture Anomalies

Interannual root-zone soil moisture anomalies over the CONUS region from 1980 to 2010, derived from CLM5 simula-

tion experiments (EXP1, EXP2, EXP3, and multiple EXP4 configurations) and ERA5-Land reanalysis data
:::::
model

::::::
output

:::::::::::
(model-based

::::::
pattern

::::::::
reference), are shown in Figure 5. Anomalies are computed as deviations from the daily annual mean over

the 30-year reference period, following established methodologies for hydrological variability assessment (Tuttle and Salvucci,395

2016; Koster et al., 2004; Welty and Zeng, 2018). The top panel of Figure 5 presents anomalies for EXP1, EXP2, EXP3, and

ERA5-Land, while the bottom panel includes additional EXP4 parameterizations representing different soil textures (loamy

sand, loam, clay, and silt).

Across all configurations, soil moisture anomalies fluctuate around a long-term mean of zero, with values ranging approx-

imately from −20kg m−2 to +40kg m−2. Positive anomalies signify wetter-than-average conditions, while negative values400

indicate drier conditions. The CLM5 experiments exhibit pronounced interannual variability, capturing key hydrological ex-

tremes, including droughts and wet periods, as observed
:::::::::
represented

:
in ERA5-Land

::::::
patterns. CLM5 simulations reproduce the

timing of major interannual features observed
::::::
present in ERA5-Land

::::::
patterns, such as drought and wet periods, but consis-

tently underestimate their magnitude. As shown in Figure 5, all CLM5 configurations produce tightly clustered time series,

lacking the broader spread of
::
in

:
ERA5-Land. This visual clustering illustrates a key discrepancy: ERA5-Land exhibits a405

broader interannual amplitude, with anomalies reaching up to ±40kg m−2, whereas CLM5 simulations are typically confined

to a ±20kg m−2 range.
:
;
::::
note

::::
that

:::::::::
differences

::::
can

::::
also

::::::
reflect

::::::
forcing

::::
and

::::::::
structural

::::::::
contrasts

::::::::::::::
(GSWP3-forced

::::::
CLM5

:::
vs.

:::::::::::
ERA5-forced

:::::::::
HTESSEL

::
in

:::::::::::
ERA5-Land)

::
in

:::::::
addition

::
to

::::::::
parameter

:::::::
effects.

This variability gap likely stems from structural limitations in CLM5, including the use of static soil hydraulic parameters,

diffusive vertical redistribution, and the absence of data assimilation —factors known to constrain the dynamic range and persis-410

tence of soil moisture anomalies in LSMs (Koster et al., 2009; Muñoz-Sabater et al., 2021). The underestimation is particularly

concerning for hydrologic extremes, as it suggests that CLM5 may inadequately simulate the severity of soil moisture deficits

during droughts or surpluses during wet years. These limitations can propagate into downstream processes such as evapotran-

spiration, runoff, and land–atmosphere coupling, thereby reducing the model’s ability to capture feedback mechanisms critical

to hydroclimatic variability (Koster et al., 2004; Berg and Sheffield, 2018). Figure 6 supports this interpretation, showing that415

CLM5 anomaly values are compressed along the 1:1 line when compared to ERA5-Land, reinforcing the conclusion that the

model’s soil moisture response is systematically dampened. Finally, while ERA5-Land’s higher peaks—particularly in positive

extremes—
:
, may partly reflect overestimation in vegetated regions due to unresolved processes such as irrigation or enhanced

surface fluxes (Lal et al., 2022), the muted variability in CLM5 highlights
:::::::
indicates the importance of improved parameter

calibration and multi-source observational benchmarking
::::::::
reference

::::::
datasets

:
in future work.420

The relationship between daily soil moisture anomalies from CLM5 and ERA5-Land is further examined in Figure 6. These

scatter plots compare CLM5-simulated anomalies with ERA5-Land on a point-by-point basis. The distribution of points is

closely aligned along the 1:1 line, with coefficient of determination (R2) values ranging from 0.7 to 0.8 across experiments.

These correlations confirm that CLM5 successfully captures the overall variability
:::::
much

::
of

:::
the

:::::::::
variability

::::::
present

:
in ERA5-

18



Land
::::::
patterns, albeit with some systematic biases. Specifically, ERA5-Land tends to exhibit larger positive anomalies relative425

to CLM5, reinforcing the trend observed
::::
seen

:
in the time-series plots. The EXP4 configurations (Figure 6b) show similar

performance to EXP1-3
:::::::
similarity

:::
to

:::::::::::
EXP1–EXP3, indicating that soil texture variations only moderately impact anomaly

correlations at an aggregated scale.

The results indicate significant interannual variability in soil moisture anomalies, with distinct peaks and troughs corre-

sponding to extreme hydrological events. These fluctuations are likely driven by large-scale climatic influences, such as ENSO,430

which modulate regional hydrological conditions (Gimeno et al., 2010; Welty and Zeng, 2018). While periodicity in anomalies

suggests a possible linkage to climate oscillations, further spectral analysis would be required to confirm such relationships.

Additionally, the lack of a discernible long-term trend suggests
:::::::
indicates

:
that soil moisture anomalies remained relatively stable

over the study period, with variability largely governed by short to medium-term hydrological cycles. This aligns with findings

from Lesinger and Tian (2022), who noted that while interannual fluctuations in soil moisture can be significant, multi-decadal435

trends over CONUS tend to be weak or spatially constrained. Overall, the time-series (Figure 5) and scatter plots (Figure 6)

collectively demonstrate that CLM5 reasonably captures the timing and structure of interannual soil moisture variability, but

consistently underestimates its magnitude relative to ERA5-Land
:::::::
patterns, with strong correlationsto ERA5-Land. However,

ERA5-Land’s systematic overestimation of positive anomalies highlights
:::::::
indicates

:
a potential bias in reanalysis products, ne-

cessitating further evaluation of the mechanisms driving such deviations.
::::::::::
Accordingly,

:::
we

:::::::
interpret

:::
the

::::::::::
ERA5-Land

::::::::::
comparison440

::::::
strictly

::
as

:
a
:::::::::::
pattern-based

:::::::::
reference.

::::::::::
Similarities

::::::
indicate

::::
that

:::::::
CLM5’s

:::::::::
parameter

::::::
choices

:::::::::
reproduce

::::::
timing,

::::::
phase,

:::
and

::::::
spatial

:::::::::
covariance

::::
seen

::
in

::
an

::::::::::
independent

::::::
model

:::::::
product,

:::::::
whereas

::::::::
systematic

:::::::::
departures

::::::::
highlight

::::::::::::::::
parameter-sensitive

:::::::
regions;

::::::
neither

:::
case

::
is
:::::
taken

::
as

:::::::::
validation

::
of

:::::::
absolute

:::
soil

::::::::
moisture

:::::
levels.

