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Abstract. The near-surface air temperature, considered to be measured at about 2 m above the ground, is a key meteoro-
logical parameter with a wealth of uses for mankind. However, its accurate estimation in mountain regions is impeded by
persistent limits inherent to atmospheric modelling over complex terrain. In the present study, we analyze the role of struc-
tural inhomogeneities of the valleys and mountains observational network in France, -te-highlight-theircontributionte in the
misrepresentation of near-surface air temperature over mountain regions in the numerical weather prediction (NWP) system
Arome-France. We examine in particular the effects of the disparity in height above ground of the temperature measurements;
of the inhomogeneous geographical distribution of stations that are preferentially located in valleys; and of the relief mismatch
between station location and model grid points. The consequences of these inhomogeneities are analyzed through their effect
on model performance evaluation and on the assimilation, with a focus on the winter season. In France, high altitude stations
usually measure temperature at about 7 m over the snow-free ground, and on average one to two meters lower when the ground
is snow-covered in winter. We show that this height difference with respect to standard stations measuring at 2 m, should
be considered both when evaluating the model performances and in assimilation. In terms of scores, model behaviors can be
highly different at 2 m vs. at 5 m, so that confounding both levels can lead to a strong mischaracterization of model biases. This
confusion additionally makes the assimilation of high-altitude stations detrimental to the analysis for the Arome-France NWP
system. We also show that due to the current 3DVar assimilation system, the assimilation of valley stations affects the near-
surface temperature analysis at all altitudes in the mountains. On the other hand, the altitude mismatch between observation
points and model grid points does not play an important role, probably in part due to its relatively marginal occurrence in an
NWP system with 1.3 km grid spacing. In summary, this study describes new methods and provides guidelines for comparing

models with mountain observation data, both in terms of assimilation and performance assessment.
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1 Introduction

In mountain regions, the knowledge and forecast of near-surface air temperature is key to numerous socio-economic appli-
cations ranging from natural hazards (Morin et al., 2020; Vionnet et al., 2020) to recreational activities (Becken, 2010) and
agriculture and water resource management (Spandre et al., 2016; Jorg-Hess et al., 2015). In this latter respect, near-surface
air temperature, sometimes referred to as screen-level temperature, is often used in hydrological models for the partitioning
of precipitation between rain and snow. Temperature is furthermore one of the key variables of sensible weather, contributing
to shape ecosystems and human implantation. It is a primary essential climate variable for climate monitoring and assessment
(IPCC 2021) and its accurate description over mountain regions is a prerequisite for any climatic study in these environments.

High resolution numerical (NWP) weather prediction models are routinely used by meteorological centers to simulate and
forecast spatially distributed screen-level temperatures at local and regional scales. These models often share important parts
of their structures, characteristics and behaviors with regional climate models (RCM) (Pichelli et al., 2021; Torma et al., 2015).
However, both types of models exhibit significant biases over mountain regions, limiting their relevance for a variety of uses
they were originally designed for (Rudisill et al., 2024; Gouttevin et al., 2023). For instance, Monteiro et al. (2022) identified
a spurious snow accumulations bias in their climatic simulations performed with the CNRM-Arome RCM, that precludes any
analysis of the results above 2500 m altitude in the French Alps. These authors also analyzed that this bias in snowdepth could
proceed from several origins, among which a pronounced cold bias in air temperature over mountain regions. This bias affects
both the NWP (Arome-France) and RCM (CNRM-Arome) versions of the Arome model. In particular in relation to snow, near-
surface air temperature is involved in the estimation of the snow-albedo feedback (e.g. Scherrer et al., 2012), a mechanism by
which snow aging and/or disappearance, reducing the surface albedo, leads to an increased absorption of solar radiation by the
surface and further surface warming or melt (Peixoto and Oort, 1992). Several publications (e.g. Winter et al., 2017; Kotlarski
et al., 2015; Monteiro et al., 2022) have highlighted the links between temperature biases in high-resolution climate models
and the magnitude of this feedback, with models that suffer from negative biases over snow and ice having a tendency to
artificially overestimate the temperature response upon snow disappearance. In their extensive review of the temperature biases
in high-resolution regional atmospheric models over snow-covered mountain regions, Rudisill et al. (2024) highlighted that
a cold near-surface bias over high altitude regions is the most common behavior of such models. Moreover, while this cold
bias is mainly strong over summits and ridges, it is often associated with a warm bias in valleys. These characteristics are
precisely the ones observed for the Arome-France high resolution NWP system (hereafter just Arome’) used for operational
weather forecasting in France. A literature review complemented by operational forecasters’ reports (Arnould and Préaux,
2021; Beauvais, 2018), enables a more precise descriptions of the biases of Arome in mountain regions: (1) a cold bias at high
altitudes, (2) a low-altitude warm bias occurring in stably stratified conditions and (3) a warm bias during snowfall situations.

The warm bias in valleys appears during long-lasting anticyclonic situations in winter. It also occurs in the plains during
periods of observed temperature inversion, where some study have linked it to a serious problem in data assimilation (Atlaskin
and Vihma, 2012). This bias was highlighted during the 2015 observational campaign held in Passy, in the Arve Valley in

Northern French Alps (Paci et al., 2016). This campaign revealed that the warm bias of the model during such situations,
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impedes the forecasting and representation of the pollution events often affecting alpine valleys in winter, as a response to strong
traffic, wood fire heating (Aymoz et al., 2007), and poor air mixing. The air temperature is a key meteorological parameter for
the construction of winter pollution risk indicators (Paci et al., 2016), enhancing the need for its accurate estimation. The second
Arome warm bias manifests in valleys when a warm front encounters the relief, especially in the direction perpendicular to
the valleys and ridges (Beauvais, 2018). In these situations, the warm front penetrates too rapidly or too deeply in the valleys,
leading to a modeled rise in temperature that is too strong and often generates an altitudinal upward shift in the snow-rain
transition in the model. As a result, the model can forecast rainfall instead of snowfall in the valleys, where the major roads are.
This issue is not new. In its internal report on the Arome model behavior over the winter 2017-2018, Beauvais (2018) describes
three of such events with a rain/snow partitioning problem while mentioning similar situations dating back to the early days of
the Arome model in 2009.

Finally, a cold bias increasing with altitude was originally detected by Vionnet et al. (2016) in a previous version of Arome,
that ran at 2.5 km over France with 60 vertical levels. Temperature data collected over 4 years (2010-2014) at 33 stations in the
French Alps, revealed an underestimation by the model of -0.5 °C below 1500 m, but that reached -3 °C at night between 1500
and 2500 m altitude. Above this altitude, the mean bias is over -3 °C in winter at night, and just less than -2 °C during daytime.
This bias exhibits a strong seasonality, being more important in winter, when the snow cover dominates at high altitude, than
in summer (Dombrowski-Etchevers et al., 2017). This bias was confirmed by Gouttevin et al. (2023) in the current operational
Arome model version running at 1.3 km with 90 vertical levels. The bias has strong implications for the modeled snowpack,
in particular leading to too high snow accumulations (mentioned above) and a delayed snow melt, disqualifying its use in
support of water resource management and, possibly, flood forecasting. This also prevents the use of the model to provide the
atmospheric conditions to avalanche-warning dedicated snow models, as the snowpack evolution and the formation of weak
layers often involved in avalanche activity, is particularly sensitive to the thermal gradient within the snow and to the surface
temperature (Gouttevin et al., 2018).

As described in the studies cited above, in-situ observations are often used to evaluate models and provide bias assessments
or skill scores that routinely accompany the development of NWP model. In this process, the change of a parametrization, a
modification in the dynamics or in the general model setup, is only accepted if it doesn’t degrade operational scores. However,
a feature poorly considered by model developers in this process, are the specificities inherent to mountain environment, that
have key implications on the measurements carried out there and on their suitability for use in standard model evaluation
protocols without any adaptation. One of such specificities is snow. Due to the development of a quite thick snowpack in mid-
latitude alpine regions (e.g. Sturm and Liston, 2021), temperature measurements are generally not at a constant height above
the (possibly snow-covered) surface. Nor is it between 1.25 and 2 m height above ground as recommended by the WMO (a
standard often ignored by modelers who generally consider the measurement to be at 2 m). To limit the risk that sensors get
covered in snow during winter, screen-level temperature observations are usually made at a higher height above the snow-free
ground in altitude regions than in valley/plain environments. This is typically the case in France, where the sensors of the
high-altitude observation network for snow and mountain meteorology, the so-called "Nivose" stations, are about 7 m above

the snow-free ground (Fig. 1). This is also the case in e.g. Switzerland where the IMIS stations (Intercantonal Measurement
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and Information System) used among others by Meteo-Swiss, can be as high as 6 m above snow-free ground (https://www.
slf.ch/en/avalanche-bulletin-and-snow-situation/measured- values/description-of-automated- stations/). However, to the best of
our knowledge, this height difference is not accounted for when either operational scores (at least at the French Meteorological
Service) or academic model evaluations are performed. While examining the majority of the references cited by Rudisill
et al. (2024), we could not find any mention of observation vs model height adjustment for temperature comparisons, even
in seasonally snow covered regions. Required adjustments for altitudinal mismatch between model grid and station location,
are much more commonly found in the literature and have been an issue recognized by numerous modelers (e.g. Rudisill
et al., 2024; Quéno et al., 2016). It may have until now obliterated the possible issue of height-above-surface adjustments.
Regarding the evaluations of the Arome model in mountain regions, the true height of the Nivose sensors above snow-free
ground was neither accounted for in Vionnet et al. (2016) nor in Dombrowski-Etchevers et al. (2017). As an answer to this
knowledge gap, the first result section of this manuscript will question the implications of this height-above-surface mismatch
for model evaluation. We will rely on in-situ temperature data acquired at different heights above the ground, to characterize
the differences between measurements at 2 m and 5 m (5 m is typically the height above the surface of air temperature sensors
at high altitude stations when the winter snowpack covers the ground) in a mid-altitude and a high-altitude setting. We will
evaluate how the NWP model Arome represents these temperatures and examine what are the consequences of not accounting

for the correct height of measurements in the model evaluation metrics.

