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Abstract. A new tool for objective parameter tuning of regional climate models is presented. The climate model output was

emulated using a linear regression approach for each grid point on a monthly mean basis(Linear Meta-Model – LiMMo).

This linear approximation showed high
::::::
decent accuracy over a 6-year period. The

:::::::::::::::
root-mean-square error norm between

the Meta-Model and the observational data sets was minimized using the gradient-based, limited-memory Broyden-Fletcher-

Goldfarb-Shanno method with box constraints.
:::
We

::::
refer

::
to

:::
this

::::::::::
framework

::
as

::::::
LiMMo

:::::::
(Linear

::::::::::
Meta-Model

::::::::::::
optimization).

:
The5

LiMMo framework was applied to the state-of-the-art regional climate model ICON-CLM, tuned to the E-OBS and HOAPS

observational data sets. Different optimization objectives were explored by assigning varying weights to model variables in

the error norm definition. The combination of a linear emulator with fast gradient-based optimization allows the proposed

method to scale linearly with the number of model variables and parameters, facilitating the tuning of dozens of parameters

simultaneously.10

1 Introduction

In environmental modeling, the tuning process aims to identify the set of model parameters that minimize the discrepancy

between model outputs and observational data

::::::
Tuning

:::::
model

:::::::::
parameters

::
is

::::::
crucial

::
in

::::
Earth

::::::
system

:::::::::
modeling,

:::::
where

:::
the

:::
aim

::
is

::
to

::::::::
minimize

:::::::::::
discrepancies

:::::::
between

:::::::::
simulation

:::::
results

::::
and

:::::::::::
observations. This process is crucial across various fields of numerical weather and climate modeling, from15

short-range
::::::
essential

:::
for

::::::::
achieving

:::::::
reliable

::::::::::
simulations

::
in

:
a
::::::
variety

::
of

:::::::::::
applications,

::::::
ranging

:::::
from

::::::::
short-term

:
numerical weather

prediction to
:::::::::::::::
(e.g., Zängl, 2023)

::
to

::::::::
long-term

:
global and regional climate simulations. Examples of such tuning efforts are the

optimization of the Max Planck Institute Earth System Model (Mauritsen and Roeckner, 2020) and the adaptive adjustment

of uncertain parameters in ICON, the operational forecast system of the German Weather Service (Zängl, 2023). When new

parameterizations are introduced, re-tuning is often required to find the optimal combination of old and new parameters for20

the updated configuration. As more accurate observational data sets become available, they must also be incorporated into

the tuning framework. This emphasizes the need for robustand computationally efficient tuning tools to ensure that evolving

environmental models remain consistent with improving observational data sets.
:::::::::
projections

::::::::::::::::::::::::::::::
(e.g., Mauritsen and Roeckner, 2020)

:
.
::
As

::::::
model

::::::::::
complexity

:::
and

:::::::::
resolution

:::::::
continue

:::
to

:::::
grow,

::::::
tuning

:::::::
becomes

:::::::::::
increasingly

::::::::::
challenging

:::
due

::
to
::::

the
::::::::::::
computational
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::::::
expense

::
of

:::::
each

:::::::::
simulation,

:::::::
therefore

:::
the

:::::::
demand

:::
for

::::::
robust,

:::::::::
transparent

:::
and

:::::::
efficient

:::::
tuning

::::::::::
procedures

:::
has

:::::
grown

:::::::::::
significantly.25

:::::::
Effective

::::::
tuning

::::::::
improves

:::::
model

::::::
fidelity

::::
and

::::::::
enhances

::::
trust

::
in

:::::
model

::::::::
outcomes

:::
for

:::::::::::::
policy-relevant

::::::::::::::
decision-making.

:

The tuning of
::
In

:::
the

:::::::
context

::
of

::::::
global

::::
and

:
regional climate models,

::::
four

:::::::
primary

::::::::::
approaches

:::
to

::::::
tuning

::::
have

::::::::
emerged

:::::::::::::::::
(Hourdin et al., 2017)

:
.
::::
The

::::
first

:::
and

:::::
most

::::::
widely

::::
used

::
is
::::::

expert
:::::::

tuning,
::::::
where

::::::
model

:::::::::
developers

::
or

:::::
users

::::::::
manually

::::::
adjust

:::::::::
parameters

:::::
based

:::
on

::::::::
empirical

:::::::::
experience

::::
and

::::::::::::
trial-and-error

:::::::::
procedures

:::::::::::::::::::::::::::::::::::::::
(e.g., Mauritsen et al., 2012; Golaz et al., 2013)

:
.
::
A

::::
more

:::::::::
systematic

:::::::::
alternative

::
is

:::::::::::::::
metamodel-based

::::::
tuning,

:::
also

::::::
known

:::
as

::::::::
objective

::::::::::
calibration,

::::::
where

:
a
::::::::::::::
computationally

:::::
cheap30

:::::::
surrogate

::::::::::::
parameterized

::::::
model

:::::::::
(emulator)

:
is a computationally intensive and time-consuming process. Conducting a single

decadal simulation of a high-resolution regional climate model (spatial resolution of approximately 10–20 km) for the Europe

domain typically requires several days on high-performance computing systems. A viable approach to mitigating this challenge

is
:::::::::
constructed

::
to

:::::::::::
approximate

:::
the

:::::::
behavior

:::
of the development of approximations to dynamical simulations, often referred to

as "emulators" or "Meta-Models". These Meta-Models are computationally much cheaper than the dynamic simulations. Once35

a
:::
full

::::::
model

:::::::::::::::::::::::::::::::::::::
(e.g., Neelin et al., 2010; Bellprat et al., 2012).

::::::
Third,

::::::::
Bayesian

:::::::::::
frameworks

::::::::
explicitly

::::::::::
incorporate

:::::::::::
observational

:::::::::
uncertainty

:::
and

:::::
prior

:::::::::
knowledge

::
to

:::::::
estimate

:::::::::
probability

::::::::::
distributions

::
of

:::::::::
parameter

:::::
values

:::::::::::::::::::::::::::::::::::::::::::::
(see Kennedy and O’Hagan, 2001; Hourdin et al., 2023)

:
.
:::::
Lastly,

:::::::::::::::
resolution-linked

:::::::::::
hierarchical

:::::::::
emulators

:::::::
combine

::::::
outputs

:::::
from

::::
low-

:::
and

::::::::::::
high-resolution

:::::::
models

::
to

:::::
reduce

::::::::::::
computational

::::::
burden

::::
while

::::::::
retaining

:::::::
accuracy

:::::::::::::::::::::
(Williamson et al., 2012).

::::
This

:::::
study

:::::::::
contributes

::
to

:::
the

::::::
second

:::::::
category

::
—

::::::::
objective

::::::::::
calibration

::
—

:::
by

::::::::::
introducing

::
a

:::::
novel

:::::::::
framework

::::::
called

:::::::
LiMMo

:::::::
(Linear

:
Meta-Model is established, an optimization process can be40

employed to identify parameter sets that minimize the spatially and temporally aggregated bias of the Meta-Model relative

to observational data. This approach is referred as objective tuning, or objective calibration. Consistent with prior studies

(Gregoire et al., 2011; Bellprat et al., 2015; Avgoustoglou et al., 2022), we adopt a
:::::::::::
optimization),

::::::
which

:::::::
employs

:
a
:::::::::::
cost-efficient

:::::
linear regression-based Meta-Model for each grid point and time step, providing a straightforward yet effective solution

:::::::
emulator

::::::::
combined

::::
with

::::::::::::
gradient-based

:::::::::::
optimization.45

An important limitation is usually the size of the training data set required to create the statistical model. The Meta-Model

is trained on climate model outputs. For quadratic regression (proposed in (Neelin et al., 2010)
:::::::
Previous

::::::
studies

:::
on

::::::::
objective

:::::::::
calibration

::::
have

::::::
mainly

::::::
centred

::
on

::::::::
quadratic

::::::::::::::
regression-based

:::::::::
emulators,

:::::
which

:::::
permit

::::::::
nonlinear

::::::::::
interactions

::::::
among

:::::::::
parameters

:::
and

::::
offer

:::::
robust

:::::::::::::
approximations

::::::::::
(introduced

::
in

::::::::::::::::
Neelin et al. (2010) and utilized in (Bellprat et al., 2015; Avgoustoglou et al., 2022)

), the minimum number of required dynamic simulations is given by (2N +1)+ N ·(N−1)
2 , where N is

::::::::::::::::::::::::::::::::::::::::::::
Bellprat et al. (2012, 2015); Avgoustoglou et al. (2022)50

:
).
::::::::
However,

::
a

:::
key

::::::::
limitation

::
of

::::
this

::::::
method

::
is

::
its

::::
high

::::::::::::
computational

::::
cost:

:
the number of parameters considered - 3 simulations

along each parameter axis and one simulation for each parameter pair. The number of simulations required grows
::::::::::
simulations

:::::::
required

::::::::
increases

::::
with

:::
the

::::::
number

:::
of

:::::::::
parameters

::::
(N ) as N2, which makes the training of quadratic regression impractically

time-consuming as one has to conduct the dynamical simulation
::::
since

:::
the

::::::::::
simulation

::::
must

:::
be

:::::::::
conducted

:
for each pair of

parameters. Therefore, we propose the linear regression approach, which requires only N +1 dynamic simulations - only 2 for55

each parameter perturbation (if the reference simulation is fixed - only 1). As will be shown later, the linear approach achieves

good accuracy for most variables and could be used as a simple and fast emulator.

Another critical aspect of objective tuning is the choice of optimization technique. So far, Monte Carlo-based optimization

has been the primary method proposed. While this approach is effective in certain contexts, it suffers from significant accuracy
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and scalability limitations as it
:::::::
disturbed

::::::::::
parameters

::
in

:::::
order

::
to

::::::::::
approximate

::::::::::
interaction

:::::
terms.

:::
To

:::::::
explore

::::::::
parameter

::::::
space,60

::::
many

:::::::
studies

::::
have

::::::::
employed

::::::
Monte

:::::
Carlo

::
or

:::::
Latin

:::::::::
Hypercube

:::::::::
sampling,

:::::
which

:
requires an exponentially increasing

:::::::
growing

number of samples with the dimensionality of the parameter space. It is well established that the minimum number of

Latin Hypercube samples required to outperform random sampling is 6d (Morokoff and Caflisch, 1995), where d denotes the

dimensionality of the parameter space. For instance, in a parameter space with 12 dimensions, Monte Carlo optimization would

require at least 612 ≈ 2 · 109 evaluations of the error norm. Assuming that each evaluation takes approximately 1 second (which65

was the case for our code), the total computation time on 1000 CPU cores would amount to about one month, assuming perfect

parallel scaling. This computational cost is impractically high and highlights the
::
to

:::
find

::::::
global

::::::::
minimum

:::
for

:::
the

:::::
error

:::::
norm

:::::::
function,

:::
as

::::::::::::
dimensionality

::::::::
increases

::::::::::::::::::::::::::
(Morokoff and Caflisch, 1995).

