RESPONSE TO REVIEWER #1 FOR GEOSCIENTIFIC MODEL
DEVELOPMENT:
MANUSCRIPT EGUSPHERE-2025-713

We sincerely thank Reviewer #1 for their thorough and constructive feedback on our manuscript,
"Soil Parameterization in Land Surface Models Drives Large Discrepancies in Soil Moisture
Predictions Across Hydrologically Complex Regions of the Contiguous United States." The
comments have significantly helped us identify areas for improvement, and we outline below how we
will address each point in the revised manuscript to enhance clarity, robustness, and alignment with
the standards of the hydrology and land surface modeling communities. Our responses to the
suggestions are detailed below (in blue).

Silwimba et al. investigate the impact of different soil hydraulic parameter sets derived from various
approaches on soil moisture variability across the contiguous United States (CONUS), using the
Community Land Model version 5 (CLMS5). The study employs Empirical Orthogonal Function (EOF)
analysis to extract dominant spatiotemporal patterns in soil moisture and assesses how variability in soil
hydraulic parameters influences hydrological processes.

The manuscript is generally well-written, with clearly articulated objectives and a methodologically
sound design. The topic is timely and of interest to the hydrology and land surface modeling
communities. The authors have presented the results in a clear and coherent manner. However, I have a
few concerns and suggestions that, if addressed, could improve the clarity and robustness of the
manuscript.

Major and Minor Comments

. Experimental Design Clarity:

The description of the experimental setup, particularly EXP1, EXP3, and EXP4a—4d, requires further
clarification:

a) For EXP1, how exactly does the use of uniform soil hydraulic parameters demonstrate a
reduction in inter-model variability? A more detailed explanation of the hypothesis and
expected behavior would be helpful.

Response: We appreciate the reviewer’s observation and agree that the original wording was
potentially misleading. In the revised manuscript, we clarified that EXP1 is not designed to
assess inter-model variability per se, since our study uses only CLMS5. Instead, EXP1 serves as
a baseline control simulation within CLMS5, applying globally standardized soil hydraulic
parameters derived from SP-MIP uniformly across the CONUS domain. By eliminating spatial
variability in soil properties, this setup allows us to isolate CLMS5’s intrinsic response to a
consistent parameter set. The objective is to establish a stable reference point against which the



1.

effects of varying parameterizations in other experiments (EXP2—-EXP4) can be compared. We
have removed references to inter-model variability and now explicitly define EXP1’s role in
highlighting intra-model sensitivity to soil parameter changes.

b) For EXP3, it is not entirely clear how this experiment isolates the intrinsic inter-model
variability. Please elaborate.

Response: Thank you for highlighting this confusion. We have revised the description of
EXP3 to clarify that it is not meant to isolate "inter-model" variability, but rather to assess
CLMS5’s default behavior using its native parameter configuration. EXP3 uses CLMS5’s built-in
soil maps and lookup tables to assign hydraulic properties, reflecting the model’s operational
configuration without externally imposed constraints. The goal is to establish a benchmark for
CLMS5’s default performance, allowing us to compare its outputs with more controlled or
hypothetical scenarios (e.g., EXP1 and EXP4a-4d). We have removed any mention of "intrinsic
inter-model variability" and now focus on evaluating how CLMS5’s default parameter
assumptions influence soil moisture outputs.

c) For EXP4a—4d, 1 find it difficult to understand how four different soil categories are
implemented in the model. Do you run the model separately for each soil category? Are these
scenarios simulated using four distinct parameter sets applied uniformly across the domain, or
are they spatially varying? Clarifying how these simulations were configured in CLMS5 is
essential.

Response: We agree that the initial description of EXP4a—4d lacked sufficient detail. In the
revised manuscript, we now clearly state that each of the four experiments (EXP4a—4d)
involves a separate CLMS5 simulation, in which a uniform set of soil hydraulic parameters
corresponding to a specific USDA soil class (loamy sand, loam, clay, silt) is applied
consistently across all grid cells in the CONUS. These parameter sets are sourced from SP-MIP
and derived using standard PTFs. There is no spatial variation in soil properties within each
experiment; the only difference across experiments is the texture class used. This design enables
a clean comparison of how different soil textures influence soil moisture and energy balance
outputs under identical meteorological conditions. We have revised the text to reflect this
modeling setup and its role in evaluating texture-specific sensitivity within CLMS.