:
Future work should assess regional patterns in soil moisture dynam-

ics and quantify biases across different land cover types to refine model performance
::::::
improve

::::::
pattern

:::::::::
similarity.
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Figure 5. Time series of daily root-zone soil moisture anomalies from 1980 to 2010 over the CONUS region. Panel (a) shows
::::::
displays anoma-

lies for CLM5 simulations using EXP1, EXP2, and EXP3 configurations,
:
compared with ERA5-Land

:::
(the

::::::::::
model-based

:::::
pattern

::::::::
reference).

Panel (b) includes EXP4 simulations with uniform soil texture classes (loamy sand, loam, clay, and silt), also compared against ERA5-Land.

Anomalies are computed as deviations from the 30-year daily climatological mean. ERA5-Land exhibits a wider anomaly range, while

CLM5 simulations show more constrained variability, highlighting differences in interannual amplitude across configurations.
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Figure 6. Daily mean root-zone soil moisture anomalies for 1980 to 2010 from each CLM5 experiment (EXP1, EXP2, EXP3, and the

EXP4 sub-experiments) plotted against ERA5-Land
:::::::::
(model-based

::::::
pattern

::::::::
reference). All anomalies are expressed in [kg m−2]. Each colored

marker represents daily anomalies from a given experiment, while the black dashed line denotes the 1:1 relationship. In the legend, R2 values

(in parentheses) indicate how closely
::
the

::::::
degree

:
to
:::::
which

:
each experiment’s anomalies match those of

::::
align

:::
with

:
ERA5-Land

::::::
patterns.

3.3 Seasonal Variability of Soil Moisture445

As evident in Figure 7, significant
::::::
notable

:
differences emerge between ERA5-Land

::::::
patterns

::::::::::::
(model-based

::::::
pattern

:::::::::
reference)

and CLM5 simulations, particularly in the amplitude of seasonal variability. ERA5-Land exhibits the strongest seasonal cycle,

with a sharp rise in soil moisture from February through May, peaking in June, followed by a pronounced decline into the late

summer and early autumn months. In contrast, EXP1, EXP2, and EXP3 form a tightly clustered group with relatively flattened

seasonal curves. These configurations consistently underestimate the springtime peak and summer drawdown, suggesting that450

their soil moisture response to seasonal climate forcing is muted. Among them, EXP2 (green line) shows the lowest amplitude,

while EXP3 (red line) offers a slightly improved but still subdued representation.

Notably, EXP4a (black dashed line) deviates from this pattern. It more closely mirrors
:::::
shows

::::::
greater

::::::::
similarity

::
to
:

ERA5-

Land ’s seasonal dynamics
:::::::
seasonal

:::::::
patterns, especially from March to September, capturing a steeper ascent in spring and

a deeper trough in late summer. This improved responsiveness is likely due to the loamy sand texture used in EXP4a, which455

promotes rapid infiltration and drainage, thereby amplifying soil moisture variability in response to precipitation and evapotran-

spiration. In contrast, EXP4b-d (loam, clay, silt) progressively dampen the seasonal signal, with EXP4c and EXP4d showing

the lowest variability due to their high water retention capacities.
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These differences indicate that while CLM5 is able to reproduce
:::::::::
reproduces

:
the general phasing of the seasonal cycle, it

substantially underrepresents the amplitude of variation observed in ERA5-Land
::::::
patterns. This underestimation is especially460

critical during the peak moisture accumulation (March–June) and depletion (July–October) phases, and highlights the impor-

tance of hydraulic conductivity, retention characteristics, and vertical redistribution in modulating soil moisture seasonality. Al-

though ERA5-Land may overestimate soil moisture in certain vegetated regions (Lal et al., 2022; Lesinger and Tian, 2022), its

higher amplitude suggests a more dynamic land surface response that current CLM5 configurations, particularly EXP1–EXP3
:
,

fail to capture adequately. Addressing this discrepancy through improved parameter tuning and structural adjustments could465

enhance CLM5’s ability to simulate land–atmosphere coupling and surface hydrological processes across seasons.
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Figure 7. Monthly mean seasonal cycles of standardized root-zone soil moisture for the period 1980 –
:
to
:

2010 across the CONUS. CLM5

simulations (EXP1–EXP3 and EXP4a–d) are compared with ERA5-Land reanalysis
::::::::::
(model-based

::::::
pattern

::::::::
reference). ERA5-Land exhibits

the largest seasonal amplitude, with sharp increases during spring (March–June) and steep declines during summer (July–October). In

contrast, EXP1–EXP3 form a tightly clustered group with flattened seasonal cycles, underestimating both the spring moisture accumulation

and summer drawdown. EXP4a, which uses a loamy sand texture, shows greater seasonal responsiveness and more closely tracks
:::::
greater

:::::::
similarity

::
to ERA5-Land

:::::::
seasonal

::::::
patterns. The remaining EXP4 configurations (loam, clay, silt) progressively dampen seasonal variability,

reflecting the influence of soil texture on water retention and hydrologic dynamics.

3.4 EOF Analysis of Soil Moisture Variability

3.4.1 Explained Variance and Mode Contributions

This study applies EOF analysis to soil moisture anomalies from the CLM5 simulations (EXP1, EXP2, EXP3) and
:::
the ERA5-

Land data
:::::
model

::::::
output

:::::::::::
(model-based

:::::::
pattern

::::::::
reference,

::::
with

:::
no

:::
soil

:::::::
moisture

:::::::::::
assimilation

:::
and

::
no

:::::::
ground

:::::
truth) to investigate470

how soil parameterization influences soil moisture variability in the CONUS region. Figure 8 presents the percentage of vari-

ance explained by the first 10 EOF modes for each dataset, illustrating both individual and cumulative contributions. The EOF
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modes are ranked by variance percentage, with EOF-1 capturing the highest variance and representing the most significant

spatial variability. Across all experiments, EOF-1 explains slightly more variance than EOF-2, suggesting limited separation

between these modes and potential mode mixing. The explained variance gradually declines in subsequent modes, with EOF-475

10 contributing less than 2%, as summarized in Table 3.
::
4. EOF-1 explains a similar percentage of variance in EXP1 (11.45%)

and EXP2 (11.66%), indicating comparable spatial variability patterns. However, in EXP3, EOF-1 captures only 10.84% of the

variance, with mode mixing shifting variance from EOF-1 to EOF-2 (Table 3, arrows). These differences highlight the impact

of soil parameterization on representing dominant soil moisture variability. ERA5-Land, serving as a benchmark
:::
used

::::
here

::
as

::
a

::::::
pattern

:::::::
reference, exhibits a much stronger

::::
larger

:
EOF-1 contribution (17.5%), emphasizing

::::::::
indicating

:
a more dominant lead-480

ing mode in observed data compared to modeled datasets.
::::
than

::
in

:::
the

::::::
CLM5

::::
runs;

::::::::::
differences

:::
can

::::
also

:::::
reflect

:::::::
forcing

::::::
(ERA5

::
vs.

