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Abstract. Land surface models (LSMs) are critical components of Earth system models (ESMs), enabling simulations of
energy and water fluxes essential for understanding climate systems. Soil hydraulic parameters, derived using pedotransfer
functions (PTFs), are key to modeling soil-plant-water interactions but introduce uncertainties in soil moisture predictions.
However, a key knowledge gap exists in understanding how specific soil hydraulic properties contribute to these uncertainties
and in identifying the regions most affected by them. This study assesses the influence of soil parameter settings on soil
moisture variability in the Community Land Model version 5 (CLMS) over the contiguous United States (CONUS) using
Empirical Orthogonal Function (EOF) analysis. EOF analysis identified dominant spatial and temporal soil moisture patterns
across multiple experimental configurations and highlighted the impact of soil parameter variability on hydrological processes.
The results revealed significant discrepancies in soil moisture simulations, particularly in the central Great Plains, potentially
due to the combination of arid climate conditions and limitations in modeling saturated hydraulic conductivity and soil water
retention curves. Seasonal soil moisture dynamics aligned broadly with observed patterns but showed biases in magnitude and
phase, emphasizing the need for refined parameterization, such as improving the representation of infiltration and drainage
processes. Comparisons with ERAS-Land reanalysis data revealed improved alignment in regions with consistent climatic
gradients but persistent model deficiencies in hydrologically complex areas, particularly under more arid climates such as the
Great Plains, where hydrological processes are notoriously harder to reproduce. Ths-This research highlights the necessity
of refining soil parameter representations, utilizing high-resolution datasets, and considering climatic variability to boost the
performance of LSMs. Importantly, these findings also open the door to future efforts that incorporate dynamic soil properties
into LSMs. Much of this work demonstrates the dynamism of soil properties, and while this study advances modeling by

revealing the importance of their inclusion, the next crucial step will be developing approaches that allow these properties to
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be dynamic within LSMs. This paper serves as a foundational step toward that goal, paving the way for more complex and

integrated modeling frameworks that better capture soil-hydrology-climate interactions.

1 Introduction

Land surface models (LSMs) are essential components of Earth system models (ESMs), offering critical insights into the
movement and partitioning of energy and water across the Earth’s surface, which are fundamental processes in understanding
and simulating climate systems accurately (Kang and Hong, 2008; Zhao et al., 2017; Guimberteau et al., 2017; Hagemann
et al., 2013; Dagon et al., 2020). Designed to operate on large spatial scales, LSMs rely on robust parameterizations of land
processes, including the use of pedotransfer functions (PTFs) to parameterize soil hydraulic properties. PTFs, as described by
Van Looy et al. (2017) and De Lannoy et al. (2014), are mathematical formulations that use extensive soil hydraulic databases
to establish empirical relationships between soil particle-size distribution and soil hydraulic parameters, such as field capacity,
permanent wilting point, saturated hydraulic conductivity, pore-size distribution, and soil water retention curves (McNeill
et al., 2018; Vereecken et al., 2010; Weber et al., 2020). These PTFs range in complexity from basic linear models to advanced
machine learning algorithms such as artificial neural networks (da Silva et al., 2023; Schaap et al., 1998). These soil hydraulic
parameters are fundamental to quantification of soil moisture and water flow, and soil-plant-water interactions and their effects
on climate, agriculture, hydrology, and environmental engineering.

PTFs play a crucial role in converting readily available soil texture data into soil hydraulic parameters, addressing the
difficulties of acquiring accurate soil moisture data at larger scales (Fu et al., 2023). However, many soil hydraulic parameters
are derived from laboratory or small-scale field studies, which often fail to capture the full heterogeneity of larger areas, limiting
their representativeness (Lai and Ren, 2016; Godoy et al., 2018). To overcome this limitation, global soil texture maps enhance
PTFs’ predictive capabilities, enabling their application in regions where field measurements are unavailable and making them
indispensable for land modeling (Tafasca et al., 2020; Dai et al., 2019). Soil moisture, a key output of these models, is a
vital variable governing the exchange of water and energy between land and atmosphere. It has profound impacts on climate
systems, vegetation dynamics, and extreme events, including droughts and floods (Zhang et al., 2021).

The influence of soil hydraulic properties on soil moisture simulations is well documented. For example, Fu et al. (2023)
demonstrated that these properties significantly affect soil moisture simulations at the ELBARA field site in the northeast of
the Tibetan Plateau, using the one-dimensional (1D) Richards equation. Similarly, Fu et al. (2022) noted that the numerical
solution approach of the Community Land Model (Lawrence et al., 2019) produces a narrow range of soil hydraulic property
values, which suggests a relatively weak influence on soil moisture simulations within this range. However, when optimized
hydraulic properties are used, potentially derived to capture site-specific variability or improve model performance beyond
this narrow range they can exert a more substantial influence on soil moisture dynamics. Furthermore, Feki et al. (2018)
highlighted that saturated hydraulic conductivity exhibits the highest sensitivity to temporal changes in environmental factors,
such as precipitation or temperature variability significantly affecting soil moisture variability, as shown in FEST-WB model

simulation of a maize field in the Secugnago region. These findings underscore the importance of accurately representing soil
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hydraulic properties, which directly influence the partitioning of water into runoff, infiltration, and evapotranspiration (Ye et al.,
2023), as well as the temporal and spatial variability of soil moisture. However, uncertainties in parameterizations, such as the
soil water retention curve that links water potential to volumetric soil moisture, continue to challenge the predictive capacity of
LSMs, especially under extreme climatic conditions (Koster et al., 2004; De Lannoy et al., 2014). Improving the representation
of soil moisture and its underlying hydraulic properties is critical, as it affects global hydrological cycles, vegetation health,
and energy flows, all of which are essential for understanding and mitigating the impacts of climate ehange-events (Oleson
etal., 2010).

In addition to these complexities, scaling point-scale or regional observations of soil moisture to the coarser resolutions of
LSM outputs presents a persistent challenge. While observational networks and remote sensing missions have expanded the
availability of soil moisture data, the heterogeneous nature of soil properties combined with varying retrieval algorithms and
coverage gaps can introduce significant uncertainties, both in terms of the accuracy of satellite products and their limitations for
validating LSM outputs (Famiglietti, 2014; Brocca et al., 2017). Moreover, uncertainties in parameterization make it challeng-
ing to accurately simulate soil moisture dynamics, as noted by Reichle et al. (2004) and Kato et al. (2007), limiting the ability
of LSMs to replicate observed soil moisture datasets. This discrepancy in spatial resolution and data precision can make model
calibration more challenging, increase uncertainties in estimating parameters, and, as a result, weaken confidence in simulation
outputs. Emerging evidence further complicates this issue by highlighting that soil properties can change over relatively short
time scales due to shifts in climate and land cover. The dynamic nature of soil properties introduces additional pressure to better
understand soil-hydraulic relationships and integrate these temporal dynamics into land-surface-medelsLSMs, as demonstrated
by studies highlighting how climate and land cover changes influence soil processes (Hirmas et al., 2018; Koop et al., 2023;
Caplan et al., 2019; Sullivan et al., 2022; Hauser et al., 2022). Addressing these complexities demands robust, data-oriented
approaches and dimensionality reduction techniques to disentangle the effects of parameterization on soil moisture patterns
across ecosystems and climate conditions.

A major challenge to addressing these uncertainties is the high dimensionality of LSM simulations when applied to continen-
tal or global scales, making it difficult to isolate the effects of specific parameters on soil moisture from other factors such as me-

teorological forcings and modes of climate variability Ji-et-ak 3:-tietak 3): ; Jietal., 2023; Li et al.

. This research investigates two critical questions: (1) How do soil hydraulic parameters influence large-scale spatial patterns
in soil moisture associated with well-characterized climate variability modes? (2) How do these parameters affect the temporal
dynamics of soil moisture during climate extremes, such as droughts and floods? Using EOF analysis, the study systematically
evaluates the impact of soil hydraulic parameterizations in CLMS5 simulations in the contiguous United States (CONUS). This
study enhances comprehension of soil-plant-water dynamics by isolating parameter effects, thereby improving predictions of
ecohydrologic responses to climate variability and change, tackling a crucial challenge in land modeling and climate forecast-
ing. We elaborate on the methodologies employed in Empirical Orthogonal Function (EOF) analysis, covering data sources and
computational methods, and present the principal findings derived from the CLMS5 simulations, highlighting their relevance to

soil moisture variability and parameter sensitivity. Additionally, the sections discuss the broader impact of these findings on
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the advancement of land surface modeling and the comprehension of climate dynamics. Finally, they conclude with practical

recommendations for upcoming research and applications in the fields of ecohydrology and climate science.