Model-Observation Comparison:

Have the authors considered validating the model outputs against observational soil moisture
datasets? Including such comparisons would strengthen the findings and contextualize model
performance.

Response: We thank the reviewer for this thoughtful suggestion. In the current study, we compare
CLMS5 outputs to the ERAS-Land reanalysis product, which assimilates a wide range of
observational and model-derived inputs to produce a spatially and temporally consistent estimate of
soil moisture across CONUS. ERAS5-Land was selected for its comprehensive coverage, high
temporal resolution, and comparability with the spatial resolution of our CLMS5 simulations. The


https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5

purpose of this comparison is to examine similarities and differences between the modes of soil
moisture variability from the SP-MIP numerical experiments and those of a reanalysis dataset. To
carry out this comparison, we use multiple statistical metrics, including Euclidean distance, Taylor
Diagrams, and EOF-based analyses (Sections 3.1-3.4), to systematically assess the agreement
between CLMS5 simulations and ERAS5-Land data.

We fully agree, however, that incorporating direct observational datasets such as in-situ
measurements from soil moisture monitoring networks or remote sensing products like the Soil
Moisture Active Passive (SMAP) mission would provide an additional layer of comparison and help
benchmark model performance more rigorously. We underscore that the primary purpose of this
comparison is not so much a validation of the model performance, but rather an assessment of the
degree to which the ranges of variability in SP-MIP experiment soil moisture response compares
with those seen in observational datasets. We admit that some of the comparison metrics we used are
commonly used in more strict model validation studies, where benchmarking against multiple
datasets is important to evaluate the veracity of model predictions. However, we believe that
introducing additional comparisons with observational data may unnecessarily expand the scope of
the current work, which seeks primarily to assess the sensitivity of the model to soil parameters.

However, in acknowledgment that the previous version of the manuscript may not have been clear
about the purpose of this work, we have added a paragraph in the revised Section 4 acknowledging
the narrow scope of our work and emphasizing the value of integrating direct observational datasets
in future works, which might seek to more deliberately calibrate soil parameters within a global land
model. We note that upcoming efforts will focus on leveraging SMAP and in-situ data to complement
reanalysis-based validation and further improve the robustness and interpretability of soil moisture
simulations in CLMS5. This will support more comprehensive model evaluation and enhance
confidence in land surface model applications.

Figure Reference — Line 328:
The text refers to Figure 6, but the description seems to match the content of Figure 8. Please verify
and correct this reference.

We thank the reviewer for pointing out the incorrect figure reference on line 328. The text description
corresponds to Figure 8, not Figure 6. We have corrected the reference in the revised manuscript to
ensure consistency between the narrative and the associated figure.

Regional Subdivisions of CONUS:

While the manuscript defines subregions within CONUS, the analysis appears to be conducted solely
at the national scale. What is the purpose of introducing these subdivisions if no region-specific
results are discussed?

Response: To adrress the reviewer’s concern regarding the relevance of regional subdivisions, we
have revised Section 2.1 to explicitly clarify the role of the CONUS subregions Western North
America (WNA), Central North America (CNA), Eastern North America (ENA), and North Central
America (NCA) in our analysis. These subdivisions, based on Giorgi and Francisco (2000), now
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serve as a physically meaningful framework for interpreting region-specific patterns in soil moisture
variability identified through EOF analysis. The revised text emphasizes how each region captures
distinct hydroclimatic characteristics, supporting a spatially disaggregated evaluation of model
sensitivity to soil hydraulic parameters. By linking EOF-derived spatial modes and observed
model-observation discrepancies (e.g., higher soil moisture in ENA and lower model agreement in
CNA) to these macro-regions, the updated section enhances both the interpretability and
process-level insights of the results. This regionalization strengthens the methodological coherence
of the study and directly supports our objective of understanding spatially heterogeneous parameter
impacts across the CONUS domain.