::::::::
GSWP3)

::::
and

::::::::
structural

:::::::::
(HTESSEL

:::
vs.

:::::::
CLM5)

::::::::
contrasts,

:::
not

:::::::::
parameter

::::::
effects

:::::
alone.

:
The cumulative explained variance

(Figure 8, green line) further demonstrates the efficiency of the EOF modes in capturing soil moisture variability
:::::
shows

::::
how

::::::::
efficiently

:::
the

::::::
leading

::::::
modes

:::::::::
summarize

:::::::::
variability

::
in

::::
each

::::::
dataset.

While the first five modes account for about 40% of the variance in ERA5-Land, modeled datasets
::
the

::::::
CLM5

::::::::::
simulations485

require approximately six modes to reach the same threshold. This distribution suggests that
:::
the simulations spread variance

more evenly across modes, reflecting differences in spatial patterns between models and observations. To ensure comparability,

adjustments aligned the EOF modes
:::::
CLM5

::::::::::
simulations

:::
and

:::::::::::
ERA5-Land.

:::
To

:::::::
facilitate

:::::::::::
cross-dataset

::::::::::
comparison,

:::
we

:::::::::
re-ordered

::::
EOF

:::::
modes

::::::
where

::::::::
necessary

::
so

:::
that

:::
the

::::::::
dominant

::::::
spatial

:::::::
patterns

::::
were

::::::
aligned

:
across datasets. For instance, shifts in EXP3 and

ERA5-Land were necessary to match
::
the

:
dominant spatial patterns, such as

::
the

::::::
swaps

::
of EOF-1 and EOF-2 swaps (indicated by490

arrows in Table 3). These adjustments highlight the sensitivity of EOF rankings to mode mixing and the challenges of directly

comparing modeled and observed datasets
:::::::
different

:::::
model

:::::::
products

:::::::
(CLM5

:::
and

:::::::::::
ERA5-Land). In addition, Appendix A (Figure

A1) provides additional EOF analysis results for EXP4a-d
::::::::
EXP4a–d, detailing variance explained across experiments. The

findings reinforce the influence of soil parameterization on the spatial distribution of soil moistureand emphasize the need for

improved alignment with observed patterns, as reflected in ,
:::::::::::
emphasizing

:::
that

:::::::::::
comparisons

:::
are

:::::::::
interpreted

::
in

:::::
terms

::
of

::::::::
similarity495

::
to ERA5-Land

:::::::
patterns

:::::
rather

::::
than

::::::::
validation

::
of

::::::::
absolute

:::::
levels.
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Figure 8. The variance explained by each separate and combined EOF in the CLM5 soil moisture experiment is depicted. Red
:::
(red

barsrepresent
:
)
:::
and

:
the contribution of each EOF individually, while the

::::::::
cumulative

:::::::
variance

:
(green line)

:
shows the cumulative propor-

tion for the initial 10 EOF modes.
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Table 4. Percentage of variance explained (%Expl. Var.) by the first 10 EOF modes for EXP1, EXP2, and EXP3 model runs, and ERA5-Land

benchmark
:::::::
reference

:
data. Arrows and superscripts indicate EOF mode swaps for consistent comparisons across datasets (see Figure 9).

EOF Mode EXP1 %Expl. Var. EXP2 %Expl. Var. EXP3 %Expl. Var. ERA5-Land %Expl. Var.

EOF-1 11.45 11.66 10.84 ↓2 17.5 ↓2

EOF-2 10.40 10.60 9.85 ↑1 8.48 ↓3

EOF-3 8.81 8.25 9.08 7.83 ↑1

EOF-4 5.69 5.83 5.73 5.75

EOF-5 4.37 4.59 4.48 5.61

EOF-6 3.49 3.56 3.48 3.64

EOF-7 3.26 3.23 3.24 3.10

EOF-8 2.51 2.53 2.63 2.86

EOF-9 2.14 2.16 2.22 2.76

EOF-10 1.96 1.99 1.95 2.22

Total Cumm
::::::
Cumul. %Expl. Var. 54.07 54.4 53.49 59.77

3.4.2 Spatial and Temporal Analysis of EOF Modes for Soil Moisture Variability

Spatial
:::
We

::::
show

:::
the

::::::
spatial distribution of the first three EOF modes from soil moisture anomalies in CLM5 simulations (EXP1,

EXP2, EXP3) and ERA5-Land (
:::::::::::
model-based

::::::
pattern reference). The maps in Figure 9 show correlation coefficients between

the PC time series of each EOF mode and the soil moisture anomaly time series at each grid point. These correlation maps500

indicate the spatial strength and direction of association between local anomalies and the broader temporal mode represented

by the PC. This representation facilitates interpretation by highlighting regions that co-vary in phase (positive correlation) or

in anti-phase
::::::::
antiphase (negative correlation) with the dominant temporal pattern, thereby revealing the spatial structure of

soil moisture variability linked to each EOF mode. EOF-1 patterns (Figures 9d, g, j) reveal strong positive correlations in

central and southeastern ENA, highlighting a dominant mode of variability. Negative correlations are observed
:::
seen

:
in WNA505

and CNA, indicating contrasting modes of soil moisture variability in the CONUS region. The variance explained by EOF-1

ranges from 9.85% (EXP3) to 11.66% (EXP2), with ERA5-Land explaining significantly more variance at
:::::::
showing

:
a
::::::

larger

:::::::
variance

::::::::::
contribution

:
(17.5%

:
). These spatial patterns align with large-scale climatic influences

:
, such as precipitation gradients

and
:::
and

::::::::::
temperature

::::::::
gradients,

:::
as

:::
well

:::
as geographic features. For example, Gaffin and Hotz (2000) noted that the Appalachian

Mountains exhibit strong precipitation gradients due to storm systems lifting moist southerly winds, enhancing soil moisture510

in ENA. The corresponding principal components (PC-1; Figure 10a) indicate temporal variability, with notable peaks during

2003 to 2004 and 1988 to 1999, corresponding to documented climatic events such as ENSO-driven precipitation anomalies

(Ye et al., 2023; Gimeno et al., 2010). The close agreement of PC-1 across all experiments highlights
:::::::
indicates the robustness of