Summer Winter

Figure 1. A Nivose station in summer and winter (here the Sponde Nivose station, Albertacce, Corsica). The temperature sensor (top dotted
line) is located about 7 m above the bare ground (bottom dotted line). Assuming for this example that the average height of the snowpack is

2 m, the sensor is located about 5 m above the surface (red arrow) in winter.

Another fundamental use of screen-level temperature observations in operational NWP, is their assimilation to improve
the representation of the atmospheric state prior to forecasting its evolution over the upcoming hours and sometimes days
(Brousseau et al., 2016; Demortier et al., 2023; Guillet, 2019; Gustafsson et al., 2018). Indeed, a good initial state is mandatory

for accurate weather forecasting. As a matter of fact, the progress of NWP systems in recent decades has been much driven by
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the increase in data assimilation, especially relying on satellite data (e.g. Fischer et al., 2018). In Arome-France, screen-level
temperature observations are used in two different assimilation systems (Fig. 3 and Sect. 2.2), respectively majorly affecting the
surface (Marimbordes et al., 2024) and the atmosphere (Brousseau et al., 2016). However, the height-above-ground specificities
of high-altitude stations, are not accounted for in either assimilation systems, and data from the Nivose stations are assimilated
as if they were measured at 2 m. As an illustration, Figure 3 in Marimbordes et al. (2024) shows a map of so-called "2-m
temperature observations stations that are assimilated" in the surface assimilation. This map includes high-altitude (> 3000 m
a.s.l.) stations from the Meteo-France "Nivose" observation network, that measure air temperature actually at roughly 7 m
above snow-free ground. Therefore, a second part of the present study will be dedicated to the impact of the height mismatch
between observation and model, in terms of assimilation. More precisely, we examine the way Arome assimilates mountain
near-surface temperature observations, as a possible cause for biases observed in Arome.

Finally, in-situ observations from mountain regions are inherently heterogeneous when it comes to their topographic context.
The complex topography can result in a significant discrepancy between the model relief at the nearest point of a station, and the
actual altitude of the station. Most stations are furthermore in valleys or mid-altitude areas, where accessibility and maintenance
are made easier. This results in a spatially and altitudinally inhomogeneous distribution of observations (e.g. Vernay et al., 2022;
Thornton et al., 2022). While model evaluations in complex terrain regions quite often discriminate results either into altitude
bands (e.g. Vionnet et al., 2016; Monteiro et al., 2022) or classes derived from landforms (ridges, crests, valleys, plains...,
e.g. Winstral et al., 2017), such distinctions are not made in assimilation. The structure functions that propagate the analysis
increment spatially, do sometimes account for the topographic and landform heterogeneities (e.g. Deng and Stull, 2005), but
this is not the case in Arome for the 3DVar atmospheric assimilation system. In a last part of the results, we also therefore
scrutinize how these spatial heterogeneities of the observation network with respect to topography, affects the quality and
efficiency of screen-level temperature assimilation into the Arome NWP system.

In a nutshell, the present study intends to draw the light on some challenges associated with the use of the near-surface
air temperature observations in mountain terrain for numerical weather forecasting, through addressing a series of research

questions:

— Taking the example of the Arome-France NWP system that operationally runs over a large alpine region, we will first
address the question of the impact of varied sensors’height above the surface, on the assessment of model performances.
One of the underlining questions is whether observations acquired at 2 m to about 5 m above the snow surface, can
be used without specific treatment to evaluate model performances, or whether they should be considered separately, as
revelatory of different model behaviors. Through this analysis, we intend to provide guidelines for the use of temperature

measurements for model evaluation in mountain regions.

— In a second subsection of the Results, we will evaluate the effect of this height heterogeneity on the way the model is
corrected by assimilation. This subsection will answer the question of whether the height of the observation above the

surface matters for assimilation, or whether it is not necessary to discriminate between temperatures from 2 to 5 m above
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the surface for the assimilation. In particular, we will examine the assimilation of mountain near-surface temperatures as

a possible cause for the cold bias of Arome.

— Finally, another question poorly addressed in existing literature, is how the relief mismatch between observation stations
and model grid-cell, and valley-vs-mountain heterogeneities in terms of observational density, affect the efficiency of
data assimilation. We will address this question in a final Results subsection of this study, through the use of dedicated

assimilation experiments.

The plan of our manuscript addresses these items sequentially, after a section dedicated to material, method and study area. To
the best of our knowledge these questions have not thoroughly been addressed in mid-latitude mountain regions of the world.
We focus on winter conditions as the period when the model biases are the strongest. We also take the opportunity to propose
in a Discussion section perspectives to circumvent the problems highlighted, for the benefit of weather forecasting in complex

terrain.

2 Material and Methods

The main abbreviations or acronyms used in this section and throughout the manuscript are summarized in Appendix Table
Al.

2.1 Study area and in-situ data
2.1.1 Domain and time period

The study focuses on the alpine massifs (Fig. 2: map on the right) as the mountain range having the highest number of
meteorological observations and the most complex relief in France. In winter, the biases of the Arome model in terms of 2 m-
temperature (T2m) are particularly important over this area (Paci et al., 2016; Vionnet et al., 2016; Dombrowski-Etchevers
et al., 2017). The study period ranges from 2020 to 2023 and therefore covers almost four winters (December, January and
February): the winters 2019-2020 (with December missing), 2020-2021, 2021-2022 and 2022-2023.

2.1.2 In-situ data

This study makes use of the Météo-France operational observational network, and of well-instrumented research sites de-
scribed hereafter (Fig. 2). In particular, due to the mountain and assimilation focuses of the study, the operational stations used
are those located in the Alps and its foothills (Pre-Alps) and taken into account by the altitude 3DVar assimilation system of

Arome.

Well instrumented mountain sites

— The mid-altitude Col de Porte site (CDP, 1325 m)
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Figure 2. Relief of the model over the Arome-France domain with a zoom on the study domain and the measurement stations. The stations
of the Météo-France standard network are shown in purple, those of the Météo-France Nivose network in blue, except for the Col de Porte-

Nivose in white due to co-location with a well-instrumented site, and the instrumented station at the Col du Lac Blanc in red.

The Col de Porte (here after CDP) is an observation and research site located at 1325 m in the Western side of the French
Alps (white dot in the Fig. 2). Several variables are measured there (Morin et al., 2012; Lejeune et al., 2019), including
surface and near-surface air temperatures, the latter being always measured approximately between 1.5 m and 2 m above
the surface : During the snow season, the height of this temperature sensor is adjusted manually above snow surface at
weekly intervals, so as to be maintained at a constant height over the snowpack. We will consider this observation as a
temperature at 2 m in this paper. Besides, this instrumental site also includes a Nivose station (see 2.1.2), measuring the

temperature at approximately 5 m above the snow surface in winter.

— The high-altitude Col du Lac Blanc site (CBL, 2720 m)

The Col du Lac Blanc (here after CLB) is an experimental site located at 2720 m in a slightly more inner location within
the French Alps (red dot in the Fig. 2). The site was originally dedicated to the study of wind-induced snow transport
(Guyomarc’h et al., 2019; Vionnet et al., 2013; Naaim-Bouvet and Truche, 2013). It features various instruments in-
cluding incoming and outgoing longwave and shortwave radiation, and a mast equipped with temperature and humidity

sensors located at 2, 3.2, 5 and 7 m above the snow-free ground. Snow height is also measured directly at the mast, so



185

190

195

200

205

210

215

that the height of each sensor over the snow surface can be known during the snow season. This enables the temperature
at 2 m above the snow surface to be retrieved by linear interpolation between the 2 sensors closest to that height. We
also make use of the temperature measured at approximately 5 m above the snow surface in winter, on a station config-
ured like a Nivose but used only for research purposes. This station features a temperature sensor at 7 above snow-free
ground (Lac Automatic Weather station, Guyomarc’h et al., 2019). Snow is always present during the study period in
winter. Assuming that its emissivity is 0.98 (Dozier and Warren, 1982), the surface temperature can be calculated from

the outgoing longwave radiation by inverting Stefan-Boltzmann’s law.
Meteo-France surface observation network

— Standard stations

By ’standard stations’ we here designate the stations from the RADOME network consisting in automatic stations pro-
viding hourly surface data to Météo-France, (shown in purple in the Fig. 2) with exceptions for the Nivose, considered

separately (see below).

— Nivose stations

Within the RADOME network, some stations are specifically designed for high-altitude areas. They are called Nivose
stations and are mainly located above 2000 m in the main massifs of metropolitan France (blue dots on Fig. 2; Fig. 1).
They measure wind, temperature and humidity at a height much higher than 2 m above bare ground, in order to provide
data despite a deep snowpack in winter. Generally, the temperature sensors are placed at about 7 m above the bare ground,

with +/- 0.5 m variability depending on site configuration.
2.2 The Arome numerical weather prediction system and its assimilation

The limited-area NWP model Arome (Application de la Recherche Opérationnelle 2 Méso-Echelle) has been operational since
December 2008 and runs over the domain named "France", illustrated in Fig. 2. It is coupled to the French global model
Arpege (Action de Recherche Petite Echelle Grande Echelle) which has a variable spectral mesh (Courtier and Geleyn, 1988)
and improved resolution over Europe. Initially with a horizontal resolution of 2.5 km (Seity et al., 2011), Arome has been
producing forecasts on a 1.3 km grid since April 2015 (Brousseau et al., 2016). Its physics is the same as Meso-NH (Mesoscale
NonHydrostatic Model) (Lafore et al., 1998; Lac et al., 2018). Thus, it is a non-hydrostatic model, i.e. it "explicitly solves the
system of compressible Euler equations without neglecting the vertical acceleration in the continuity equation, which allows a
better representation of vertical motions or orography" (Arnould et al., 2021). Arome uses the dynamics of the Aladin model
(Adaptation Dynamique Développement International; Bubnova et al., 1995). Although the first version of Arome had 60
vertical levels with the first level at 10 m above the surface, the version now used operationally has 90 vertical, the first of
which is between 4.5 m and 5.5 m in the model, depending on weather conditions, i.e. approximately 5 m. As a research
option, a version of this model is available with 500 m horizontal resolution and/or 120 or 156 vertical levels (with lowest level

at 2.5 m approximately).
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For the surface scheme, Arome is coupled to Surfex (Surface EXternalised; Masson et al., 2013) (orange boxes in Fig. 3),
with, for vegetation, the Isba (Interaction Soil-Biosphere-Atmosphere; Noilhan and Planton, 1989) scheme and, for snow, the
D95 single-layer scheme (Douville et al., 1995).