Motivation for EOF Analysis:

The rationale for employing EOF analysis to study soil moisture variability is not clearly justified.
What specific insight does EOF provide in this context that other metrics might not? Please expand
on the scientific motivation for this methodological choice.

Response: To address the reviewer’s request for a stronger justification of the EOF analysis, we
have substantially revised Section 2.3 to clarify the rationale, methodological advantages, and
contextual relevance of using EOFs to study soil moisture variability. The revised section now
emphasizes that EOF analysis, implemented via Singular Value Decomposition (SVD), is particularly
suited to extracting dominant spatiotemporal patterns from high-dimensional soil moisture datasets,
enabling robust comparisons across experiments and observational benchmarks. We explicitly link
this technique to our study’s objective of evaluating how soil hydraulic parameterizations influence
moisture dynamics across diverse hydroclimatic regions in CONUS. The revised text also highlights
EOFs’ utility in diagnosing interactions with large-scale climate drivers (e.g., ENSO, PDO), their
role in identifying parameter-sensitive regions, and their advantage over simpler metrics such as
RMSE or bias. Furthermore, we acknowledge the method’s limitations, such as its reliance on
orthogonality, and describe how we address these using supplementary diagnostics (e.g., Taylor
diagrams, Euclidean distance). Lastly, we clarify that all EOF analyses were conducted using the
open-source eofs (Dawson, 2016) Python package, ensuring transparency and reproducibility.

Conclusion Structure:

The manuscript introduces two central research questions related to the influence of Soil hydraulic
parameters on spatial soil moisture patterns and their temporal evolution during climate extremes.
However, the conclusion section does not clearly revisit or synthesize findings in response to these
questions. I recommend revising the conclusion to directly address the key research objectives and
summarize how the results support them.

Response: To address the reviewer’s concern regarding the structure and focus of the conclusion,
we have significantly revised Section 4 to explicitly revisit and synthesize the study’s two primary
research questions: (1) how soil hydraulic parameters influence spatial soil moisture distributions,
and (2) how these parameters affect temporal dynamics during climate extremes. The updated section
now integrates findings from the EOF and principal component analyses to demonstrate how
parameter choices influence both spatial gradients, particularly in regions like ENA and CNA, and



the temporal evolution of moisture anomalies associated with events such as ENSO phases. In
addition, we have expanded the conclusion to include a targeted set of practical recommendations for
improving soil moisture simulation in CLMS5. These include refining parameter estimation using
advanced pedotransfer functions and machine learning methods, leveraging high-resolution satellite
and in situ datasets (e.g., SMAP), and conducting region-specific parameter calibrations. We also
emphasize the importance of accounting for vegetation—soil moisture feedbacks and linking modeled
variability to large-scale climate drivers, such as ENSO, to enhance model realism and forecasting
capability. These additions directly align the conclusion with the study’s original objectives while
offering clear directions for future land surface model development and application.

Sensitivity of Hydraulic Parameters:

It would be valuable for the reader to understand which specific Soil hydraulic parameters (e.g.,
saturated hydraulic conductivity, porosity, van Genuchten parameters) are most influential in
controlling soil moisture dynamics across the simulations. A sensitivity analysis or discussion on this
point would enhance the study’s relevance for land model parameterization efforts.

Response: We appreciate the reviewer’s suggestion to include a sensitivity analysis of individual
soil hydraulic parameters. We agree that understanding the relative influence of specific parameters
such as saturated hydraulic conductivity, porosity, and van Genuchten coefficients would provide
valuable insights for model parameterization. However, this level of diagnostic analysis is beyond the
scope of the present study. Our analysis is based on pre-run CLMS5 simulations using prescribed
parameter sets from SP-MIP, and we did not have access to the exact individual parameter values
used within the model configurations for each experiment. As such, we were unable to systematically
perturb or isolate individual parameters for a formal sensitivity analysis.

Instead, the study adopts a comparative experimental design outlined in Section 2.2.1, where each
simulation applies a distinct parameter set derived from known pedotransfer functions or soil texture
classes (e.g., EXP1 with standardized values, EXP4a—4d with uniform soil textures). Through this
approach, we evaluated the aggregate effects of different parameter configurations on soil moisture
variability, which were further decomposed using EOF analysis. While we acknowledge that this
limits our ability to attribute responses to specific parameter changes, the results nonetheless
highlight the substantial impact of parameter-driven variability on both spatial and temporal soil
moisture patterns, especially in hydroclimatically complex regions such as the Great Plains.