EOF-1 in representing dominant soil moisture variability
::
the

::::::::
dominant

:::::::::
variability

::
in

::::
soil

:::::::
moisture, although slight differences

suggest
:::::
some sensitivity to parameterizations.515
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EOF-2 (Figures 9e, h, k) exhibits a distinct dipole pattern, with positive correlations in the central Great Plains and nega-

tive correlations over ENA, reflecting a wide spread in soil moisture variability. This dipole nature, which explains 10.40% to

10.84% of the variance, is consistent with regional climatic processes such as precipitation and evapotranspiration dynamics

influenced by terrain and hydrological conditions. For example, positive correlations in the central Great Plains may result from

localized convective precipitation; however, isotope studies indicate that precipitation in this region is influenced by moisture520

transported from external sources, such as the Gulf of Mexico, rather than solely from local convection (Sanchez-Murillo

et al., 2023). Negative correlations in ENA could reflect the influence of evapotranspiration or soil drainage patterns (Famigli-

etti, 2014). In particular, EXP3 shows
::::::
exhibits

:
a stronger positive correlation in the desert southwest, indicating

::::::::
suggesting

:
a

greater sensitivity to soil parameters in arid regions, which can alter
:::::::
influence

:
soil water retention and infiltration rates. Further-

more, EOF-3 (Figures 9f, i, l) highlights localized variability, with positive correlations in the Pacific Northwest and negative525

correlations over Texas in CNA. This mode explains less variance than EOF-1 and EOF-2 , ranging from (8.25% (
:
in

:
EXP2 ) to

9.85% (
::
in EXP3) , but captures important regional processes. The Pacific Northwest patterns may be influenced by orographic

precipitation, while
:
.
::
At

:::
the

:::::
same

::::
time,

:
negative correlations in Texas could reflect drought conditions dominated by soil type

and fine texture which have a high potential for water retention (Haverkamp et al., 2005)and fine-texture which have a high

potential for water retention
::
the

::::::::
influence

::
of

:::::::::::
fine-textured

::::
soils

::::
with

::::::
higher

:::::::::::::
water-retention

:::::::
potential

:::::::::::::::::::::
(Haverkamp et al., 2005)530

. Although the spatial patterns of EOF-3 are broadly similar between experiments, slight shifts in correlation intensity and

location suggest localized impacts of soil parameterizations. The PCs (Figure 10c) show weaker temporal variability , with oc-

casional peaks corresponding
:::
tied to distinct climate events, which emphasizes

::::::::::
emphasizing

:
the regional specificity of EOF-3.

The appendix includes Figures A2 and A3, which offer additional results highlighting the spatial and temporal variability of

EXP4a-d
::::::::::::
EXP4a-EXP4d EOF across experiments, further supporting the findings discussed. Lastly, the results emphasize the535

significant role that soil parameterizations play in soil moisture variability within the CLM5 model. Differences in the spatial

and temporal patterns of EOFs indicate the model’s sensitivity to these parameterizations, especially in areas with intricate

terrain or significant climate variability. The alignment
:::::
greater

:::::::::
similarity of EOF-1 with

:
to

:
ERA5-Land underscores

:::::::
patterns

::::::::
underlines

:
the robustness of the model’s primary modes, while discrepancies in EOF-2 and EOF-3 highlight regions where

model refinements could enhance localized soil moisture predictions. This study stresses the importance of improving soil540

parameterizations to increase the precision of hydrological simulations
::::::
improve

:::
the

::::::::::::
representation

::
of

:::::::::::
hydrological

:::::::::
variability

and effectively capture the interaction between soil moisture and climatic elements.
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Figure 9. Spatial correlation maps of the first three EOFs of soil moisture anomalies for the CONUS, derived from ERA5-Land reanalysis

data
:::::::::
(model-based

::::::
pattern

::::::::
reference) and three CLM5 experiments (EXP1, EXP2, EXP3). Panels (a) to (c) represent EOF-1, EOF-2, and

EOF-3 from ERA5-Land, respectively. Panels (d–f), (g–i), and (j–l) show corresponding modes from EXP1, EXP2, and EXP3. The color

shading represents the correlation coefficient between the PC time series of each EOF mode and the soil moisture anomaly time series at each

grid point. Positive values indicate in-phase variability with the PC (regions that co-vary with the dominant mode), while negative values

indicate anti-phase behavior. These maps illustrate the spatial coherence and phase relationships of soil moisture variability associated with

each mode.
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Figure 10. Temporal Variability (PC) of corresponding EOF over time (1980-2010) displaying the amplitude of the first four PCs:

EXP1 (blue), EXP2 (green), and EXP3 (orange) derived from the soil moisture decomposition respective of their
::
for

::::
each

:
simulation

experiments
::::::::
experiment.

3.4.3 EOF Modes: Euclidean Distance Analysis

The
::
We

::::::::
compute

:::
the

:
Euclidean distance between the spatial patterns of EOF modes derived from soil moisture anomalies

in
:::
the

:
CLM5 SP-MIP model experiments (EXP1, EXP2, and EXP3) and the corresponding EOF modes from the

:::::
modes545

::::
from

:
ERA5-Land reanalysis (Figure 11). The

:::::
model

::::::
output

:::::::::::
(model-based

:::::::
pattern

::::::::
reference;

::::
not

::::::
ground

::::::
truth).

:
Euclidean

distance quantifies the dissimilarity between the
::::::::::
dissimilarity

::::::::
between spatial modes, with smaller values indicating closer

agreement with the
::::::
greater

::::::::
similarity

::
to
:

ERA5-Land benchmark
:::::::
patterns. Regions with hatched lines represent

:::::
denote

:
areas

where the Euclidean distance falls below a threshold of 5, suggesting a strong alignment between the model-derived
:::::
strong

::::::
pattern

::::::::
similarity

:::::::
between

:::
the

:::::::::::::
CLM5-derived

:
EOFs and the observed EOFsin these locations

::::::::::
ERA5-Land

:::::
EOFs. EOF-1 ex-550

hibits the most consistent alignment
::::::::
similarity across experiments, particularly in the western and northwestern portions of

the CONUS region
::::::
CONUS

:
(WNA). The hatched areas in these regions

::::
there

:
indicate that the spatial variability of soil
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moisture in these areas is well-represented by the model, reflecting accurate capture of
:::::::
modeled

::::::
spatial

:::::::::
variability

::::::
shows

::::
close

::::::::
similarity

::
to
:::::::::::