::::::::
Although

::::
this

:::::::
method

::
is

::::::
robust,

::
it

::
is

::::::::::::::
computationally

:::::::
intensive

::::
and

:::::::::
inefficient,

:::::::::
restricting

:::
its

:::
use

::
to
:::::::

tunings
::::::::
involving

:::::
only

:
a
:::::::

limited
:::::::
number

::
of

::::::::::
parameters

:
–
::::::::

typically
:::
no

:::::
more

:::
than

::::::
seven.

::::::
These

:::::::::
constraints

:::::::::
underscore

:::
the

:
need for more efficient optimization strategies

:::::::::::
approximation

::::
and

:::::::::::
optimization70

:::::::::
approaches.

In contrast, the current study introduces a gradient-based optimization method for objective tuning for the first time. By

maintaining a relatively simple objective function (Root Mean Square Error) , it becomes possible to derive an analytical

expression for the gradient andimplement a fast evaluation procedure. Consequently, the overall execution time for gradient-based

optimization is significantly reduced compared to the Monte Carlo approach. Gradient-based optimization scales linearly with75

the number of parameters and variables considered and achieves the perfect accuracy with very limited number of iterations.

This efficiency gain enables the consideration of dozens of parameters.

The combination of a simplified statistical emulator, where linear regression requires only a single parameter disturbance

simulations, with a fast gradient-based optimization method enables the calibration of regional climate models in less than

one hour without the need for parallelization for dozens of parameters. In addition
:::::::
Another

::::::::
important

:::::
issue

::
is
::::::::
selecting

:::
an80

:::::::::
appropriate

::::::::
objective

::::::::
function

::
to

:::::
guide

::::::::::::
optimization.

::::::::
Although

:::::
there

:::
are

:::::
many

:::::::::::
alternatives,

::::::::
including

:::::::::::::
multi-objective

::::
and

::::::::::
probabilistic

:::::::::::
formulations,

:::::
many

:::::::
studies

:::::::
continue

::
to

::::
rely

:::
on

::::::
simple

:::::::
metrics,

::::
such

::
as

::::
root

:::::
mean

::::::
square

:::::
error

:::::::
(RMSE)

::::::
and/or

::::::
Pearson

::::::::::
correlation

:::::::::
coefficient.

::::::::
However,

::::::
RMSE

::::
and

:::::::
Pearson

:::::::::
correlation

::::
may

::::
not

::::::
capture

:::
all

::::::
aspects

::
of

::::::
model

:::::::::::
performance

::::::::::::::::::
(Liemohn et al., 2021).

::::::::::::
Nevertheless,

::
to

::::::::::
demonstrate

:::
the

::::::::::
capabilities

::
of

:::
the

::::::::
proposed

:::::::
LiMMo

:::::::::
framework

::
in
::
a
:::::::::
transparent

::::
and

:::::::
tractable

::::
way, this study also introduces the concept of optimizing constant shifts related to discrete logical conditions (e.g.,85

the choice of external data sets of orography and aerosol), assuming that their impact on continuous parameters is minimal. By

applying linear regression with constant shifts, the influence of interaction terms between the parameters is excluded.

Due to
::::::
focuses

::
on

::::::::::
minimizing

:::::::
RMSE.

::::
This

::::::::
relatively

::::::
simple

::::
error

:::::
norm

::::::
allows

::
us

::
to

::::::::::
demonstrate

:::
the

:::::::
LiMMo

:::::::::::
framework’s

::::::::::
capabilities,

:::::
laying

:::
the

:::::::::::
groundwork

:::
for

:::::
future

::::::::::
expansions

::
to

:::::
more

::::::::
advanced

:::::::
metrics

::::
that

::::
take

:::
the

::::::::::
distribution

:::::::
function

::::
into

:::::::
account.90

:::
The

::::::::
literature

::
on

::::::::
statistical

::::::::
emulators

:::::::
includes

::::::::
Gaussian

::::::
process

:::::::
models

::::::::::::::::::::::::::::::::::::::::::::
(Kennedy and O’Hagan, 2001; Williamson et al., 2013)

:
,
::::
high

::::::
degree

::::::::::
polynomial

:::::::::::
meta-models

::::::::::::::::::::::::::::::::::
(Neelin et al., 2010; Bellprat et al., 2012)

:
,
:::
and

:::::::::::
hierarchical

::::::::
emulators

::::
that

::::::::
leverage

:::::::::::::
multi-resolution

::::::
outputs

:::::::::::::::::::::
(Williamson et al., 2012).

:::::::::::
Surprisingly,

::::::
despite

::
its

:::::::::
simplicity,

:::::
linear

::::::::
regression

:::
has

:::::::
received

::::
less

::::::::
attention,

::::
even

::::::
though

::
it

:::::
offers

:::::::::
substantial

:::::::::
efficiency

:::::::
benefits.

::::::::::::
Furthermore,

::::::::::::
gradient-based

:::::::::::
optimization

:::::::::
techniques

:::::
have

:::::
rarely

:::::
been
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::::::
applied

::
to

:::::::
climate

::::::
model

::::::
tuning,

::::::
partly

:::
due

:::
to

:::
the

::::::::
difficulty

::
of

::::::::::
computing

::::::::::
derivatives.

::::::
Taking

:::::::::
advantage

::
of

:::
the

:::::::::
structural95

::::::::
simplicity

::
of

::::::
linear

:::::::::
regression

:::::
makes

::
it
::::::
easier

::
to

::::::
derive

:::
the

::::::::
gradients

::
of

:::
the

::::::::
objective

::::::::
function

::::::::::
analytically

:::
and

::::::::::
implement

::
the

:::::::::::::
gradient-based

:::::::::::
optimization

:::::::::
procedure.

:::::
This

::::::::
improves

:::
the

:::::::::
scalability

::::
and

:::::::::::
convergence

:::::::::
properties

::
of

::::
the

:::::::::::
optimization

::::::
process.

:::
To

::::
our

::::::::::
knowledge,

::::
this

::
is

:
the high computational costs involved in obtaining the optimization results, previous

studies (Neelin et al., 2010; Bellprat et al., 2015; Avgoustoglou et al., 2022) lacked an investigation into the influence of the

optimization results on the definition of the tuning score. The LiMMo framework, however, provides significant flexibility100

that allows users to customize the tuning process according to their specific goals. Users can select different model variables,

continuous and logical parameters, and gridded observation data sets. Ultimately, the scalar error norm function is minimized,

requiring the user to define the optimization objective by assigning appropriate weights to the model variables. The selection

of weights can lead to different optimal configurations tailored to specific applications.

For instance, predicting extreme flood events would require assigning the highest weight to precipitation. For reliable climate105

predictions in the assessment of renewable energy, greater weights should be given to short-wave radiation (relevant for the

performance of solar panels) and wind speed (crucial for the operation of wind farms). Similarly, if the focus is on the accurate

prediction of heat waves, the weighting of temperature variables should be increased. This flexibility allows the framework to

effectively cover a wide range of applications and user-specific objectives
::::
first

:::::::::
application

::
of

::::::::::::
gradient-based

:::::::::::
optimization

::
in

:::
the

::::::
context

::
of

::::::::
objective

:::::::::
calibration

:::
for

:::
the

:::::::
regional

::::::
climate

::::::
model.110

The following text is divided into four
:::
five sections. The methodology

::::::::
materials (section ??) outlines the most important

aspects of the proposed framework. The
::
2)

:::::::
describes

:::
the

:::::
tuned

:::::
model

:::::::::
quantities,

:::
the

:::::::::::
observational

::::
data

::::
sets,

:::
the

::::::
regional

:::::::
climate

:::::
model

::::
and

::
its

:::::::
physical

::::::::::::::::
parameterizations.

:::
The

::::::
tuning

:::::::
method

::
is

:::::::::
introduced

::
in

:::::::
section

:::
The

::::::::
LiMMo

::::::::::
framework

::::::
(section

:::
3).

:::
The

:
results of the optimization are presented in section 4. Discussion in section 5 covers aspects of tuning that fall outside the

scope of the current study. Finally, the most important results are highlighted in conclusions (section 6).115

2 Methodology
::::::::
Materials

In this section, we provide a detailed description of the LiMMo framework, which was developed during the tuning process of

the ICON-CLM regional climate model (Pham et al., 2021). The model was configured at a 12-km spatial resolution over the

EURO-CORDEX domain (Jacob et al., 2014) and optimized against observational data.

The list of considered model quantities is presented in section 2.1. Details of the observational data sets are provided in120

section 2.2. The setup of the regional climate model ICON-CLM is described in section 2.3, while the list of ICON-CLM

tuning parameters is outlined in section 2.4. The definition of the error norm relative to observations, which serves as the

optimization objective, is discussed in section 3.1. The Meta-Model approximation methodology is explained in section 3.2.

Finally, the proposed gradient-based optimization method is described in section 3.3.
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2.1 Model quantities125

The following seven surface prognosic variables are
:::
list

::
of

::::::
surface

:::::::::
prognostic

::::::::
variables

:
considered in this study :

:
is

::::::
shown

::
in

::
the

::::
Tab.

::
1.
:

Table 1.
:::
The

:::
list

::
of

::::::
surface

::::
model

::::::::
quantities

::::::::
considered

::
in

:::
the

:::::
tuning

::::::
process.

::::::
Acronym

: ::::::::
Description

: :::
Unit

:

tas , hourly mean 2-meter temperature (deg K);
::
K

rsds , hourly mean downward net shortwave radiation flux , (W ·m−2);
::::::::
short-wave

:::::::
radiation

:::
flux

::::::
W ·m−2

:

tasmin , daily minimum 2-meter temperature (deg K);
::
K

tasmax , daily maximum 2-meter temperature (deg K);
::
K

psl , hourly mean atmospheric pressure at the surface (Pa);
::
Pa

pr_amount , hourly total amount of precipitations (mm per h);
:::
mm

:::
per

::
h

hfls , hourly mean surface downward latent heat flux (W ·m−2).
::::::
W ·m−2

:

The selection of variables can be adjusted according to the user’s interests. In addition to the commonly analyzed variables

(tas, tasmin, tasmax, pr_amount, psl), we include the latent heat flux (hfls) due to its significant influence on long-term

precipitation formation via evaporation over the sea. The
::::
These

:
2D quantities from the list were extracted from both climate130

model output and observational data sets for the tuning period from January 1, 2003 to December 31, 2008.

