Response to reviewer #1 on the manuscript: Linear
Meta-Model optimization for regional climate
models (LiMMo version 1.0)

by Sergei Petrov and Beate Geyer
July 9, 2025

Dear Anonymous reviewer #1, thank you very much for your valuable comments. You will find de-
tailed answers to your comments in the following text. We will refer to the initially submitted version of
the manuscript with a red background color and to the revised version with a green background color .

We will use a yellow background color for your comments.

Major comment: My main question relates to regularization of LiMMo’s regression. LiMMo
appears to use linear regression without any sort of regularization, e.g., ridge regression or LASSO
regression. A common problem with un-regularized linear regression is that it sometimes yields large
“optimal” parameter values that delicately cancel each other’s effects. Then those parameter values
lead to a poor result when used in a non-linear model like ICON-CLM. However, LiMMo doesn’t
seem to suffer from this problem in the example tuning run presented (see Fig. 6 and the discussion
in the manuscript). Please discuss how this problem is avoided in your run. In addition, please do a
tuning run in which the range of each parameter, pynax — Pmin, is doubled, and then recalculate the
R2 values and re-create the plots in Fig. (6). In general, with the range doubled, does regression
yield large parameter values that behave poorly in ICON-CLM?

A linear regression model may produce high absolute values for the coefficients of multiple param-
eters whose effects cancel each other out in the training data. The main reason for this is typically
the high correlation between the model parameters. In principle, all physical parameterizations of a
well-designed climate model, such as ICON, correspond to distinct physical processes. Of course, the
same physical process may be parameterized differently; however the implementation of these parame-
terizations is always mutually exclusive. In the current study we selected parameters corresponding to
distinct physical parameterizations within ICON; therefore, correlation is excluded. The sensitivity of
the model quantities to parameter changes is shown in Fig. 5. In the case of multicollinearity, high

values of the tendency coefficients ( Eq. 7 ) would lead to extremely high sensitivity values ( Fig. 5 ).
This is not the case in our study. Thus, regularization is not essential to the presented manuscript.

Unfortunately, we cannot afford to retrain the linear regression with a doubled range of parameters.
There are several reasons for this.

First, reducing the minimum and increasing the maximum limits of the parameter by a factor of two
would greatly violate the physical constraints under which the parameterizations were developed. The
current minimum and maximum values were selected after extensive discussions with ICON experts and
developers. Where feasible, we have already increased the recommended limit values by an additional
10-20% to allow for a wider range of parameter variations.

The second reason is computational constraints. With the 12 continuous model parameters consid-
ered in the study, at least 13 additional high-resolution, six-year regional climate simulations of Europe
are required. The project’s resources are currently close to their limit.

The last point is as follows: Extending the parameter limits for optimization only, without retraining
the emulator, will not significantly change the results. The target function ( Eq. 4) is a smooth,



convex, scaled Euclidean norm function of the model parameters in the case of a linear emulator and a
normalized RMSE function
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This is known to have only one global minimum. The only case in which limit parameter values affect the
optimization results is when the global minimum for parameter p,, lies outside the range [pl,, pir,.]. In
this case, the optimization procedure yields either p. or pr . In most cases, the optimal parameter
values are found within the defined ranges (see Tab. 4). The only limit value obtained is rlh for

‘equal_weights” and tune_temp’, so extending the limit values would not significantly affect the LiMMo

results.

Minor comment 1: Equation (7): What are the values of Ap,, used in your tuning runs? How is

Ap,, related to p™™ and pmax?

The specific values of the parameters used to train the linear regression model were selected based
on expert knowledge and experience with the ICON model. These values were chosen from within the

range [pnm;n, phnax],

These limit values are listed in Tab. A1 and Tab. A2 in the Appendix .

The

specific values used for training (tested values) are provided in the Tab.

Parameter Min value | Max value | Tested values
tune_albedo_wso (1) 0.0 0.15 0.0, 0.1
tune_albedo wso(2) -0.15 0.0 0.0, -0.1

rlam heat 5.0 12.0 6.25, 10.0

rat_sea 0.4 1.5 0.4, 0.7
rat_lam 0.7 1.3 0.8, 1.0
rsmin_fac 0.7 1.5 1.0, 1.2
cr_bsmin 80 170 110, 150
tkhmin, tkmmin 0.2 0.7 0.3, 0.6
tune_box_liq 0.04 0.1 0.05, 0.07
tune_box_liqg_asy 2.5 4.5 3.25, 4
allow_overcast 0.8 1.0 0.9, 1.0
allow_overcast_yc 0.0 1.5 0.0, 1.0

Table 1: Parameter values used for training of the regression model.

The tested parameter values from Tab. were added to the Tab. A1 and Tab. A2 in the

Appendix . The following sentence was also added to the section The linear Meta-Model approximation

The specific values of the parameters used for training (tested values) can be found in Tab.A1 and

Tab.A2.
Minor comment 2: Lines 320-321:

“Test samples were generated by simultaneously varying these
parameters within the Latin Hypercube around the minimum and maximum values”.

Why does

this sentence say “around” rather than “between”? Are the samples allowed to include values less

than pui, or greater than ppa,?
is constructed?

Can you give more details about how this Latin Hypercube sample

Indeed, the formulation ”around” is a typo. Thank you for pointing it out. The Latin Hypercube

test samples were generated using parameter values between the minimal and maximal values.

sentence

The

Test samples were generated by simultaneously varying these parameters within the Latin Hypercube
around the minimum and maximum values.

is changed to

Test samples were generated by simultaneously varying these parameters from the Latin Hypercube
within the intervals from minimum to maximum values.
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Minor comment 3: Equation (9): The logical switches, p;, must take integer values of 0 or 1, but
linear regression would seem to yield optimal values of p; that are real numbers. How does LiMMo
convert between the real values yielded by regression and the integer values of, e.g., Fig. (9)7

The logical switches p - (MODﬁ lfkln — MOD7 ’fkon) introduced in Eq.(9) are included in the Meta-
Model. However, the logical parameters p; do not directly participate in gradient descent. These
parameters are set to 0 or 1 in advance to simulate the absence or presence of the corresponding
switch. This defines only the shift in the linear approximation function. Subsequently, optimization is
performed only for the continuous parameters p,,. Considering three logical switches ultimately leads
to eight different optimal configurations for each sequence of switches. The final biases for them are

shown in Fig.10 .