2 Data and Methods

2.1 Study Region

The study area-depieted-in-Figure—+-eoversregion for this analysis encompasses the CONUS, which-extends-spanning from
the Atlantic to the Pacific Ocean and is-berdered-bounded by Canada to the north and Mexico to the south —Thisregion
features—a-diverserange-ofclimatezones—ineluding—(Figure 1). This domain covers a wide range of latitudes, elevations

and climatic regimes, offering an ideal natural laboratory for evaluating spatial variability in land surface processes. The
CONUS includes major climate zones such as humid continental, Mediterranean, subtropical, arid, and alpine, all shaped

emerge due to differences in latitude, topographic relief, and proximity to moisture sources such as the Gulf of Mexico and
Pacific Ocean. These climatic gradients play a critical role in controlling soil moisture dynamics by modulating processes

such as infiltration, evaporation, and water retention. Topographic features, including the Rocky Mountains, Appalachian
Moeuntains;—Sierra Nevada, and-Cascade Range, signi ipitati S, B S0l istics,

and Appalachian Mountains,
significantly influence precipitation regimes and surface hydrology. These orographic barriers modify storm tracks and induce
spatial variability in rainfall and snowpack accumulation, ultimately affecting soil water availability. The land cover across
the CONUS is equally heterogeneous, ranging from forested regions in the Northeast and Pacific Northwest to urbanized
corridors and sparsely vegetated deserts in the Southwest. This heterogeneity in land cover introduces additional complexity.
into soil moisture behavior, as vegetation, impervious surfaces, and soil types interact to determine local infiltration and storage
dynamics.

To support spatially disaggregated analysis of soil moisture

listribution—To i ] lysis-of climate. hy.
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which partitions

CONUS into four climatically and geographically coherent macro-regions: Western North America (WNA), Central North
America (CNA), Eastern North America (ENA), and North Central America (NCA). Fhese-subdivisions-enable-a-more-detailed

amination-of-se otsture-variabHity-within-distin atic-and-geograp 0 S;provid valuab : 0

processes-affecting-soil-moisture-dynamies—This classification provides a physically grounded framework for evaluating the
sensitivity of modeled soil moisture to soil hydraulic parameterizations across distinct hydroclimatic zones. As shown in Figure
1, each region captures dominant physiographic and climatic attributes, such as the arid basins and mountain ranges of WNA
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the agricultural plains and grasslands of CNA, the humid subtropical and deciduous forest zones of ENA, and the transitional

climatic conditions present in NCA. The utility of this framework is two-fold. First, it facilitates regional intercomparison of

soil moisture patterns and their controls, enabling consistent evaluation across diverse landscapes. Second, it improves the

interpretability of EOF modes by linking observed spatial variability to regional climatic drivers, soil texture distributions, and

vegetation structure. This regionalized approach is particularly valuable given the goal of disentangling parameter driven soil

moisture responses from broader meteorological forcings. By leveraging the CONUS domain and its subdivisions, the stud

advances understanding of how soil hydraulic parameter uncertainty manifests across large-scale gradients and informs the

development of improved land surface model parameterizations.
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Figure 1. Regional divisions of the CONUS area into four major zones: Western North America (WNA), Central North America (CNA),
Eastern North America (ENA), and North Central America (NCA), as defined by Giorgi and Francisco (2000), based on climate variability

and geographical features. Prominent subregions and geographical landmarks, such as mountain ranges and plains, are also depicted.

2.2 Data Description

The Soil Parameter Intercomparison Project (SP-MIP), initiated at the GEWEX-SoilWat workshop in Leipzig (2016), aims to
quantify the variability in land surface model (LSM) output caused by differences in soil parameters and structures. Following
the Land Surface, Snow, and Soil Moisture Model Intercomparison Project (LS3MIP) protocol (Van den Hurk et al., 2016),
SP-MIP brought together eight leading climate land models CLMS, ISBA, JSBACH, JULES, MATSIRO, MATSIRO-GW,
NOAH-MP, and ORCHIDEE for a series of global simulation experiments (Gundmundsson and Cuntz, 2017). These models
were run on a 0.5° grid using Global Soil Wetness Project Phase 3 (GSWP3) meteorological forcing data for 1980 to 2010.
Four experimental designs were implemented to isolate the effects of soil properties on hydrological and energy balance
variables. Soil parameters for Experiment 1 and soil textures for Experiment 2 (EXP2) were derived at a 0.5° resolution,
based on dominant soil classifications within the 0-5 cm layer of SoilGrids data (Hengl et al., 2014) at a 5 km resolution. The
Brooks and Corey parameters are derived from Table 1 of Clapp and Hornberger (1978), while the Mualem-van Genuchten
parameters represent ROSETTA class average hydraulic values as cited by Schaap et al. (2001), with soil textures taken from

Table 1 of Cosby et al. (1984). For Experiments 4a-d (EXP4a—4d), the USDA soil categories used are Loamy Sand, Loam, Silt,
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and Clay, as defined by Montzka et al. (2011), employing identical transfer functions for Brooks and Corey and Mualem-van
Genuchten parameters as applied in Experiment 1 (EXP1). All models are assumed to solve the Richards equation for soil water
movement. The provided soil parameters and textures are uniform throughout the entire soil column. For a detailed description
of the SP-MIP dataset, please refer to (Gundmundsson and Cuntz, 2017).

This study uses soil moisture data from the CLMS5 experiments developed by the National Center for Atmospheric Re-
search (NCAR) (Thornton, 2010; Lawrence et al., 2019). The schematic (Figure 2) illustrates the CLMS5 modeling framework,
depicting the experimental setup for seven different model runs, each designed to evaluate the influence of soil hydraulic param-
eterizations on soil moisture variability. The dataset covers global landmasses at 0.5° resolution (25,920 grid cells, excluding
water bodies and permanent snow/ice) and includes 41 land surface variables such as evapotranspiration, soil temperature,
and runoff, spanning 30 years (1980 to 2010). The global soil profile reaches a depth of 41.998 m with 25 layers, but for this
study, soil moisture was extracted from depths (0-1.0 m) containing most roots (root zone) of the CONUS region, covering
6,413 grid cells. The focus is on the variable water content of soil layers (mrsol) to explore soil moisture variability and

distribution. Importantly, irrigation processes were not represented in any of the CLMS5 simulations, as all experiments were
conducted under naturalized (rainfed) conditions to isolate the influence of soil hydraulic parameterizations without additional

anthropogenic water inputs.

2.2.1 Experimental Designs

To assess the influence of soil hydraulic parameterizations on soil moisture variability within the CLMS, a series of simulations
was_conducted following the SP-MIP framework (Gundmundsson and Cuntz, 2017). Although SP-MIP was designed for
multi-model comparisons, we adapted it to evaluate intra-model variability within CLMS by varying soil hydraulic parameter
sets. All simulations used consistent meteorological forcing (GSWP3), spatial resolution (0.57), and spanned 1980 to 2010,
with a standardized spin-up routine to ensure reliable initial conditions. Below, we describe the four experimental setups,
their objectives, configurations, hypotheses, and expected outcomes, focusing on how parameters are applied within CLMS.
Each experiment followed the standard CLMS spin-up procedure to ensure that carbon, water, and energy state variables
reached quasi-equilibrium prior to the simulation period, thereby minimizing the influence of initial conditions on soil moisture
dynamics (Lawrence et al,, 2019). Spin-up followed SP-MIP protocol guidelines to ensure equilibrium prior to the 1980 to
2010 simulation period (Gundmundsson and Cuntz, 2017).

EXP1 - Soil Hydraulic Parameters Provided
by SP-MIP: This experiment serves as a baseline simulation, applying soil hydraulic parameters from-provided by
SP-MIP (refer to Table I)to-examine the presumed- decrease in-inter-model variability-when uniform-soil paramete

are-employed—,_These parameters, derived from PTFs such as Brooks and Corey (Clapp and Hornberger, 1978) and
Mualem-van Genuchten (Schaap et al., 2001), are applied uniformly across all grid cells in the CONUS at a 0.5°
resolution using GSWP3 meteorological forcing data (1980 to 2010). The objective is to establish a reference for soil
moisture predictions by eliminating spatial variability in soil properties, allowing isolation of CLMS’s response to a
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consistent soil parameter set. The hypothesis is that SP-MIP soil hydraulic parameters will produce uniform soil moisture
atterns, serving as a control to quantify the effects of parameter variations in other experiments. The expected outcome

is a consistent baseline for intra-model comparisons, highlighting CLMS5’s sensitivity to parameter changes rather than
inter-model differences.