2.2 Observational data sets

As
:::
The

::::::
E-OBS

:::::::
version

::::
29.0

:::
data

:::
set

::::::::::::::::::
(Cornes et al., 2018)

:::
was

:::::::
selected

::
as a reference for tas, rsds, tasmin, tasmax, psl , and

pr_amount, the E-OBS version 29.0 data set (Cornes et al., 2018) was selected. It provides high quality
:
.
::::
This

:::::::::
land-only,

:::::::::::
station-based

:::::::::::
observational

:::::::
gridded

::::
data

:::
set

:::
is

::::::::
compiled

:::::
from

::::::::::
high-density

::::::
in-situ

:::::::::::::
measurements

::::::::
provided

:::
by

::::
over

:::::
2000135

::::::::
European

::::::::::::
meteorological

:::
and

:::::::::::
hydrological

:::::::
stations.

:::::
These

::::::::::::
measurements

:::
are

::::
then

::::::::::
interpolated

::::
onto

:
a
::::::
regular

::::
grid

:::
and

::::::::
provided

::::
with

:::::::
ensemble

::::::::::
uncertainty

::::::::
estimates.

::
It

:::::::
provides

::::::::::
high-quality

:
daily data over Europe with a spatial resolution of about

:::::::::::
approximately

25 km and a
::
(12

:::
km

:::::::::
resolution

::
is

:::
also

::::::::
available

::
in

:::
the

:::::
latest

::::::::
versions)

:::
and

:
temporal coverage since 1950. With

::::
Due

::
to its fine

spatial detail, daily temporal resolution , and ensemble-based uncertainty estimates, E-OBS is a robust resource for analyzing

::::::::
analysing regional climate variability ,

:::
and

:
long-term trends, and

:::
for making reliable climate assessments.140

We aim to tune
:::
Our

::::
aim

::
is

::
to

:::::::
calibrate the hfls to align with the HOAPS version 4.0 data set (Andersson et al., 2010). HOAPS

provides a satellite-based climatology of latent heat flux over the global ice-free oceans, derived from recalibrated SSM/I and

SSMIS sensor measurements. It
:::
The

::::
data

:::
set

:
covers the period from 1987 to 2014with ,

::::
has

:
a spatial resolution of about

::::::::::::
approximately 55 km

:
, and provides 6-hourly averages. Using

:::::::
HOAPS

::::
uses the COARE bulk flux algorithm , HOAPS provides

::::::
version

::::
2.6a

::::::::::::::::
(Fairall et al., 2003)

:
,
::
to

:::::::
provide

:
accurate estimates, making it a key reference for ocean-atmosphere interaction145

studies and energy exchange assessments.

5



Temporally averaged surface fields of tasmin, tasmax, rsds, pr_amount, psl, and hfls interpolated to the climate model

output grid are shown in Fig.1 for the tuning period 2003-2008.

Figure 1. 2003-2008 mean observations: (a) daily minimum 2-meter temperature, E-OBS; (b) daily maximum 2-meter temperature, E-OBS;

(c) daily mean short-wave radiation flux, E-OBS; (d) total monthly precipitations, E-OBS; (e) daily mean atmostperic pressure at sea level,

E-OBS; (f) daily mean latent heat flux over water, HOAPS.

2.3 Regional climate model ICON-CLM

ICON is a state-of-the-art model for global circulation modeling, Regional Climate Modeling (RCM), operational Numerical150

Weather Prediction (NWP), Large Eddy Simulations (LES), and environmental prediction (Zängl et al., 2015; Klocke et al.,

2017; Stevens et al., 2017). The model is available since 2024. It uses an unstructured triangular grid, allowing nearly uniform

resolution across the globe at any grid scale. The model is capable of simulations down to sub-kilometer scales, with common

dynamics and numerics across all application modes. The model physics, however, differs between applications, with specific

versions for Earth system modeling, NWP/RCM, and LES.155

ICON-CLM (ICON in Climate Limited-area Mode) is the configuration used for RCM applications. It utilizes NWP physics

with climate-specific extensions for long-term simulations. The first version of ICON-CLM is based on ICON release 2.6.1

(Pham et al., 2021). Typically, it operates in a one-way nesting mode, with coarse grid lateral boundary conditions and bottom

boundary conditions over oceans. In the current study, Rayleigh damping is applied at the upper boundary to handle gravity

waves.160

The ICON release model version from 2024.07 (ICON partnership (DWD, MPI-M, DKRZ, KIT, C2SM), 2024) is used with

the ERA5 reanalysis (Hersbach et al., 2020) boundary conditions for the period 2003-2008. The simulation grid R13B5 (ICON
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terminology) corresponds to a mesh size of about 12.14 km. As a post-processing step, the model fields were interpolated

onto a rotated 412 × 424 rectangular grid of the EURO-CORDEX model domain (Fig. 2) with a spatial resolution of 12 km,

ensuring convenient data storage and accessibility for analysis.165

Figure 2. EURO-CORDEX domain, height of the Earths surface above sea level.

2.4 Tuning parameters of ICON-CLM

In this study, 15 parameters are selected for optimization, which is twice the number of parameters used in applications of the

weakly non-linear Meta-Model approach (Bellprat et al., 2015; Avgoustoglou et al., 2022)
::::::::::::::::::::::::::::::::::::::
(Bellprat et al., 2012; Avgoustoglou et al., 2022)

. The following subsections discuss the physical meaning and relevance of these parameters. All model parameters are grouped

into four categories. A brief description of the Surface Transfer Scheme (section 2.4.1) and Mixing in the Planetary Bound-170

ary Layer (section 2.4.2) parameters is given in Tab. A1 in the Appendix. Descriptions of the Cloud Cover (section 2.4.3) and

External Data sets (section 2.4.4) parameters can be found in Tab. A2. For more details, please refer to the ICON namelist

parameter overview (https://gitlab.dkrz.de/icon/icon-model/-/blob/release-2024.07-public/doc/Namelist_overview.pdf).

The ICON namelist parameter names are designed to be self-explanatory, but this often results in them being quite long.

To address this, the tables in the appendix (Tab. A1 and Tab. A2) provide a mapping between the full ICON parameter names175

and the shorter versions used in the current study. In the text, ICON parameter names are highlighted with mono-space

font, while the corresponding short acronyms are highlighted with bold font. For example, the ICON parameter for the relative

humidity range is tune_box_liq, which corresponds to the acronym tbl.
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2.4.1 Surface Transfer Scheme

The surface transfer scheme contains several tuning parameters, some of which are known to significantly impact near-surface180

climate conditions. These parameters, along with several related and newly introduced ones, are used for optimization. Specif-

ically, the parameters rlam_heat, rat_sea, cr_bsmin, and rsmin_fac have been identified as particularly sensitive

in climate modeling. Even small changes within their uncertainty ranges can lead to substantial changes in the simulated

climate, particularly in the near-surface air temperature (tas). These parameters have been optimized in previous studies

(Bellprat et al., 2015; Avgoustoglou et al., 2022)
:::::::::::::::::::::::::::::::::::::::
(Bellprat et al., 2012; Avgoustoglou et al., 2022).185

The parameters rlam_heat and rat_sea, along with the newly introduced parameter rat_lam, serve to scale the

resistance to latent and sensible heat flux over both land and sea surfaces, as described in the Tab. 2.

Table 2.
:::::::
Influence

::
of

:::
the

::::::::
parameters

::::::::::
rlam_heat

:
,
::::::::
rat_sea,

:::
and

::::::::
rat_lam

::
on

::
the

:::::
latent

:::
and

::::::
sensible

:::
heat

::::::
fluxes.

Land Sea

Latent Heat Flux rlam_heat · rat_lam rlam_heat · rat_sea

Sensible Heat Flux rlam_heat rlam_heat · rat_sea

Influence of the parameters rlam_heat, rat_sea,

and rat_lam on the latent and sensible heat fluxes.

These parameters provide the flexibility to tune the heat fluxes over land and sea surfaces independently, and allow the

adjustment of the Bowen ratio over land surfaces.

The parameters cr_bsmin and rsmin_fac represent the minimum resistance to evaporation from bare soil, relevant for190

wet soil conditions, and the scaling factor for the minimum resistance of plant transpiration, respectively. These minimum

resistances limit evapotranspiration and are known to have a significant impact on soil moisture. Consequently, they influence

the annual cycle climatologies, especially with respect to soil moisture dynamics.

Recently, the parameter pair tune_albedo_wso= (taw1, taw2) was introduced to correct the reference albedo for dry

(taw1) and wet (taw2) soil conditions. This parameterization was initially motivated by the model’s warm tas bias in the195

Mediterranean and cold bias in central and northern Europe. Additionally, it accounts for the fact that observed albedo tends to

be reduced for wet soils and increased for very dry soils.

2.4.2 Mixing in the Planetary Boundary Layer

The parameters tkhmin and tkmmin represent the minimum diffusion coefficients for vertical mixing of heat and momen-

tum, respectively. They maintain mixing under opaque cloud cover and help dissolve the clouds, compensating for the excessive200

effective viscosity caused by numerical diffusion, which dampens instabilities. However, this minimum diffusion can keep mix-

ing too high in stable, low-turbulence conditions, especially in winter, leading to excessively warm near-surface temperatures.

These parameters should be as low as possible, but high enough to be effective, and have previously been optimized by expert

judgment or objective calibration (Avgoustoglou et al., 2022). In this study, tkhmin and tkmmin are tuned simultaneously

with the same factor (later the same acronym tkhmin is used for tkhmin= tkmmin).205
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2.4.3 Cloud Cover

The cloud cover parameters are optimized to address the rsds bias. The tune_box_liq and tune_box_liq_asy param-

eters are introduced to adjust the relationship between cloud cover (CLC) and relative humidity (RH), and are carefully tuned

for operational NWP applications.

The allow_overcast factor further refines the dependence of cloud cover on relative humidity. Values less than one in-210

crease the average cloud cover. To incorporate seasonal variability, we define a time-dependent monthly variation for allow_overcast

as follows:

allow_overcast[i] = ao+ aot4 · aot[i],

where ao is the mean and aot[i] are the monthly deviations from that mean, i is the index of the month. The deviations are

predefined to be positive in summer and negative in winter. This monthly variability is parameterized in the Meta-Model by215

the mean (ao) and the scaling factor (0.0≤ aot4 ≤ 1.5) of the monthly deviations.

2.4.4 External data sets

In recent years, new data sets describing the physical properties of soils, surfaces, and the atmosphere have become available.