ERA5-Land
:::::::
patterns,

:::::::::
consistent

::::
with large-scale hydrological processes influenced by

:::::::::
hydrologic

:::::::
controls

::::
such

::
as

:
precipitation gradients and topographic features

:::::::::
topography

:
(Gaffin and Hotz, 2000; Famiglietti, 2014). In con-555

trast, the central Great Plains consistently shows larger Euclidean distances for all three EOF modesacross experiments,

suggesting significant discrepancies between the modeled and observed soil moisture patterns
:
,
:::::::::
indicating

::::::
notable

:::::::
pattern

:::::::::
differences

:::::::
between

::::::
CLM5

:::
and

::::::::::
ERA5-Land

:
in this region. This discrepancy may be attributed to

:::::
These

:::::::::
differences

::::
may

::::::
reflect

limitations in soil parameterizations or
::
and

:
the complexity of hydrological and climatic processes , such as

:::::::::::
hydroclimatic

::::::::
processes

::::
(e.g.,

:
precipitation variability and soil moistureprecipitation feedbacks, as highlighted by Koster et al. (2004) and560

Welty and Zeng (2018). Compared
:::::::::::
–precipitation

:::::::::
feedbacks)

::::::::::::::::::::::::::::::::::::
(Koster et al., 2004; Welty and Zeng, 2018),

:::
as

::::
well

::
as

:::::::
forcing

:::
and

::::::::
structural

::::::::
contrasts

:::::::
between

:::::::
datasets

:::::::
(CLM5

::::::
forced

::
by

::::::::
GSWP3

:::
vs.

::::::::::
ERA5-Land

:::
as

::
an

::::::
offline

:::::::::
HTESSEL

::::::
replay

::::::
forced

::
by

:::::::
ERA5).

:::::::
Relative

:
to ERA5-Land

::::::
patterns, EXP1 shows a better agreement with ERA5-Land in the WNA region

::::::
greater

::::::::
similarity

::
in

:::::
WNA for EOF-1, while the performance

::::::::
similarity in other regions remains mixed across the

::
is

:::::
mixed

::::::
across ex-

periments. EOF-2 and EOF-3 exhibit increased variability in Euclidean distances ,
::::::
display

:::::
larger

::::::::
distances with fewer hatched565

areas, indicating challenges in capturing smaller-scale processes
:::::::
structures

:
and dipole patterns present in these modes (Han-

nachi et al., 2007; Monahan et al., 2009). These findings underscore
:::::::
underline

:
the model’s sensitivity to parameterizations

:::
soil

::::::::
parameter

:::::::
choices and highlight the need for targeted improvements in the central Great Plains and other regions with persis-

tent discrepancies. By refining
:::::
pattern

::::::::::
differences.

::::::::
Refining soil parameter settings and incorporating additional observational

constraints, future experiments could achieve better alignment with ERA5-Land, thereby enhancing the accuracy
::::::::::
independent570

::::::
datasets

:::::
(e.g.,

::::::
SMAP,

:::
in

:::
situ

:::::::::
networks)

::
as

:::::::::::::
complementary

:::::::::
references

:::::
could

::::
help

::::::::
improve

:::
the

::::::::::::
representation of regional soil

moisture simulations (Lawrence et al., 2019; Tuttle and Salvucci, 2016).
:::::::
patterns.

:
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Figure 11. Euclidean distance between EOF modes from SP-MIP experiments (EXP1, EXP2, EXP3) and ERA5-Land
::::::::::
(model-based

::::::
pattern

:::::::
reference). Hatched areas indicate regions where the distance is below the threshold of 5, showing closer agreement with

:::::::
indicating

::::::
greater

:::::::
similarity

::
to ERA5-Land

::::::
patterns.

3.4.4 EOF Modes: Taylor Diagram Analysis

TDs (Figure 12) provide a comprehensive statistical summary of how well
:::::::::
summarize

:::
the

::::::::
similarity

::
of EOF patterns from dif-

ferent experiments match those of
::
to

:::::
those

::
in ERA5-Land by depicting three key statistics: the

:::::::::::
(model-based

::::::
pattern

:::::::::
reference)575

::::
using

:::::
three

::::::::
statistics:

:
standard deviation (dotted lines), the

:::::
arcs),

:
correlation coefficient, and the centered root mean square

error (RMSE). Each marker’s position on the plot indicates how accurately the soil moisture EOF mode pattern aligns with

:::::::
indicates

:
the

:::::
degree

::
of

::::::
pattern

:::::::::
similarity

:::::::
between

:
a
::::::::
modeled

::::
EOF

:::::
mode

::::
and

:::
the ERA5-Land EOF mode. For EOF-1 (Figure

12a), the standard deviations of the EOF modes for all model experiments are relatively close to the reference EOF mode,

ranging between 4.0 and 6.5, which suggests a good match in terms of
:::::
close

::::::::
similarity

::
in variability. The pattern correlations580

range between 0.6 and 0.95, with EXP4d demonstrating the highest pattern correlation. This indicates that the spatial pattern of
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EXP4d aligns more closely with
:::::
shows

::::::
greater

::::::::
similarity

::
to

:
the ERA5-Land EOF mode. In EOF-2 (Figure 12b), the standard

deviations remain consistent with
::
are

::::::::::
comparable

::
to

:
the reference EOF mode, while the pattern correlations cluster between 0.4

and 0.7. This highlights a moderate similarity in the spatial patterns of EOF across the experiments and in the reference EOF

mode
:
,
::::::::
indicating

::::::::
moderate

:::::::::
similarity for the second modeof variability. For EOF-3 (Figure 12c), the EOF modes generally585

exhibit a pattern correlation of around 0.8 and a standard deviation of approximately 5.0. However, the EXP4d EOF deviates,

centered around a lower standard deviation of 3.5. These variations emphasize the influence
::::::::
highlight

:::
the

::::::
impact of soil pa-

rameter settings in the simulations of the CLM5model, illustrating how adjustments in these settings affect the alignment of

the EOF mode patterns with the ,
::::::::::::
demonstrating

::::
how

:::::::::
parameter

::::::
choices

::::::::
influence

:::
the

::::::::
similarity

::
to

:
ERA5-Land reference EOF

mode
::::
EOF

:::::::
patterns.590

0.0 0.2
0.4

0.6
0.7

0.8

0.9
0.95

0.99
1.0

Pattern Correlation

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5
Standard Deviation

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

[a] EOF-1

2.0

4.
0

6.
0

8.
0

10.0

12.0

0.0 0.2
0.4

0.6
0.7

0.8

0.9
0.95

0.99
1.0

Pattern Correlation

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5
Standard Deviation

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

[b] EOF-2

2.0

4.
0

6.
0

8.
0

10.0

12.0

0.0 0.2
0.4

0.6
0.7

0.8

0.9
0.95

0.99
1.0

Pattern Correlation

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0
Standard Deviation

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0
[c] EOF-3

2.0

4.
0

6.
0

8.
0

10.0

12.0
14.0ERA5-Land

EXP1
EXP2
EXP3
EXP4a
EXP4b
EXP4c
EXP4d

Figure 12. Taylor Diagrams (TDs) for the leading three EOFs from multiple experiments (EXP1, EXP2, EXP3, EXP4a, EXP4b, EXP4c,

EXP4d) and ERA5-Land. The diagrams summarize standard deviation, correlation coefficient, and RMSE, with marker placement indicating

the alignment of modeled EOF modes with
:::::

pattern
:::::::
similarity

::::::
relative

::
to ERA5-Land

::::::::::
(model-based

:::::
pattern

::::::::
reference).