EXP2:-Soil-texture propertiesprovided by SP-MiP{see EXP2 — Texture-Derived Soil Hydraulic Parameters: In
Mw&w&mmmw&@wﬁ&w&l&%le 2>ﬂﬂ+&ed4eelﬂ*p~t&b*eseﬂll:¥ﬁ&defeﬁmﬂe
—_such as fractions of clay,
silt, sand, dry bulk density. and organic matter content, to derive soil hydraulic parameters internally via its native
PTFs and lookup tables. These parameters vary spatially across the CONUS domain based on textural classes. The
objective is to assess how CLMS'’s standard approach to translating soil texture into hydraulic properties influences soil
moisture outputs. The hypothesis is that spatial variability in texture-derived parameters will introduce heterogeneity.
in_soil moisture patterns, reflecting CLMS’s default parameterization practices. The expected outcome is a simulation
that mirrors operational CLMS runs, enabling comparison with EXP1 to evaluate the impact of texture-to-parameter
translation on hydrological variability.

E%éP%JPhe—lﬂedel—apphed—iff&EXP3 CLMS Default Configuration: This experiment employs CLMS’s default soil hy-

draulic se

—parameters, as defined by its operational input datasets, applied consistently across all soil layers throughout the
CONUS domain. Unlike EXP1’s standardized parameters or EXP2’s texture-derived parameters, EXP3 reflects CLMS'’s.
inherent configuration without external constraints. The objective is to evaluate the model’s intrinsic variability due
to its standard soil parameter settings, providing a benchmark for CLM3’s default behavior. The hypothesis is that
CLMS’s default parameters, which vary spatially based on its native soil maps, will produce distinct soil moisture
patterns compared to the controlled setups in EXP1 and EXP2. The expected outcome is a simulation that highlights
the influence of CLMS’s built-in assumptions on soil moisture, allowing quantification of parameter-driven variability
within a single model.

EXP4a—4d — Uniform Soil Texture Simulations: These four experiments (EXP4a—4d:-These-experiments-utilized-key
: loamy sand, EXP4b: loam, EXP4c: clay, EXP4d: silt) each involve a separate CLMS simulation with uniform soil hy-
draulic parameters seurced-from SP-MIP (fefeH&Table 1) #emp}eymgﬂﬁ#eﬁm&mme{ef%ems&fm&fhﬁefeﬁ%%m%

applied across the entire CONUS domain. The
parameters, derived from PTFs for each USDA soil class (Montzka et al, 2011), are spatially constant within each
experiment but differ across the four runs based on soil type. The objective is to test CLM3's sensitivity to distinct
soil textures and their associated hydraulic properties. such as porosity, saturated hydraulic conductivity, and water
retention curves, and to evaluate their impact on hydrological (e.g., soil moisture) and energy balance outputs—(e.g..
evapotranspiration) outputs. The hypothesis is that each soil type will produce uniqgue soil moisture patterns, reflecting.
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texture-dependent hydrological behavior. The expected outcome is a set of simulations that isolate the effects of soil

texture on CLMS5’s outputs, providing insights into parameter-driven variability across diverse soil types.
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Figure 2. Experimental setup for evaluating soil moisture variability in CLM5. The model uses GSWP3 forcing data and runs multiple
experiments with different soil hydraulic parameterizations. EXP1 applies standardized parameters, EXP2 derives parameters from soil

texture, EXP3 uses default CLMS settings, and EXP4a—4d assign uniform parameters for different soil types.

2.2.2 BenehmarkReference Dataset

The ERAS-Land dataset, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), serves as a key
reference for model evaluation. Unlike other models, ERAS5-Land does not directly incorporate soil moisture observations. In-
stead, it uses atmospheric data from the ERAS reanalysis, which integrates meteorological and satellite observations via a 4-D
variational assimilation system coupled with a simplified extended Kalman filter (Mufioz-Sabater et al., 2021). This method-
ology enables land surface changes to be primarily guided by modeled processes while being affected by larger atmospheric
conditions. In terms of soil moisture, the ERAS system assimilates information from a range of satellite sources, such as the Soil
Moisture Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer-2 (AMSR-2), Tropical Rainfall Measuring Mis-
sion Microwave Imager (TRMM-MI), ERS-1/2 Active Microwave Instrument scatterometer, and Meteorological Operational
Satellite (De Rosnay et al., 2013). Although ERAS5-Land uses an indirect method for assimilation, it is often employed as a
reference for validating soil moisture data due to its global consistency and frequent updates. However, studies have pointed out
certain discrepancies, like a wet bias in its soil moisture measurements relative to ground-based and SMAP-Soil Moisture Active
Passive (SMAP) satellite data, especially in heavily vegetated and humid areas (Lal et al., 2022). Additionally, ERA5-Land
in intensively cultivated regions. As documented in previous studies, the absence of irrigation in the H-TESSEL land surface
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Table 1. Soil parameters for the three selected water retention curves were supplied by SP-MIP as input for experiments 1 and 4a-d.

Parameter Name ~ long_name (netCDF) Unit
he. air entry potential m
mbe Brooks-Corey m parameter = Clapp-Hornberger b =
lambdac Corey lambda parameter =
alphavg van Genuchten alpha parameter m”!
nvg van Genuchten n parameter =
mve van Genuchten m parameter =
thetapwpbe Brooks-Corey permanent wilting point m’m7?

interpreting results over agricultural landscapes (Wipfler et al., 2011; Lavers et al., 2022; Tang and McColl, 2023). These bi-

ases highlight the importance of careful interpretation when applying ERA5-Land to hydrological tasks. Despite these issues,
its capacity to reflect broad spatiotemporal patterns ensures its effectiveness in assessing model performance and conducting
extensive hydrological research. While alternative datasets such as the North American Land Data Assimilation System (NL-
DAS) could provide higher resolution and are region-specific to CONUS, ERAS-Land was selected for its global consistency,
frequent updates, and ability to offer a broader perspective that facilitates comparison across varying climatic conditions. Addi-
tionally, ERAS5-Land provides a direct connection to global atmospheric reanalysis, enabling robust assessments of large-scale
interactions between soil moisture and climate processes. The ERA5-Land dataset-data was regridded to fit the CLMS 0.5°

resolution.



Table 2. Soil textural characteristics supplied by SP-MIP for experiment 2.

Parameter Name ~ long_name (netCDF) Unit
fsilt fraction of silt =
omsoil organic matter content 2(Cke
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by Lorenz (1956
in the context of meteorology, EOF analysis has evolved into a foundational tool for analyzing climate and hydrological systems
Monahanet-al; 2009 EOFanalysis-systematically-decomposestarse-datasets-variables such as precipitation, evapotranspiration,

250 and soil moisture (Monahan et al., 2009; Korres et al., 2010). The method works by decomposing a dataset into orthogonal
spatial patterns (EOF-medesEOFs) and their corresponding temporal eempenents-amplitudes (principal components, PCs) 5
as Singular Value Decomposition (SVD) (Hannachi et al., 2007; Dawson, 2016). In this study, EOF analysis is applied to soil
moisture fields-simulated-by-outputs from the CLM5 across the CONUS region—This-approach-isolates-spatial-and-temporat
255 patterns-domain, The objective is to assess how varying soil hydraulic parameterizations influence both the spatial structure

10



s> particularly in the context of seasonal-to-interannual
climate variability and hydrologic extremes like droughts and floods. Previeusstudies-have-demonstrated-theeffectiveness-of
EOF-in-finking soil- moisture variability to-large-seale-climate-driversEQF analysis is well-suited to this objective because it

260 captures the internal covariance structure of spatial fields and retains dominant modes of variability that simpler diagnostics,

such as the E

AsRMSE or mean bias, may obscure.
EOF analysis provides a unified framework for comparing spatial and temporal patterns across different experimental setups
265 (EXP1, EXP3, whi i i H PR T : » .

ith-EXP4a—4d) and against observational
benchmarks like ERAS-Land. This facilitates the detection of parameter-sensitive regions and improves the mechanistic
understanding of how soil hydraulic properties i i i Himei tabili i i

270  may notdireetly correspond-to-modulate model behavior. Such insights are particularly valuable in hydroclimatically complex
regions, including the central Great Plains and the arid western U.S., where soil—climate interactions display high spatial
heterogeneity. Moreover, EQF technigues have proven effective for diagnosing how land surface processes, especially soil
moisture dynamics, interact with large-scale atmospheric teleconnections such as ENSO, the Pacific Decadal Oscillation
(PDO), and the North Adantic Oscillation (NAQ) (Jimma et al., 2023; Kuss and Gurdak, 2014). In this context, EOFs help

275  reveal persistent spatiotemporal modes and teleconnection pathways that underlie soil moisture memory and seasonal predictability
(Orth and Seneviratne, 2012; Perry and Niemann, 2007). These properties support both model evaluation and the interpretation
of hydroclimatic variability from a process-oriented perspective.