In this study, we investigate the following alternative options:

– soil_data_base (sdb) describes the physical properties of the soil, provided by FAO (FAO/UNESCO, 1981) [sdb = 0]220

and HWSD data (Nachtergaele et al., 2023) [sdb = 1]. The FAO data set mainly represents sandy soils with a typical

spatial resolution of 50 km, while the HWSD data set has a finer resolution of approximately 7 km.

– type_of_orography (oro) is used to calculate the grid-scale surface elevation and parameters required to parameter-

ize subgrid-scale orographic effects. We use the global NOAA GLOBE data (GLOBE Task Team et al., 1999) [oro = 0]

with a resolution of 30 arcseconds (approximately 1 km), or the Yamazaki-Lab MERIT data (Yamazaki et al., 2017)225

[oro = 1] with a finer grid resolution of 3 arcseconds (approximately 100 meters).

– type_of_aerosols (acrf) parameterizes the feedback of the Cloud Condensation Nuclei Density (CDNC) on cloud

formation. For this study, we use Kinne aerosol data (Kinne, 2019) [acrf = 0], for which CDNC is not available, so we

supplement it with MODIS (Schaaf et al., 2021) [acrf = 1] CDNC data.

3
:::
The

::::::::
LiMMo

:::::::::::
framework230

::::
This

::::::
section

:::::::::
introduces

::
the

:::::::
LiMMo

::::::
tuning

::::::::::
framework.

::
In

::::::::
principle,

:::
the

::::::::
described

::::
steps

:::
are

:::::::::::::::::
model-independent,

:::::::
enabling

:::::
users

::
to

:::::
adopt

::
the

::::::::::
framework

:::
for

::::
their

::::
own

:::::
tuning

:::::::::
objectives.

::::
The

::::::::
definition

::
of

:::
the

:::::
error

::::
norm

:::::::
relative

::
to

:::::::::::
observations,

:::::
which

::::::
serves

::
as

:::
the

::::::::::
optimization

::::::::
objective,

::
is
::::::::
discussed

::
in
:::::::
section

:::
3.1.

::::
The

::::::::::
Meta-Model

::::::::::::
approximation

:::::::::::
methodology

::
is
:::::::::
explained

::
in

::::::
section

:::
3.2.

::::
The

::::::::
proposed

::::::::::::
gradient-based

:::::::::::
optimization

:::::::
method

::
is

::::::::
described

::
in

:::::::
section

:::
3.3.

:::::::
Finally,

::
in

:::::::
section

:::
3.4,

:::
we

:::::::::
introduce

:::
the

:::::::
measure

::
of

:::::::
quantity

::::::::::
sensitivities

::::
with

::::::
respect

::
to

::::::
model

:::::::::
parameters.

:
235
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3.1 Error norm

The standard ICON-CLM model output is generated on an hourly basis (except for tasmin, tasmax which are daily). To reduce

the temporal dimensionality, the daily means for tas, rsds, psl, and hfls and the daily sum for pr_amount are computed first.

To maintain temporal consistency across analyses, an annual cycle of daily values was generated, based on multi-year daily

means for each model variable. This approach allows for flexibility in the selection of time spans per variable to accommodate240

any temporal inconsistencies in observations. For this study, a uniform six-year period from 2003 to 2008 was used across all

variables for both model outputs and observations to generate the annual cycle. In addition, to further reduce the dimensionality

of the data, monthly mean values of the annual cycle were calculated for each model variable, consolidating the temporal

dimension to 12. In principle, there is no need to accumulate the daily values first to generate the monthly averages of the

annual cycles, since one can compute the monthly averages first and then compute the multi-year average of the annual cycle.245

However, this approach generally provides more flexibility, since it allows for more sophisticated distribution-based monthly

quantities (e.g., 99th percentiles of hourly/daily values within climatological month).

To define the error norm we consider horizontal model results MODi,j,k,n for variables vn. The indices i, j correspond to

horizontal surface spatial dimensions, k is the index of month. The observational data OBSi,j,k,n were then interpolated to the

model grid.250

The spatially reduced Root Mean Square Error RMSEk,n for each variable and time period is defined as

RMSEk,n =

√
1

Nx ·Ny

∑
i,j

(MODi,j,k,n −OBSi,j,k,n)
2
, (1)

where Nx ×Ny is the number of horizontal grid points of the simulation domain excluding the lateral boundary relaxation

zone. For each variable and month the internal variability (or intrinsic uncertainty) σk,n is defined as the RMSE between the

reference and disturbance simulation, where the initial conditions were shifted to 1 month255

σk,n =

√
1

Nx ·Ny

∑
i,j

(
MODref

i,j,k,n −MODdis
i,j,k,n

)2
. (2)

In order to obtain a reliable measure of the intrinsic uncertainty of the model, both the reference and disturbance simulations

should cover a sufficiently long period, as is the case in the current study with a 6-year period. Otherwise, significant imbalances

in the monthly values within the climatological year can occur. The unit less error ERRn for each variable is defined as the

averaged over time periods RMSE error normalized on internal variability260

ERRn =
1

Nt

∑
k

RMSEk,n

σk,n
, (3)

where Nt = 12 is the number of months. The final error norm ERR is defined as the weighted sum of the errors for each

variable

ERR =
∑
n

cn ·ERRn,
∑
n

cn = 1. (4)

The weights cn are specified by the user to emphasize the importance of a particular variable and should have the unit sum.265

The goal of the tuning process is to minimize the error norm (Eq. 4) with respect to the model parameters.
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3.2 The linear meta-model (LiMMo)
::::::::::
Meta-Model

:
approximation

The mean climate can be regarded as a balanced, stable stationary state and thus to be weakly dependent on the model pa-

rameters pi. This allows to consider the climate state CLI as a function of a model parameter vector p and to expand CLI(p)

in a Taylor series around the reference model solution CLI(p0). The linear meta model is the first order approximation of the270

climate state:

CLI(p)≈ CLI(p0)+∇pCLI(p0) · (p−p0). (5)

We rewrite Eq. 5 in the form of a linear regression REGi,j,k,n for each grid point (xi,yj), month mk and variable vn

REGi,j,k,n(p) = Ai,j,k,n +

Nc∑
m=1

pm ·Km
i,j,k,n, (6)

where Ai,j,k,n is the shift tensor, Km
i,j,k,n is the tendency tensor (m is the index of the parameter) and Nc is the number of275

continuous parameters considered.

To train the linear regression model we present the analytical values of a tendency tensor Km
i,j,k,n for each m, obtained

by the method of undefined coefficients by substituting simulations to the general form of linear regression (Eq. 6). After

substituting the reference and single parameter disturbance simulation, the value of the tendency tensor is defined as the

fraction of the simulation difference to the parameter increment. For example, one can obtain the tensor Km
i,j,k,n corresponding280

to the parameter pm as

Km
i,j,k,n =

MODpm=pref
m+∆pm

i,j,k,n −MODpm=pref
m

i,j,k,n

∆pm
, (7)

since the other parameters except pm remained unchanged. If more than one linear combination could define the tendency

on the parameter, the least-square technique is utilized.
:::
The

:::::::
specific

:::::
values

::
of

:::
the

::::::::::
parameters

::::
used

:::
for

:::::::
training

:::::
(tested

:::::::
values)

:::
can

::
be

:::::
found

::
in
:::::::
Tab.A1

:::
and

:::::::
Tab.A2.

:
After the computation of all tendency tensors, the additional substitution of the reference285

simulation gives the value of the shift tensor

Ai,j,k,n = MODref
i,j,k,n −

Nc∑
m=1

pref
m ·Km

i,j,k,n. (8)

To account for logical switches, we incorporate constant signals into the Meta-Model (Eq. 6):

REGi,j,k,n(p) = Ai,j,k,n +

Nc∑
m=1

pm ·Km
i,j,k,n +

Nb∑
l=1

pl ·
(

MODpl=1
i,j,k,n −MODpl=0

i,j,k,n

)
, (9)

where Nb denotes the number of binary (logical) parameters, and each binary parameter pl can take the values 0 or 1. The290

reference simulation assumes pl = 0 for all binary parameters. When pl = 0, the logical switch is off, and no additional signal is

added, so the Meta-Model would reproduce the state of the reference simulation. The inclusion of binary parameters introduces

constant shifts in the result
:::::::
emulator, but does not affect the gradient of the Meta-Model with respect to continuous parameters.

:::::::::::
Consequently,

::::::::::::
minimization

:::::::
involves

:::::
only

:::::::::
continuous

:::::::::::
parameters,

:::::
while

::::::
logical

:::::
ones

:::
are

:::::::::
prescribed

:::
to

:
0
:::
or

:
1
:
.
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3.3 The gradient-based optimization295

The core concept behind Meta-Model tuning is to replace the climate model output with a regression approximation in the

definition of the error norm (Eq. 4). Due to the simplicity of the Meta-Model, the gradient of the error norm with respect to the

model parameters can be computed analytically. The linear regression approximation (Eq. 9) provides the following analytical

expression for the gradient with respect to the continuous parameters:(∂REG
∂p

)
m
= Km

i,j,k,n. (10)300

Using the chain rule, the analytical form of the gradient of the error norm (Eq. 4) could be written as(
∂ERR
∂p

)
m

=
∑
n

cn
1

Nt ·Nx ·Ny

∑
k

1

σk,n ·RMSEk,n(p)
·
∑
i,j

(
REGi,j,k,n(p)−OBSi,j,k,n

)
·Km

i,j,k,n. (11)

The computation of the gradient requires one loop over grid points (i, j), time (k), and model variables (n), making its duration

comparable to that of a single norm evaluation O(Nx ·Ny ·Nt ·Nvars).

The availability of a fast gradient computation procedure allows the use of different optimization methods.
::::::::::::::::::
Gradient-descent-type305

::::::::::
optimization

:::::::
involves

::::::::
iterations

::::
over

:::
the

:::::
vector

:::
of

:::::::::
parameters

::
p

:::
that

::::::
search

::
for

:::
the

:::::::::
minimum

::::
error

:::::
norm

:::::::
function

::::
(Eq.

::
4)

::
in

:::
the

:::::::
direction

:::::::
opposite

:::
the

:::::::
gradient

::::
(Eq.

::::
11).

This study proposes the implementation of the Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Box constraints

(L-BFGS-B) algorithm (Broyden, 1970; Byrd et al., 1995). This method is chosen due to its high convergence speed, being

a quasi-Newton method that approximates the Hessian matrix, and its capability to impose constraints on parameter ranges,310

thereby eliminating nonphysical parameter values during the optimization.