4 Conclusion and Recommendations

This study investigates the influence
:::::::
examines

:::
the

::::::
impact

:
of soil parameterizations on soil moisture simulations in the CLM5

across the CONUS for the period 1980 to 2010using
:
,
:::::::
utilizing EOF analysis. The analysis compared the

:::
We

::::::::
compared CLM5

outputs with the
:::::::::
simulations

::
to

:
ERA5-Landreanalysis data to identify

:
,
::::
used

::::::
solely

::
as

::
a

::::::::::
model-based

:::::::
pattern

::::::::
reference,

::::
and

::::::::
quantified

:::
the

::::::::
similarity

::
of

:
spatial and temporal variability in soil moisture patterns arising from differences in

::::::
patterns

::::::
across595

soil parameter configurations. The results highlighted
::::::
showed that EXP3, which used the default CLM5 soil parameters, consis-

tently simulated higher soil moisture levels than other experiments. This finding underscores
::::::::
highlights

:
the model’s sensitivity

to variations in soil hydraulic properties, such as
:::::::
including

:
saturated hydraulic conductivity, soil water retention characteristics,

and porosity. Seasonal soil moisture dynamics showed broad consistency across experiments, peaking in winter due to reduced
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evapotranspiration, and declining in summer when higher temperatures intensified soil drying. However, distinct differences600

emerged in the magnitude and phase of seasonal cycles, revealing how variations in soil properties can influence processes such

as water retention, drainage, and evapotranspiration fluxes. These insights align with previous research, which demonstrated

that soil moisture significantly affects hydrological processes and land-atmosphere interactions, particularly through feedback

mechanisms that vary regionally across the United States ((Tuttle and Salvucci, 2016; Koster et al., 2004). Furthermore, the am-

plified sensitivity observed
::::
seen in the arid and semi-arid regions of the CONUS suggests that these areas may be particularly605

vulnerable to uncertainties in soil parameterization.

This study directly addressed two key research questions: (1) how soil hydraulic parameters influence large-scale spatial

soil moisture patterns, and (2) how these parameters affect temporal dynamics during climate extremes. Regarding the first

question, EOF analysis revealed that changes in soil hydraulic properties significantly altered the spatial distribution of
:::
the

dominant EOF modes, particularly in regions like
::::
such

::
as the Great Plains and ENA, indicating that parameterizations strongly610

shape
::::::::
influence modeled soil moisture gradients. For the second question, principal component time series linked to major

::::::::
associated

:::::
with

:::
the

::::::
leading

:
EOFs captured interannual anomalies and periods of extreme wetness or dryness that aligned

::::::::
coincided with known climate events , such as ENSO phases

::::
(e.g.,

::::::
ENSO

::::::
phases). Variations in the amplitude and persistence

of these temporal patterns across experiments underscored
:::::::::
underlined the role of soil parameters in modulating the hydrologic

response to climate variability. These findings affirm that parameter choice not only controls spatial representation but also615

governs
::::::::
influences

:
the sensitivity of soil moisture to climatic extremes, highlighting the dual spatial-temporal impact of soil

parameterization in land surface modeling.

EOF analysis further revealed that the first few modes accounted for the majority
::::
most

:
of the variance in soil moisture

between
:::::
across experiments, and the EOF-1 mode, decomposed from soil moisture consistently explained the largest proportion

::::
most

:::::::::
significant

:::::::::
proportion

::
of

:::::::
variance. The spatial patterns of the first three EOF modes exhibited similar broad-scale features620

among the experiments, such as dominant moisture gradients across climatic zones. However, notable differences in explained

variance and spatial correlations pointed to the influence of soil parameters on the physical processes driving regional mois-

ture variability. Compared with ERA5-Land data
:::::::
patterns using Euclidean distances and Taylor diagrams, the CLM5 output

aligned more closely with observations
::::::
showed

::::::
greater

::::::::
similarity

:
in WNA, reflecting better model performance in capturing the

dynamics
::::::::
indicating

::::::
closer

:::::::::::::
correspondence

::
to

:::::::::::
ERA5-Land’s

::::::::::::
representation

:
of mountainous and arid regions

:::::
region

::::::::
dynamics.625

In contrast, persistent discrepancies in the central Great Plains revealed challenges in representing complex interactions be-

tween soil hydraulic properties, precipitation variability, and surface-atmosphere feedbacks. These discrepancies are particu-

larly concerning given the region’s susceptibility to extreme hydrological events, including droughts and floods (Koster et al.,

2004; Ye et al., 2023). The Great Plains is characterized by a highly variable continental climate, with strong seasonal and

interannual fluctuations in precipitation and temperature, leading to frequent shifts between wet and dry extremes (Basara and630

Christian, 2018; McDonough et al., 2020). This climatic variability makes the region hydrologically complex, requiring
::
an

accurate representation of soil moisture dynamics for land surface hydrology modeling. Errors in soil moisture estimation can

propagate into predictions of crop productivity, water resource availability, and flood risk. The findings suggest that refining

soil hydraulic parameterizations, such as incorporating high-resolution soil texture data and accounting for heterogeneity, can
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significantly improve the predictive capacity of CLM5 and other LSMs for climate studies, ecosystem assessments, and re-635

source management. While our comparative framework assessed the aggregate effects of parameter set differences, we did not

perform a formal sensitivity analysis to isolate the influence of individual soil hydraulic properties (e.g., saturated hydraulic

conductivity, porosity, van Genuchten parameters), which remains an important area for future investigation.

While ERA5-Land was used as the reference dataset in this study , we emphasize that our objective was not to perform

a traditional comparison of CLM5 soil moisture outputs, but to evaluate the
::::
This

:::::
study

::
is
:::

an
:
intra-model sensitivity of640

spatial and temporal variability to different soil hydraulic parameterizations.
:::::::
analysis;

:::
all

:::::::::::
comparisons

:::
are

::::::::::::::
model-to-model

:::
and

::::::::::::
pattern-based,

:::
not

::::::::::
validations

::::::
against

:::::::::::
observations.