However, care must be taken in interpreting EOF results. The orthogonality constraint can produce modes that are statistically
optimal but not necessarily tied to discrete physical processes (Hannachi et al., 2007). The-identified—patterns—serve-as—a

280 Dbasis for further-analysis, supportine model calibration-and validation-efforts to enhance the predictive capabilities o Ms-

elimate-data-developed by Dawson-(2616)To address this limitation, our study complements EOF analysis with additional
diagnostics—such as Buclidean distance metrics and Taylor diagrams—to evaluate spatial pattern fidelity and the sensitivity.
of model output to parameter perturbations. All EOF analyses are performed using the open-source Python package eofs

285 (Dawson, 2016), which is optimized for climate and Earth system data. This ensures a reproducible, efficient, and physically
interpretable workflow for quantifying parameter-driven variability in land surface model simulations.

B

2.3.1 Computation of EOF Using Singular Value Decomposition

Singular Value Decomposition (SVD) is a robust linear algebra technique widely employed for matrix factorization, enabling

the decomposition of any n x m matrix, Y,,, without explicitly solving an eigenvalue problem or constructing a covariance

11
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matrix (e.g., Linz and Wang, 2003; Dawson, 2016; Bjornsson and Venegas, 1997). In this study, SVD is utilized to compute
the EOF modes by decomposing the matrix of soil moisture anomalies, Y ,, into orthogonal components. The decomposition

is represented as:

u1p U2 ccc Uip| vz 0 e O Vi1 Vit Vip
Y, : Ul U2 -+ Uzp 0 72 -+ 0 Vo1 V22  ccc Uy
=1 . . ) } . ) . . . ey
nxm : : " : : : " : : : . :
Un1 Un2 0 Unn 0 0 t Ynm Un1 Un2 o Umm
_ T
Y, =UIV’, ()

where U (n x n) contains the left singular vectors (spatial EOFs), V (m x m) contains the right singular vectors (temporal
principal components, PCs), and I' (n x m) is a diagonal matrix with non-negative singular values y; (I';; = 6;;7;). The singular
values v; quantify the variance captured by each EOF mode, and p = min(n,m) determines the number of non-zero singular

values.
For this analysis, the soil moisture data matrix Y, represents-the-consists of area-weighted -demeaned-anemalies-anomaly

values simulated by CLMS, with-where the mean at each grid point has been removed to highlight variability. The matrix has
n rows eorresponding-to-temporal-representing time steps and m columns representing-corresponding to spatial grid points. To

reduce redundancy ;-we-employ-and focus on the most significant patterns, we apply truncated SVD (tSVD), retaining only the
top p singular values and their asseetated-corresponding singular vectors:

Y, ~U,I,VZ, 3)

where fJP (n x p) contains the leading EOFs, r » (p X p) is the diagonal matrix of the largest singular values, and VZ; (pxm)
represents the corresponding principal components. Singular vectors associated with smaller singular values are discarded,

improving computational efficiency while preserving the dominant variability patterns (Figure 3).

12



310

315

320

Climate Data EOF Vectors PC Vectors

VT
PXP pXm
nxm n><p

£ < min(n, m)

Figure 3. tSVD applied to the soil moisture anomaly dataset. The matrix Y, (n x m) is decomposed into U,, (n x p) for EOFs, ', (p X p)

for singular values, and VZ (p x m) for PCs. The truncation level p is chosen such that p < min(n,m).

The singular values from tSVD are used to calculate the explained variance (%EV,) for each EOF mode, quantifying their

contribution to the dataset’s variability:

%EV,; = x 100%, i=1,2,...,p. %)

P
2%
j=1

The first EOF mode typically explains the largest fraction of variance, representing the dominant spatial pattern, while subse-
quent modes capture progressively smaller uncorrelated patterns. This hierarchical decomposition provides a powerful frame-
work for analyzing spatiotemporal variability in soil moisture anomalies and assessing the relative contributions of soil hy-
draulic parameters and climate drivers. EOF analysis, through tSVD, ensures that the representation of dominant patterns is

efficient and interpretable, enabling robust physical insights into the factors controlling soil moisture variability.
2.3.2  Quantifying Similarity of Spatial EOF Modes Using-using Euclidean Distance

The Euclidean distance metric was employed to assess the similarity or dissimilarity between spatial EOF modes derived from
distinct datasets. This metric, commonly used in mathematics and data analysis, calculates the straight-line distance between
two points in Euclidean space, providing a direct and interpretable measure of the geometric proximity between patterns
(e.g., Elmore and Richman, 2001). Its simplicity and intuitive interpretation make it particularly suitable for comparing spatial
variability patterns obtained through EOF analysis. A smaller Euclidean distance indicates a high degree of similarity between
the EOF modes, suggesting a closer alignment of the underlying spatial patterns. Conversely, a larger distance reflects greater

dissimilarity, indicating distinct spatial characteristics or variability between the datasets. In this study, the Euclidean distance
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was used to compare the spatial EOF modes from the ERAS5-Land reanalysis dataset and the SP-MIP model experiments,
representing different data decomposition results. The Euclidean distance for two spatial EOF modes, X (ERAS5-Land) and )
(SP-MIP), was computed using the following equation:

EucD(X,Y) = (5)

where n is the number of elements in each spatial EOF mode.

This approach enabled the identification of regions within the CONUS domain where the spatial EOF patterns differed
significantly, highlighting areas requiring improved parameterization of soil properties in land-surface-modelsLSMs. By quan-
tifying these differences, the Euclidean distance analysis provides actionable insights into the spatial scales and regions where
soil parameter settings have the most significant impact, thereby supporting targeted model refinements and enhanced soil

moisture simulations.
2.3.3 Taylor Diagram for Evaluating Spatial EOF Modes

Taylor Diagrams (TDs) (Taylor, 2001) were applied to assess spatial EOF modes, offering a clear and intuitive visualization
of three essential statistical measures: correlation (COR), standard deviation (STD), and root mean square error (RMSE).
These diagrams are extensively employed in geophysical sciences to evaluate and compare model performance across vari-
ous dimensions (e.g., Qiao et al., 2022). Their capability to display the relationship between modeled and observed patterns
simultaneously makes them particularly useful for examining the variability and accuracy of spatial EOF modes derived from
climate datasets. In this research, Taylor diagrams were used to compare the spatial EOF modes of the ERAS5-Land reanalysis
dataset against the SP-MIP model experiments. The standard deviation of the ERA5-Land spatial modes served as a bench-
mark for assessing the variability of the SP-MIP modes. The diagrams assessed the similarity of the patterns by using three
metrics: the correlation coefficient, which evaluates the alignment of spatial patterns; the centered RMSE, which measures the
magnitude of pattern differences; and the standard deviation, which indicates the amplitude of variability within each mode.
These combined metrics offer a thorough assessment of spatial pattern differences. Taylor diagrams help identify specific EOF
modes where SP-MIP experiments differ from the ERAS5-Land reference, pinpointing areas for possible model enhancement.
By incorporating these metrics into one framework, the diagrams facilitate the focused improvement of soil parameterizations

in tand-surface-modelsLSMs, better capturing essential spatial variability patterns in soil moisture.

3 Results and Discussion
3.1 Spatial Variability in Annual Mean Soil Moisture Across CONUS

Despite consistent forcing data (GSWP3) and model resolution (0.5°), the experiments reveal notable differences in soil mois-
ture spatial patterns due to variations in soil parameter derivation, underscoring the critical role of soil parameters in controlling

simulations. These differences are reflected in the annual mean soil moisture across the CONUS region, which ranged from
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~ 195kg m 2 to 380kg m 2, calculated by averaging daily soil moisture from 1980 to 2010 (Figure 4). The spatial distribu-
tion of soil moisture across all experiments reflects well-established precipitation gradients and temperature variability, with
higher soil moisture levels over the central Great Plains and ENA regions and lower values in the arid southwest (WNA).
These findings agree with previous studies documenting the relationship between soil moisture, precipitation, and temperature
in these regions (Welty and Zeng, 2018; Koster et al., 2004; Koukoula et al., 2021; Melillo et al., 2014; Chatterjee et al., 2022).
The pronounced variability in soil moisture in the Great Plains aligns with the principles of continentality, where greater dis-
tances from large water bodies amplify seasonal precipitation and evaporation differences (Gimeno et al., 2010). Among the
experiments, EXP3 (Figure 3d) shows the highest soil moisture levels, followed by EXP2 (Figure 4c) and EXP1 (Figure 4b).
These differences reflect the impact of soil parameter derivation, with EXP1 producing lower soil moisture magnitudes, EXP2
resulting in moderate values, and EXP3 yielding the highest levels.