We have added a sentence to the description of the logical switches in section The linear Meta-Model
approximation . Old version:

. where NN, denotes the number of binary (logical) parameters, and each binary parameter p; can
take the values 0 or 1. The reference simulation assumes p; = 0 for all binary parameters. When
pr = 0, the logical switch is off, and no additional signal is added, so the Meta-Model would reproduce
the state of the reference simulation. The inclusion of binary parameters introduces constant shifts in
the result, but does not affect the gradient of the Meta-Model with respect to continuous parameters.

New version:
where N, denotes the number of binary (logical) parameters, and each binary parameter p,

can take the values 0 or 1. The reference simulation assumes p; = 0 for all binary parameters.
When p; = 0, the logical switch is off, and no additional signal is added, so the Meta-Model would
reproduce the state of the reference simulation. The inclusion of binary parameters introduces
constant shifts in the emulator, but does not affect the gradient of the Meta-Model with respect
to continuous parameters. Consequently, minimization involves only continuous parameters,
while logical ones are prescribed to 0 or 1.
Hopefully, it is now clearer that the logical parameters are set in advance and are not part of the
gradient descent.

Minor comment 4: Equations (14)-(15): Please clarify the notation “min/max”. I was initially
confused by whether Eqn.(14) was to be interpreted as really two equations, one for REG_min and
one for REG_max, or instead whether REG _min/max was a single variable. It wasn’t clear until I
reached Eqn.(15) that the former interpretation is the intended one. To clarify, the authors could,
for example, simply write the equation before Eqn.(14) as an equation for REG_min and state that
a similar equation holds for REG_max.

Indeed, the correct interpretation may not be straightforward. We rewrite the Sensitivity measure
section as:



To estimate the sensitivity of the ICON-CLM and consequently of the regression model to the
considered parameters, the unit-less measure of maximum change SENS,, ,,, is calculated for each
prognostic variable. Firstly we compute the maximal function increments by separately changing
all parameters to their limits

i,5,k,n
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where N, is the total number of parameters, including continuous and logical ones. Here, AREGZ’?%
is the regression increment where only the parameter p,, is changed to its minimum limit. Similarly
AREG!7™* corresponds to the regression increment when p,, is changed to its maximum. The

l7j7k7n
sensitivity benchmark SENS,, ,,, of the variable v,, to the parameter p,, is defined as the maximum
of the sensitivities revealed for p,, = p™® and p,, = p™** respectively
SENS,., = max <SENSQ§§;, SENsnmj;) 2)

Eq. 13| gives the expression for calculating the SENSTT},;‘L and SENS™ as the monthly mean signa}—

to-noise measures (normalized by internal variability oy ,,) of regression increment where p,,, = p/
and p,, = pm®* respectively (Eq.
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Minor comment 5: What is plotted in Fig. 6 is not clear to me. I am guessing that Fig. 6
evaluates whether the regression model yields the same result as the ICON-CLM model run for the
same configuration and set of parameter values. Is this true? What does each grey dot represent? Is
it a single grid point for a single month? Readers might be interested to see plots of other variables,
in addition to rsds and pr_amount.

Fig.6 shows a comparison of all grid points and months for the ICON-CLM and the linear regression
approximation. The single grey point on the plot represents the monthly value for a specific grid point
and validation configuration (i.e., the model parameter values from the Latin Hypercube). The caption
of Fig.6 was changed from

Figure 6. The comparison of the regression result (Eq. 6) and the ICON-CLM output for each grid
point for training independent setups: (a) monthly mean short-wave radiation flux, (b) monthly sum
of precipitation. The dashed red line indicates ”perfect match”, the value of the R2 determination
coefficient is given in the label. Every 100th grid point is shown in the plot.

to

Figure 6. The comparison of the regression result (Eq. 6) and the ICON-CLM output for each grid
point for training independent setups: (a) monthly mean short-wave radiation flux, (b) monthly
sum of precipitation. Each point on the plot corresponds to specific grid point, month and test
configuration from Latin-Hypercube (i.e., all validation cases plotted together). The dashed red line
indicates "perfect match”, the value of the R2 determination coefficient is given in the label. Every
100th grid point is shown in the plot.

The R2 determination coefficient is one way to assess the quality of the linear emulator. Plots of
the variables tas, tasmin, tasmax and hfls were omitted from the text because the determination
coefficient was high (this was emphasized in L324-325 in the text). These plots can be found in Fig.
m

However, high values of the determination coefficient can create a misleadingly positive impression
of the quality of the linear emulator. In the context of the current manuscript, it is important to
compare the RMSE of the difference between ICON-CLM and regression to the measure of ICON-
CLM’s intrinsic variability. The signal-to-noise ratio is minimized in the end (see the response to thee
to the next comment).



(a) Regression vs ICON-CLM for "tas" (b) Regression vs ICON-CLM for "tasmin"
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Figure 1: As Fig.6 .Regression vs. ICON-CLM for the variables tas, tasmin, tasmax, and hfls. Each
grey point shows the monthly mean value of the model quantity for a single grid point in the model
domain, for one of the validation configurations.

Minor comment 6: What is plotted in Fig. 7 is also unclear. It is apparently meant to assess
the “linear approximation error”, but then it plots RMSE relative to obs. However, it’s possible for
both the regression and ICON-CLM to have the same RMSE but different spatial patterns.

First, I would like to clarify that in Fig.7 ( Fig.8 in the revised version), the RMSE to obser-
vations of the regression approximation is compared to the RMSE to observations of the ICON-
CLM. The regression approximation has not been optimized here; we simply selected the random
parameter values from Latin Hypercube, simulated the corresponding setup with the ICON-CLM and
compared the results with regression output in terms of RMSE. Therefore, the RMSE of the linear
approximation may be larger or smaller than the RMSE of the corresponding ICON-CLM config-
uration. Section Meta-Model validation aims to assess the quality of the linear approximation
rather than investigate the quality of optimized configurations; the latter is discussed in the section
Tuning of continuous parameters .

A different spatial pattern would indicate that the linear approximation error is large, but this
large error wouldn’t be reflected in RMSE. Also, I don’t understand how the ICON-CLM result can
sometimes have lower RMSE (better accuracy) than the regression. The regression is approximating
the optimum, but often ICON-CLM appears to do even better than the optimum.

This is indeed a very important comment. The initial idea behind Fig.7 ( Fig.8 in the revised
version) was not only to assess 'linear approximation error’, but also to see if the regression approxi-
mation could reproduce the order of error norms. For instance, does choosing the linear approximation
with the smallest RMSE correspond to selecting the ICON-CLM configuration with the smallest error
norm? This holds true for most variables (see Fig.7 or Fig.8).