To ensure that the model is as close as possible to the real state of the atmosphere, it is regularly corrected using observations.
This process is called data assimilation and is described for near-surface temperatures in Fig. 3. For simplicity in the following,
we will refer to near-surface air temperature as T2m, despite the fact that it is conventionally measured between 1.25 and 2 m
above the surface following the WMO standards, and between 1.5 m and 2 m according to the French Meteorological service
standards. When refering to modeled values for near-surface temperatures, we will also use the term T2m (often with the suffix
"_mod"). In that case, T2m refers to a temperature diagnostic produced by the model for a 2 m height above the surface.

In Arome, the assimilation takes place both in the atmosphere and in the surface (the blue and green boxes in Fig. 3,
respectively), but without interaction. In addition, the assimilation methods differ. Furthermore, the presence of fields dating
from before the use of Surfex is necessary for the assimilation to run smoothly, whether for the atmosphere or the surface
(greyed-out box in Fig. 3).

For convenience, in the diagram and in the rest of the article, TSm_mod will refer to the temperature at the first level of
the model, which is approximately at 5 m above the surface. The surface temperature (Ts_mod) corresponds to the surface
temperature of the ground for Arome. If this ground is snow-covered, then it becomes the surface temperature of the snow
cover (Giard and Bazile, 2000). TSm_mod and Ts_mod are prognostic variables. These two temperatures are used to compute

T2m_mod according to Geleyn (1988)’s diagnostic.
2.2.1 The 3DVar altitude assimilation

The assimilation of atmospheric variables in Arome is based on the 3DVar (Three-Dimensional Variational system) (red-box-of
Fig. 3b), with an hourly data assimilation cycle (Brousseau et al., 2016; Gustafsson et al., 2018). The aim is to provide the best
possible estimate of the state of the atmosphere at a given time. To achieve this, the atmospheric fields predicted by the model
are used as “background state’ of the atmosphere, also commonly called ’guess’, which is then combined with observations to
minimize the difference between both (Guillet, 2019). In the case of 3DVar, the background corresponds to a 1 h Arome forecast
(T2m (diag)(P1) in Fig. 3a) calculated before each analysis on the basis of the previous analysis (72m (diag)(P0) in Fig. 3c).
Before their assimilation, all observations, whether satellite or surface data, are first subjected to a quality control known as
’screening’. This step eliminates observations that are considered doubtful because they come from a non-qualified source or
are too far away from the background. However, if this background is biased, the screening can also reject observations that
come from accurate measurements and contain valuable information for the assimilation.

After screening, the 3DVar combines the observations with the background (Fig. 3b) to produce the new analysis by mini-

mizing the cost function J (Demortier et al., 2023):

J(x) = %(x — xb)TBfl(:L' —xp) + %[yo + ’Hx]TRfl [Yo + Hz] (1
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where x;, corresponds to the background state, y, to the observation vector, H to the (non-linear) observation operator which
allows different types of information to be compared, R and B are the observation and background error covariance matrices.
The matrix B contains background error covariances in the spectral space. This dependence on the spatial neighborhood
depends on the correlation lengths of the errors, which in Arome are spatially uniform and do not take into account relief.
Furthermore, this B matrix is constant in time.

Background departures are calculated for the surface observations and for the upper-air observations. Then, J is minimized

using these background departures. However, the increment of surface observations is calculated at 2 m, but is not carried

255 upstream to the height of the first level of the model before being used.
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Figure 3. Workflow of the near-surface air temperature assimilation in Arome, featuring the altitude assimilation system (above the red
dotted line) and surface assimilation system (below the red dotted line). "diag" refers to a diagnostic variable, P1 to the first term of a forecast
and PO to the initial state prior to a forecast and after the analysis step. The color boxes highlight specifically the altitude 3DVar analysis

scheme, the surface Canari analysis scheme, and the diagnostics performed for T2m in the surface scheme, SURFEX.
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2.2.2 The Canari OI surface assimilation

For the surface, the analyse is computed by the Canari system (Code d’Analyse Nécessaire a Arpege pour ses Rejets et son

Initialisation) (green box of Fig. 3) using the Optimal Interpolation (OI) method described by Taillefer (2009):
Zq =y +BHT[HBHT +R] [y, — Hay) 2)

where z, corresponds to the analyzed state of the model.

Firstly, as with altitude assimilation, a quality control process eliminates observations considered to be unrealistic. For this
stage, the same equation is used, but the control parameters do not have the same value. It therefore sometimes happens
that certain observations are rejected in the altitude assimilation and kept in the surface assimilation. OI is an assimilation
method particularly suited in the context of rather scarce data, when a limited number of observations are used to determine
the analyzed state (e.g. Durand et al., 1993).
are-impertant-in-determining-the-analysis-inerement: So, unlike 3DVar, the observations deemed strategic are interpolated at

the grid point by a so-called structure function which models the background error covariances, i.e. B, a static and univariate

matrix that does not account for correlations between e.g. T2m and humidity at 2 m, another analyzed observation. In our study
as in operational Arome, the Mescan (contraction of MESoscale analysis and Canari) option (Mahfouf et al., 2007; Van Hyfte,
2021) activates this function which uses a correlation length of 100 km varying according to the difference in altitude between
the grid point and the observations (Marimbordes et al., 2024). Thus, using 2D optimal interpolation and the Mescan structure
function, the analyzed temperature and relative humidity fields at 2 m are obtained (s (analysis) in Fig. 3b’). The T2m and
Hu2m increments calculated in the 2D canary step are then used to to compute the surface analysis, i.e. the surface temperature,
average soil temperature, surface soil humidity and average soil humidity (Giard and Bazile, 2000) at each point using 1D OI.

The analyzed surface temperature is involved in the estimation of the analyzed temperature at 2 m via a diagnostic (Fig. 3c).
2.3 Scores

In the present study we use scores to quantify the agreement of model results to in-situ observations. In these scores, and
to quantify the impact of ill-suited relief, the stations which present more than 150 m altitude difference with their model
grid-point are by default not discarded. The following scores will be used:

— an hourly mean Bias defined as follow:
N

. 1
Bias = N Z (X — Xobs)

n=1

where N is the total number of stations and days during the studied period.

— aroot mean square error or RMSE which calculates an average magnitude of differences between predicted and observed

values:

N
RMSE = Z X~ Xobs)?
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where NV is the total number of stations and time-steps during the studied period.

As the RMSE alone doesn’t show if a simulation is too warm or too cold compared to reality, the RMSE will be studied in
conjunction with the bias. These calculations will be done over the whole study period.

In addition, the scores will be also computed by altitude bands (Table2), i.e. separately for areas below 1100 m; between
1100 m and 2000 m; and above 2000 m. This enables to distinguish between valley, mid-altitude and high-altitude areas
respectively,, as atmospheric conditions vary according to altitude (e.g. Chow et al., 2013; Whiteman, 2000) and Arome exhibits

different biases across altitudes (Vionnet et al., 2016; Dombrowski-Etchevers et al., 2017; Monteiro et al., 2022).

2.4 Assimilation experiments

2.4.1 Experiments

Targeted numerical experiments are carried out in order to analyze the effect, on the assimilation, of geographical or measure-
ments inhomogeneities specific to mountain regions. These experiments consist in modifying the observations assimilated or
the conditions in which they are assimilated. These numerical simulations are compared to a reference, which is the operational
Arome forecast (Arome-OPER) described in more details hereafter. This reference is also the one evaluated in the present study

when scores and biases are mentioned without further specification.

— Arome-OPER. The objective of this reference (OPER for operational version of Arome described in 2.2) is to identify
and quantify the Ts, T2m and T5m biases, be they due to the assimilation or to the modeling of processes in mountainous
terrain. The forecasts are extracted from the daily O0h run of the study period, the background (orange-bordered box
entitled "T2m (background at obs point)" in Fig. 3) and analysis (blue-bordered box entitled "T2m (background at obs
point)" in Fig. 3) of T2m are retrieved from the 3DVar at each hour and the analysed temperatures (purple-bordered

boxes entitled "T2m (diag)(P0)" and "A T5m (analysis)" of Fig. 3) come from the hourly analysis file.

— NO_VALLEY. In this numerical assimilation experiment, observations of T2m and relative humidity at 2 m (RHU2m)
below 1100 m a.s.l. are blacklisted before entering the 3DVar. The goal is to quantify the impact of valley stations on
assimilation in higher-altitude areas. The value of the 1100 m threshold is set so that this experiment does not take into
account the data supplied by stations located in the highest VALLEYs the French Alps, such as the Chamonix-Mont
Blanc valley with an automatic station at 1042 m a.s.l. The results of this experiment will be studied over the winter of
2022-2023.

— NO_NIGHT. The diurnal cycle influences the T2m bias, which peaks at night in mountainous areas (Vionnet et al.,
2016; Dombrowski-Etchevers et al., 2017). The Austrian version of Arome, operated by Geosphere Austria, does not

use assimilation over night. This raises the question of the impact of night-time data assimilation on the Arome-France.

12
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To quantify this, in this "NO_NIGHT" experiment, T2m and RHU2m are not assimilated at night, i.e. when the solar
angle is less than 10°. The impact of NO_NIGHT is being evaluated for the winter of 2022-2023.

— 150M. In mountains, the difference between the actual altitude and the model altitude can vary significantly. For example,
the Mont Blanc is at 4318 m for Arome 1.3 km, compared with 4809 m in reality. Currently, no criteria on altitude
mismatch between model grid-point and observation station is applied to T2m assimilation in Arome. However, (Quéno
et al., 2016), (Vionnet et al., 2016) and (Dombrowski-Etchevers et al., 2017) considered the observations to be relevant
to evaluate model performances and calculate scores as long as this vertical distance was less than or equal to 150 m.
This criterion was chosen as it corresponds to a 1 °C difference when considering a standard atmospheric gradient of
6.5 °C per vertical kilometer. In this "150M" experiment, we apply this 150 m threshold and do not assimilate station
data when their altitude differs from more than 150 m from their grid-point altitude in the Arome model. As a result, 13

stations are not assimilated. This numerical simulation is analysed for the winter of 2022-2023.