The results of EXP4 highlight the role of soil texture in modulating soil moisture distribution. For example, EXP4a (loamy
sand, Figure 4e) exhibits low soil moisture in the arid southwest (WNA) and NCA, consistent with the limited water retention
capacity of loamy sand. EXP4b (loam, Figure 4f) shows a more balanced soil moisture distribution, with drier conditions in
WNA and wetter conditions in ENA, reflecting the moderate water holding characteristics of the loam. EXP4c (clay, Figure
4g) shows higher soil moisture levels over ENA due to the high water retention capacity of clay, while EXP4d (silt, Figure 4h)
exhibits heterogeneous soil moisture patterns influenced by environmental variability and the intermediate hydraulic properties
of the silt. These results show that uncertainties in soil parameterization significantly affect soil moisture simulations in the
CLMS5 model, consistent with the findings of Brimelow et al. (2010). Our work furthers this research area by systematically
evaluating the role of distinct soil textures (loamy sand, loam, clay, and silt) in shaping soil moisture variability across different
climatic zones. Unlike previous studies, this analysis integrates the spatial distribution of soil moisture with observed climatic
influences, providing a more comprehensive assessment of how parameterization impacts hydrological processes at a continen-
tal scale. Variations in soil parameter settings not only influence soil moisture magnitudes but also alter spatial distributions,
affecting the model’s ability to capture hydrological processes at the continental scale. The findings of EXP4 further emphasize
the importance of soil texture in controlling soil moisture distribution, highlighting the need for precise parameterization in
land-surface-modelsLSMs. This has important implications for improving water resource management, agricultural planning,

and climate impact assessments.
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Figure 4. Annual mean soil moisture (1980-2010) over the CONUS region, simulated from four experiment types with spatially uniform
soil parameter settings: EXP1 (b), EXP2 (c), EXP3 (d), and EXP4 (sub-experiments: EXP4a: loamy sand (e), EXP4b: loam (f), EXP4c: clay
(g), and EXP4d: silt (h)). The color bar represents the range of soil moisture values (kg m~2), with warmer colors (red and orange) indicating

lower soil moisture levels and cooler colors (blue and purple) representing higher soil moisture levels.

3.2 Interannual Soil Moisture Anomalies

Interannual root-zone soil moisture anomalies over the CONUS region from 1980 to 2010, derived from CLMS5 simulation

experiments (EXP1, EXP2, EXP3, and multiple EXP4 configurations) and ERAS5-Land reanalysis data, are shown in Figure 5.

16



Anomalies are computed as deviations from the daily annual mean over the 30-year reference period, following established

385 methodologies for hydrological variability assessment (Tuttle and Salvucci, 2016; Koster et al., 2004; Welty and Zeng, 2018).

The top panel of Figure 5 presents anomalies for EXP1, EXP2, EXP3, and ERAS5-Land, while the bottom panel includes
additional EXP4 parameterizations representing different soil textures (loamy sand, loam, clay, and silt).

Across all configurations, soil moisture anomalies fluctuate around a long-term mean of zero, with values ranging approx-

imately from —20kg m~2 to +40kg m~2. Positive anomalies signify wetter-than-average conditions, while negative values

390 indicate drier conditions. The CLMS5 experiments exhibit pronounced interannual variability, capturing key hydrological ex-

tremes, including droughts and wet periods, as observed in ERAS5-Land. Netably,-CLMS5 simulations reproduce the timin

of major interannual features observed in ERAS-Land, such as drought and wet periods, but consistently underestimate their
magnitude. As shown in Figure 5, all CLMS configurations produce tightly clustered time series, lacking the broader spread of
ERASLandanomal . . N . . .

395  clustering illustrates a key discrepancy: ERAS-Land exhibits a broader interannual amplitude, with anomalies reaching up to
£40kg m™?, whereas CLMS simulations are typically confined to a £:20kg m” range.
This variability gap likely stems from structural limitations in CLMS, including the use of static soil hydraulic parameters,
diffusive vertical redistribution, and the absence of data assimilation—factors known to constrain the dynamic range and

ersistence of soil moisture anomalies in LSMs (Koster et al., 2009; Muiioz-Sabater et al., 2021). The underestimation is particularl

400 concerning for hydrologic extremes, as it suggests that CLM5 may inadequately simulate the severity of soil moisture i

deficits during droughts or surpluses during wet years. These limitations can propagate into downstream processes such as
evapotranspiration, runoff, and land—atmosphere coupling, thereby reducing the model’s ability to capture feedback mechanisms
critical to hydroclimatic variability (Koster et al., 2004; Berg and Sheffield, 2018). Figure 6 supports this interpretation, showin
405  that CLMS5 sin ity-anomaly values are compressed
along the 1:1 line when compared to ERAS-Land, reinforcing the conclusion that the model’s soil moisture response is
systematically dampened. Finally, while ERAS-Land’s higher peaks—particularly in positive extremes—may partly reflect
overestimation in vegetated regions due to unresolved processes such as irrigation or enhanced surface fluxes (Lal et al., 2022)
» the muted variability in CLMS highlights the importance of improved parameter calibration and multi-source observational

410 benchmarking in future work.
The relationship between daily soil moisture anomalies from CLMS5 and ERAS5-Land is further examined in Figure 6. These

scatter plots compare CLM5-simulated anomalies with ERAS-Land on a point-by-point basis. The distribution of points is
closely aligned along the 1:1 line, with coefficient of determination (R2?) values ranging from 0.7 to 0.8 across experiments.
These correlations confirm that CLMS5 successfully captures the overall variability in ERAS-Land, albeit with some systematic
415 biases. Specifically, ERAS-Land tends to exhibit larger positive anomalies relative to CLMS, reinforcing the trend observed in
the time-series plots. The EXP4 configurations (Figure 6b) show similar performance to EXP1-3, indicating that soil texture

variations only moderately impact anomaly correlations at an aggregated scale.
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The results indicate significant interannual variability in soil moisture anomalies, with distinct peaks and troughs corre-
sponding to extreme hydrological events. These fluctuations are likely driven by large-scale climatic influences, such as ENSO,
which modulate regional hydrological conditions (Gimeno et al., 2010; Welty and Zeng, 2018). While periodicity in anomalies
suggests a possible linkage to climate oscillations, further spectral analysis would be required to confirm such relationships.
Additionally, the lack of a discernible long-term trend suggests that soil moisture anomalies remained relatively stable over
the study period, with variability largely governed by short to medium-term hydrological cycles. This aligns with findings
from Lesinger and Tian (2022), who noted that while interannual fluctuations in soil moisture can be significant, multi-decadal

trends over CONUS tend to be weak or spatially constrained. Overall, the time-series (Figure 5) and scatter plots (Figure 6)
collectively demonstrate that CLMS aeeurately-simulatesreasonably captures the timing and structure of interannual soil mois-
ture variabilityi-CONUS;-, but consistently underestimates its magnitude relative to ERAS5-Land, with strong correlations to

ERAS5-Land. However, ERAS5-Land’s systematic overestimation of positive anomalies highlights a potential bias in reanaly-
sis products, necessitating further evaluation of the mechanisms driving such deviations. Future work should assess regional

patterns in soil moisture dynamics and quantify biases across different land cover types to refine model performance.
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Figure 5. Paity-Time series of daily root-zone soil moisture anomalies from 1980 to 2010 aeress—over the CONUS region. Panel (a)
Anomaties-shows anomalies for CLM35 simulations using EXP1, EXP2, EXP3;-and EXP3 configurations compared with ERAS5-Landdata.
Panel (b) Anromaliesfor-various-includes EXP4 eonfigurations-simulations with uniform soil texture classes (loamy sand, loam, clay, and
sil)atongside—, also compared against ERAS5-Landdata. Anomalies are eateutated-computed as deviations from the 30-year daily annual
climatological meanever-the-30-year period. ERAS-Land exhibits a wider anomaly range, while CLM5 simulations show more constrained
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Figure 6. Daily mean root-zone soil moisture anomalies for 1980 to 2010 from each CLMS5 experiment (EXP1, EXP2, EXP3, and the EXP4
sub-experiments) plotted against ERAS5-Land. All anomalies are expressed in [kg m™~2]. Each colored marker represents daily anomalies
from a given experiment, while the black dashed line denotes the 1:1 relationship. In the legend, R? values (in parentheses) indicate how

closely each experiment’s anomalies match those of ERAS5-Land.

3.3 Seasonal Variability of Soil Moisture

“As evident in Figure 7, significant
differences emerge between ERAS-Land and CLMS simulationsf, particularly in the amplitude of seasonal variability. ERAS-Land
exhibits the strongest seasonal cycle, with a sharp rise in soil moisture from February through May, peaking in June, followed
by a pronounced decline into the late summer and early autumn months. In contrast, EXP1-, EXP2, and EXP3 and-various

DA

nfio R h-FER A nd-rean » a nd-FHER-A 1

tightly clustered group with relatively flattened seasonal curves. These configurations consistently underestimate the springtime
eak and summer drawdown, suggesting that their soil moisture response to seasonal climate forcing is muted. Among them
EXP2 (green line) shows the lowest amplitude, while EXP3 (red line) offers a slightly improved but still subdued representation.
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Notably, EXP4a (oz

445  responses-black dashed line) deviates from this pattern. It more closely mirrors ERAS-Land’s seasonal dynamics, especially.
from March to September, capturing a steeper ascent in spring and a deeper trough in late summer. This improved responsiveness
is likely due to the loamy sand texture used in EXP4a, which promotes rapid infiltration and drainage, thereby amplifying soil
moisture variability in response to precipitation and evapotranspiration. Cenversely; EXP4e(elay)-and-In contrast, EXP4b-d

loam, clay, silt) progressively dampen the seasonal signal, with EXP4c and EXP4d (siHlt)-exhibitdampened-seasonal-variability;

450

moeisture-is-underestimatedrelative-to-showing the lowest variability due to their high water retention capacities.