We view this as an important direction for future research and have added to the revised manuscript
(Section 4, see below), recommending that subsequent studies conduct targeted sensitivity analyses
using parameter perturbation techniques or machine learning frameworks to systematically rank the
influence of individual hydraulic properties on land surface model outputs.

“....While our comparative framework assessed the aggregate effects of parameter set differences, we did
not perform a formal sensitivity analysis to isolate the influence of individual soil hydraulic properties
(eg., saturated hydraulic conductivity, porosity, van Genuchten parameters), which remains an important
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area for future investigation
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RESPONSE TO REVIEWER #2 FOR GEOSCIENTIFIC MODEL
DEVELOPMENT:
MANUSCRIPT EGUSPHERE-2025-713

We sincerely thank Reviewer #2 for their thorough and insightful feedback on our manuscript, "Soil
Parameterization in Land Surface Models Drives Large Discrepancies in Soil Moisture Predictions
Across Hydrologically Complex Regions of the Contiguous United States." Your comments have
been invaluable in helping us identify areas for improvement, and we outline below how we will
address each point in the revised manuscript to enhance its clarity, robustness, and alignment with the
standards of the hydrology and land surface modeling communities. Our responses to the suggestions
are detailed below (in blue).

The authors present a comprehensive and methodologically rigorous study examining the influence
of soil hydraulic and textural parameters on soil moisture simulations in CLMS, using soil parameter
sets from the Soil Parameter Intercomparison Project (SP-MIP). Model outputs are compared against
the ERAS-Land dataset as a benchmark. The study utilizes various analytical approaches, including
means and variability assessments (Figures 4 and 5), as well as Empirical Orthogonal Function
(EOF) analysis to investigate dominant spatial patterns and variability in soil moisture across the
CONUS region. The findings suggest that soil parameterization has a substantial impact on CLMS5
simulations, with notable discrepancies from ERAS5-Land, particularly in hydrologically complex
regions such as the Great Plains. The default CLMS setup captures mean climatological patterns
reasonably well but tends to underestimate interannual and seasonal variability.

Overall, the manuscript is well-structured, and the English is of generally high quality. The authors
have executed a wide array of experiments that meaningfully contribute to our understanding of soil
parameter sensitivities in land surface modeling. However, several critical issues remain that merit
further investigation before the manuscript is suitable for publication. I recommend major revisions
to address the following points:

1. Limited Benchmarking Against Reference Data:

The exclusive use of ERAS5-Land as a benchmark is insufficient. While the authors acknowledge
some of ERA5-Land's limitations, it remains a reanalysis product with inherent model dependencies



and does not assimilate in-situ soil moisture observations directly. Prior studies [Koster et al., 2009]
have demonstrated that soil moisture estimates are highly model-dependent. The validity of
conclusions based solely on a single reference dataset is therefore limited.

To strengthen the analysis, I strongly recommend incorporating additional observation-based
datasets, such as GLEM v3 [Martens et al., 2017], SMERGE [Tobin et al., 2019], and MERRA 2
[Reichle et al., 2017]. Each offers distinct advantages—GLEAM and SMERGE incorporate
satellite-based observations, whereas MERRA-2 is a reanalysis-based soil moisture data. A recent
study [Duan et al., 2025] has shown ERA5-Land's underperformance compared to these alternatives
for sub-seasonal to seasonal forecast validations.

Response: We thank the reviewer for their thoughtful feedback regarding the use of ERAS5-Land as
the sole reference dataset. We respectfully clarify that the primary objective of our study was not to
perform a formal validation of CLMS5, but rather to assess the model’s sensitivity to variations in soil
hydraulic parameterizations. Our focus was on understanding whether the range of variability
generated by CLMS5 under different parameter configurations "brackets" the variability observed in
ERAS-Land. The statistical tools we employed, such as EOF analysis, Euclidean distance, and Taylor
diagrams, are commonly associated with model validation, but in our case, they were used as
diagnostic tools to evaluate whether ERA5-Land’s spatiotemporal variability could be reproduced
through parameter perturbations alone.