:::
We

::::
use ERA5-Land served as a physically consistent and spatially

continuous benchmark to assess whether
::::
only

::
as

:
a
:::::::
spatially

:::::::::
complete,

:::::::::
temporally

:::::::::
consistent,

:::::::::::
model-based

::::::
pattern

::::::::
reference

::
to

:::::
gauge

::::::::
similarity

::
of

:
CLM5 ’s simulated patterns of variability were realistic and coherent. Its compatibility with the model’s

spatial and temporal resolution, broad spatial coverage, and representation of seasonal and interannual dynamics made it645

appropriate for the
:::::
modes;

::
it
::::
does

:::
not

:::::::::
assimilate

:::::::::::
soil-moisture

:::::::::::
observations

:::
and

::::::
shows

::::::::::
documented

:::::::
regional

::::::
biases

::::
(e.g.,

::::
wet

:::
bias

::
in
::::::
humid

::::
and

::::::::
vegetated

::::::
areas),

::
so

::
it

::
is

:::
not

::::::
ground

::::
truth

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Muñoz-Sabater et al., 2021; Wu et al., 2021; Zhang et al., 2023)

:
.
::::::
Forcing

::::
and

::::::::
structural

:::::::::::
mismatches

::::
also

::::
limit

::::::::::
attribution:

::::::
CLM5

::
is

::::::
forced

::
by

::::::::
GSWP3,

::::::::
whereas

::::::::::
ERA5-Land

::
is
:::
an

::::::
offline

:::::::::
HTESSEL

:::::
replay

::::::
forced

:::
by

::::::
ERA5,

::
so

::::::::::
differences

:::
can

::::::
reflect

::::::
forcing

::::
and

:::::::::::::
model-structure

::::::::
contrasts

::
in

:::::::
addition

::
to

:::::::::
parameter

::::::
effects.

:::
We

::::::
chose

::::::::::
ERA5-Land

:::::::
because

::
it
::::::::

provides
::::::::::::
CONUS-wide

::::::::
coverage

:::
at

:
a
:::::::::

resolution
::::::::::

compatible
::::
with

:::::::
CLM5

:::::
(after650

::::::::
regridding

:::
to

::::
0.5◦)

::::
and

:::::::
exhibits

:::::::
coherent

::::::::::::::::::
seasonal–interannual

:::::::::
variability

:::
that

::::::
aligns

::::
with

:::
our

:
pattern-oriented objectives of

this work. We acknowledge the limitations of
::::::::
objectives.

:::::::
Finally,

::::::
neither

:::::
CLM5

::::
nor ERA5-Land , particularly its lack of direct

in-situ soil moisture assimilation and potential biases in humid regions (Muñoz-Sabater et al., 2021; Wu et al., 2021; Zhang et al., 2023)

, but used it primarily to benchmark the structure of variability , not the absolute magnitude of soil moisture. Future research

will build upon
:::::::
includes

::::::::
irrigation;

::::::::::
agricultural

::::::::
hotspots

::::::
should

:::::::
therefore

:::
be

:::::::::
interpreted

:::::::::
cautiously.

::::::
Future

:::::
work

::::
will

::::::
extend655

this diagnostic framework by incorporating observational datasets such as
::::::::::
independent

::::::::::::
observational

:::::::
datasets

::::
(e.g.,

:
SMAP,

GLEAM(Martens et al., 2017), SMERGE(Tobin et al., 2019), or ,
:::::::::
SMERGE,

:
MERRA-2(Reichle et al., 2017), which will enable

a more comprehensive comparison and facilitate targeted calibration of model parameters
:
)
::
to

::::::
enable

:::::
more

:::::::::::::
comprehensive

::::::::::
comparisons

::::
and

:::::::
targeted

::::::::
parameter

:::::::::
calibration

::::::::::::::::::::::::::::::::::::::::::::::::::
(Martens et al., 2017; Tobin et al., 2019; Reichle et al., 2017). For the present

study
:::::::
analysis, however, ERA5-Land provided a robust and consistent backdrop for assessing how parameter choices influence660

modeled variability
:::::::
provides

:
a
::::::::
spatially

::::::::
complete,

:::::::::::
model-based

::::::::
reference

::
for

::::::::
assessing

:::
the

::::::::
similarity

:::
of

:::::
CLM5

:
patterns across

diverse hydroclimatic regions
::::::
regimes.

To address these challenges and improve the accuracy
::::::::::::
representation of soil moisture simulation in CLM5, several strategies

are recommended. Refinement
:::::::
Refining

:::
the

::::::::::::
representation

:
of soil moisture variability representation using advanced PTFs

or machine learning-based approaches can
::::
help address uncertainties in soil hydraulic parameters, especially

::::::::::
particularly in665

hydrologically complex regions such as
:::
like

:
the Great Plains. Expanding the use of high-resolution datasets from satellite mis-

sionssuch as the SMAPmission and
:
,
::::
such

::
as

::::::
SMAP,

:::::::
together

::::
with in situ soil moisture networkswill provide robust benchmarks

:
,
:::
will

:::::::
provide

:::::::::::::
complementary

::::::::::
information for calibration and comparison, reducing biases in model outputs

:::::::::
supporting

:::::
more

::::::
targeted

:::::::::
parameter

::::::::::
adjustment,

:::::::::
supporting

::
the

:::::::
targeted

:::::::::
calibration

::
of

::::::
model

:::::::::
parameters (Famiglietti, 2014). Conducting region-
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specific calibration of soil parameters and comparative multi-model analyses will help address intra-model variability and opti-670

mize simulations for diverse climatic zones. Linking
:::::::::
Accounting

:::
for

:::::::::
vegetation

::::::::
feedbacks

::::::::
alongside

:
soil moisture variability to

dynamic vegetation feedbacks can
:::
may

:
improve the representation of evapotranspiration processes, as vegetation significantly

influences soil moisture and
::::
given

:::
the

::::::
strong

::::::::
influence

::
of

:::::::::
vegetation

:::
on water exchange dynamics (Oleson et al., 2010; Ye

et al., 2023). Establishing stronger connections between soil moisture variability and large-scale climatic drivers such as the

ENSO can enhance seasonal forecasts and long-term predictive capabilities (Gimeno et al., 2010; Tuttle and Salvucci, 2016).675

Understanding these links will facilitate better integration of climatic variability into land surface modeling frameworks.