These differences indicate that while CLMS is able to reproduce the general phasing of the seasonal cycle, it substantially
underrepresents the amplitude of variation observed in ERAS-Land. This underestimation is especially critical during the
peak moisture accumulation (March-June) and depletion (July-October) phases, and highlights the importance of hydraulic

455 conductivity, retention characteristics, and vertical redistribution in modulating soil moisture seasonality. Although ERAS-Land

460 i may overestimate soil moisture in certain vegetated regions (Lal et al., 2022; Lesinger and Tian, 2022
its higher amplitude suggests a more dynamic land surface response that current CLMS35 configurations, particularly EXP1—7em

EXP3 fail to capture adequately. Addressin
this discrepancy through improved parameter tuning and structural adjustments could enhance CLMSsimulations—rebustly

465 reproduce-the-broad-seasonal-trends-observednERA and-athrming-then—u ytortarge-scate-nydrotogicat-anatysts—Hhe

coupling and surface hydrological processes across seasons.
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Figure 7. Monthly mean seasonal cycles of standardized root-zone soil moisture for the period 1980-2010 -eomparing-SP-MiP-experiments
across the CONUS. CLMS simulations (EXP1-EXP2,—EXP3 -and variousconfigurations-of EXP4EXP4a—d) are compared with ERAS-Land

data—forreanalysis. ERAS-Land exhibits the CONUS—+regionlargest seasonal amplitude, with sharp increases during spring (March—June
and steep declines during summer (July—October). Fhe-In contrast, EXP1-EXP3 form a tightly clustered group with flattened seasonal
cyclesexhibit-consistent-patterns-across-at-experiments—, underestimating both the spring moisture accumulation and summer drawdown.

EXP4a, which uses a loamy sand texture, shows greater seasonal responsiveness and more closely tracks ERA5-Land. The remaining EXP4

configurations (loam, with-higherclay, silt) progressively dampen seasonal variability, reflecting the influence of soil meisture-in—winter
texture on water retention and fewerseib-meistare-tn-summerhydrologic dynamics.

3.4 EOF Analysis of Soil Moisture Variability
3.4.1 Explained Variance and Mode Contributions

This study applies EOF analysis to soil moisture anomalies from the CLMS5 simulations (EXP1, EXP2, EXP3) and ERA5-Land
data to investigate how soil parameterization influences soil moisture variability in the CONUS region. Figure 6-8 presents the
percentage of variance explained by the first 10 EOF modes for each dataset, illustrating both individual and cumulative
contributions. The EOF modes are ranked by variance percentage, with EOF-1 capturing the highest variance and representing
the most significant spatial variability. Across all experiments, EOF-1 explains slightly more variance than EOF-2, suggesting
limited separation between these modes and potential mode mixing. The explained variance gradually declines in subsequent
modes, with EOF-10 contributing less than 2%, as summarized in Table 3. EOF-1 explains a similar percentage of variance in
EXP1 (11.45%) and EXP2 (11.66%), indicating comparable spatial variability patterns. However, in EXP3, EOF-1 captures
only 10.84% of the variance, with mode mixing shifting variance from EOF-1 to EOF-2 (Table 3, arrows). These differences
highlight the impact of soil parameterization on representing dominant soil moisture variability. ERAS5-Land, serving as a

benchmark, exhibits a much stronger EOF-1 contribution (17.5%), emphasizing a more dominant leading mode in observed
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data compared to modeled datasets. The cumulative explained variance (Figure 8, green line) further demonstrates the efficiency
of the EOF modes in capturing soil moisture variability.

485 While the first five modes account for about 40% of the variance in ERA5-Land, modeled datasets require approximately
six modes to reach the same threshold. This distribution suggests that simulations spread variance more evenly across modes,
reflecting differences in spatial patterns between models and observations. To ensure comparability, adjustments aligned the
EOF modes across datasets. For instance, shifts in EXP3 and ERAS5-Land were necessary to match dominant spatial patterns,
such as EOF-1 and EOF-2 swaps (marked-inred-and-blie-in-indicated by arrows in Table 3). These adjustments highlight

490 the sensitivity of EOF rankings to mode mixing and the challenges of directly comparing modeled and observed datasets. In
addition, Appendix A (Figure A1) provides additional EOF analysis results for EXP4a-d, detailing variance explained across
experiments. The findings reinforce the influence of soil parameterization on the spatial distribution of soil moisture and

emphasize the need for improved alignment with observed patterns, as reflected in ERAS5-Land.

Table 3. Percentage of variance explained (%Expl. Var.) by the first 10 EOF modes for EXP1, EXP2, and EXP3 model runs, and ERA5-Land

benchmark data. Arrows and superscripts indicate EOF mode swaps for consistent comparisons across datasets (see Figure 9).

EOF Mode EXP1 %Expl. Var. | EXP2 %Expl. Var. | EXP3 %Expl. Var. | ERA5-Land %Expl. Var.
EOF-1 11.45 11.66 10:8410.84 |* 175175 |°
EOF-2 10.40 10.60 9-859.85 1 8488.48 |3
EOF-3 8.81 8.25 9.08 7:837.83 1
EOF-4 5.69 5.83 5.73 5.75
EOF-5 4.37 4.59 4.48 5.61
EOF-6 3.49 3.56 3.48 3.64
EOF-7 3.26 3.23 3.24 3.10
EOF-8 2.51 2.53 2.63 2.86
EOF-9 2.14 2.16 222 2.76
EOF-10 1.96 1.99 1.95 2.22
Total Cumm. %Expl. Var. 34.07 44 3349 9.7

3.4.2 Spatial and Temporal Analysis of EOF Modes for Soil Moisture Variability

495 Spatial distribution of the first three EOF modes from soil moisture anomalies in CLM5 simulations (EXP1, EXP2, EXP3)
and ERAS-Land ( i fei i reference). The maps in Figure 9

show correlation coefficients between the PC time series of each EOF mode and the soil moisture anomaly time series at each

rid point. These correlation maps indicate the spatial strength and direction of the-relationship-between EOF patterns-and-sott

moisture-anomalies-(Figure-9)-association between local anomalies and the broader temporal mode represented by the PC.
500 This representation facilitates interpretation by hi

negative correlation) with the dominant temporal pattern, thereby revealing the spatial structure of soil moisture variabilit
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Figure 8. The variance explained by each separate and combined EOF in the CLMS5 soil moisture experiment is depicted. Red bars represent

the contribution of each EOF individually, while the green line shows the cumulative proportion for the initial 10 EOF modes.

linked to each EOF mode. EOF-1 patterns (Figures 9d, g, j) reveal strong positive correlations in central and southeastern ENA,
highlighting a dominant mode of variability. Negative correlations are observed in WNA and CNA, indicating contrasting
modes of soil moisture variability in the CONUS region. The variance explained by EOF-1 ranges from 9.85% (EXP3) to
11.66% (EXP2), with ERAS5-Land explaining significantly more variance at 17.5%. These spatial patterns align with large-

scale climatic influences such as precipitation gradients and geographic features. For example, Gaffin and Hotz (2000) noted
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that the Appalachian Mountains exhibit strong precipitation gradients due to storm systems lifting moist southerly winds,
enhancing soil moisture in ENA. The corresponding principal components (PC-1; Figure 10a) indicate temporal variability,
with notable peaks during 2003 to 2004 and 1988 to 1999, corresponding to documented climatic events such as ENSO-driven
precipitation anomalies (Ye et al., 2023; Gimeno et al., 2010). The close agreement of PC-1 across all experiments highlights
the robustness of EOF-1 in representing dominant soil moisture variability, although slight differences suggest sensitivity to
parameterizations.