In gradient-based optimization, parameter normalization is highly beneficial, as it results in a spherical shape of isolines,

improving the convergence rate by avoiding the steep slopes of the objective function

pnew
i =

pold
i − pmin

i

pmax
i − pmin

i

. (12)

The parameter ranges pmin
i /pmax

i are user-defined (Tab. A1 and Tab. A2) and are used for parameter normalization as well315

as for the box constraints in L-BFGS-B optimization. Applying this linear transformation to the parameters results in the

following transformation of the gradient function(
∂

∂p
f(pnew

1 , ...,pnew
m )

)
i

=
(
pmax
i − pmin

i

)
·
(

∂

∂p
f(pold

1 , ...,pold
m )

)
i

.

Fig. 3 illustrates the difference in convergence of the proposed method with and without parameter normalization for a specific

parameter configuration. The results clearly demonstrate that the normalized approach achieves the same objective function320

value, but with an order of magnitude fewer iterations (the objective function decrement was set to 10−5 as the stop criterion

in both cases).

The dependence of the solution on the initial conditions can lead to different optimization results. An extremely high opti-

mization speed makes it possible to consider the ensemble of optimization trajectories with the perturbed initial conditions. We
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Figure 3. Convergence of L-BFGS-B method: score function
::::
error

::::
norm

::::
(Eq.

::
4) values without (a) and with (c) parameter normalization,

l2-norm
::::::
l2-norm

:
of score

:::
error

:::::
norm gradient

::::::
gradient

::::
(Eq.

:::
11) without (b) and with (d) parameter normalization.

propose to select the perturbed initial conditions from the Latin Hypercube vicinity of the reference parameters325 [
pref
m −AMPL · (pmax

m − pmin
m ), pref

m +AMPL · (pmax
m − pmin

m )
]
, m= 1,Nc. (13)

The scaling factor AMPL ∈ [0,1] defines the amplitude of the perturbation. In the case of the linear regression emulator with

a simple RMSE score function, we found no dependence of the result on the initial conditions, as shown in Fig. 4 (we used

AMPL = 0.3 and 15 samples), but this may be different for more advanced statistical emulators or error norm definitions. If a

dependence on the initial conditions occurs, one could choose the result with the minimum value of the objective function.330

Gradient-based optimization with an analytical representation of the gradient is highly advantageous in terms of perfor-

mance. The use of linear regression as the statistical emulator results in a linear scaling of the dimensions of the problem

(number of variables, parameters, grid points, and time steps), allowing a large number of parameters to be tuned in a reason-

able amount of time. The numerical approximation of the gradient is also possible in the case of a more sophisticated statistical

emulator or an error norm definition when the analytical expression is not available.335

3.4
::::::::

Sensitivity
::::::::
measure

::
To

:::::::
estimate

::::
the

:::::::::
sensitivity

::
of

:::
the

:::::::::::
ICON-CLM

:::
and

::::::::::::
consequently

::
of

:::
the

:::::::::
regression

::::::
model

::
to

:::
the

::::::::::
considered

::::::::::
parameters,

:::
the

:::::::
unit-less

:::::::
measure

::
of

:::::::::
maximum

::::::
change

:::::::::
SENSn,m ::

is
::::::::
calculated

:::
for

::::
each

:::::::::
prognostic

::::::::
variable.

::::::
Firstly

:::
we

:::::::
compute

:::
the

::::::::
maximal

13



Figure 4.
:::
The

::::
axes

::
are

:::
the

::::
same

::
as

:
in
::::
Fig.

:
3.
:
Ensemble of 15 optimization trajectories

:::
with

:::::::
disturbed

:::::
initial

::::::::
conditions: (a) score function

::::
error

::::
norm

:::
(Eq.

::
4), (b) l2-norm

::::::
l2-norm of score

:::
error

::::
norm

:
gradient

:::
(Eq.

::
11).

:::::::
function

:::::::::
increments

::
by

:::::::::
separately

::::::::
changing

::
all

::::::::::
parameters

::
to

::::
their

:::::
limits

∆REGm,min/max
i,j,k,n = REGi,j,k,n

(
pref
1 , ...,pmin/max

m , ...,pref
Np

)
−REGi,j,k,n

(
pref
1 , ...,pref

m , ...,pref
Np

)
,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(14)340

:::::
where

:::
Np::

is
::::

the
::::
total

:::::::
number

::
of

::::::::::
parameters,

:::::::::
including

:::::::::
continuous

::::
and

::::::
logical

:::::
ones.

:::::
Here,

:::::::::::
∆REGm,min

i,j,k,n:::
is

:::
the

:::::::::
regression

::::::::
increment

:::::
where

::::
only

:::
the

:::::::::
parameter

:::
pm::

is
:::::::
changed

::
to

::
its

::::::::
minimum

:::::
limit.

::::::::
Similarly

:::::::::::
∆REGm,max

i,j,k,n::::::::::
corresponds

::
to

:::
the

:::::::::
regression

::::::::
increment

:::::
when

:::
pm::

is
:::::::
changed

::
to

:::
its

:::::::::
maximum.

::::
The

::::::::
sensitivity

::::::::::
benchmark

::::::::
SENSn,m::

of
:::
the

:::::::
variable

:::
vn::

to
:::
the

:::::::::
parameter

:::
pm

:
is
:::::::
defined

::
as

:::
the

::::::::
maximum

:::
of

:::
the

:::::::::
sensitivities

::::::::
revealed

::
for

:::::::::
pm = pmin

m ::::
and

:::::::::
pm = pmax

m ::::::::::
respectively

SENSn,m = max
(

SENSmin
n,m, SENSmax

n,m

)
.

:::::::::::::::::::::::::::::::::

(15)345

:::
Eq.

::
16

:::::
gives

::
the

:::::::::
expression

:::
for

:::::::::
calculating

:::
the

::::::::
SENSmin

n,m::::
and

::::::::
SENSmax

n,m::
as

:::
the

:::::::
monthly

::::
mean

:::::::::::::
signal-to-noise

::::::::
measures

::::::::::
(normalized

::
by

:::::::
internal

::::::::
variability

:::::
σk,n)

::
of

:::::::::
regression

::::::::
increment

::::::
where

:::::::::
pm = pmin

m :::
and

:::::::::
pm = pmax

m ::::::::::
respectively

::::
(Eq.

:::
14)

:

SENSmin/max
n,m =

1

NT
·
∑
k

1

σk,n
·
√

1

Nx ·Ny
·
∑
i,j

(
∆REGm,min/max

i,j,k,n

)2

.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

(16)

4 Results

In this section, we analyze the sensitivity study (section ??
:::::
results

:::::::
(section

:::
4.1) and the regression validation (section 4.2) to350

identify the most influential parameters and to evaluate the performance of the proposed statistical emulator. Subsequently, an

example application of LiMMo is presented for a selected parameter set (section 4.3), demonstrating its flexibility in handling

varying variable weights. Additionally, the results of an optimization incorporating logical switches (section 4.4) constraints

are discussed.
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4.1 Sensitivity on model parameters
::::::
results355

To estimate the sensitivity of the ICON-CLM and consequently of the regression model to the considered parameters, the

measure of maximum change is calculated for each prognostic variable. Firstly we compute the maximal function increment

∆REG by separately changing all parameters to their limits

∆REGm,min/max
i,j,k,n = REGi,j,k,n

(
pref
1 , ...,pmin/max

m , ...,pref
Np

)
−REGi,j,k,n

(
pref
1 , ...,pref

m , ...,pref
Np

)
,

where Np is the total number of parameters, including continuous and logical ones. The following expression is proposed for360

the sensitivity benchmark SENSn,m of the variable vn to the parameter pm:

SENSmin/max
n,m =

1

NT
·
∑
k

1

σk,n
·
√

1

Nx ·Ny
·
∑
i,j

(
∆REGm,min/max

i,j,k,n

)2

SENSn,m = max
(

SENSmin
n,m, SENSmax

n,m

)
The sensitivity

:::
The

:::::::::
sensitivity measures for all parameters

::::::::
computed

::
as

:::::
Eq.15

:
are shown in Fig. 5.365

Figure 5. The sensitivity measure of prognostic variables (columns) on model parameters (rows) computed as Eq. 15. The last
::::
’Avg’ column

gives the sum in the row, which shows the overall
::::
mean

:
sensitivity of the model to the parameter,

::::::::
calculated

::
as

::
the

:::::
mean

:::::
values

::
in

::
the

::::
rows.

The numbers
:::::
Darker

:::::
shades are colored in a "blue

:::
used

:
to red" palette with increasing

::::
color

::
the

:::::::::
background

::
of

:::
the

::::::
numbers

:::
for

::::
larger

:
values.

Overall, the sensitivity results are consistent with theoretical expectations. It is clear that the surface albedo parameterization

(
:::::::::::::
parameterisation taw1 ) is the primary driver of surface air temperature variations (tas, tasmin, tasmax).

::::
taw2

:::
has

:
a
:::::::::
negligible
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:::::
impact

:::
on

:::
the

:::::
model

:::::::::
variables,

:::::
which

::
is

:::::
below

:::
the

:::::
level

::
of

:::
the

:::::::::::
ICON-CLM’s

:::::::
intrinsic

::::::::::
variability. The heat flux scaling factors

(rlh ,
:::
and

:
rs , rl) show sensitivity to both shortwave radiation (rsds) and

:::::
show

::::::::
sensitivity

:::::::::
primarily

::
to latent heat flux over

the sea (hfls)with considerable impact on temperature quanities (,
:::::
with

:
a
::::::::
moderate

::::::
impact

::
on

:::::
other

:::::::::
quantities.

:::
The

:::::
ratio

::
of

:::
the370

::::::
laminar

::::::
scaling

::::::
factors

::
rl

::
has

:::
the

:::::::
greatest

::::::
impact

::
on

::::::::::
short-wave

:::::::
radiation

:
(tas,

:::
rsds

:
),
:::::::::::
contributing

::::
only

::::::
slightly

::
to

:::::::::::
precipitation

:
(tasminand

::::::::::
pr_amount)

::::
and

:::::
latent

::::
heat

:::
flux

::
(tasmax

:::
hfls). The soil resistance parameters (rsmf and crb ) exhibit sensitivity

across all model variables. Although optimizing these parameters may not lead to improvements in one variable without

affecting others, their inclusion may still be beneficial for optimization.

The cloud cover parameters (tbl ,
:::
and

:
tbla ) and the allow overcast parameterization (ao ,

:::
and aot4 ) demonstrate the most375

pronounced sensitivity to shortwave
:::::::::
short-wave radiation (rsds), as expected. The momentum and vertical diffusion coefficient

(tkhmin ) primarily influence the average
::::
mean

:
(tas) and the minimum daily (tasmin)

::::
daily temperature with minimal impact

on other variables, suggesting opportunities for targeted tuning.