2.4.2 Analysis of the experiments

In the Results section 3.3, the above-mentioned assimilation experiments will be analyzed to quantify the effect of varying
observational network characteristics onto the assimilation result (i.e. the analysis). These characteristics include the exclusion
of valley and flatland stations, of all surface stations at night, and of stations for which the altitude difference with respect to
the model grid-cell exceeds 150 m. To highlight the effect of these variations in observational networks, we make use of the

analysis increment A, whereby :
A=ux,—xp 3)

with x, the analyzed model state and x; the background model state prior to assimilation.

At observation stations, an ideal analysis increment would enable the analysis to fully coincide with the observation. We

therefore define the ideal analysis increment at stations as:
Aideal = Tobs — Tp (4)

where x5 denotes the observation.
The NO_NIGHT experiment, disabling the assimilation of surface observations at night, enables to highlight the effect of

the altitude observations only for the nighttime period. We hence call for the nighttime period :

Aobs_altitude = ANO_NIGHT &)

13
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For the nighttime period, we hence can define a virtual analysis increment coming from the analysis of surface observation

only, A by considering the following relationship between the analysis increment of the Arome-OPER experi-

v
obs_sur face’

ment (Ao pgrr), and the ones that respectively result from the assimilation of altitude (A,ps_aititude) and surface observations
(Ay

obs_sur face

) only:
AoprER = Afps_surface T Dobs_altitude (6)

In practice, this virtual analysis increment for surface observations only, likely differs from the one that would have been
calculated by disabling the altitude analysis, due to compound effects between altitude and surface observations. In the de-
composition proposed in relation (6), these compound effects are integrated in the surface observation analysis increment

obs._sur face» ence distinguished as a virfual increment analysis, and we do not have the possibility to quantify them.

Similarly, the analysis increment of Arome-OPER can also be decomposed on into the virtual contribution from the flatland

v
valleys’

and valleys A and what comes from the upper-air and mountain stations only included in the NO_VALLEY experiment.

According to this decomposition:

AorERr = Aygieys T ANO_VALLEY @)
and also:

AorPER = Abaiteys T Amountain T Dobs_altitude (®)
where relation (7) enables to retrieve A} ., . While relation (8) enables to retrieve the contribution from mountain stations

1 v
only among surface observations, AY . ..

Another possible decomposition of Apppg reads:

Aoper = Aisom + AL 150, = Aobs_attitude + AL150m + A 150m &)

where AY 5, (resp. A% 50,,) is the virtual analysis increment for surface stations with more (resp. less) than 150 m

altitude departure with respect to model relief, while A0, refers to the 150M experiment.

v

In these latter relations, similarly to the AY, . Face

increment, the virtual increments, denoted by a v exponent, are not
directly calculated from an experiment but diagnosed from a complementary experiment, and therefore include compounds
effects that cannot be isolated.

These different increments will be used in the Results and Discussion sections to analyze the effects of heterogeneities in

the observational network in Alpine terrain, on the assimilation in Arome.
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3 Results
3.1 Impacts of heterogeneous sensors’height on model evaluation

In this section, we examine closely the impact of differences in height between standard temperature measurements (at about
2 m above surface) and measurements from high-altitude networks (at rather 5 m above the surface during the snow season)
in terms of model evaluation over the winter season. In the Introduction we illustrated how temperature actually measured at
5 m above the surface in winter in high-mountain regions, is commonly considered as at 2 m when evaluating atmospheric
models, an assumption that we will refer to as "error in measurement height". We will first examine the comparability between
temperatures observed at 2 and 5 m above the surface the well-instrumented sites in winter. Then, we will scrutinize how both
temperatures compare in the Arome model world and with respect to observations. Finally, we will derive the impact of the

commonly made error in measurement height, on the scores obtained when compararing the Arome model to observations.
3.1.1 Comparison between observed T2m and T5m at the well-instrumented sites

Figure 4 features the diurnal cycles of temperatures retrieved for the surface (Ts), and at 2 m and 5 m, at the CDP and CLB
sites. The same diurnal cycles obtained in the Arome-OPER forecasts are also shown and will be analyzed later (Note that a
complementary figure, Fig. B1 in Appendix, enables an easier comparison between all temperatures at each site, at the expanse
of general readability). We observed a mean difference between observed T2m and T5Sm of 0.3 °C at CDP (resp. 0.4 °C at
CLB). Such a difference is not significant at CLB with respect to the measurement uncertainty, which is expertly estimated
to be within +/-0.5 °C, based on the numerous co-located temperature measurements and the use of temperature shelters of
different designs (Guyomarc’h et al., 2019). Despite a higher accuracy for the T2m observation at CDP, estimated by Morin
et al. (2012) to within 0.1 °C, the T5Sm Nivose measurement from the CDP probably has a lower accuracy, likely similar to the
one estimated at CLB.

Although their mean values are not significantly different, the daily cycles of T5Sm and T2m observations significantly differ,
with a maximum difference of 0.6 °C at 9 UTC at CDP (and respectively 0.5 °C at 5 UTC at CLB; Fig. 4a and b). In addition,
the root-mean-square difference between observed T5Sm and T2m over winter is also significant with a value of 0.6 °C at both
sites. We finally find that differences between 2 m and 5 m measurements are also significant in terms of thermal amplitudes at
the CDP (Table 1, Obs columns).

We note that the difference between T2m and Ts is significantly more marked than the one between T2m and TSm in the
observations, with an average difference of 4.8 °C at the CDP and 3.2 °C at the CLB; the maximum difference amounts to
6.5°C at 10 UTC and 4.2 °C at 7 UTC respectively at CDP and CLB.

Further analyses show that the differences between observed T2m and TSm can be much higher than the mean values during
specific situations, especially during stable conditions when stratified cold air covers the Alps. December 19 and 20, 2021
typically illustrate this kind of situations (Fig. 5a).

During this period, the Alpine massif is under the influence of an anticyclone centered on the North-Western Europe and

reaching up to 1040 hPa. Close to the surface, the winds are weak and from the East. Despite cloudy weather on the plains,
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Observed and modelled temperatures over DJF at research sites CDP and CLB
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Figure 4. Diurnal cycle of the 5 m (a, red), 2 m (b, violet) and surface (c, blue) observed (OBS) and modeled (OPER) temperatures averaged

over the winters of the study period at the CDP and CLB research sites. The shaded (resp. hatched) areas represent the observed (resp.

modeled) variability via the 25-75% percentile range.

TSm

Sites

Obs OPER Obs

Col de Porte 29
Col du Lac Blanc 1.1

T2m

OPER
33
3.7

Table 1. Thermal amplitude of temperatures T5m and T2m observed and modeled by Arome-OPER at CDP and CLB over the winters (DJF)

between 1 January 2020 and 28 February 2022

the Alps are, on the other hand, under clear skies. During this period, the sun sets around 5 UTC for the summits of Grandes

Rousses, the massif where the CLB is located. In these stable winter conditions, the nocturnal radiation and the snow then

present on the ground induce a very strong inversion in the low atmosphere (Pepin and Kidd, 2006). This generates a marked
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Figure 5. (a) Temporal evolution of temperatures observed at 2 m (purple) and 5 m (red) from 19 December 2021 at midnight to 21 December
2021 at 11pm at the Col du Lac Blanc. (b) Diurnal cycles of differences between T2m_obs and T5m_obs at CLB over one winter season.
Clear-sky (resp. cloudy) situations refer to days with an average effective atmospheric emissivity lower than 0.7 (resp. higher than 0.9)
which correspond roughly to the lower and upper quartile of the daily effectivity distribution at the CLB (Gouttevin et al., 2023). Low wind

conditions are considered when wind is lower than 4 m s'.

gradient between T5m and T2m at CLB, of up to 2.5 °C at 7 UTC on December 20. A similar behavior was also highlighted
by Gouttevin et al. (2023) for Arome-OPER at the CLB and at another high-altitude site, with a strong stratification in air
temperatures in the lowermost boundary layer during clear-sky, low winds conditions, as supported by Fig. 5b. While cloudy-
405 sky situations feature a very homogeneous, non-stratified lower boundary layer, clear-sky days (especially with low wind)
feature a strong temperature gradient between the surface and the air higher up, so that the difference between T2m and T5m
is on average distinctively lower than -0.5°C at night, and even lower than 0.65°C in low-wind conditions.
We conclude from this section, that considering T2m and T5m as fully equal temperatures is an invalid approximation both
at our mid- and high-altitude sites: the difference between T2m and T5m is weak and within the measurement uncertainty on
410 average over winter, but is not so during certain weather situations. Indeed, in anticyclonic weather, particularly at night with
clear skies and low winds, this difference can be greater than 2 °C and therefore very significant.Furthermore, differences exist
in the diurnal cycles and amplitudes. Consequently, when using the observations at 5 m of the Nivose stations as if they were
at 2 m, an error is introduced in the calculation of the scores, and especially of error scores like the RMSE typically used to

qualify operational forecasts (Vionnet et al., 2016; Dombrowski-Etchevers et al., 2017) and their improvements.
415 3.1.2 Comparison between forecasted T2m and T5m at the well-instrumented sites

Figures 4a and b also show the diurnal cycles of TSm_mod and T2m_mod simulated by Arome-OPER at CDP and CLB. The
difference between these cycles is significant, with a mean difference of 0.7 °C at CDP (and respectively resp. 4.3 °C at CLB),
and a maximum difference of 1.1 °C at 02 UTC at CDP (respectively 5.3 °C at 05 UTC at CLB). The average difference
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T5m T2m Ts

Sites BIAS BIAS BIAS
RMSE RMSE RMSE
Mean Min Max Mean  Min  Max Mean  Min  Max
CDP -0.1 5.1 87 1.7 -0.6 -7.9 6.5 1.8 33 -47 155 5.0
CLB 0.5 52 63 1.3 34 -124 42 4.7 6.2  -202 82 7.7

Table 2. Scores of Arome-OPER at CDP and CLB over the winters (DJF) between 1 January 2020 and 28 February 2022.

between the modeled temperatures is therefore much larger than between the observed temperatures (of 133% at CDP and
975% at CLB). Moreover, the gradient between the T5Sm_mod and at T2m_mod, is significantly stronger at the CLB than at
the CDP.