EOF-2 (Figures 9e, h, k) exhibits a distinct dipole pattern, with positive correlations in the central Great Plains and negative
correlations over ENA, reflecting a wide spread in soil moisture variability. This dipole nature, which explains 10.40% to
10.84% of the variance, is consistent with regional climatic processes such as precipitation and evapotranspiration dynamics
influenced by terrain and hydrological conditions. For example, positive correlations in the central Great Plains may result from
localized convective precipitation; however, isotope studies indicate that precipitation in this region is influenced by moisture
transported from external sources, such as the Gulf of Mexico, rather than solely from local convection (Sanchez-Murillo et al.,
2023). Negative correlations in ENA could reflect the influence of evapotranspiration or soil drainage patterns (Famiglietti,
2014). In particular, EXP3 shows a stronger positive correlation in the desert southwest, indicating a greater sensitivity to
soil parameters in arid regions, which can alter soil water retention and infiltration rates. Furthermore, EOF-3 (Figures 9f, i,
1) highlights localized variability, with positive correlations in the Pacific Northwest and negative correlations over Texas in
CNA. This mode explains less variance than EOF-1 and EOF-2, ranging from 8.25% (EXP2) to 9.85% (EXP3), but captures
important regional processes. The Pacific Northwest patterns may be influenced by orographic precipitation, while negative
correlations in Texas could reflect drought conditions dominated by soil type and fine texture which have a high potential
for water retention (Haverkamp et al., 2005) and fine-texture which have a high potential for water retention. Although the
spatial patterns of EOF-3 are broadly similar between experiments, slight shifts in correlation intensity and location suggest
localized impacts of soil parameterizations. The PCs (Figure 10c) show weaker temporal variability, with occasional peaks
corresponding to distinct climate events, which emphasizes the regional specificity of EOF-3. The appendix includes Figures
A2 and A3, which offer additional results highlighting the spatial and temporal variability of EXP4a-d EOF across experiments,
further supporting the findings discussed. Lastly, the results emphasize the significant role that soil parameterizations play in
soil moisture variability within the CLMS5 model. Differences in the spatial and temporal patterns of EOFs indicate the model’s
sensitivity to these parameterizations, especially in areas with intricate terrain or significant climate variability. The alignment
of EOF-1 with ERAS5-Land underscores the robustness of the model’s primary modes, while discrepancies in EOF-2 and
EOF-3 highlight regions where model refinements could enhance localized soil moisture predictions. This study stresses the
importance of improving soil parameterizations to increase the precision of hydrological simulations and effectively capture

the interaction between soil moisture and climatic elements.
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3.4.3 EOF Modes: Euclidean Distance Analysis

The Euclidean distance between the spatial patterns of EOF modes derived from soil moisture anomalies in CLM5 SP-MIP
model experiments (EXP1, EXP2, and EXP3) and the corresponding EOF modes from the ERAS5-Land reanalysis (Figure 11).
The Euclidean distance quantifies the dissimilarity between the spatial modes, with smaller values indicating closer agree-
ment with the ERA5-Land benchmark. Regions with hatched lines represent areas where the Euclidean distance falls below
a threshold of 5, suggesting a strong alignment between the model-derived EOFs and the observed EOFs in these locations.
EOF-1 exhibits the most consistent alignment across experiments, particularly in the western and northwestern portions of the
CONUS region (WNA). The hatched areas in these regions indicate that the spatial variability of soil moisture in these areas
is well-represented by the model, reflecting accurate capture of large-scale hydrological processes influenced by precipitation
gradients and topographic features (Gaffin and Hotz, 2000; Famiglietti, 2014). In contrast, the central Great Plains consistently

shows larger Euclidean distances for all three EOF modes across experiments, suggesting significant discrepancies between
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the modeled and observed soil moisture patterns in this region. This discrepancy may be attributed to limitations in soil pa-
550 rameterizations or the complexity of hydrological and climatic processes, such as precipitation variability and soil moisture
precipitation feedbacks, as highlighted by Koster et al. (2004) and Welty and Zeng (2018). Compared to ERAS5-Land, EXP1
shows a better agreement with ERAS-Land in the WNA region for EOF-1, while the performance in other regions remains
mixed across the experiments. EOF-2 and EOF-3 exhibit increased variability in Euclidean distances, with fewer hatched ar-
eas, indicating challenges in capturing smaller-scale processes and dipole patterns present in these modes (Hannachi et al.,
555 2007; Monahan et al., 2009). These findings underscore the model’s sensitivity to parameterizations and highlight the need
for targeted improvements in the central Great Plains and other regions with persistent discrepancies. By refining soil param-
eter settings and incorporating additional observational constraints, future experiments could achieve better alignment with

ERAS5-Land, thereby enhancing the accuracy of regional soil moisture simulations (Lawrence et al., 2019; Tuttle and Salvucci,

2016).
[a] EXP1-ERA5-Land: EOF-1 EucD [b] EXP1-ERA5-Land: EOF-2 EucD [c] EXP1-ERA5-Land: EOF-3 EucD
49°N = e e
5 y LY / 0 / . ¥
V. 4 . /
b S i /// q //'/,' |..-. i // q
), i - g % |
7 / T 4 s / / £/
! 2y ’/E/ % 2 S ;/:' ' .: i
A\ P //, gl /s
: "X/
/ - /. -
. O 2% Y

[e] EXP2-ERA5-Land: EOF-2 EucD

s T T ry

[f] EXP2-ERA5-Land: EOF-3 EucD

[g] EXP3-ERA5-Land: EOF-1 EucD [h] EXP3-ERA5-Land: EOF-2 EucD
419°N R 7 T 7

44°N gAY 1 1/, 4
& -

39°N T -
34°N | 1 VAo

N, v 2, £ %
29°N LN Jati S '

g - s -

24°N . ':lf//- 3 . '/// g .

120°W  110°W 100°W 90°W  80°W  70°W 120°W  110°W 100°W  90°W  80°W  70°W 120°w  110°W 100°W 90°W  80°W  70°W

| T
5 10 15 20 25 30

Euclidean Distance
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560 3.4.4 EOF Modes: Taylor Diagram Analysis

565

570

575

TDs (Figure 12) provide a comprehensive statistical summary of how well EOF patterns from different experiments match
those of ERAS5-Land by depicting three key statistics: the standard deviation (dotted lines), the correlation coefficient, and the
centered root mean square error (RMSE). Each marker’s position on the plot indicates how accurately the soil moisture EOF
mode pattern aligns with the ERA5-Land EOF mode. For EOF-1 (Figure 12a), the standard deviations of the EOF modes for
all model experiments are relatively close to the reference EOF mode, ranging between 4.0 and 6.5, which suggests a good
match in terms of variability. The pattern correlations range between 0.6 and 0.95, with EXP4d demonstrating the highest
pattern correlation. This indicates that the spatial pattern of EXP4d aligns more closely with the ERAS5-Land EOF mode. In
EOF-2 (Figure 12b), the standard deviations remain consistent with the reference EOF mode, while the pattern correlations
cluster between 0.4 and 0.7. This highlights a moderate similarity in the spatial patterns of EOF across the experiments and
in the reference EOF mode for the second mode of variability. For EOF-3 (Figure 12c), the EOF modes generally exhibit a
pattern correlation of around 0.8 and a standard deviation of approximately 5.0. However, the EXP4d EOF deviates, centered
around a lower standard deviation of 3.5. These variations emphasize the influence of soil parameter settings in the simulations

of the CLM5 model, illustrating how adjustments in these settings affect the alignment of the EOF mode patterns with the
ERAS5-Land reference EOF mode.
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Figure 12. Taylor Diagrams (TDs) for the leading three EOFs from multiple experiments (EXP1, EXP2, EXP3, EXP4a, EXP4b, EXP4c,
EXP4d) and ERAS-Land. The diagrams summarize standard deviation, correlation coefficient, and RMSE, with marker placement indicating

the alignment of modeled EOF modes with ERA5-Land.

4 Conclusion and Recommendations

This study investigates the influence of soil parameterizations on soil moisture simulations in the CLMS5 across the CONUS for

the period 1980 to 2010 using EOF analysis. The analysis compared the CLMS5 outputs with the ERAS5-Land reanalysis data to
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610

identify spatial and temporal variability in soil moisture patterns arising from differences in soil parameter configurations. The
results highlighted that EXP3, which used the default CLMS5 soil parameters, consistently simulated higher soil moisture levels
than other experiments. This finding underscores the model’s sensitivity to variations in soil hydraulic properties, such as satu-
rated hydraulic conductivity, soil water retention characteristics, and porosity. Seasonal soil moisture dynamics showed broad
consistency across experiments, peaking in winter due to reduced evapotranspiration, and declining in summer when higher
temperatures intensified soil drying. However, distinct differences emerged in the magnitude and phase of seasonal cycles,
revealing how variations in soil properties can influence processes such as water retention, drainage, and evapotranspiration
fluxes. These insights align with previous research, which demonstrated that soil moisture significantly affects hydrological
processes and land-atmosphere interactions, particularly through feedback mechanisms that vary regionally across the United
States ((Tuttle and Salvucci, 2016; Koster et al., 2004). Furthermore, the amplified sensitivity observed in the arid and semi-arid

regions of the CONUS suggests that these areas may be particularly vulnerable to uncertainties in soil parameterization.