We found that CLMS's parameter-driven variability consistently underestimated the amplitude of soil
moisture variability compared to ERAS5-Land, suggesting that the issue is not merely one of
calibration but may reflect deeper structural limitations in how soil hydraulic properties are
represented in the model. In this context, ERA5-Land serves as a physically consistent and spatially
complete reference suitable for assessing relative variability patterns, rather than a ground-truth
validation dataset. Although ERAS5-Land does not assimilate in-situ soil moisture measurements
(Mufioz-Sabater et al., 2021), its coherence and compatibility with CLMS5’s spatial and temporal
scale make it well suited to this comparative framework.

We agree that incorporating additional observation-based datasets—such as GLEAM, SMERGE, or
MERRA-2 could greatly benefit future studies aimed at model calibration. However, our current
study is specifically focused on evaluating whether parameter variability alone can account for the
structure of modeled soil moisture variability. Including multiple observational products at this stage
would introduce additional complexity, potentially obscuring the sensitivity-based nature of our
analysis. To address this, we have added clarifying text in Section 4 of the revised manuscript to
better frame our work as a comparative sensitivity study. We also outline future directions that
involve the integration of observational datasets for the purposes of model evaluation and calibration.
Finally, we explicitly acknowledge the narrow scope of this study and emphasize the importance of
using direct observational data in subsequent research focused on soil parameter calibration within
global land models.



2. Underestimation of Interannual and Seasonal Variability

Figures 5 and 7 clearly indicate that all CLMS configurations substantially underestimate soil
moisture variability relative to ERA5-Land. Notably, Figure 5 reveals a tight clustering of CLMS5
experiments, suggesting low variability in contrast to the wider spread of ERAS5-Land data. However,
this important point is underexplored in the manuscript. For instance, lines 284285 state: "Despite
these discrepancies, ... broad agreement," which downplays the observed discrepancies. This
variability gap warrants a deeper investigation and further supports the need for multiple
observational references (as per Comment 1).

Response: We appreciate the reviewer’s careful observation regarding the underrepresentation of
soil moisture variability in CLMS5 simulations compared to ERAS5-Land, as illustrated in Figures 5
and 7. We fully agree that this discrepancy merits deeper treatment in the manuscript, both to reflect
the limitations of the CLMS parameterizations and to reinforce the case for additional benchmarking
with observation-based datasets. To address this, we have made the following changes in the revised
manuscript:

e Interannual Variability (Section 3.2 — Interannual Soil Moisture Anomalies):

We have added a new discussion to explicitly highlight the tight clustering of CLMS5
experiments and their muted anomaly spread relative to ERAS-Land. We interpret this as a
systemic underestimation of interannual variability by the model, likely driven by diffusive
parameter settings or limited responsiveness to hydrological extremes. The sentence
previously beginning with “Despite these discrepancies...” (lines 284-285 in the original
version) has been revised to emphasize that while CLM5 and ERAS-Land align in anomaly
phase, they diverge significantly in magnitude. We also added supporting literature (e.g.,
Muiioz-Sabater et al., 2021), noting ERAS5-Land’s enhanced responsiveness to
meteorological forcing due to its reanalysis design.

e Scasonal Variability (Section 3.3 — Seasonal Variability of Soil Moisture):
We have inserted a new paragraph discussing the systematic underestimation of seasonal
amplitude in CLMS5 simulations, especially during the spring-summer transition. This
observation, now clearly stated and referenced (e.g., Stahl and McColl, 2022), complements
the interannual findings by showing that modeled soil moisture dynamics are dampened not
only year-to-year but also within seasonal cycles. We interpret this underestimation as a
likely artifact of overly conservative or static soil hydraulic properties in the parameter sets.

These additions enhance the manuscript’s clarity and transparency regarding model limitations. We
believe the revised text now better contextualizes the role of parameter choices in limiting model
variability and strengthens our case for including multiple observational references in future work.
We thank the reviewer again for bringing this important issue to our attention.