We agree that a small RMSE does not necessarily imply a perfect spatio-temporal match between
the regression and the dynamical simulations. This is a common question in the field of earth system



model assessment. However, the current study, as stated in the abstract and introduction, focuses
only on an RMS-like measure of quality. We added a new Fig. for a clearer assessment of the
approximation. Here, we compare the different sources of error in our analysis numerically. Please
note, that we have normalized all the results on intrinsic variability to compare different variables.
First (blue) bar shows the typical 'measure of climate model error to observations”> RMSE of ICON
with NWP configuration to observation. Second (orange) bar shows the measure of intrinsic variability
(Eq.2 ). The third (green) bar shows the measure of "approximation imprecision> RMSE of ICON to
linear regression, averaged over all test cases from Latin Hypercube. We display the temporal average
(average for all months) for all quantities.

The results show that the linear approximation error is slightly larger than the intrinsic variability
(by a factor of 1.5-1.7) for all variables except for latent heat flux hfls. However, the initial error to
observations (blue bars) is still much larger than the ’approximation imprecision’ (green bars), for the
majority of variables. Only for precipitation pr_amount the ’approximation imprecision’ is only twice
smaller than the initial bias. Eventually, this demonstrates the potential for optimization in the LiMMo
framework.

We have added the following paragraph to the section Meta-Model validation

To assess the inaccuracy of the approximation statistically, we computed the monthly mean values
of RMSE between the ICON-CLM output and the linear Meta-Model for each test case in the
Latin Hypercube, and plotted the mean values in Fig. 2l As can be seen, the imprecision of the
linear approximation (green bars) is slightly greater than the intrinsic uncertainty of the ICON-
CLM (orange bars), by a factor of 1.5-1.7 for tas, rsds, tasmin, tasmax and pr_amount, and by
a factor of 2.5 for hfls. However, this imprecision (green bars) is still much smaller than the typical
error to observations (blue bars) for all variables except precipitation, indicating the potential for
optimization.

Sources of errors
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Figure 2: The comparison of the different sources of error in LiMMo. Values are normalized on the
intrinsic variability of the ICON-CLM ( Eq.2 ) for each model variable. The blue bar shows the RMSE
of the ICON-CLM output with the NWP configuration to the observations. The orange bar shows the
intrinsic variability ( Eq.2 ). The green bar shows the RMSE between the ICON-CLM and the linear
regression approximation, averaged over all test cases from Latin Hypercube. The temporally averaged
values (averaged for all months) are displayed for all quantities.

In addition to Fig. 7, it might be helpful to simply plot spatial maps of, e.g., pr_amount from the
regression model next to pr.amount from ICON-CLM.
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We have briefly investigated the spatial patterns of 'TCON-CLM - Regression’, but these patterns
were highly specific to different Latin Hypercube samples. They did not demonstrate common behavior
(e.g., overestimation/underestimation in specific European regions), and, therefore, were omitted from
the manuscript. Creating an emulator with high accuracy that can reproduce the spatial patterns of a
highly nonlinear climate system is very complicated. Training for each model parameter would require
dozens to hundreds of dynamical simulations. The LiMMo approach offers an approximation and
optimization of the balanced climate state (monthly mean values averaged over a large enough number
of years) using the simplest statistical emulator available, making this tuning practically applicable.

In general, we believe that it is not the most accurate approach when a decent configuration is
already known. For example, we could only reduce the bias by 10-15% compared to the ICON NWP
configuration. However, LiMMo, for instance, could be especially helpful as a quick solution for domains
that have rarely been considered before.



Response to reviewer #2 on the manuscript: Linear
Meta-Model optimization for regional climate

models (LiMMo version 1.0)

by Sergei Petrov and Beate Geyer
July 9, 2025

Dear Anonymous reviewer #2, thank you very much for your valuable comments. You will find de-
tailed answers to your comments in the following text. We will refer to the initially submitted version of
the manuscript with a red background color and to the revised version with a green background color .

We will use a yellow background color for your comments.

First of all, I thank the authors for this articles. I think its core concept and developments are
valuable, interesting and worth publishing. I had a great time reading it.

We appreciate this comment and thank the reviewer for their critical and constructive feedback.
We hope the revised manuscript meets GMD’s high scientific standards, and we hope the reviewer has
a similar experience with our replies and revision as with the original manuscript.

1. My biggest comment on the content is the following. For the study to be complete, I believe
there lacks a comparison with another method (e.g., quadratic regression) which could be expected
to result in a better set of parameters at the expense of more time and computing resources. I do
not request adding this comparison to the study. If you do, I think it would be extremely valuable (I
know that your goal is to be cost-efficient, but the method is anyways, yet here we are talking about
presenting it for the first time, which could deserve a one-time investment in order to more clearly
situate its pros and cons with respects to other methods), but if you don’t, please at least develop
on the potential problems brought by the linear approximation. I think that the current manuscript
version is very superficial on that point, highlighting the cost advantage but overlooking the cons.

We agree with the reviewer that a comparison with a quadratic method would be valuable. However,
this will have to wait for future work, as it requires substantial additional resources. Nevertheless, we
believe that our results are worth publishing, even without a direct comparison to an alternative con-
figuration optimization method. The minimum number of simulations required for quadratic regression
training is 1 + 2 - N + W for N parameters. For a set of 12 parameters, this would require 91
five-year simulations. Even with the 13 simulations we have already conducted, we would still need 78
more. Running 78 x 5 = 390 simulation years is common in climate change studies, but it exceeds the
resources available for this work. Future studies probably could carefully compare fewer parameters. In
the meantime, we will partially close the gap by adding Fig. to the manuscript ( Fig.7 in the revised
version).