If we compare the model to observations at 5 m and 2 m over the three winters of our study period (Fig. 4), we note that

Arome slightly overestimates the TSm at CLB with an average bias of 0.5 °C (Table 2), and underestimates it at CDP during
daytime, with for the latter site a maximum bias of -0.8 °C at 10 UTC (Fig. 4a, Table 2). Besides, the RMSE of the model at
both sites has a similar value, higher than the bias. Hence, although Arome is on average weakly biased at 5 m, it suffers from
biases in certain weather conditions. As a further illustration, the maximum negative error of TSm_mod over the 3 winters falls
to -5.1 °C at CDP (respectively -5.2 °C at CLB), while the maximum positive error reaches 8.7 °C at CDP (respectively 6.3 °C
at CLB, Table 2).
On the other hand, the model is too cold at 2 m at both sites, with an average bias of -0.6 °C at CDP (respectively -3.4 °C
at CLB, Table 2). As with T5m_mod, the mean value of the bias at CDP does not reflect the dispersion of T2m_mod, for
which the bias ranges from -7.9 °C to 6.5 °C (Table 2). The bias and RMSE are stronger at 2 m than at 5 m, particularly at the
high-altitude site. Arome hence represents temperature with a better accuracy at its first level than at 2 m.

We conclude from these results that the TSm_mod and the T2m_mod cannot be considered as equivalent and approximated
by each other in Arome. As a result, the height of the sensor should be taken into account when the model is compared to

observations.

3.1.3 Assessment of forecasted T2m and TSm across the Alps

We confirm the results obtained at the two research sites in the previous subsections, with an analysis of the differences between
the Arome OPER (forecast) T2m and T5m across the study area: Figure 6a illustrates how the mean winter T2m_mod minus
T5m_mod difference evolves as a function of altitude over the French Alps during winter 2021-2022. While the median of this
mean difference is on the order of 0 to -2 °C for altitudes lower than 1700 m a.s.1., the mean temperature difference drastically

drops to median values below -4 °C for altitudes above 2000 m with extreme mean winter differences close to -8 °C. Above
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2400 m a.s.l., 95% of the mean differences between T2m_mod and T5m_mod are below -2 C.
Furthermore, the biases in Arome-OPER assessed at the CLB and CDP sites, are partly representative of the biases generally
found across the French Alps, as shown on Fig. 6b: this figure compiles the mean winter biases of Arome in terms of T2m and
T5m, as calculated at all standard and Nivose stations, and including also the research sites. A warm bias affects T2m_mod in
mid-altitude mountains up to around 1600 m, with the observations at CDP deviating from this pattern with a slightly negative
T2m bias.

The thermal amplitude of the diurnal cycles for the T2m and TSm observed and forecast temperatures is reported in the Ta-
ble 1, for both CDP and CLB. At CDP, simulated amplitudes are relatively close to observations, with a slight underestimation
for T5Sm and T2m. At CLB, the amplitude for T5m is underestimated. On the other hand, it is overestimated for T2m. Arome

attenuates the diurnal cycle too much at the first level of the atmosphere and accentuates it too much close to the surface.

3.1.4 Reviewing scores and revisiting model biases

As T2m and T5m should not be considered as equivalent, the T2m scores of Vionnet et al. (2016), Dombrowski-Etchevers
et al. (2017) and Quéno (2013) at high Alpine or Pyrenean stations should therefore be put into perspective as temperature
observations at 2 and 5 m above the snow surface were used without distinction. According to Gouttevin et al. (2023), based on
detailed evaluations at two high-altitude sites, the temperature scores at about 10 m show that the Arome model is only slightly
biased at this level. We therefore propose here to revisit the general scores of Arome over the Alps (as estimated by Vionnet
et al. (2016) and Dombrowski-Etchevers et al. (2017)), making a clear distinction between the first model level at about 5 m
above the surface, and 2 m. In Fig. 7 and Table 3, bias and STDE scores were therefore one the one hand calculated for stations
above 2500 m altitude (Nivose stations only) by comparing the T2m diagnosed by Arome and the temperature observed at the
Nivoses between November 2022 and May 2023, according to the method used by Vionnet et al. (2016). As these scores/biases
are calculated assuming that the stations measure at 2 m above the surface, they are not true biases or RMSE at 2 m, and
we hence call them "pseudo-biases” in the following. On the other hand, the same scores were obtained using the TSm_mod
forecasted by Arome (leading to true TSm biases and scores). The stations with an altitude difference of more than 150 m
from their model grid point have been removed from the calculation of these scores. Indeed, although the standard vertical
temperature gradient of -0.65 °C / 100 m is often applied to account for this difference between model relief and real relief,
this is not the correct solution (Sheridan et al., 2018). In the mountains, the altimetric temperature gradient is rarely equal to
-0.65 °C/ 100 m: it can be null, in the case of isothermal conditions with snow precipitation, positive in the case of inversions,
or strongly negative. The Table 3 compares the old and the new, revisited scores.

The cold bias decreases by 2 degrees, while the STDE decreases by one degree only by comparing temperatures at an
equivalent height above ground level. It therefore has a significant impact on scores to evaluate models in relation to comparable
observations, and to bear in mind their representativeness. Taking sensor height into account has a greater impact on scores
than applying a (potentially false) altitude correction. The monthly temperature bias at high-altitude Nivoses calculated for

4 months (January, April, August and November) by Dombrowski-Etchevers et al. (2017) (same method as Vionnet et al.
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(a) Arome OPER T2m-T5m difference as a function of altitude over DJF
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Figure 6. (a) Arome-OPER mean temperature differences between 2 m and 5 m as a function of altitude, for each model grid-point over
the study area for winter 2021-2022. Orange line denotes median, boxplots mark the 25%-75% percentiles, blue whiskers the 5%-95%
percentiles and dots the values outside this range. (b) Arome-OPER temperature biases at 5 m (red dashed line) and 2 m (violet dashed line)
at Nivose stations (crosses), standard stations (dots) and instrumented sites (diamonds) over the winters of the 2020-2022 period. Bias is
calculated by grouping stations by 100 m altitude bands and by station type. The altitude range shown in the Figure, e.g. 600 m, corresponds
to stations with an altitude between 500 m and 600 m. The number of stations used to calculate the biases is indicated by bars with the

Nivoses in orange and the standard stations in grey. The Col de Porte station is counted here as an instrumented site, not as a Nivose station.

(2016)) has been recalculated for the period 2022-2023, on the one hand using T2m_diag (as initially) (see Fig. 7a) and on the
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1500 m - 2500 m > 2500 m
Bias STDE Bias STDE
Vionnet et al. (2016) Method  -3.1 4.5 -3.6 5.0

Revised scores Method -0.5 1.8 -0.7 2.0
Table 3. Bias and STDE for Nivose stations according Vionnet et al. (2016) method (comparison with T2m_mod) and new method (compar-

ison with T5Sm_mod).

Altitude > 2500m; Period : 2020-2022
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Figure 7. (a) Diurnal cycle of the T2m bias calculated according to Vionnet et al. (2016) i.e. without taking into account the sensor height;
and (b) true TSm bias, estimated based on TSm_mod. Only T5m_obs from Nivose stations for the altitude band above 2500 m are used for
these scores, calculated for four months of the 2020-2022 study period: January, April, August and November. 6 stations meet the 150 m

criterion at this altitude.

other using T5Sm_mod (see Fig. 7b). Monthly biases are much lower when comparing with TSm_mod than with T2m_diag,
as expected. It’s no longer the months with snow on the ground that are the most biased, but the months with the most solar
radiation. The nocturnal bias is virtually null (slightly positive), while the diurnal bias is negative. The graph showing T5m,
T2m and Ts predicted by the model versus observations confirms what was highlighted in CLB and CLP Fig. 4. In addition,
the month of April is undoubtedly the most biased due to the excessive presence of snow on the ground in the model (a bias
mentioned by Monteiro (2020)), which further limits the heating of the atmosphere by the surface.

Finally, the correct use of Nivose observations allows for the evaluation of a prognostic model variable rarely scrutinized:

the temperature at the lowermost model level. The Arome model is thus less biased at high altitude than previously estimated.
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It is therefore one of the least biased models according to the synthesis by Rudisill et al. (2024) and is close to the Canadian
limited area model GEM-LAM evaluated by Vionnet et al. (2015), featuring a "0.5 °C cold bias at high elevations” (Rudisill
et al., 2024; Vionnet et al., 2015).

3.2 Effects heterogeneous sensors’height in the 3DVar assimilation
3.2.1 Theoretical effects

Due to the climatological differences between the observed TSm and T2m (see Sect. 3.1), an error is introduced during the
3DVar assimilation if an observed T5m is considered to be at 2 m, as currently done for Nivoses. Indeed, during assimilation,
the background in T2m —that-is-te-say-the-diagnosis-at2-m-of theth-lead-time forecast-temperature—is compared to the
observation at 5 m. This difference, called ’innovation’, is used together with the one induced by other surface and satellite
observations, to estimate the analysis increment. The increment specific to that station or location, is then reported to the first
level of the model. Normally, this operation should rely on the inverse of an observation operator (working as an adjoint to the
T2m diagnostic); but in Arome this adjoint is not activated so the increment is directly added to the T5m background to cal-
culate the analyzed T5m (Fig. 3). However, our analysis showed significant differences, on average and in particular in certain
situations, with T5Sm climatologically warmer than T2m. This difference theoretically leads to a positive bias in the innovation
and in the analysis increment, which should produce an overestimated analyzed TSm.

In addition, Arome itself has different biases at 2 m and 5 m. At 2 m, the model is on average clearly too cold for stations
located above 1600 m altitude (Fig. 6), a bias which induces positive innovations and likely has a positive contribution to
the analysis increment. At 5 m on the other hand, the model has a slight negative bias: if the model leveled considered for
assimilation of near-surface air temperatures would be 5 m instead of 2 m, the assimilation of TSm_obs would lead to little or
no innovation and have a weak influence on the analysis increment.