3. Neglect of Irrigation Effects:



The authors identify significant differences between CLMS5 and ERAS5-Land EOF modes in
agriculturally intensive areas, particularly the central U.S. (Figure 11b). These "hotspots" overlap
spatially with known heavily irrigated regions, including the Ogallala Aquifer and Mississippi Valley
[McDermid et al., 2023]. However, the manuscript does not clarify:

o Whether Irrigation was included in CLMS5 simulations.
e How Irrigation may affect soil moisture in ERAS-Land.

This omission weakens the attribution of model-observation discrepancies solely to soil
parameterization. Explicit discussion on irrigation modeling and its inclusion or exclusion is essential
to substantiate the attribution claims made (e.g., Lines 14-15).

Response: We thank the reviewer for this important comment regarding irrigation and its potential
influence on the soil moisture discrepancies observed between CLM5 and ERAS-Land, particularly
in the agriculturally intensive regions of the central U.S. We clarify that irrigation was not included in
any of the CLMS simulations used in this study. All experiments were conducted under naturalized
conditions to isolate the influence of soil hydraulic parameterizations without additional confounding
from anthropogenic water inputs. This decision aligns with our study’s objective, which is to
examine the intra-model sensitivity of CLMS5 to soil parameter settings under consistent and
climatically driven boundary conditions. We now explicitly state this in Section 2.2.1 (Experimental
Designs):

“...Importantly, irrigation processes were not represented in any of the CLMS5 simulations, as all
experiments were conducted under naturalized conditions to isolate the influence of soil hydraulic

’

parameterizations without additional anthropogenic water inputs.’

Regarding ERAS-Land, we also confirm that irrigation is not represented in the ERAS5-Land land
surface simulations. The H-TESSEL model used to produce ERAS5-Land does not include irrigation
schemes or anthropogenic water management processes, as noted in previous studies (Wipfler et al.,
2011; Lavers et al., 2022; Tang and McColl, 2023). We have incorporated this clarification into the
revised Section 2.2.2 (Reference Dataset), noting that while ERAS-Land is a high-quality benchmark
for pattern-oriented analysis, both CLM5 and ERAS-Land effectively simulate non-irrigated soil
moisture dynamics. Therefore, the attribution of observed differences in EOF structure over
agricultural "hotspots" to parameterization effects remains valid within the assumptions of this
framework.

That said, we agree that in heavily irrigated areas such as the Ogallala Aquifer region or parts of the
Mississippi Valley, the exclusion of irrigation from both datasets may limit interpretability, as true
soil moisture conditions in these areas are influenced by human water use. We have included a
statement to this effect in the revised Discussion, emphasizing that future work should incorporate
irrigation modeling or use observation-driven products (e.g., SMERGE, GLEAM) that account for
such influences, especially in agriculturally dominated landscapes. We appreciate the reviewer’s



guidance on this issue and believe the revised manuscript now provides a clearer and more
transparent account of irrigation-related limitations and assumptions.

4. Initial Conditions Not Explained:

The setup of initial conditions in the model simulations remains unclear. Since each experiment
involves different soil parameter settings, it is essential that the model reaches equilibrium separately
for each case [Kennedy et al., 2024]. Without spin-up or appropriate initialization, differences in the
initial soil moisture state could propagate and bias the results.

Please clarify whether each experiment was initialized to equilibrium independently, and if so,
provide methodological details.

Response: We thank the reviewer for highlighting the importance of proper initialization and the
potential impact of non-equilibrated soil moisture conditions. In response to this comment, we have
revised Section 2.2.1 (Experimental Designs) to explicitly describe the spin-up procedure used for all
CLMS5 simulations.

As now clarified in the manuscript, each experiment (EXP1, EXP3, EXP4a-4d) was independently
initialized using the standard CLMS5 spin-up protocol. This approach involves running the model
through an accelerated decomposition (AD) mode followed by a normal mode with repeated cycling
of GSWP3 meteorological forcing. The spin-up process was conducted until key state variables such
as total water storage, soil carbon, and vegetation biomass reached quasi-equilibrium, ensuring that
each simulation began from a stable baseline (Lawrence et al., 2019). Spin-up followed SP-MIP
protocol guidelines to ensure equilibrium prior to the 1980 to 2010 simulation period
(Gundmundsson and Cuntz, 2017).