Importantly, these findings also open the door to future efforts that
:::::
These

:::::::
findings

:::::::
provide

:::::::
insights

::::
that

:::
can

:::::
guide

::::::
future

:::::
efforts

::
to
:

incorporate dynamic soil properties into LSMs. Much of this work demonstrates the dynamism of soil properties,

and while this study advances modeling by revealing the importance of their inclusion, the next crucial
:::
land

::::::
surface

:::::::
models

::::
such

::
as

::::::
CLM5.

::::
The

:::::::
analysis

::::::::
indicates

::::
how

::::
soil

:::::::
property

:::::::::::::
representations

::::::::
influence

::::::::
simulated

::::::::::
variability.

::
A

::::::
logical

::::
next

:
step680

will be developing
::
to

:::::::
develop

:
approaches that allow these properties to be dynamic

:::
soil

:::::::::
properties

:::
to

::::
vary

:::::::::::
dynamically

within LSMs. This paper serves as a foundational step toward that goal, paving the way for more complex and
::::
study

:::::
adds

::
to

:::::::
ongoing

:::::
efforts

::::::
toward

:::::
more integrated modeling frameworks that better capture soil-hydrology-climate interactions . These

recommendations aim to address existing challenges in soilmoisture modeling and improve the predictive capabilities of LSMs

such as CLM5. Advancing
::::::::::
interactions

::::::
among

::::
soil,

:::::::::
hydrology,

::::
and

:::::::
climate.

:::::::
Progress

::
in
:

soil hydraulic parameterization and685

leveraging state-of-the-art observational datasets will enable models to more accurately capture
:::
the

:::
use

:::
of

:::::::::::::
high-resolution

::::::
datasets

::::
will

::::::::
improve

:::
the

::::::
ability

:::
of

::::::
models

:::
to

::::::
capture

:::::
both

:
large-scale hydrological dynamics and localized soil-climate

interactions. This, in turn, will support improved
::::::::::
soil–climate

:::::::::::
interactions.

::::
Such

:::::::::::::
improvements

:::
can

:::::::
support

:::::::::::
applications

::::::::
including water resource management, agricultural planning, and climate adaptation strategies, ultimately contributing to the

larger goals of sustainable development and climate resilience
:::::
studies.690

Code and data availability. All datasets used in this study are publicly for download at Zenodo https://doi.org/10.5281/zenodo.15078448

(Silwimba, 2025b). This includes files on soil parameters and soil texture for EXP1, EXP2, and EXP4a–d. Additionally, the ERA5-Land

can be freely accessed at https://doi.org/10.24381/cds.e9c9c792 (Muñoz-Sabater et al., 2021). The code used to process the data, perform

the EOF analyses, and generate the results is available on Zenodo at https://doi.org/10.5281/zenodo.14888812 (Silwimba, 2025a). The

Zenodo repository provides comprehensive documentation and instructions for reproducing the analysis, and any future updates or additional695

scripts will be hosted there. For any difficulties in accessing these data or code, or for requests for further information, please contact the

corresponding author.
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Figure A1. Contribution
::::::::::
Contributions

:
of Variance by Individual and Cumulative EOFs in CLM5 Soil Moisture Experiments. The red bars

indicate the portion of variance each separate EOF mode accounts for, whereas the green line depicts the cumulative percentage of variance

explained by the first ten EOF modes. These plots reveal
:::
show

::::
that the significant impact of the early

:::::
leading

:
EOF modes in accounting

::::::
account for

:
a

::::
large

::::::
fraction

::
of

::
the

:
variance.Panels (a

::
–d)

::::::::
correspond to

::::::
EXP4a (d

::::
loamy

::::
sand)relate to different experimental configurations

or scenarios, offering a comparative assessment of EOF variance contributions
::::::
EXP4b

:::::
(loam),

::::::
EXP4c

:::::
(clay),

:::
and

::::::
EXP4d

::::
(silt).
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Figure A2. Spatial correlation maps of the first three Empirical Orthogonal Functions (EOFs) of soil moisture anomalies across the CONUS

domain for the EXP4 simulations. Panels (a–c) correspond to Experiment 4a (Loamy Sand), (d–f) to Experiment 4b (Loam), (g–i) to Ex-

periment 4c (Clay), and (j–l) to Experiment 4d (Silt). Each set shows EOF-1, EOF-2, and EOF-3, respectively. The color shading represents

the correlation coefficient between the principal component (PC) time series of each EOF mode and the soil moisture anomaly time series at

each grid point. Positive values (red) indicate locations that vary in phase with the mode’s temporal evolution, while negative values (blue)

indicate anti-phase behavior. The variance explained (VE) by each mode is noted in each panel. These correlation maps illustrate how the

spatial structure of soil moisture variability is influenced by distinct soil hydraulic properties associated with each texture class.
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Figure A3. Temporal variability of principal components (PCs) derived from the EOF analysis. The plots display the amplitude of the first

three principal components: PC-1, PC-2, and PC-3. Each line corresponds to one of the four experimental setups (EXP4a, EXP4b, EXP4c,

and EXP4d) or the ERA5-Land reanalysis
::::::::::
(model-based

:::::
pattern

::::::::
reference). PC-1 (top panel) captures the dominant mode of variability, while

PC-2 (middle panel) and PC-3 (bottom panel) represent the secondary and tertiary modes, respectively. The x-axis shows the time period

(1979
::::
1980–2012

::::
2010), and the y-axis indicates the standardized amplitude. These plots highlight the temporal dynamics of soil moisture

variability as captured by different experimental configurations, providing insights into their agreement and divergence relative to the ERA5-

Land reference data
::::::
patterns.
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Figure A4. The Euclidean distance between EOF modes from SP-MIP experiments (EXP4a, EXP4b, EXP4c, EXP4d) and ERA5-Land

::::::::::
(model-based

:::::
pattern

::::::::
reference) is depicted

:::::
shown. Panels (a–c) illustrate results for Experiment 4a (Loamy Sand), while panels (d–f), (g–i),

and (j–l) pertain to Experiments 4b (Loam), 4c (Clay), and 4d (Silt), respectively. Each column showcases one of the first three EOF modes:

EOF-1, EOF-2, and EOF-3. The color bar represents the Euclidean distance, where lower values (yellow) reflect stronger alignment with

:::::
greater

:::::::
similarity

::
to
:
ERA5-Land

::::::
patterns, whereas higher values (red) denote more significant discrepancies. Regions with hatched patterns

::::::
hatching

:
signify distances less than 5, emphasizing

:::::::::
highlighting

:
areas where the experiments closely align with the

:::::
greater

::::::::
similarity

::
to

ERA5-Land data
::::::
patterns. These observations reveal the spatial variability in model performance

:::::::
similarity

:
across different soil hydraulic

parameter settings and EOF modes.
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