Thus, our analysis reveals that Arome’s temperature bias further reinforces the error made by using T2m_mod instead of
T5m_mod in the analysis of air temperature observations. Not only is the height of the observed temperature incorrect, leading
to a bias linked to the climatology of temperatures at 2 m and 5 m in the mountains; but also Arome’s cold bias at 2 m rein-

forces this error and adds an additional overestimation to the innovation, which likely propagates to the analysis increment. A

increases with altitude in Arome (Fig. 6), the second effect should be higher and lead to more errors in the analysis at high

altitudes.

3.2.2 Direct verification of the effects in the assimilation system

In the previous sections, we theoretically estimated that treating Nivose observations as measurements at 2 m introduces a

warm bias in the analyzed temperatures at 5 m, resulting from the effect of height on observed temperatures, and reinforced
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Assimilation over DJF for Arome-OPER in mountains
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Figure 8. Diurnal cycles of temperature observed (Tobs, crosses) or calculated at different steps within the assimilation workflow of Arome-
OPER for mid-altitude mountain stations (a,b) and high-altitude mountain stations (c,d) over the study period. Within each altitude range a
distinction is made between standard stations (a,c) and Nivose stations (b,d). The number of stations is given in brackets. Within the modeled
temperatures, the background at 2 m (orange) refers to the Arome background interpolated at the observation point (dashed orange box in
Fig. 3); the background at 5 m (light blue) designates the background at the first level of the model at the closest grid point of the station; the
forecast temperature comes from the Arome OPER forecast (see Sect. 2.4, navy blue line) also taken at the closest grid point of the station;
and the analyzed TSm (or resp. T2m diagnostic - analysis) in purple refers to the TSm analysis (or its associated T2m diagnostic, resp.)

accounting for all observations including surface and satellite ones.

by the negative bias of the model 2 m, of different sign and stronger magnitude than at 5 m above the surface. In the present
section, we will examine whether this hypothesis can be validated by looking at the effect of the assimilation of observations
on the analysed TSm.

Figure 8 shows the background at 2 m (and 5 m for Nivose stations), and the forecast and analyzed temperatures at 5 m
(or 2 m for standard stations); and compares them to observations, splitting between standard and Nivose stations and across

altitudes.
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When examining the situation at Nivose stations (Fig. 8b and d), the background at 2 m used in the 3DVar assimilation ap-
pears too cold compared to the observations. This is not surprising since the observations are at S m and observed temperatures
are, on average warmer at 5 m than at 2 m, and the model is negatively and increasingly biased for T2m from 1600 m a.s.] to
high altitudes (cf. Sect. 3.1). In relation to this, Fig. 8 consistently shows that the background at 2 m is colder at high altitudes
than at mid-altitudes.

Secondly, we note that at Nivose stations, the analysed TSm performs poorly at night, and especially worse than the forecast
at 5 m (at mid and high altitudes) and even then the background at 5 m (at high altitudes) (Fig. 8b and d), with a warm bias of
up to 0.9 °C at 07 UTC for high altitude stations, whereas the 5 m background and forecasts are almost unbiased. This means
that the assimilation of the observations leads to an overcorrection of T5Sm in the model, which switches from underestimation
in the forecast and background at high altitudes, to overestimation in the analysis. This error is consistent with the fact that
the height of the Nivoses is not being taken into account in the assimilation, as theoretically assessed in the previous section.
In fact, the value of the innovation (observation minus background) at high-altitude Nivose stations would be much lower at
night if it was calculated correctly using the background at 5 m: the mean innovation at night (from 18 UTC to 07 UTC) would
then be +0.1 °C, compared to +3.8 °C when calculated with the background at 2 m as currently done. This analysis alone
cannot prove that the misaccounting for the height of Nivose measurements is the sole source of errors, as other observations
are assimilated within the 3DVar to produce the analysed T5Sm; however the results shown on Fig. 8 are fully compatible with

our hypotheses.

During daytime at high altitudes, the forecast temperature at 5 m (Fig. 8d) and at 2 m (Fig. 8c) are too cold with a maximum
diurnal bias of -2.0 °C at 12 UTC for the Nivoses, and -1.8 °C at 08 UTC for the standard stations; both biases are partly
corrected by the analysis. We hypothesize that the lower magnitude of the innovation during that part of the day, and possibly
the contribution of other observation sources (satellite, etc..) prevent from an overcorrection of the analysed T5Sm as seen at
night. Note that for technical reasons, the interpolation procedure for the background temperature at 2 m involves the 4 nearest
grid-points to the station, and differs from that used for the other model products (nearest model grid-point). This induces a
structural difference between the background at 2 m and for instance the forecast at 2 m, that is usually below 0.5 °C but can
be enhanced by local effects when only few stations are considered like in Fig. 8c, resulting in that case in a background at 2 m
being distinctively colder than the forecast at that height.

In mid-altitude mountain areas, the analysed T5m is also worse than the forecast at Nivose stations at night, a degradation
consistent with an overestimated increment of about +2.0 °C for the background at 2 m at night, that would have been reduced
to about +0.1 °C if considered at 5 m (Fig. 8b). However, the effects are less marked at these mid-altitude Nivose than at
the high-altitude ones, because the T5Sm-T2m difference is smaller (cf 3.2.1). In addition, the mid-altitude areas are more
influenced by the standard stations (with no problematic sensor’s height) than the high-altitude ones, where stations are scarcer
and mostly Nivoses. The effect of height error should therefore be more limited in mid-altitude mountains.

In conclusion, the assimilation of screen-level temperature observations degrades the analysed T5m at the point closest to the

Nivose stations, especially at night. This predominantly affects the high-altitude areas, as the height problem is less pregnant at
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lower altitudes and affects fewer observation stations. On the opposite, at standard stations, the assimilation generally leads to
an improvement in the temperature forecast at night without any deterioration during the day (Fig. 8b and d), which is conform

to the expectations of an assimilation system.

Contrlbutlon to the 3DVar over DJF
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Figure 9. Analysis increments (denoted A) obtained in different configurations of the pool of assimilated observations, as described in
Sect. 2.4.2. These increments are retrieved at stations’locations in valleys (a), mid-altitude mountains (b) and high-altitude, taking into

account only Nivose stations in mountains (b,c).

the background of Arome-OPER represents an idealised increment (black crosses). There is no measure at 5 m in valleys, so no idealised

increment is calculated.

3.3 Effect of geographic heterogeneities within the mountain observation network, on the 3DVar assimilation

565 We performed targeted assimilation experiments to estimate the impact of two problems present in the Arome-OPER assimi-

lation system (cf. Sect. 2.4):

— The heterogeneity in density and altitudinal coverage of the observation network, by means of the NO_VALLEY exper-

iment;
— The altitude mismatch between the stations and model grid points, by means of the 150M experiment.

570 These two problems are present in Arome-OPER, but not in 150M and NO_VALLEY respectively. By comparing the

improvement brought about by assimilation with respect to its background (i.e. the analysis increment) between the Arome-
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OPER and the experiments, we can quantify the impact of these problems, particularly in relation to the contribution of
upper-air and surface observations. Although the experiments do not make any difference in their assimilation between station
types, in order to be able to compare their analysis increments with the observations, we will separate the Nivoses from the

standard stations in our results.
3.3.1 Quantifying the impact of altitude differences between stations and model grid (150M experiment)

In our dataset, there are 13 weather stations (out of 82) for which the model relief (of the grid point containing the station)
differs by more than 150 m from the station’s actual altitude. These 13 stations are therefore not assimilated in the 150M
experiment.

Figure 9 shows that relief errors have only a weak effect on assimilation at all attitudes: the analysis increment calculated
without the surface stations impacted by an error of more than 150 m between model relief and station altitude ("relief error"
in the legend), differs at most by only a few tenths of a degree from the analysis increment including all surface stations, which
is not significant in relation to the observation error. Our results also confirm that in valleys, this error has no impact, but this
is not surprising since only one station out of 46 exhibit a relief mismatch with respect to the model.

Stations with unrealistic relief represent a small proportion of mountain observations in the French Alps (15%), which likely
explains this small effect. In fact, there are 2 Nivose stations out of 4 in the mid-altitude mountains and 2 out of 14 at high
altitudes. There are more standard stations with a relief mismatch, with 7 out of 16 in mid-altitude mountains and 1 out of 2 at
high altitudes.

Even if we focus on the diurnal cycle of assimilation at the station, the difference between Arome-OPER and 150M remains
negligible and has a sign that varies and is decorrelated from the altitude. Furthermore, this difference does not depend on the
sign and value of the difference between the model relief and reality. Thus, although significant differences can occasionally
be observed between 150M and Arome-OPER, we conclude that stations with an important altitude mismatch with respect to

the model, have a negligible impact on assimilation in Arome.
3.3.2 Quantifying the impact of the altitudinal heterogeneity in station density (NO_VALLEY experiment)

As stated in the Introduction, the 3DVar assimilation system does not consider any effect of the topography. Valley stations
therefore influence the analysis calculated for mid-altitude and high-altitude mountains, and vice versa, disregarding the differ-
ences in dominant processes and model biases across altitudes, highlighted for instance in Sect. 3.1. By comparing the analysis
increments between the NO_VALLEY and Arome-OPER experiments (cf Sect. 2.4.2), we can quantify the impact of lowland
and valley stations on the analyzed T5m at higher altitudes.

Figure 9 shows that the assimilation of lowland and valley stations has a cooling effect at all altitudes. Their impact is the
most important and significant in the lowlands and Alpine valleys, where night-time cooling averages -0.4 °C with a minimum
of -0.7 °C at 06 UTC (Fig. 9 a). In the mid-altitude mountains, the impact is weaker with a maximum contribution of -0.3 °C at
06 UTC. The assimilation of lowland and valley stations also cools the high altitudes, by -0.3 °C on average (Fig. 9 c) at night

at Nivose stations.
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Similarly, we can examine the contribution of the mountain (mid-altitude and high-altitude) observations at night through

the NO_VALLEY analysis increment. On average, their contribution to assimilation amounts to +0.3 °C in the valleys (cyan
line in Fig. 9 a). At mid-altitudes, mountain observations warm the assimilation at Nivose stations by 0.6 °C (Fig. 9b). At high
altitudes, this warming is greater, with a mean contribution of 1.1 °C (Fig. 9c). Mountain stations therefore warm the analysis
at nighttime, whatever the altitude of the stations, even in the valleys.