EOF-anatysis This study directly addressed two key research questions: (1) how soil hydraulic parameters influence large-scale
spatial soil moisture patterns, and (2) how these parameters affect temporal dynamics during climate extremes. Regarding the
first question, EOF analysis revealed that changes in soil hydraulic properties significantly altered the spatial distribution of
dominant EOF modes, particularly in regions like the Great Plains and ENA, indicating that parameterizations strongly shape
modeled soil moisture gradients. For the second guestion, principal component time series linked to major EOFs captured
interannual anomalies and periods of extreme wetness or dryness that aligned with known climate events, such as ENSO
phases. Variations in the amplitude and persistence of these temporal patterns across experiments underscored the role of
soil parameters in modulating the hydrologic response to climate variability. These findings affirm that parameter choice not
only controls spatial representation but also governs the sensitivity of soil moisture to climatic extremes, highlighting the dual
spatial-temporal impact of soil parameterization in land surface modeling.

EOF analysis further revealed that the first few modes accounted for the majority of the variance in soil moisture between
experiments, and the EOF-1 mode, decomposed from soil moisture consistently explained the largest proportion. The spatial
patterns of the first three EOF modes exhibited similar broad-scale features among the experiments, such as dominant moisture
gradients across climatic zones. However, notable differences in explained variance and spatial correlations pointed to the influ-
ence of soil parameters on the physical processes driving regional moisture variability. Compared with ERAS-Land data using
Euclidean distances and Taylor diagrams, the CLM5 output aligned more closely with observations in WNA, reflecting better
model performance in capturing the dynamics of mountainous and arid regions. In contrast, persistent discrepancies in the
central Great Plains revealed challenges in representing complex interactions between soil hydraulic properties, precipitation
variability, and surface-atmosphere feedbacks. These discrepancies are particularly concerning given the region’s susceptibil-
ity to extreme hydrological events, including droughts and floods (Koster et al., 2004; Ye et al., 2023). The Great Plains is
characterized by a highly variable continental climate, with strong seasonal and interannual fluctuations in precipitation and
temperature, leading to frequent shifts between wet and dry extremes (Basara and Christian, 2018; McDonough et al., 2020).
This climatic variability makes the region hydrologically complex, requiring accurate representation of soil moisture dynamics

for land surface hydrology modeling. Errors in soil moisture estimation can propagate into predictions of crop productivity,
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water resource availability, and flood risk. The findings suggest that refining soil hydraulic parameterizations, such as incor-
porating high-resolution soil texture data and accounting for heterogeneity, can significantly improve the predictive capacity

615 of CLMS and other tand-surface-models-LSMs for climate studies, ecosystem assessments, and resource management. While

our comparative framework assessed the aggregate effects of parameter set differences, we did not perform a formal sensitivity
analysis to isolate the influence of individual soil hydraulic properties (e.g., saturated hydraulic conductivity, porosity, van
While ERAS-Land was used as the reference dataset in this study, we emphasize that our objective was not to perform

620 a traditional comparison of CLMS soil moisture outputs, but to evaluate the intra-model sensitivity of spatial and temporal
variability to different soil hydraulic parameterizations. ERAS-Land served as a physically consistent and spatially continuous
benchmark to assess whether CLMS's simulated patterns of variability were realistic and coherent. Its compatibility with the
model’s spatial and temporal resolution, broad spatial coverage, and representation of seasonal and interannual dynamics made

it appropriate for the pattern-oriented objectives of this work, We acknowledge the limitations of ERAS-Land, particularly its

lack of direct in-situ soil moisture assimilation and potential biases in humid regions (Mufoz-Sabater et al., 2021; Wu et al., 2021; Zhang et

build upon this diagnostic framework by incorporating observational datasets such as SMAP, GLEAM (Martens et al., 2017)

SMERGE (Tobin et al., 2019), ot MERRA-2 (Reichle et al., 2017), which will enable a more comprehensive comparison and

facilitate targeted calibration of model parameters. For the present study, however, ERAS-Land provided a robust and consistent
630  backdrop for assessing how parameter choices influence modeled variability patterns across diverse hydroclimatic regions.

To address these challenges and improve the accuracy of soil moisture simulation in CLMS, several strategies are recom-

625

mended. Refinement of soil moisture variability representation using advanced PTFs or machine learning-based approaches
can address uncertainties in soil hydraulic parameters, especially in hydrologically complex regions such as the Great Plains.
Expanding the use of high-resolution datasets from satellite missions such as the Seil-Meisture-Aetive-Passive(SMAP)-SMAP
635 mission and in situ soil moisture networks will provide robust benchmarks for calibration and validationcomparison, reducing
biases in model outputs (Famiglietti, 2014). Conducting region-specific calibration of soil parameters and comparative multi-
model analyses will help address inter-model-intra-model variability and optimize simulations for diverse climatic zones.
Linking soil moisture variability to dynamic vegetation feedbacks can improve the representation of evapotranspiration pro-
cesses, as vegetation significantly influences soil moisture and water exchange dynamics (Oleson et al., 2010; Ye et al., 2023).
640 Establishing stronger connections between soil moisture variability and large-scale climatic drivers such as the ENSO can en-
hance seasonal forecasts and long-term predictive capabilities (Gimeno et al., 2010; Tuttle and Salvucci, 2016). Understanding

these links will facilitate better integration of climatic variability into land surface modeling frameworks.
Importantly, these findings also open the door to future efforts that incorporate dynamic soil properties into LSMs. Much of
this work demonstrates the dynamism of soil properties, and while this study advances modeling by revealing the importance
645 of their inclusion, the next crucial step will be developing approaches that allow these properties to be dynamic within LSMs.
This paper serves as a foundational step toward that goal, paving the way for more complex and integrated modeling frame-

works that better capture soil-hydrology-climate interactions. These recommendations aim to address existing challenges in
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655

soil moisture modeling and improve the predictive capabilities of land-surface-models-LSMs such as CLMS. Advancing soil
hydraulic parameterization and leveraging state-of-the-art observational datasets will enable models to more accurately capture
large-scale hydrological dynamics and localized soil-climate interactions. This, in turn, will support improved water resource
management, agricultural planning, and climate adaptation strategies, ultimately contributing to the larger goals of sustainable

development and climate resilience.

Code and data availability. All datasets used in this study are publicly for download at Zenodo https://doi.org/10.5281/zenodo.15078448
(Silwimba, 2025b). This includes files on soil parameters and soil texture for EXP1, EXP2, and EXP4a—d. Additionally, the ERAS5-Land
can be freely accessed at https://doi.org/10.24381/cds.e9c9c792 (Muiloz-Sabater et al., 2021). The code used to process the data, perform
the EOF analyses, and generate the results is available on Zenodo at https://doi.org/10.5281/zenodo.14888812 (Silwimba, 2025a). The
Zenodo repository provides comprehensive documentation and instructions for reproducing the analysis, and any future updates or additional
scripts will be hosted there. For any difficulties in accessing these data or code, or for requests for further information, please contact the

corresponding author.
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Figure Al. Contribution of Variance by Individual and Cumulative EOFs in CLM5 Soil Moisture Experiments. The red bars indicate the
portion of variance each separate EOF mode accounts for, whereas the green line depicts the cumulative percentage of variance explained by
the first ten EOF modes. These plots reveal the significant impact of the early EOF modes in accounting for variance. Panels (a) to (d) relate

to different experimental configurations or scenarios, offering a comparative assessment of EOF variance contributions.
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Figure A3. Temporal variability of principal components (PCs) derived from the EOF analysis. The plots display the amplitude of the first

three principal components: PC-1, PC-2, and PC-3. Each line corresponds to one of the four experimental setups (EXP4a, EXP4b, EXP4c,

and EXP4d) or the ERAS-Land reanalysis. PC-1 (top panel) captures the dominant mode of variability, while PC-2 (middle panel) and

PC-3 (bottom panel) represent the secondary and tertiary modes, respectively. The x-axis shows the time period (1979-2012), and the y-

axis indicates the standardized amplitude. These plots highlight the temporal dynamics of soil moisture variability as captured by different

experimental configurations, providing insights into their agreement and divergence relative to the ERAS-Land reference data.
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Figure A4. The Euclidean distance between EOF modes from SP-MIP experiments (EXP4a, EXP4b, EXP4c, EXP4d) and ERAS5-Land
is depicted. Panels (a—c) illustrate results for Experiment 4a (Loamy Sand), while panels (d—f), (g—i), and (j-1) pertain to Experiments
4b (Loam), 4c (Clay), and 4d (Silt), respectively. Each column showcases one of the first three EOF modes: EOF-1, EOF-2, and EOF-3.
The color bar represents the Euclidean distance, where lower values (yellow) reflect stronger alignment with ERAS5-Land, whereas higher
values (red) denote more significant discrepancies. Regions with hatched patterns signify distances less than 5, emphasizing areas where the
experiments closely align with the ERAS-Land data. These observations reveal the spatial variability in model performance across different

soil hydraulic parameter settings and EOF modes.
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