The external soil database (sdb ) primarily affects the mean (tas) and the minimum (tasmin)
::::
daily temperature. Aerosol type

(acrf ) has
:::
has

::::
only a limited effect on shortwave

:::::::::
short-wave radiation (rsds). The orography type (oro ) has a small effect on380

all model variables, although it is known to influence wind speed, which is outside the scope of this study.

The proposed sensitivity measure is highly effective for evaluating the impact of parameter changes on model variables and

for comparing these impacts quantitatively. This analysis is particularly valuable when considering new parameters, as it helps

to assess their influence on model results. Parameters that have a low sensitivity across all model variables (less than 1) could

either be removed from the optimization or have the limits of their variation expanded.385

4.2 Meta-Model validation

To
::::::
Several

:::::::::
parameter

::::::::::::
configurations

:::::
were

::::::::::
additionally

:::::::::
simulated

::::
with

:::::::::::
ICON-CLM

::
to

:
evaluate the accuracy of the linear

Meta-Model approximation, several parameter configurations were simulated with ICON-CLM. Some of the
:
.
:::
Due

:::
to

::::::
limited

:::::::::::
computational

:::::::::
resources,

:::::
only

:
a
::::::

subset
:::
of

:::::::::
parameters

::::
was

::::::::::
considered.

::::
The

:
most influential parametersidentified from the

sensitivity analysis (
:
,
:::::
which

::::::::
exhibited

:::
the

::::::
largest

::::::::
sensitivity

::
in

:::
the

:::::::::
sensitivity

:::::::
analysis

:::
(see

:
Fig. 5)

:
, were selected: taw1, rlh, rs,390

rl, tbl, tbla, ao and tkhmin. Test samples were generated by simultaneously varying these parameters within
::::
from the Latin

Hypercube around the minimum and
:::::
within

:::
the

::::::::
intervals

::::
from

::::::::
minimum

::
to
:
maximum values (see Tab. A1 and Tab. A2). Due

to limited computational resources, only the subset of the most sensitive parameters was considered.

A direct comparison between the regression model and the ICON-CLM simulation for different grid points and months

is presented in Fig. 6.
::::
Here

:::::
values

::::
are

::::::
plotted

:::::::
together

:::
for

:::
all

:::
test

:::::
cases

:::::
from

:::::
Latin

::::::::::
Hypercube. For the variables tas, tas-395

min, tasmax, psl, and hfls, the coefficient of determination (R2) exceeds 0.95 (not shown), indicating a decent approxima-

tion by the linear model. The variable rsds exhibits some dispersion
::::::
spread around the mean

:
, but maintains a high deter-

mination coefficient. In contrast,
:
(
:::::::
> 0.99).

::::
The

:
precipitation (pr_amount) shows the poorest performance , with the

::
of

:::
all

::::::::::
optimization

::::::::
variables.

::::
The

::::::
spread

:::::::
exhibits

::::::
values

::
of

:::
up

::
to

::::
100

::::
mm

:::
per

::::::
month

:::
and

::::
the

:::::::::::
determination

:::::::::
coefficient

:::
R2

::
is
::::
0.9

::::
only.

::
A

::::::::::
comparison

::
of

:::
the

::::::::::
histograms

::::
(not

::::::
shown)

::::::
reveals

::::
that

:::
the

:
Meta-Model occasionally yielding negative precipitation400

values , which compromises accuracy
::::
yields

:::::::
slightly

::::::
higher

:::::::::::
precipitation

:::::
values

::::
than

::::::::::::
ICON-CLM.

::::
Also,

:
due to the lack of
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a constraint enforcing non-negative precipitation amounts.
:::::::
physical

::::::::::
constraints,

:::
the

:::::::::::
Meta-Model

:::::
yields

:::::::::
marginally

::::::::
negative

::::::::::
precipitation

::::::
values;

::::::::
however,

::::
their

::::::
impact

::
on

:::
the

::::::
overall

::::::
RMSE

::
is

::::
very

::::::
limited

:::::::::::::
(approximately

:::
3%

::
of

:::
the

:::::::
intrinsic

::::::::::
uncertainty

::
of

::::::::::
precipitation

::::
(Eq.

:::
2)).

:

Figure 6. The comparison of
::::::::
Regression

::
vs.

::::::::::
ICON-CLM

::
for the regression result

:::::::
variables

:::
rsds (Eq. 6

:
a) and

::::::::
pr_amount

::
(b).

::::
Each

::::
grey

::::
point

::::
shows

:
the ICON-CLM output

::::::
monthly

::::
value

::
of

:::
the

:::::
model

::::::
quantity for each

:
a
:::::
single grid point

:
in
:::
the

:::::
model

::::::
domain, for training independent

setups:
::

one
::
of

:::
the

::::::::
validation

::::::::::
configurations

:
(a) monthly mean short wave radiation flux

::
i.e., (b

::
all

::::::::
validation

::::
cases

::::::
plotted

::::::
together)monthly

sum of precipitation. The dashed red line indicates "perfect match", the value of the R2
::
R2 determination coefficient is given in the label.

Every 100th grid point is shown in the plot.

::
To

::::::
assess

:::
the

:::::::::
inaccuracy

::
of

:::
the

:::::::::::::
approximation

::::::::::
statistically,

:::
we

::::::::
computed

:::
the

:::::::
monthly

:::::
mean

::::::
values

::
of

::::::
RMSE

::::::::
between

:::
the405

::::::::::
ICON-CLM

:::::
output

::::
and

:::
the

:::::
linear

::::::::::
Meta-Model

:::
for

::::
each

:::
test

::::
case

::
in

:::
the

:::::
Latin

::::::::::
Hypercube,

:::
and

::::::
plotted

:::
the

:::::
mean

:::::
values

::
in

::::
Fig.

::
7.

::
As

:::
can

:::
be

::::
seen,

:::
the

::::::::::
imprecision

::
of
:::

the
:::::
linear

:::::::::::::
approximation

:::::
(green

:::::
bars)

::
is

::::::
slightly

::::::
greater

::::
than

:::
the

:::::::
intrinsic

::::::::::
uncertainty

::
of

:::
the

::::::::::
ICON-CLM

::::::
(orange

:::::
bars),

:::
by

:
a
:::::
factor

:::
of

::::::
1.5–1.7

:::
for

:::
tas,

::::
rsds

:
,
::::::
tasmin

:
,
::::::
tasmax

::
and

:::
pr

:::::::
amount,

::::
and

::
by

::
a
:::::
factor

::
of

:::
2.5

:::
for

:::
hfls

:
.

::::::::
However,

:::
this

::::::::::
imprecision

::::::
(green

::::
bars)

::
is
::::
still

:::::
much

::::::
smaller

::::
than

:::
the

::::::
typical

:::::
error

::
to

::::::::::
observations

:::::
(blue

:::::
bars)

::
for

:::
all

::::::::
variables

:::::
except

:::::::::::
precipitation,

:::::::::
indicating

:::
the

:::::::
potential

:::
for

:::::::::::
optimization.

:
410

The linear approximation error for various variables was
::::
also assessed by comparing the time-averaged (averaged over all

climatological months) RMSEs with
:
to

:
the observations (Eq.1), as shown in Fig.8.

:::
For

::::
each

::
of

:::
the

:::::
Latin

:::::::::
Hypercube

:::::::::
validation

:::::
setups,

:::
we

::::
plot

:::
the

::::::
RMSE

::
to

:::::::::::
observations

::
for

::::::::
different

::::
pairs

::
of

:::::::::
variables,

::
for

::::
both

:::
the

:::::
linear

:::::::::
regression

::::::::::::
approximation

::::
and

:::
the

:::::::::::
corresponding

:::::::::
dynamical

::::::::::
simulation. The scores of the dynamical simulations and their corresponding Meta-Model approxi-

mations are represented by markers of identical shape. Notably, the distance between almost all pairs of markers with the same415

shape across the axes remains within the range of the intrinsic variability (Eq.2) of the climate model. With a few exceptions,

the order of the
:::::::
RMSEs

::
for

::::
the linear and dynamic errors

:::::
models

:
is largely maintained

:
,
:::
i.e.,

::
if
:::
the

::::::
RMSE

::
is
:::::::
smaller

:::
for

:::
the

::::::::
regression

:::::::
results,

:::
the

::::
same

::
is
::::
true

:::
for

:::
the

:::::::::
dynamical

::::::::::
simulation.

::::
This

:::::::
justifies

:::
the

::::::::
reduction

::
in

:::
the

:::::::::::
RMSE-based

:::::
error

:::::
norm

::
for

:::
the

:::::
linear

::::::::
emulator,

::::::
which

::
is

:::::::::
minimised

::
by

:::
the

:::::::::::
optimization

:::::::::
procedure,

::::::::::::
corresponding

::
to

::
an

::::::::
improved

::::::::
dynamic

:::::
setup

::::
with

::::::
reduced

::::::
biases.

::::
This

::
is
::::::::::
particularly

::::
true

:::::
when

:::
the

::::::::
reduction

::
in

::::::
RMSE

:::::::
exceeds

:::
the

::::
level

:::
of

::::::::::
imprecision

::
in

:::
the

:::::::::::::
approximation,420
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Figure 7.
:::
The

:::::::::
comparison

::
of

:::
the

::::::
different

::::::
sources

::
of
::::
error

::
in

:::::::
LiMMo.

:::::
Values

:::
are

::::::::
normalized

:::
on

::
the

:::::::
intrinsic

::::::::
variability

::
of

::
the

::::::::::
ICON-CLM

:::::
(Eq.2)

::
for

::::
each

:::::
model

:::::::
variable.

:::
The

::::
blue

:::
bar

::::
shows

:::
the

::::::
RMSE

::
of

::
the

::::::::::
ICON-CLM

:::::
output

::::
with

::
the

:::::
NWP

::::::::::
configuration

::
to

:::
the

::::::::::
observations.

:::
The

:::::
orange

:::
bar

:::::
shows

:::
the

:::::::
intrinsic

:::::::
variability

::::::
(Eq.2).

:::
The

:::::
green

:::
bar

:::::
shows

:::
the

:::::
RMSE

:::::::
between

:::
the

:::::::::
ICON-CLM

:::
and

:::
the

:::::
linear

::::::::
regression

:::::::::::
approximation,

:::::::
averaged

::::
over

::
all

:::
test

::::
cases

::::
from

::::
Latin

:::::::::
Hypercube.

::::
The

::::::::
temporally

:::::::
averaged

:::::
values

:::::::
(averaged

:::
for

::
all

:::::::
months)

::
are

::::::::
displayed

::
for

::
all

::::::::
quantities.