It hence appears that the nighttime cooling effect of (numerous) valley stations on the analysed TSm in mountains, has the
same magnitude than the nighttime warming effect of (scarcer) mountain stations onto the analyzed T5m in valleys. However,
the assimilation of mountain stations has a stronger effect in mountain areas, than the assimilation of flatland and valley stations
there, which have an effect of opposite sign (cooling) and a magnitude two times (for mid-altitudes) to four times (for high-
altitudes) lower. This result suggests that the heterogeneity in station density across altitudes has a moderate but not dominant

impact in shaping the screen-level temperature analysis increment in high-altitude regions.

4 Discussion
4.1 Impact of mountain, surface and altitude observations on assimilation

Mountain stations contribute to positive assimilation increments at night in mid- and high-altitude mountains, ranging from
0.6 °C to 1.1 °C in mean values (Sect. 3.3.2). In high-altitudes and to a lesser extent, in mid-altitudes, this warming over night
degrades the performance of Arome-OPER, as illustrated by a distinctively positive assimilation increment while the ideal
increment is close to zero. The results of the assimilation experiments, hence confirm the results from Sect. 3.2 and the role of

mountain stations assimilation in the degradation of the T5m analysis.

As the Arome-OPER T5m forecast bias is very weak at night at high-altitudes (Fig. 8), we deduce that the positive increment
of the analysis comes in part from the comparison of the (colder) model T2m diagnostic with the Nivose observations taken
at about 5 m over the surface. Another source of error is the direct use of the temperature increment at 2 m to modify the
model temperature at 5 m, without a transfer to the correct height above the surface to calculate the analysed temperature at
the first level of the model. These two influences have not yet been individually quantified. The first problem is included in the

mountain contribution (cyan line, Fig. 9) while the second affects all surface observations.
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As mentioned in Sect. 3.3.2, we note that the contribution of valley stations to the analysis increment in mountains dampens
the warming effect of the assimilation of mountain stations, by about 0.3 °C. This negative contribution is an artefact of the
3DVar system that does not account for relief in the spatial area of influence of the increments, but has the effect of limiting

the warm bias of the analysed T5m at Nivose stations. Therefore it can be seen as a compensation error within the model.

Finally, our assimilation experiments enable an insight into the role of surface vs upper-air observations assimilation across
altitudes in mountain regions. The contribution of the surface observations is, by construction, the composition of the mountain
and valleys contributions. At night, surface observations cool the valleys by -0.1 °C on average, as the negative contribution
of valley observations is higher in magnitude than the positive contribution of mountain observations (Fig. 9a). This helps
reduce the warm bias of Arome in valleys (Fig. 6). The aggregated effect of surface observations is opposite in mid- and
high-altitude mountains, where they warm the T5m analysis more significantly (Fig. 9b and c) due to a high positive and
dominant contribution of mountain stations over valley stations. In mid-altitude areas, the contribution of surface observations
reaches +0.6 °C at 18 UTC at Nivose stations. At high altitudes, the contribution of surface observations is higher, with an
average nighttime contribution of 0.85 °C at Nivose stations. These positive analysis increments are in line with the dominant
role of mountain stations assimilation for altitude regions and the height-above-surface and missing adjoint issues mentioned
above. Conversely, altitude observations warm the valleys by an average of 0.1 °C, with a maximum of 0.5 °C at 01 UTC and
cool the mountains by -0.1 °C. We conclude that in mountain regions, the assimilation of T5m is therefore mainly influenced
by surface observations throughout all altitudes: from valleys to high-mountains. Most strikingly, at least for the nighttime
period, the analysis increment due solely to altitude (upper-air) observations is closer to the ideal increment than those induced
by surface observations alone and by Arome-OPER. This suggests that, at least for nighttime conditions, the assimilation of

surface observations as a whole is not beneficial for the analysis of TSm at mid and high altitudes.

4.2 Main findings and insights into the use of temperature observations in mountains

Our study examined the impacts of inhomogeneities in the surface observation network in complex, mountainous alpine
terrain, on the evaluation of the performances of a numerical weather prediction system and on the assimilation of these data
themselves. The inhomogeneities studied are of three flavors: (i) the difference in height above the surface of the temperature
sensors across altitudes, in link with the development of the snowpack over the winter; (ii) the difference of altitude between
the individual observation stations and the model grid-point they are located in; and (iii) the inhomogeneity in station densities

between valleys and mountain tops.

We find that the various height above the surface of the measurements involved across altitudes, matters. First, per se as
significant differences exist in a number of meteorological situations where temperatures differ between 2 m height and further
up above the surface in high mountain regions, so that this difference impacts targeted model evaluations. Second, because

the NWP or atmospheric models may present quite different biases at different heights above the surface, even within a few
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meters. In the example of the Arome system, our distinction between 5 m and 2 m across the observational network enables to
state that the temperature at the lowest model prognostic level, close to 5 m above the surface, is only very moderately biased
in Arome. However, temperature proves highly biased at levels below, be it at 2 m above the surface or more intensely, directly
at the surface itself. This generalizes the findings of Gouttevin et al. (2023) based on a 2-sites study in the French Alps, and
makes the T2m temperature bias as much of a concern for surface modelers as for atmospheric ones. We therefore recommend
that model biases would be analyzed as at different heights, considering the proper height of the measurements available, as
illustrated in Figures 6 and 7.

In the case of Arome, we further found that these differences in biases at different heights, lead to an overestimation of the
assimilation increment when the differences in height are not accounted for in the assimilation system, and 5 m-high obser-
vations are assimilated as 2 m-high ones. As a result, while useful for the correction of near-surface air temperatures for the
initial (analysis) step of forecasts in low-altitude regions (Merker et al., 2023), the assimilation of surface stations is actually
currently detrimental in mountain regions in the French high resolution weather forecasting system. We also note that activating

the adjoint of the diagnostic within the assimilation could be a first step to reduce the current errors in the assimilation process.

Contrarily, we find that the relief mismatch between stations and the model has no significant impact in assimilation. This
conclusion may be relative to the configuration of stations where this mismatch is observed in the present case study, of which
only 15% present an important mismatch with respect to the relief of the Arome-OPER system, that runs with a high spatial
resolution coming with an enhanced representation of the topography. It should be verified when working with coarser model
resolutions or in other mountain regions. In particular, it may not stand for regions with more abrupt relief and more intense

altitude variations like the Himalayas.

With regards to the heterogeneous density of stations across altitudes, our study shows that the valleys and lower altitude
stations, that are the most numerous and hence the most assimilated in the French Alps, have a lower influence on the analysis
of temperature at high-altitude areas than the high-altitude stations themselves. This result suggests that the topographic het-

erogeneity in station density has a moderate impact on high altitude regions. Again, this conclusion is not general and should

be revisited in other regions or even for specific regions of the French Alps with lower station densities.

tiens: As a matter of fact, in the present case study, the effect of low-altitude stations at high-altitude locations and the effect
of high-altitude stations assimilation onto the temperature of low-altitude areas have the same order of magnitude, changing
the analysis temperature by about +/- 0.3 °C. However, these effects are of opposite signs: this means that data from a different
altitude bring a moderate but non-null correction to the model at another altitude, where the biases can be different and hence
be enhanced instead of corrected. In the case of Arome, the assimilation of valley stations warm the model at high altitudes

while the assimilation of high-altitude stations, relevant for high-altitude model behavior, tend to cool it. This result illustrates
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the limitations of the current 3DVar assimilation system, that disregards the effect of topography in the spatial structure of
assimilation increments. To prevent these undesirable effects, topography should be better accounted for in the assimilation
systems. So (Merker et al., 2018) has shown that the KENDA (Km-scale ENsemble-based Data Assimilation) system(Schraff
et al., 2016) used in COSMO catches better small scale feature like orography (Schraff et al., 2016). For Arome, an ensemble
assimilation scheme (3DEnvar, Brousseau et al. (2025)) was recently introduced in the new operational version. This scheme
implicitly accounts for relief via background error correlation matrices inferred from the model ensemble. This new feature

could help reduce the impact of inhomogeneity in station densities between valleys and mountain tops.

In line with previous studies, our work here highlights that model biases differ significantly across altitudes (Rudisill et al.,
2024; Vionnet et al., 2016; Quéno et al., 2016; Monteiro et al., 2022). Therefore, we strongly recommend that different alti-
tude regions should be considered separately or differently, both in assimilation (see above) but also when it comes to model
evaluation. Only such kind of altitudinally differentiated evaluation can foster a better understanding of the model limitations
and promote efficient model improvements over mountain regions, targeting altitude-specific biases and underlining processes.
For instance, in the case of Arome, the awareness of a concomitant high-altitude cold and low-altitude warm bias, can lead the
hypothesis of deficient katabatic flows, that provide a convenient explanatory mechanism discussed in more details in Sect. 4.3.
Such an hypothesis could not have been formulated if only one global bias would have been assessed without altitudinal dif-

ferentiation.

Similarly, we estimate that not considering the height-above-surface difference between standard and Nivose stations, has
long impeded a proper quantification and understanding of the near-surface temperature bias of our NWP system, Arome,
probably partly hindering its resolution. Having a more accurate T2m estimate, not affected by e.g. the error in measurement
height, would enable a better knowledge of the true model biases, the formulation of relevant hypotheses for these biases and
henceforth favor the improvement of the model’s physical parameterizations. For example, in the case of Arome-OPER, the
accuracy of the temperature representation at the lowest model level enables to mostly exclude problems linked to the dynami-
cal core of the atmospheric model, and to draw the focus on the surface energy balance and associated processes. Some further

examples of hypotheses will be described in Sect 4.3.

4.3 Towards a more robust surface temperature

Fig. 4a and 4b show a different behavior of the modeled surface temperature Ts according to altitude. At the high altitude
site CLB, where the surface is rock generally covered with snow in winter, the Ts is too cold by several degrees (up to -7 °C
negative bias at night) in winter, and the diurnal cycle is too strong. This cold bias in Ts has a direct impact on the diagnostic
of T2m. On the other hand, at the mid-altitude CDP site, where the surface is grassy and surrounded by a forest environment,
and snow cover can be discontinuous in winter, the Ts modeled by Arome is too warm (up to +4 °C positive bias during the

day), while the diurnal cycle remains too strong.
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Ts
Sites

Obs OPER

Col de Porte 3.8 5.3

Col du Lac Blanc 4.5 8.4
Table 4. Thermal amplitude of surface temperature observed and modeled by Arome-OPER at CDP and CLB over the winters (DJF) between

1 January 2020 and 28 February 2022

The thermal amplitude of the diurnal cycles of Ts is reported in Table 4, for both sites, showing this overestimation. It also

has consequences for T2m, that is diagnosed in part based on the surface temperature, as can be seen in the Table 1.