A similar plot was produced by Bellprat et al. 2012 (see Fig. [2]), where quadratic regression was
implemented. Of course, the optimization setups differ. The main difference is that in Bellprat et al.
2012 COSMO-CLM (Rockel, Will, and Hense [2008)) was optimized at a spatial resolution of 50 km,
whereas we use [ICON-CLM at a spatial resolution of 12 km. The quadratic regression was trained for
on only three variables — 2-m temperature, daily precipitation, and total cloud cover (we used short-
wave radiation flux instead and three additional quantities: tasmin, tasmax and hfls). In Bellprat
et al. 2012 regression yields monthly mean values over five years (60 values per grid point per variable),
whereas in our approach regression yields 12 five-year mean monthly averages (i.e., the average of
January, February, etc. from 2003 to 2007). The set of parameters considered is also slightly different.
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Figure 1: The comparison of the different sources
of error in LiMMo. Values are normalized on
the intrinsic variability of the ICON-CLM ( Eq.2 )
for each model variable. The blue bar shows the
RMSE of the ICON-CLM output with the NWP
configuration to the observations. The orange
bar shows the intrinsic variability ( Eq.2). The
green bar shows the RMSE between the ICON-
CLM and the linear regression approximation, av-
eraged over all test cases from Latin Hypercube.
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Figure 7. Comparison of the imprecision of the metamodel
(oams red column) to all sources of the performance index
(PI, blue columns) for T2M, PR and CLCT separately. The
individual columns show the median values of all terms,
whereas the error bars show the inter-quartile range derived
from all spatial means considered to compute PL. To com-
pare the terms for all three model variables all terms are
scaled to sum up to 1 for each model variable. The original
values are shown on top of each column with the dimension
given by each model variable in the horizontal axis. The fig-
ure shows that the imprecision of the metamodel is small
compared to the other sources of uncertainty in PL

The temporally averaged values (averaged for all

months) are displayed for all quantities. Figure 2: This plot was taken from Bellprat et al.

2012,

Taking these methodological distinctions into account, we draw careful conclusions. Temperature
approximation errors are comparable in magnitude in both frameworks, ranging between 1.5 and
2.0 times the model’s intrinsic variability. The quadratic regression, however, demonstrates notably
higher precision for precipitation, achieving errors on par with intrinsic variability, versus approxi-
mately 1.6 - 0; for the linear Meta-Model. This indicates that the quadratic regression significantly
improves precipitation approximation. Nevertheless, Fig. [I| clearly shows that the imprecision of the
linear Meta-Model (green bars) is still much smaller than the typical error to observations (blue bars)
for all variables except precipitation. This demonstrates the potential of optimization with linear
emulator. The current manuscript shows that improvements in precipitation are close to the limit
(see ’tune_prec’ in Fig. 8 of the manuscript ), since the optimized configuration yields only slightly
lower RMSE for pr_amount than initial configuration. This may be due to imprecision in the Meta-
Model, as well as the relatively low sensitivity of precipitation to the parameters considered (see the
'‘pr_amount’ column in Fig. 5 of the manuscript ).

The following paragraph is added to the section Meta-Model validation :

To assess the inaccuracy of the approximation statistically, we computed the monthly mean values
of RMSE between the ICON-CLM output and the linear Meta-Model for each test case in the
Latin Hypercube, and plotted the mean values in Fig. As can be seen, the imprecision of the
linear approximation (green bars) is slightly greater than the intrinsic uncertainty of the ICON-CLM
(orange bars), by a factor of 1.5-1.7 for tas, rsds, tasmin, tasmax and pr amount, and by a
factor of 2.5 for hfls. However, this imprecision (green bars) is still much smaller than the typical
error to observations (blue bars) for all variables except precipitation, indicating the potential for
optimization.



2. Another comment for the content is about L327 (”occasionally yielding negative precipitation
values”). Doesn’t this deserve more attention than a remark? We wonder whether this has conse-
quences for the optimization, if you would advise something to go around this (e.g., add a conditional
check in the regression to forbid out of range variable results and make those fall back to the range
limit, in this case zero. I don’t know, really, it’s a proposition).

We thank the reviewer and agree that this point requires further clarification. While it would be
possible to force the emulator to produce only non-negative precipitation, doing so would limit our
ability to obtain the error-norm gradient analytically and complicate the optimization process. To
maintain simplicity and efficiency, we have chosen not to add that constraint.

We originally assumed that negative precipitation had little effect and would like to prove it. Fig.
shows the regression and simulation output histograms. The regression consistently overestimates
rainfall, which is the main source of inaccuracy. There are also a fair number of slightly negative values
(within [—10;0] mm per month), but they contribute very little to the overall RMSE, as we will show
next.
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Figure 3: Histogram of precipitation values across all test setups sampled by Latin-Hypercube within
the parameter bounds. This histogram was generated from the array of all monthly values at every
grid point for all test configurations.

For each parameter set in our validation (sampled by Latin-Hypercube within the minimum and
maximum bounds), we computed the RMSE(REG™ — REGE£>O), where REG™ is the unconstrained
precipitation regression output and REG5§>O is the same output with all negative values replaced by
zero. The average RMSE across all tests is approximately 0.2 mm per month, which is only ~ 3% of
the intrinsic uncertainty in precipitation. Therefore, setting negative precipitation values to zero has a
negligible effect on the LiMMo optimization.

The following paragraph is changed in the section Meta-Model validation from

A direct comparison between the regression model and the ICON-CLM simulation for different grid
points and months is presented in Fig.6. For the variables tas, tasmin, tasmax, psl, and hfls,
the coefficient of determination (R?) exceeds 0.95 (not shown), indicating a decent approximation
by the linear model. The variable rsds exhibits some dispersion around the mean but maintains a
high determination coefficient. In contrast, precipitation (pr_amount) shows the poorest perfor-
mance, with the Meta-Model occasionally yielding negative precipitation values, which compromises
accuracy due to the lack of a constraint enforcing non-negative precipitation amounts.

to



A direct comparison between the regression model and the ICON-CLM simulation for different grid
points and months is presented in Fig.6. Here values are plotted together for all test cases from Latin
Hypercube. For the variables tas, tasmin, tasmax, psl, and hfls, the coefficient of determination
(R?) exceeds 0.95 (not shown), indicating a decent approximation by the linear model. The variable
rsds exhibits some spread around the mean, but maintains a high determination coefficient( > 0.99).
The precipitation (pr_amount) shows the poorest performance of all optimization variables. The
spread exhibits values of up to 100 mm per month and the determination coefficient R? is 0.9 only.
A comparison of the histograms (not shown) reveals that the Meta-Model yields slightly higher
precipitation values than ICON-CLM. Also, due to the lack of physical constraints, the Meta-Model
yields marginally negative precipitation values; however, their impact on the overall RMSE is very
limited (approximately 3% of the intrinsic uncertainty of precipitation (Eq.2)).

3. The remaining of my comments are about the form. The most serious is about the introduction,
which, in my opinion, is problematic.