::::::
bearing

::
in

:::::
mind

:::
the

:::::
error

::
in

:::
the

:::::
linear

:::::::::::::
approximation. This indicates that the optimal linear approximation closely matches

the optimal ICON-CLM configuration with a high degree of accuracy, especially when the RMSE is reduced by an amount

exceeding the intrinsic variability of the variable under consideration.

This analysis demonstrates the applicability and reliability of the linear approach for representing the dynamical simulations.

4.3 Tuning of continuous parameters425

LiMMo provides substantial flexibility in the selection of regression parameters for optimization as well as in the weighting of

model variables. To systematically evaluate its performance, we fix the set of continuous parameters to the following: ao, aot4,

taw1, taw2, rlh, rs, rl, rsmf, tbl, tbla, crb, and tkhmin. Four different weight configurations (Tab.3) for the model variables

that define the error norm in Eq.4 are analyzed. As the reference configuration, we used the proposed configuration of ICON

for NWP, which defines the shift tensor in Eq. 8. The parameter values of the reference configuration can be found in Tab. 4.430

:::::
There

:::
are

::::
also

:::::
some

::::::::
objective

:::::
ways

::
of

::::::::
defining

:::::::
weights,

:::::
such

::
as

:::::::
entropy

:::::::
weights

:::
for

:::::::::::
multi-criteria

::::::::::::::
decision-making

:::
in

:::::::::
information

::::::
theory,

::::::
which

:::
are

::::::
beyond

:::
the

:::::
scope

::
of

:::
the

::::::
current

:::::
study.

:::::
These

:::::
could

:::
be

::::::::::
implemented

::
in
:::
the

:::::::
LiMMo

:::::::::
framework

:::
by

::::::::
assigning

:
a
:::::::
variable

::::::
weight

::::
that

::
is

:::::::
inversely

:::::::::::
proportional

::
to

::::::::::::
signal-to-noise

::::::
values

::
of

:::
the

::::::
initial

:::::::::::
configuration

:::
for

::::
each

::::::
model

:::::::
quantity.

The first configuration, ’equal_weights’, assigns equal weights to all model variables. LiMMo allows to explore the pre-435

dictive potential of the climate model for specific fields, therefore, two extreme cases are considered: ’tune_prec’ assigns
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Figure 8. The monthly mean RMSEs (Eq. 1) to observations for ICON-CLM simulations (blue markers) and corresponding regression results

(red markers)
::
for

:::
all

:::::::
parameter

:::::
setups

::::
from

:::::
Latin

::::::::
Hypercube. Corresponding dynamical and linear setups are indicated by the same marker

shape. The 2003-2008 monthly mean biases
:::::
RMSEs

:
are shown for: (a) daily mean 2-meter temperature tas versus daily mean short wave

::::::::
short-wave flux rsds, (b) daily minimum 2-meter temperature tasmin versus daily mean sea level pressure psl, (c) monthly total precipitation

pr_amount versus daily mean latent heat flux hfls. The 2003-2008 mean internal variabilities of the model (Eq. 2) are shown as horizontal

and vertical segments.

weights exclusively to precipitation, neglecting all other variables, while ’tune_temp’ distributes weights among tas, tasmin,

and tasmax. Finally, the ’expert_weights’ configuration reflects weights determined a posteriori by the authors based on an

analysis of the optimization results.

Table 3.
::
The

:::
list

::
of

:::::::::
considered

::::::
weights

::
in

::
the

::::
error

::::
norn

::::::::
definition

:::
(Eq.

:::
4).

::::
Each

:::
row

::::::::
represents

:::
the

::
set

::
of

::::::
weights

::
of
:::

the
:::::
model

::::::::
quantities

::::::::
(columns).

tas rsds tasmin tasmax pr_amount psl hfls

equal_weights 1.0 / 7.0 1.0 / 7.0 1.0 / 7.0 1.0 / 7.0 1.0 / 7.0 1.0 / 7.0 1.0 / 7.0

tune_prec 0.0 0.0 0.0 0.0 1.0 0.0 0.0

tune_temp 0.25 0.0 0.5 0.25 0.0 0.0 0.0

expert_weights 0.15 0.01 0.18 0.15 0.45 0.01 0.05

The list of considered

weights in the error norn definition (Eq. 4). Each row represents the set of weights of the model quantities (columns).
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The performance scores of the model variables (Eq. 3) after optimization are shown in Fig. 9. Note that in the current study440

we tend to minimize the variable scores (error norms), so the reduced score values demonstrate the better performance. It

is evident that the predictability of precipitation is approaching its theoretical limit for the selected set of model parameters,

as the optimal score of pr_amount in the ’tune_prec’ configuration is only slightly (∼ 2%) lower than that of the reference

configuration. It is also worth noting that the initial NWP configuration is already very well tuned for precipitation. Conversely,

when optimizing only for temperature variables (’tune_temp’), significant error reductions are achievable: a 5% reduction for445

tas, a 12% reduction for tasmax, and a 4% reduction for tasmin. However, this comes at the cost of a significant imbalance in

the surface heat budget, with notable increases in rsds (5%) and hfls (47%). The quality of pr_amount is also badly affected

by 15%.

The ’equal_weights’ setup demonstrates significant reductions in rsds (10%) and hfls (25%), but it underperforms the NWP

configuration for the key prognostic variables tas, tasmax, and pr_amount. On the other hand, the ’expert_weights’ setup450

achieves comparable performance to the NWP configuration for most variables, with the exception of rsds (1-2% worse) and

tasmax (2-3% worse). In particular, this setup yields significant improvements in the values of tasmin (7%) and hfls (∼ 10%).

Consequently, the ’expert_weights’ setup can be considered as a viable alternative to the NWP configuration. The optimal

values of the considered parameters are listed in the Tab. 4.

Figure 9. Scores of model variables (Eq. 3) normalized by the variable score of NWP configuration (dark blue bars) after optimization with

different weights from Tab.3. Note that in the current study we tend
:::
aim to minimize the variable scores (error norms), so the reduced score

values demonstrate the better performance.

4.4 Optimization with logical switches455

This subsection presents the optimization results obtained using the Meta-Model with incorporated logical switches (Eq. 9).

The parameter set is fixed as in the previous subsection, with the ’expert_weights’ weight configuration applied. The study con-
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Table 4.
:::
The

:::::::
parameter

::::::
values

::
for

:::
the

::::::::::
ICON-CLM

::
for

:::
the

:::::
NWP

::::::::::
configuration

:::
and

:::::::::::
configurations

:::::::
obtained

::::
from

::::::
LiMMo

:::::
using

:::::::
different

::::::
weights

::::
from

:::
Tab.

::
3.

:::
The

::::
rows

::
of

::
the

::::
table

:::::::::
correspond

::
to

::
the

:::::::
different

::::::
weights

::
of

:::
the

::::::
variables

::
in
:::
the

::::::::::
optimization,

:::
the

::::::
columns

:::::::
represent

:::
the

:::::
model

:::::::::
parameters.

ao aot4 taw1 taw2 rlh rs rl rsmf tbl tbla crb tkhmin

NWP configuration 1.000 0.000 0.000 0.000 10.000 0.800 1.000 1.000 0.050 3.250 110.000 0.600

equal_weights 0.977 0.293 0.044 -0.027 12.000 1.172 0.972 1.082 0.067 3.277 120.825 0.671

tune_prec 0.966 0.123 0.017 -0.015 11.217 0.877 0.969 1.028 0.053 3.373 111.911 0.572

tune_temp 0.980 0.819 0.114 -0.103 5.000 0.605 1.089 1.070 0.040 3.147 115.625 0.566

expert_weights 0.984 0.225 0.071 -0.068 10.497 0.934 0.992 1.057 0.051 3.222 123.650 0.618
The parameter values for the ICON-CLM for the NWP configuration and configurations obtained from LiMMo using different weights

from Tab. 3. The rows of the table correspond to the different weights of the variables in the optimization, the columns represent the model

parameters.

siders three logical parameters (sdb, acrf and oro), resulting in a total of eight possible configurations. For each configuration,

the
:::::::::::
optimizations.

::::
The continuous parameters were optimized

::
for

::::
each

:::::::::::
configuration

::
of

::::::
logical

:::::::
switches

::::
that

::::::
defines

:::
the

::::::
shifted

:::::
linear

::::::::::
Meta-Model. The results are summarized in Fig. 10. The

:::
This

:
final scores table provides the comprehensive information460

needed to make an objective decision in selecting
::::
select

:
the climate model configuration that best meets the user’s priorities

and interests.

Figure 10. The variable scores (Eq. 3) for the optimal configurations with different sequences of logical switches. The first row represents

the reference NWP configuration. The first three columns describe the sequence of logical switches, while the following columns give the

resulting scores for the considered variables. The last column shows the optimal norm (Eq. 4). The values are color-coded with a gradient

from red to green, indicating relative deficiency or improvement compared to the corresponding reference values.
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From the Fig.10 one can clearly see the positive effect of more detailed orography on the latent heat flux (hfls), as the bias is

significantly reduced for all cases when oro=1. Overall, updating all external data sets (sdb,acrf,oro) = (1,1,1) leads to the

most pronounced improvements in precipitation (pr_amount) and latent heat flux over sea (hfls).465

5 Discussion

The LiMMo optimization strategy demonstrates significant potential for objective calibration. While it quickly and automat-

ically generates optimal parameter values, it requires extensive expert knowledge of the model parameters. The user must

define the parameter set, ensure the sensitivity of model outputs to parameter changes, and determine the optimization objec-

tive, which is reflected in the assignment of the error norm. The computational efficiency of LiMMo allows for an extensive470

definition of the error norm. In this study, seven different model quantities are considered, which is a significant increase com-

pared to previous studies. However, for simplicity, we limit the error norm to mean values (root mean square error). From

a methodological perspective, it is feasible to include more sophisticated and critical quantities such as extreme precipita-

tion (e.g., the 99th percentile of hourly precipitation over a given period), the diurnal cycle of precipitation, and/or shortwave

:::::::::
short-wave radiation. Tuning these quantities will be a focus of future research. The current study investigates 10-15 model475

parameters simultaneously, a scale that was previously unfeasible. However, the linear scalability of the optimization time with

respect to the number of parameters allows for a significant expansion of this range, potentially by hundreds of parameters.

Another important aspect, which is beyond the scope of this study, is the monthly weighting of the model variables in

the definition of the error norm (Eq. 3, Eq. 4). Given the broad tuning period of six years, the computation of multi-year

averages significantly reduces the imbalance of monthly internal variability (Eq. 2), ensuring that the signal-to-noise ratio is480

approximately equal across months. Therefore, further reduction of temporal dimensionality by considering monthly averages

(Eq. 3) is sufficient to treat all months equally. However, for shorter tuning periods, the monthly imbalance in the signal-to-

noise ratio may become more pronounced, especially since climate models typically exhibit greater internal variability during

the summer months. In such cases, considering monthly averages could lead to an underestimation of the impact of summer

months on the model quality score. A more general approach would be to introduce monthly weights for variable errors fk,n485

(where k is the month index, n is the model variable index), so that the final error norm in the optimization would be

ERR =
∑
n

cn ·
∑
k

fk,n ·
RMSEk,n

σk,n
;
∑
k

fk,n = 1.