These updates now make it clear that any differences observed between experiments are attributable
to the imposed soil parameter configurations and not to transient effects or inconsistencies in the
initial conditions. We appreciate the reviewer’s suggestion, which helped improve the clarity and
methodological rigor of the manuscript.

Minor Comments:

e Line 32: The phrase "such as artificial neural networks" requires a reference. A citation
demonstrating the use of ANN as PTFs would be appropriate. - We have included two
citations: da Silva et al. 2023 and Schaap et al. 1998, to support the use of neural network-based
PTFs.

e Line 77: Parentheses are inconsistent in references; e.g., fix "Jietal...... , Zeng et al., (2021)"
to consistent formatting. - We have corrected this.

e Line 132: Typo: "PFTS" should be corrected to "PTFs."

We have corrected the typo to refer to pedotransfer functions accurately.



e Lines 160—-179 (Section 2.3): Consider revising for clarity. There are some repetitions, e.g.,
"dominant variability modes and their temporal patterns"..." spatial and temporal patterns"...

We have streamlined the text to eliminate redundancies and enhance the description of the EOF
analysis methodology.

e Line 193: The term "demeaned" could be clarified or rephrased for general readability.

We have rephrased the sentence to read “... where the mean at each grid point has been removed
to highlight variability.”

e Figure 5: Further explanation is needed regarding the variability difference between
ERAS-Land and CLMS5 simulations.

Response: We thank the reviewer for pointing out the need to clarify the variability difference
between ERAS5-Land and CLMS5 simulations. In the revised manuscript, we have significantly
expanded the "Interannual Soil Moisture Anomalies" subsection to address this issue. We now
quantify the amplitude discrepancy, noting that ERA5-Land anomalies reach up to + 40k\m?,
while CLM5 anomalies are generally confined to a + 20 kg\m? range. This underestimation
reflects a muted response in CLMS5, which we attribute to structural limitations such as static soil
parameterization, overly diffusive vertical redistribution, and the absence of data assimilation
factors that have been shown to reduce variability in land surface models (Koster et al., 2009;
Muioz-Sabater et al., 2021). We further discuss how this dampened variability may impact key
hydrological processes like evapotranspiration, runoff, and land—atmosphere coupling (Koster et
al., 2004; Berg and Sheffield, 2018). In addition, the caption for Figure 5 has been revised to
clearly state the contrast in anomaly range between CLMS5 and ERAS-Land, helping guide the
reader’s interpretation. These revisions directly respond to the reviewer’s concern and enhance
both the clarity and analytical depth of the section.

e Lines 218-319: The statement about 5 cm in-situ sensors vs. ERAS5-Land's 0-7 cm
integration is not directly relevant when the analysis uses 0—1 m averaged soil moisture.
Clarify or remove.

We have removed the statement to focus on the relevant depth.

e Figure 7: Please explain the significant differences between EARS-Land variability and
CLMS cluster, except for Exp4-a.

Response: We thank the reviewer for this helpful observation. In response, we have revised the
Seasonal Variability of Soil Moisture subsection to provide a more detailed analysis of the
differences between ERAS-Land and the CLMS5 simulations (EXP1-EXP3), and to highlight the
unique behavior of EXP4a. Specifically, we now explain that EXP1, EXP2, and EXP3 form a
tightly clustered group with relatively flattened seasonal cycles that substantially underestimate
the amplitude of variability observed in ERAS5-Land. These configurations fail to capture the
sharper rise in spring and pronounced decline in late summer exhibited by the reanalysis data. In
contrast, EXP4a stands out as it more closely aligns with ERAS5-Land in both phase and



amplitude during the active seasonal months, which we attribute to its loamy sand texture and low
water retention capacity. These additions clarify the model-reanalysis discrepancy, reinforce the
role of soil texture in amplifying seasonal dynamics, and directly address the reviewer’s request.
We also revised the Figure 7 caption to highlight these findings more clearly.

e Figures 9 and A2: Clarify whether maps show EOF loadings or correlation coefficients. If
correlation coefficients are used, explain the meaning and implications, e.g., correlation with
respect to what?