We appreciate this comment and would like to improve the manuscript.
First, it relies on the abstract. For instance, the objective (designing a flexible cost-effective tuning
tool) is not clearly stated (it is only the first sentence of the abstract), although all the decisions
to reach it are developed from paragraph 2. In addition, the LiMMo acronym is employed without
introduction (except from the abstract), relying on the implicit understanding from the reader about
the paper’s goal.

The introduction has been rewritten. The motivation behind improving the tuning framework is

explained in the first paragraph , so our aim should be clear to the reader from the very beginning. The

second paragraph provides a brief overview of existing tuning frameworks and introduces the LiMMo
acronym. We hope the revised introduction is straightforward.
Second, the bibliography presented is very weak, emphasizing 2 examples of tuning techniques in
the first paragraph, then 3 previous articles using quadratic regression, and the “well established”
reference to justify the sample number formula in the context of Monte Carlo. There is no reference
for Meta-Models in general, linear regression approaches and how it is perceived by previous Meta-
Model studies (no mention in previous research would even be surprising enough to precisely mention
that it’s lacking), gradient-based optimizations, or the choice of objective functions (“RMSE is not
enough” by Liemohn et al., 2021, for instance, is clearly relevant). You may then answer that some
things are original ideas, but in this case, well there is a third point.
We have significantly expanded the list of literature. We provided a reference to the overview
manuscript (Hourdin et al., 2017) . The classification of existing methods is presented in the second

paragraph . The third paragraph is devoted to discussing the objective calibration approach. We
present the state of the art and emphasize the drawbacks that we aim to improve in the current
manuscript. The linear regression approach and gradient-based optimization have rarely been applied
to regional climate model tuning, as emphasized in paragraph 5. The choice of objective functions is

briefly discussed in paragraph 4 .

Third, many of the introduction is about explaining the choices made for LiMMo and stating about
the advantages of the method. In my opinion, this is not introductory but rather about the method-
ology or even conclusion (for paragraphs L59 and L66 about the applicability of LiMMo).

The revised introduction now primarily discusses existing tuning techniques. The choices made for

LiMMo are briefly mentioned as a way to overcome objective calibration problems.
In the end, the introduction just feels like a detailed abstract, which, I believe, is not what it should
be. The introduction should present the field of your study (i.e., model parameter optimization),
explain what has already been proposed in the literature (more extensively than in the current
version, explain their procedure as you do for you: how do they choose the metrics, the weights, the
optimization process, etc.), the pros, the cons. Then you explain the paper aims to fill the gap of
flexible, cost-efficient parameter optimization by proposing a new method. You introduce BRIEFLY
your choices, which you develop only in the methodology.
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We agree that the initial version of the introduction did not cover the substantial literature. In
the revised version , we provided a significantly extended list of literature. As previously described,
we first provided the general motivation, followed by the literature overview. Next, we emphasized the
current problems of objective calibration and suggested a new framework to address them. Finally, we
briefly introduce the main features of LiMMo.

4. T'd actually suggest two different sections, one “materials” presenting ICON-CLM, its variables,
tuning parameters and observational datasets, and one separate “the LiMMo framework” presenting
the error norm, linear approximation, gradient-based optimization and the formulas of sensitivity.
The separate section on LiMMo would facilitate the readability and applicability of your method
by the readers, I believe. And then the “results” section is, in fact, entirely an application of your
parameter optimization framework, from the sensitivity to the selection of parameters, to ICON-

CLM.
We agree that separating the TCON-CLM description” and the 'LiMMo framework’ would improve

the readability of the paper. The old and the revised structures of the manuscript are presented in Fig.

]

1.Introduction 1.Introduction

2.Methodology 2t
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4, DiSCUSSiOﬂ = Tuning of continuous parameters

+ Optimization with logical switches

5.Conclusions 3 5
5.Discussion

Appendix. ICON parameters description 6.Conclusions

Appendix. ICON parameters description

Figure 4: The initial (left) and revised (right) structure of the manuscript.

5. Now more specific comments:

L26-28: This relies on the implicit assumption that we understand what you are going to do, i.e.,
use Meta-Model. Then, in this context, you choose the regression-based approach. Please make it
explicit, e.g., writing in the previous sentence: ”This approach is referred as objective tuning, or
objective calibration, and this is the focus of our study.” In addition, the detail about ”for each
grid point and time step” seems fairly early in the text, and feels more like a methodology part
explanation.

This part has been omitted from the revised introduction . The specific choices made for LiMMo
are briefly presented in the introduction and explained in the section "LiMMo Framework” .
Paragraph starting 1.29: The use of hyphens (which should be en or em dashes depending on the
convention) for explaining the minimum number of required dynamic simulations is confusing in my
opinion, because subjects are numbers and I'd very naturally read them "minus” at the first pass.
Consider using colons, "i.e.” or "that is”, instead.
This part was omitted. We will only mention that the number of simulations for the quadratic
approach scales as N2. See paragraph 3 of the revised introduction .



L.35,36: Your explanation corresponds to two formulas, i.e., two interpretations of the linear regres-
sion. If the reference simulation is fixed, then the formula is indeed N + 1, but if there is a new
reference simulation each time you change of parameters, then the formula is simply 2 N. I think
mentioning the 2 N option is confusing, especially since this is not the chosen approach.

This part was also omitted in the revised introduction . Nevertheless we would like to answer the
comment. Indeed, if the reference configuration remains fixed, only N + 1 simulations are required.
This is not fully the case for the current study, however. While the reference configuration changed
over time, it did not change for every parameter. Nevertheless, 2N is more accurate for our simulations.
Anyway, the main point is that the number of simulations is linear.

L51: Is it "perfect”, really?

This part was also omitted in the revised introduction . Nevertheless we would like to answer
the comment. As shown in Fig.3 , the gradient of the error norm function approaches zero during
the optimization process. This indicates that the local minimum of the error norm function has been
achieved with very high precision (107° for the function increment by default). This is another advantage
compared to the previously utilised Monte-Carlo approach, besides computational efficiency and linear
scalability. In the case of a linear emulator with an RMSE error function, the error norm is actually a
convex function. This implies that there is only one global minimum of the function, which is found
perfectly by proposed gradient-based method.

Of course, the word 'perfect’ might be slightly confusing, since the reader should also bear in mind
the imprecision of the emulator itself. However, with a fixed linear emulator and an RMSE error norm,
the proposed method could indeed be described as achieving 'perfect accuracy’.