This would allow control over the contribution of monthly errors, allowing the weights fk,n to be adjusted to balance their

contribution to the overall error norm. For example, one could choose the monthly weights to be inversely proportional to the

signal-to-noise ratio for the reference simulation:490

fi,n ·
RMSEref

i,n

σi,n
= fj,n ·

RMSEref
j,n

σj,n
, ∀ i, j;

∑
k

fk,n = 1.
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6 Conclusions

The current study introduces a new tool for objective tuning of regional climate models. Building on previous work (Neelin et al., 2010; Bellprat et al., 2015; Avgoustoglou et al., 2022)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Neelin et al., 2010; Bellprat et al., 2012; Avgoustoglou et al., 2022), the LiMMo framework employs a regression-based ap-

proximation of climate model outputs. Unlike previous approaches, LiMMo primarily uses a linear regression approximation495

rather than a quadratic one. This choice is motivated by the cost-effectiveness of building the statistical emulator, as it requires

only a linear number of dynamical simulations (at least one for each parameter). Despite its simplicity, the approximation has

demonstrated high accuracy when modeling over long periods of time, as evidenced by the 6-year span considered in this study.

A second distinctive feature of LiMMo is the use of a gradient-based method to minimize the error norm relative to obser-

vations, in contrast to previously proposed Monte Carlo methods. The combination of a linear Meta-Model with fast gradient-500

based optimization allows the approach to scale linearly with the number of model quantities and parameters, allowing the

simultaneous tuning of dozens of parameters, a task previously infeasible due to time-to-solution constraints.

The LiMMo framework was applied to the state-of-the-art regional climate model ICON-CLM, tuned to the E-OBS and

HOAPS observational data sets. A total of 15 model parameters were optimized using 7 model variables that define the distance

of the model to the observations. Different optimization objectives were explored by assigning different weights to the model505

variables in the error norm definition. In addition, optimization was performed for 8 different sequences of 3 logical switches,

providing comprehensive insights to objectively select the climate model configuration that best meets the user’s priorities.

Please note that the current study is not intended to give any recommendations on the setup of ICON-CLM, but only to

demonstrate the capabilities of the proposed LiMMo technique. The final decision of the model configuration should be made

after careful and extensive analysis of the model quantities, and LiMMo is only one of the tools that requires expert judgment.510

Code and data availability. For the experiments, we used the ICON release 2024.07 (https://doi.org/10.35089/WDCC/IconRelease2024.07,

ICON partnership (DWD, MPI-M, DKRZ, KIT, C2SM), 2024), which is publicly available under the 3-Clause BSD License; The execution

of the job workflow was managed using SPICE - Starter Package for ICON-CLM Experiments, specifically the version 5. 0 released in

June 2023 (https://doi.org/10.5281/zenodo.10047021, Rockel and Geyer, 2023), which is publicly available on Zenodo; The ICON-CLM
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zenodo.14662292, Petrov and Will, 2025). This published software package includes the scripts used to generate the plots in the current
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Table A1.
:::
The

:::::
ICON

:::::
tuning

:::::::::
parameters

:::
for

::::::
Surface

::::::::
Transfer

::::::
Scheme

:::::
(section

:::::
2.4.1)

::::
and

::::::
Mixing

::
in

:::
the

::::::::
Planetary

::::::::
Boundary

::::::
Layer

::::::
(section

:::::
2.4.2).

:::
The

::::::
section

::::::
number

:::
with

:::::::::
description

::
of

:::::::
parameter

::
is

::::
given

::
in

:::
the

::::::
column

:::::::
"Section".

::::
The

:::::::::
"Parameter"

::::::
column

::::
gives

::
the

:::::
name

:
of
:::

the
::::::::
parameter

::
as

::::
used

::
in

:::
the

:::::
ICON

:::::
model,

:::::
while

::
the

:::::::::
"Acronym"

::::::
column

:::::
shows

:::
the

::::::::
parameter

::::::
acronym

::::
used

::
in

:::
this

::::::
article.

:::
The

::::::
"Type"

:::::
column

:::::::
indicates

::::::
whether

:::
the

::::::::
parameter

:
is
:::::::::
continuous

::::
("C")

::
or

:::::
binary

:::::
("B").

:::
The

::::::::::::
"Min/Ref/Max"

::::::
column

:::::::
represent

::
the

::::::::
minimum,

::::::::
reference,

:::
and

:::::::
maximum

:::::
values

:::
for

::::::::::
optimization,

:::::::::
respectively.

::::
The

::::::::::
"Description"

::::::
column

::::::
provides

::
a
:::
brief

:::::::::
explanation

::
of

::::
each

::::::::
parameter.

Section Parameter Acro- Type Min / Ref / Max
::::
Tested Description

nym value
::::
values

2.4.1 tune_albedo_wso(1) taw1 C -0.15
::
0.0

:
/ 0.1 / 0.15

:::
0.0,

:::
0.1 Bare soil albedo correction for soil type 3-6

(sand, sandy-loam, loam, clay-loam) and soil

water content w_so< 0.01.

tune_albedo_wso(2) taw2 C -0.15 / -0.1 / 0.15
::
0.0

: :::
-0.1,

:::
0.0 Bare soil albedo correction for soil type 3-6

(sand, sandy-loam, loam, clay-loam) soil water

content w_so> 0.02.

rlam_heat rlh C 5 / 6.25 / 12
::::
6.25,

:::
10.0

:
Scaling factor of the laminar boundary layer for

latent and sensible heat flux. Higher values in-

crease the resistance of reduce the sensible heat

flux at the surface.

rat_sea rs C 0.5
::
0.4 / 0.8 / 1.5

:::
0.4,

:::
0.7 Ratio of laminar scaling factors over sea and

land. The larger rat_sea the larger the lam-

inar resistance over sea.

rat_lam rl C 0.7 / 1.0 / 1.3
:::
0.8,

:::
1.0 Ratio of laminar scaling factors of latent

and sensible heat flux over land. The larger

rat_lam the larger the laminar resistance to

latent heat flux over land.

rsmin_fac rsmf C 0.7 / 1.0 / 1.5
:::
1.0,

:::
1.2 Scaling factor of class dependent minimum

stomata resistance. This preserves the depen-

dency of the resistance on vegetation type.

cr_bsmin crb C 80 / 110 / 170
:::
110,

:::
150 Minimum bare soil evaporation resistance

(Schulz and Vogel, 2020) if itype_evsl=5

(c_soil if itype_evsl=2,3,4).

2.4.2 tkhmin tkhmin C 0.2 / 0.5 / 0.7
:::
0.3,

:::
0.6 Scaling factor for minimum vertical diffusion

coefficient for turbulent heat fluxes at the sur-

face. It is proportional to R
−2/3
i , with Ri

Richardson number.

tkmmin tkmmin C 0.2 / 0.5 / 1.0
:::
0.3,

:::
0.6 As tkhmin but for momentum.

The ICON tuning parameters for Surface Transfer Scheme (section 2.4.1) and Mixing in the Planetary Boundary Layer (section 2.4.2).

The section number with description of parameter is given in the column "Section". The "Parameter" column gives the name of the

parameter as used in the ICON model, while the "Acronym" column shows the parameter acronym used in this article. The "Type" column

indicates whether the parameter is continuous ("C") or binary ("B"). The "Min/Ref/Max" column represent the minimum, reference, and

maximum values for optimization, respectively. The "Description" column provides a brief explanation of each parameter.26



Table A2.
:::
The

:::::
ICON

:::::
tuning

:::::::::
parameters

:::
for

:::::
Cloud

:::::
cover

::::::
(section

:::::
2.4.3)

:::
and

:::::::
External

:::::
data

:::
sets

:::::
(section

::::::
2.4.4).

:::
The

:::::::::
description

::
of

:::
the

::::::
columns

::
is

::
the

:::::
same

:
as
::

in
::::
Tab.

:::
A1.

Section Parameter Acro- Type Min / Ref / Max
::::
Tested Description

nym value
::::
values

2.4.3 tune_box_liq tbl C 0.04 / 0.05 / 0.1
::::
0.05,

:::
0.07

:
Range of relative humidity (RH) for liquid

cloud cover (CLC) diagnostics with 1− tbla ·

tbl ≤ RH ≤ 1+ tbl. Higher values increase the

cloud cover.

tune_box_liq_asy tbla C 3.5
::
2.5

:
/ 3.25 / 4.5

::::
3.25,

:
4
:

Asymmetry factor for range of RH

in liquid cloud cover diagnostics (See

tune_box_liq). A smaller value is re-

sulting in a smaller range of CLC increase with

RH to 1.

allow_overcast ao C 0.8 / 0.9 / 1.0
:::
0.9,

:::
1.0 Parameter of the dependency of CLC on RH. A

smaller value is resulting in a steeper CLC(RH)

increase to 1.

aot4 C 0 / 1.0 / 1.5
:::
0.0,

:::
1.0 The amplitude of the annual cycle of monthly

deviations of allow_overcast from the

mean value of ao:

allow_overcast[i] = ao+ aot4 · aot[i],

aot= [−0.02,−0.06,−0.03,0.02,0.05,0.02,

0.05,
:::::

0.02,0.02,0.02,
:::

::::
− 0.02,−0.04,−0.04,−0.03]

2.4.4 soil_data_base sdb B 0.0 / 0.0 / 1.0
:::
0.0,

:::
1.0 Soil type data base. [sdb = 0]: FAO

(FAO/UNESCO, 1981); [sdb = 1]: HWSD

(Nachtergaele et al., 2023).

type_of_orography oro B 0.0 / 0.0 / 1.0
:::
0.0,

:::
1.0 Orography data base. [oro = 0]: NOAA

GLOBE 1km resolution (GLOBE Task Team

et al., 1999); [oro = 1]: MERIT 100m resolu-

tion (Yamazaki et al., 2017).

type_of_aerosols acrf B 0.0 / 0.0 / 1.0
:::
0.0,

:::
1.0 Aerosol climatology data base. [acrf = 0]

Kinne (Kinne, 2019); [acrf = 1] MODIS

(Schaaf et al., 2021).
The ICON tuning parameters for Cloud cover (section 2.4.3) and External data sets (section 2.4.4). The description of the columns is the

same as in Tab. A1.
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