Response: We thank the reviewer for raising this important point regarding the interpretation of
the spatial patterns in Figures 9 and A2. We confirm that both sets of maps depict correlation
coefficients, not raw EOF loadings. Specifically, the values represent correlation coefficients
between the time series of each grid point’s soil moisture anomalies and the corresponding
principal component (PC) time series associated with the EOF mode. To address this comment
and improve clarity for the reader, we have made the following revisions in the manuscript:

e Section 3.4.2 (Spatial and Temporal Analysis of EOF Modes) now explicitly states that
the figures show correlation maps, not EOF loadings. We describe that the correlation
coefficient quantifies the strength and direction of association between local soil
moisture anomalies and the temporal evolution of each mode. A new sentence has also
been added to explain that positive correlations indicate regions that vary in phase with
the PC time series, while negative correlations reflect anti-phase behavior, thus
providing insight into the regional expression of each mode.

e The caption of Figure 9 has been revised to clarify that the shading indicates correlation
coefficients, and we have explained the interpretation of positive and negative values in
the context of EOF-PC relationships.

e The caption of Figure A2 has been similarly updated to ensure consistency and
interpretive transparency. It clearly states that the maps show correlation coefficients
and describes what those correlations represent in terms of spatial coherence with the
temporal EOF modes.

We believe these changes address the reviewer’s concerns and improve the manuscript’s clarity
regarding the meaning and implications of the spatial EOF visualizations. We appreciate the
reviewer’s suggestion, which has helped us strengthen both the technical accuracy and
readability of the manuscript.

e Table 3: Please include a total cumulative variance explained by the first 10 EOF modes for
each experiment.

We have updated Table 3 to include the total cumulative variance explained.



EOF Mode EXP1 %Expl. Var. | EXP2 %Expl. Var. | EXP3 %Expl Var. | ERAS-Land %Expl Var.

EOF-1 11.45 11.66 10.84 )% 17.5 )7
EOF-2 10.40 10.60 9.85 1 g48 |*
EOF-3 £.81 8.25 9.08 7.83 1!
EOQF-4 5.69 5.83 5.73 575
EOF-5 437 459 4.48 561
EOF-6 3.49 3.56 3.48 3,64
EOF-7 3.26 323 3.24 3.10
EOF-8 251 2.53 2.63 2,86
EOF-9 2.14 216 2.22 2.76
EOF-10 1.96 199 1.95 222
Total Camm. F%Expl. Var. 54.07 544 53.49 5977
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	RESPONSE TO REVIEWER #1 FOR GEOSCIENTIFIC MODEL DEVELOPMENT:  
	MANUSCRIPT EGUSPHERE-2025-713 
	Response: We appreciate the reviewer’s suggestion to include a sensitivity analysis of individual soil hydraulic parameters. We agree that understanding the relative influence of specific parameters such as saturated hydraulic conductivity, porosity, and van Genuchten coefficients would provide valuable insights for model parameterization. However, this level of diagnostic analysis is beyond the scope of the present study. Our analysis is based on pre-run CLM5 simulations using prescribed parameter sets from SP-MIP, and we did not have access to the exact individual parameter values used within the model configurations for each experiment. As such, we were unable to systematically perturb or isolate individual parameters for a formal sensitivity analysis. 
	Instead, the study adopts a comparative experimental design outlined in Section 2.2.1, where each simulation applies a distinct parameter set derived from known pedotransfer functions or soil texture classes (e.g., EXP1 with standardized values, EXP4a–4d with uniform soil textures). Through this approach, we evaluated the aggregate effects of different parameter configurations on soil moisture variability, which were further decomposed using EOF analysis. While we acknowledge that this limits our ability to attribute responses to specific parameter changes, the results nonetheless highlight the substantial impact of parameter-driven variability on both spatial and temporal soil moisture patterns, especially in hydroclimatically complex regions such as the Great Plains. 
	We view this as an important direction for future research and have added to the revised manuscript (Section 4, see below), recommending that subsequent studies conduct targeted sensitivity analyses using parameter perturbation techniques or machine learning frameworks to systematically rank the influence of individual hydraulic properties on land surface model outputs. 
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