L86: Consider using a table rather than a list
The list of model model quantities
e tas, hourly mean 2-meter temperature (deg K);

rsds, hourly mean downward net short-wave radiation flux, (W - m=2);

tasmin, daily minimum 2-meter temperature (deg K);

tasmax, daily maximum 2-meter temperature (deg K);

psl, hourly mean atmospheric pressure at the surface (Pa);
e pr_amount, hourly total amount of precipitations (mm per h);

e hfls, hourly mean surface downward latent heat flux (W - m™2).
is changed to the Tab

Table 1: The list of model quantities considered for tuning.

Acronym Description Unit
tas hourly mean 2-meter temperature K
rsds hourly mean downward net short-wave radiation flux | W -m=2

tasmin daily minimum 2-meter temperature K

tasmax daily maximum 2-meter temperature K
psl hourly mean atmospheric pressure at the surface Pa

pr_amount hourly total amount of precipitations mm per h
hfls hourly mean surface downward latent heat flux W.-m~?

L98: Please highlight the nature of the E-OBS dataset (assimilating model, satellite-based product,
satellite-station merge, ...)



The E-OBS dataset is a station-based, observational gridded dataset, not a satellite product nor
a satellite-station merge. It is built from high-density in-situ measurements provided by over 2000
European meteorological and hydrological stations, interpolated onto a regular grid, and provided with
ensemble uncertainty estimates.
The paragraph
As a reference for tas, rsds, tasmin, tasmax, psl, and pr_amount, the E-OBS version 29.0
data set (Cornes et al., 2018) was selected. It provides high quality daily data over Europe with a
spatial resolution of about 25 km and a temporal coverage since 1950. With its fine spatial detail,
daily temporal resolution, and ensemble-based uncertainty estimates, E-OBS is a robust resource for
analyzing regional climate variability, long-term trends, and making reliable climate assessments.
is changed to
The E-OBS version 29.0 data set (Cornes et al., 2018) was selected as a reference for tas, rsds,
tasmin, tasmax, psl and pr_amount. This land-only, station-based observational gridded data
set is compiled from high-density in-situ measurements provided by over 2000 European meteoro-
logical and hydrological stations. These measurements are then interpolated onto a regular grid and
provided with ensemble uncertainty estimates. It provides regularly updated high-quality daily data
over Europe with a spatial resolution of approximately 25 km (12 km resolution is also available in
the latest versions) and temporal coverage since 1950. Due to its fine spatial detail, daily tempo-
ral resolution and ensemble-based uncertainty estimates, E-OBS is a robust resource for analysing
regional climate variability and long-term trends, and for making reliable climate assessments.

L105: Please provide the version and associated reference for the COARE algorithm.

Paragraph
We aim to tune the hfls to align with the HOAPS version 4.0 data set (Andersson et al., 2010).
HOAPS provides a satellite-based climatology of latent heat flux over the global ice-free oceans,
derived from recalibrated SSM/I and SSMIS sensor measurements. It covers the period from 1987
to 2014 with a spatial resolution of about 55 km and provides 6-hourly averages. Using the COARE
bulk flux algorithm, HOAPS provides accurate estimates, making it a key reference for ocean-
atmosphere interaction studies and energy exchange assessments.

is changed to
Our aim is to calibrate the hfls to align with the HOAPS version 4.0 data set (Andersson et al.,
2010). HOAPS provides a satellite-based climatology of latent heat flux over the global ice-free
oceans, derived from recalibrated SSM/I and SSMIS sensor measurements. The data set covers the
period from 1987 to 2014, has a spatial resolution of approximately 55 km, and provides 6-hourly
averages. HOAPS uses the COARE bulk flux algorithm version 2.6a (Fairall et al., 2003), to provide
accurate estimates, making it a key reference for ocean-atmosphere interaction studies and energy
exchange assessments.

L.219: Please mention somewhere (for instance in the introduction) existing objective ways to define
weights in Multi-Criteria Decision-Making (e.g., entropy weights)

The question of different weighting strategies is briefly discussed in the Discussion section (para-
graph from L385) of the manuscript. Indeed, there is a great deal of flexibility in how the weights
are defined. This is a very interesting and important topic that requires careful investigation. As can
be seen in Fig. [ the signal-to-noise ratio differs for different model quantities. The temperature
quantities (tas, tasmin and tasmax) and latent heat flux over the sea (hfls) exhibit similar values of
12-18, while radiation (rsds) is slightly smaller and precipitation (pr_amount) is significantly smaller.
This may be because the NWP configuration is already very well tuned for precipitation. We experi-
mented by assigning weights that were inversely proportional to the signal-to-noise ratio of the initial
setup (similar to entropy weights in information theory), but we decided not to draw any firm conclu-
sions from the results and to leave this area of research for future investigation. In any case, we have
demonstrated that the result depends heavily on the definition of the weights. Therefore, the 'objective
tuning’ approach is actually very subjective and depends heavily on the user’s objectives. Indeed, some



objective strategies for Multi-Criteria Decision-Making like entropy weights might be applicable, but
this is still open discussion.

Another aspect is the weights of monthly values in the error norm definition. In the case of 12-km
spatial resolution of climate model, the monthly noise is fairly homogenous for all seasons, therefore
simply taking the monthly average in error norm equally treats all seasons. This is not the case for finer
grid (e.g., convection permitting simulations with 3-km spatial resolution). We are currently preparing
another manuscript with LiMMo optimization for this case, but leave all this questions out of current
work. The main idea of current manuscript is to present the new tool, describe its functionality and
conduct very preliminary experiments with weights.

Anyway, we agree that the entropy weights worth to be mentioned. Therefore, following paragraph
is added to the section Tuning of continuous parameters

There are also some objective ways of defining weights, such as entropy weights for multi-criteria
decision-making in information theory, which are beyond the scope of the current study. These
could be implemented in the LiMMo framework by assigning a variable weight that is inversely
proportional to signal-to-noise values of the initial configuration for each model quantity.

L255: Please split the paragraph after single norm evaluation O(...) and an additional sentence
clarifying that the optimization then seeks for the vector p that minimizes Eq. 11. Address the
optimization method in another paragraph.

The paragraph
The computation of the gradient requires one loop over grid points (i,7), time (k), and model
variables (n), making its duration comparable to that of a single norm evaluation O(N, - N, -
N; - Nyars). The availability of a fast gradient computation procedure allows the use of different
optimization methods. This study proposes the implementation of the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno with Box constraints (L-BFGS-B) algorithm (Broyden, 1970; Byrd et al.,
1995). This method is chosen due to its high convergence speed, being a quasi-Newton method that
approximates the Hessian matrix, and its capability to impose constraints on parameter ranges,
thereby eliminating nonphysical parameter values during the optimization.

is changed to
The computation of the gradient requires one loop over grid points (,7), time (k), and model
variables (n), making its duration comparable to that of a single norm evaluation O(Ny- Ny Ny Nyays)-

The availability of a fast gradient computation procedure allows the use of different optimization
methods. Gradient-descent-type optimization involves iterations over the vector of parameters p
that search for the minimum error norm function (Eq. 4) in the direction opposite the gradient (Eq.
11).

This study proposes the implementation of the Limited-memory Broyden-Fletcher-Goldfarb-Shanno
with Box constraints (L-BFGS-B) algorithm (Broyden, 1970; Byrd et al., 1995). This method is
chosen due to its high convergence speed, being a quasi-Newton method that approximates the
Hessian matrix, and its capability to impose constraints on parameter ranges, thereby eliminating
nonphysical parameter values during the optimization.

Relating to the axes and titles in Fig. 3 and 4, please specify clearly that ”Score = Eq. 4 = Objective
function value”, and that ”Score gradient = Gradient norm value = Eq. 117 and that iterations are
made with the p vector (or something else, if I misunderstood). Otherwise, please make the terms
more consistent.
We agree, that the terms might be confusing, therefore the Y-axis labels are changed in Fig.3
and Fig.4 from ”Objective function value” to ”Error norm” and from ”Gradient norm value” to
"12-norm of gradient” . The title of Fig.3 and Fig.4 is changed from ”Score” to ”Error norm” and

from ”Score gradient” to ”Error norm gradient” .



The caption of Fig.3 is changed from

Figure 3. Convergence of L-BFGS-B method: score function values without (a) and with (c) pa-

rameter normalization, 12-norm of score gradient without (b) and with (d) parameter normalization.
to

Figure 3. Convergence of L-BFGS-B method: error norm (Eq.4) values without (a) and with (c)

parameter normalization, 12-norm of error norm gradient gradient (Eq.11) without (b) and with (d)
parameter normalization.

The caption of Fig.4 is changed from

Figure 4. Ensemble of 15 optimization trajectories: (a) score function, (b) 12-norm of score gradient.

to
Figure 4. The axes are the same as in Fig. 3. Ensemble of 15 optimization trajectories with

disturbed initial conditions: (a) error norm (Eq.4), (b) 12-norm of error norm gradient (Eq.11).

Eq. 14: I’d highly prefer to see the sensitivity benchmark in the methodology section. In the current
version, those case-independent equations feels odd after having introduced a result section.

The formulas for sensitivity measure are moved to the section 3.The LiMMo framework , sub-
section 3.4 Sensitivity measure .

Fig. 5: Please use a uniform decreasing intensity colormap such as cmocean’s amp here. The
diverging one of the current version makes no sense because the center (white) is not indicated and
has no meaning anyways. Moreover, please address the contrast between text and background (use
white text color under a certain threshold of background intensity). Also, consider using the average

rather than the sum, so as to include the column in the coloring.
This comment is indeed very helpful in improving the readability of the sensitivity table. Please
refer to the ’old’ sensitivity table (Fig. |5) and the ’updated’ sensitivity table (Fig. @,

tas rsds tasmin  tasmax psl pr_amount hfls Sum
taw1 2.940 29.594
5713

16.914

rs 21.813

rl 14.010
rsmf 15.751
crb 10.667
thl 23482
thla 2329 7 0 . 19.924
ao 3.826 27.393
aot4 14.652
tkhmin = 2,571 12.964

sdb 12.292

acrf 6.971

9.950

Figure 5: The sensitivity measure of prognostic
variables (columns) on model parameters (rows)
computed as Eq.15. The last column gives the
sum in the row, which shows the overall sensitivity
of the model to the parameter. The numbers are
colored in a "blue to red” palette with increasing
values.

tas rsds tasmin  tasmax psl pr_amount hfls Avg
taw1 7.235 - 5.180 6.683 3473 1.838 2.235
taw2 0.730 0.842 0.742 0.739 0.784 0.940 0.937 0.816
rih 2.047 1.447 23172 2.060 2410 1.711 2416

rs 2.561 2.218 2.270

rl 1761 2577 1837 1809 1749 2132 2145 2001
rsmf 2163 2268 2069 2247 2032 2441

crb 1668 1328 1576 1682 1269 1445

tbl 2,595

tbla 1733

ao 2.266

aot4 2274 1590 1590
tkhmin | 2571 1203 - 1.760 1366 1306 1342 1.852
sdb 2358 0833 1434 0925 0.984 1666 1756
acrf 0954 1249 0917 0973 0940 0.997 0942 099
oro 1794 0903 1968 1448 1272 1.110 1455 1421

Figure 6: The sensitivity measure of prognostic
variables (columns) on model parameters (rows)
computed as Eq.15. The "Avg’ column shows the
mean sensitivity of the model to the parameter,
calculated as the mean values in the rows. Darker
shades are used to color the background of the
numbers for larger values.

L301: "The heat flux...” I find that there are too many exceptions in the figure (rsds is the lowest
for rlh, or pr is quite high as well although not mentioned) to state this that way.

We agree with this comment. The paragraph



Overall, the sensitivity results are consistent with theoretical expectations. It is clear that the
surface albedo parameterization (tawl) is the primary driver of surface air temperature varia-
tions (tas, tasmin, tasmax). The heat flux scaling factors (rlh, rs, rl) show sensitivity to both
short-wave radiation (rsds) and latent heat flux over the sea (hfls) with considerable impact on
temperature quanities (tas, tasmin and tasmax). The soil resistance parameters (rsmf and crb)
exhibit sensitivity across all model variables. Although optimizing these parameters may not lead
to improvements in one variable without affecting others, their inclusion may still be beneficial for
optimization.
is changed to

Overall, the sensitivity results are consistent with theoretical expectations. It is clear that the sur-
face albedo parameterisation taw1l is the primary driver of surface air temperature variations (tas,
tasmin, tasmax). taw2 has a negligible impact on the model variables, which is below the level
of the ICON-CLM’s intrinsic variability. The heat flux scaling factors rlh and rs show sensitivity
primarily to latent heat flux over the sea (hfls), with a moderate impact on other quantities. The
ratio of the laminar scaling factors rl has the greatest impact on short-wave radiation (rsds), con-
tributing only slightly to precipitation (pr_amount) and latent heat flux (hfls). The soil resistance
parameters rsmf and crb exhibit sensitivity across all model variables. Although optimizing these
parameters may not lead to improvements in one variable without affecting others, their inclusion
may still be beneficial for optimization.

L320: You mean one single sample vector p, right? (it’s a single simulation in Fig. 6, correct?)

We selected the following parameters to assess the quality of linear approximation: tawl, rlh, rs,
rl, tbl tbla, ao and tkhmin. These form the vector of parameters p. We then sampled seven different
vectors p from Latin-Hypercube between the minimum and maximum values for each parameter, and
simulated these seven configurations. Unfortunately, we do not have the computational resources to
extend the validation samples. Each dot in Fig.6 shows the monthly value of a single grid point
for a specific configuration. Ultimately, all monthly values, grid points, for all simulated validation
configurations are displayed.

We added the following sentence to paragraph L323

A direct comparison between the regression model and the ICON-CLM simulation for different grid
points and months is presented in Fig. 6. Here values are plotted together for all test cases from
Latin Hypercube.

L321: 7around tthe minimum and maximum values” What does this mean? The parameters were
not taken out of their range, were they?
This is a typo, thank you for noticing it. The tested values were taken within the min/max range.

The sentence
Test samples were generated by simultaneously varying these parameters within the Latin Hypercube

around the minimum and maximum values.
is changed to

Test samples were generated by simultaneously varying these parameters from the Latin Hypercube
within the minimum and maximum values.

L321: ”Due to limited...” It is unclear whether this subset is the same as in this paragraph’s second
sentence or a additional filtering within this subset.

Indeed, it is not clear from the text. This was an explanation why only parameters taw1l, rlh, rs,
rl, tbl, tbla, ao and tkhmin were selected (not all parameters presented in Materials section). We
rephrased the paragraph

To evaluate the accuracy of the linear Meta-Model approximation, several parameter configurations
were simulated with I[CON-CLM. Some of the most influential parameters identified from the sen-
sitivity analysis (Fig. 5) were selected: tawl, rlh, rs, rl, tbl, tbla, ao and tkhmin. Test samples
were generated by simultaneously varying these parameters within the Latin Hypercube around the
minimum and maximum values (see Tab. A1l and Tab. A2). Due to limited computational resources,
only the subset of the most sensitive parameters was considered.
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as
Several parameter configurations were additionally simulated with ICON-CLM to evaluate the ac-

curacy of the linear Meta-Model approximation. Due to limited computational resources, only a
subset of parameters was considered. The most influential parameters, which exhibited the largest
sensitivity in the sensitivity analysis (see Fig. 5), were selected: taw1l, rlh, rs, rl, tbl, tbla, ao and
tkhmin. Test samples were generated by simultaneously varying these parameters from the Latin
Hypercube within the intervals from minimum to maximum values (see Tab. Al and Tab. A2).

Fig. 7: 1 do not understand what are the markers for. Is that for several sets of parameters? Please
clarify this because it is not easily understandable after Fig. 6. Also, consider bigger markers or other
shapes. It is currently difficult to distinguish between round-like markers (penta and hectagonal).
Here, each marker represents a separate validation setup from Latin Hypercube (i.e., one of the
seven tested values of the parameter vector p). We increased the size of the markers in Fig.7 . We also
made the explanation clearer by rephrasing the paragraph
The linear approximation error for various variables was assessed by comparing the time-averaged
(averaged over all climatological months) RMSEs with the observations (Eq.1), as shown in Fig.7.
The scores of the dynamical simulations and their corresponding Meta-Model approximations are
represented by markers of identical shape. Notably, the distance between almost all pairs of markers
with the same shape across the axes remains within the range of the intrinsic variability (Eq.2)
of the climate model. With a few exceptions, the order of the linear and dynamic errors is largely
maintained. This indicates that the optimal linear approximation closely matches the optimal ICON-
CLM configuration with a high degree of accuracy, especially when the RMSE is reduced by an

amount exceeding the intrinsic variability of the variable under consideration.
as

The linear approximation error for various variables was assessed by comparing the time-averaged
(averaged over all climatological months) RMSEs with the observations (Eq.1), as shown in Fig.7.
For each of the Latin Hypercube validation setups, we plot the RMSE to observations for different
pairs of variables, for both the linear regression approximation and the corresponding dynamical
simulation. The scores of the dynamical simulations and their corresponding Meta-Model approx-
imations are represented by markers of identical shape. With a few exceptions, the order of the
RMSESs for the linear and dynamic models is largely maintained, i.e., if the RMSE is smaller for the
regression results, the same is true for the dynamical simulation. This justifies the reduction in the
RMSE-based error norm for the linear emulator, which is minimised by the optimisation procedure,
corresponding to an improved dynamic setup with reduced biases. This is particularly true when
the reduction in RMSE exceeds the level of imprecision in the approximation, bearing in mind the
error in the linear approximation.

Section 3.4: Please remind the readers that introducing logical switches does not affect the opti-
mization results for continuous parameters, and that the process simply consists of computing the
error using the regression Eq. 9 for all new eight possibilities.

In fact, the addition of logical switches affects the optimization results. Adding a logical switch to
Eq. 9 introduces a constant shift in the Meta-Model. While these switches do not impact the gradient

Eq. 11, the shifted function is minimized during the optimization procedure. This results in a different
optimal vector of parameters p.
We clarified this aspect by changing paragraph
This subsection presents the optimization results obtained using the Meta-Model with incorpo-
rated logical switches (Eq.9). The parameter set is fixed as in the previous subsection, with the
‘expert_weights’ weight configuration applied. The study considers three logical parameters (sdb,
acrf and oro), resulting in a total of eight possible configurations. For each configuration, the
continuous parameters were optimized. The results are summarized in Fig.9. The final scores ta-
ble provides the comprehensive information needed to make an objective decision in selecting the
climate model configuration that best meets the user’s priorities and interests.
to
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This subsection presents the optimization results obtained using the Meta-Model with incorpo-
rated logical switches (Eq.9). The parameter set is fixed as in the previous subsection, with the
‘expert_weights’ weight configuration applied. The study considers three logical parameters (sdb,
acrf and oro), resulting in a total of eight possible optimizations. The continuous parameters were
optimized for each configuration of logical switches that defines the shifted linear Meta-Model. The
results are summarized in Fig.9. This final scores table provides the comprehensive information
needed to select the climate model configuration that best meets the user’s priorities and interests.

L414: ”objectively” does not make sense if it’s adapted to the user’s priorities.

True, the word "objectively” is excluded from the sentence.
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