Hence, at the high-altitude site, the T2m nighttime negative bias of Arome is partly induced by a too cold snow surface
temperature, an issue already highlighted by Gouttevin et al. (2023) and Monteiro et al. (2022) for this model, while other
authors advance a clear imbrication between surface temperature, surface processes and T2m biases for other models, especially
in the presence of snow (e.g. Arduini et al., 2019; Rudisill et al., 2024). The surface processes possibly involved in these biases
are manyfold: as snow rarely covers the ground thoroughly at the scale of a model grid-cell, snow cover fractions are used by
the models, with parameterizations rarely constrained by field data or suited to the local context of model application (Lalande
et al., 2023). They constitute a first possible cause for surface temperature biases, as they are used to weight the surface energy
fluxes over snow-covered and snow-free areas (Lalande et al., 2023; Liu et al., 2017). The representation of the snow cover is
also often pinpointed as a possible source of surface and near-surface temperature biases, in link with processes like the thermal
conduction (one-layered snow model being unable to account for the thermal conductivity and low thermal inertial of surface
snow layers) or albedo (possibly in connection with the snow cover fraction) (Arduini et al., 2019; Rudisill et al., 2024).

In the case of the Arome-OPER system specifically, the ground scheme currently used relies on a force-restore approach
(the Isba-3L surface scheme) and a one-layered snow model (D95) with a single soil-vegetation—snow surface temperature re-
lationship, a configuration pinpointed by several authors for excessive winter night-time cooling at the surface of the snowpack
(Etchevers, 2000; Douville et al., 1995; Gouttevin et al., 2023; Monteiro et al., 2022). One avenue of research is to replace the
present force-restore scheme, by a multi-layer soil and surface scheme, Isba-DIFF, that allows a resolution of specific energy
balances for the soil-vegetation system as described in Monteiro et al. (2024) and would be associated with the multi-layer
snow scheme Isba-ES (Boone and Etchevers, 2001). These changes that promote a more physical representation of the soil-
snow-atmosphere continuum, have been successfully tested by Monteiro et al. (2024) with modifications to improve the snow

cover.

Deficiencies in the turbulent coupling between the surface and the atmosphere over snow is another very likely source of the

cold bias in surface and screen-level temperatures. The situations of strong stability often encountered over continuous snow-
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packs at high altitudes in low wind conditions, tend to reduce the turbulent transfer coefficient between surface and atmosphere
and, therefore, to decouple the surface from the atmosphere in the models, leading to excessive surface cooling. The turbulent
exchanges in mountain regions are hard to capture by atmospheric models, as the assumptions behind the Monin-Obhukov
similarity theory implemented in the models, are violated in complex terrain (e.g. Rotach et al., 2022). In the case of Arome,
Gouttevin et al. (2023) showed that turbulent coupling was underestimated at nighttime during stable conditions at high alti-
tudes, significantly contributing to the T2m cold bias. The turbulent coupling between snow and atmosphere in complex terrain
could be revisited along with the scientific progress in that field, and recent or ongoing work (Stiperski et al., 2019; Stiperski
and Calaf, 2023; McCandless et al., 2022) may lead to interesting breakthroughs in the coming years. Also, we add as a note
that katabatic winds are likely misrepresented in atmospheric models of kilometric scales like Arome, due to a too coarse
resolution in the lower atmosphere, i.e. within the few meters above the surface (Blein, 2016). The likely underestimation of
their strength provides an interesting alternative explanatory mechanism for both the near-surface cold bias at high altitudes

and warm bias in valleys, a hypothesis that we suggest here but that has yet to be verified against in-situ data.

Finally, it would be interesting to have Ts measurements in Alpine valleys, as this warm bias could partly explain the T2m

warm bias observed in valleys in winter and the model’s difficulty in predicting cold pools.
4.4 T2m diagnostic ill-adapted to complex terrain?

While the more complex physical parameterizations could improve mountain temperature forecasting (as evoked in Sect. 4.3),
it should be remembered that the T2m field produced by Arome as well as by most atmospheric models at kilometric scale or
above, is a diagnostic field (Rudisill et al., 2024; Ingleby et al., 2024). It is computed from the temperature at the lowermost
model level, T5m, and the surface temperature Ts, via an interpolation formula generaly relying on the Monin-Obukhov simi-
larity theory and depending on surface layer parametrizations, and notably surface roughness lengths and stability corrections.
In the case of Arome, this analytical formulation is established so as to ensure that the estimated static energy profile between
the surface and a given height, here 2 m, is consistent with the modeled fluxes higher up, at the lowermost prognostic model
level (Geleyn, 1988). Therefore, first, this diagnostic inherits the limitations exposed in Sect. 4.3 for the estimations of the
turbulent fluxes in complex terrain, and may be biased in highly stable, nocturnal conditions, just because the modelled fluxes
are biased in these situations (see Sect. 4.3) Second, this diagnostic was developed at a time when the resolution of Arome’s
coupling model, Arpege (Bubnovd et al., 1995), was of the order of 20 km over the Alps and relief was therefore less important

in the model. Hence, while suitable for the boundary layer over the plains, it is likely not adapted to mountainous areas.

According to (Serafin et al., 2018) and (Arduini, 2017), the boundary layer is complex in mountain areas. In the valleys,
when high-pressure systems develop in winter, the winds are weak and cold air is trapped forming cold pools, so that the
vertical temperature profile shows a strong inversion extending vertically over several tens of meters and lasting sometimes
throughout the day. At high altitude, however, the inversions will be strong in the very first few meters only, and may frequently

be less than 2 m thick. The diagram 10 illustrates this situation, whereby the model features a too thick temperature inversion.
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In this case, the T2m diagnostic has a cold bias, induced both by a too cold surface temperature (see Sect. 4.3) and by an

inversion that is not as shallow over the surface as in observations.

High mountain

N
RN T Altitude (m)

~
~
~
N

B *T5m obs

b

Problem: diagnostic

Figure 10. This diagram illustrates the differences between the modeled temperature profile (black dotted line) and the actual profile (grey
solid line) at high altitude in winter: the modeled surface temperature is too cold, and the layer over which the inversion develops is too thick,

both leading to a cold bias at 2 m. Ts is in blue, T2m in purple and T5m in red.

When a weather disturbance arrives, the cold air will remain trapped in the valleys for several hours, while the high altitude
will be under the effect of synoptic-scale circulation. The processes are therefore different for near-surface temperatures be-

tween valleys, mid-altitude mountains and high-altitude areas. T2m diagnostic must therefore be adapted accordingly.

To overcome such issues and especially solve the problem of nighttime disconnection frequently encountered between
surface and atmospheric models, a prognostic surface boundary layer scheme has been proposed by Masson and Seity (2009):
Canopy. This scheme was shown to foster large improvements during stable, nighttime conditions and in mountain areas,
where analytical laws and interpolation methods for the temperature profile frequently fail (Masson and Seity, 2009). It hence
constitutes a very promising alternative to diagnostics.

Following this approach, Meier et al. (2021) proposed to use this surface boundary layer scheme for their simulations of tem-
perature with Arome at kilometric resolution over the mountains and valleys of the Austrian operational weather forecasting
domain. However, these authors noticed persistent model biases for different location in link with the topography (e.g. valleys
vs mountain tops) that encouraged them to consider the information from higher (resp. lower) Canopy levels for mountain tops
(resp. valley). In the end, they propose to weight the canopy levels for the final T2m output depending on the local topography,

giving more weights to higher Canopy levels or even free atmosphere for exposed, mountain top grid-points, and more weights

33



820

825

830

835

840

845

to lower canopy levels for grid-points in narrow Alpine Valleys. A parameter (inversion factor noted IFAC) which depends
on the position in the relief (plain, valley, mountain) is added in Canopy. This can be seen as a pragmatic way to inject in
the model the different behaviors of the mountain and valley boundary layers, described above. The results are promising. As
a reminder, the surface boundary layer scheme Canopy, originally developed in Arome-France, is deactivated in the current
version because it enhances the valley warm T2m bias, no doubt due to error compensation. It still constitutes an interesting

perspective but the current valley bias has to be solved prior to the re-activation of this scheme.

Other alternatives lie in the improvements of the diagnostics themselves, and some recent studies have proposed work in
this direction. For instance, Dian and Masek (2016) proposed a modification to the T2m diagnostic from Geleyn (1988), using
a different assumption for the structure function, but it is only suitable for stable or anticyclonic cases and did not prove to
improve the estimation of T2m in all topographic and weather situations. For their part, Ingleby et al. (2024) have also proposed
a revision of T2m diagnostics in the IFS model, that leads to less divergence to the theory and a more realistic evolution of
T2m in stably stratified conditions.

Another final possibility would be to increase the number of vertical levels in the model, in order to obtain a prognostic
rather than a diagnostic temperature at 2 m. Indeed, recent work by Antoine et al. (2023) showed that adding levels in the low-
ermost layers of an atmospheric model significantly improves fog forecasting, thanks to a better representation of near-surface
atmospheric variables. We hypothesize that having a first atmospheric level at around 2.5 m like in their study, could therefore
improve the representation of the vertical temperature profile in the first few meters of the atmosphere. This could typically
be tested using the 500 m research version of Arome over the Alps, which has 120 vertical levels, with an increased number
of levels near the surface (Arnould et al., 2021). All these perspectives may be investigated in the future for the Arome-OPER
NWP system.

5 Conclusions

This study investigated the impact of inhomogeneities of the observational network specific to mountain regions, on the evalu-

ation of the NWP system Arome and on the effects of surface data assimilation within this system.

We first questioned whether the differences in height above the surface between sensors should be cared for when evaluating
models in terms of near-surface air temperature. These differences are correlated with altitude and induced by the need to pre-
vent the sensors from being buried in thick snowpacks in high-altitude terrain over the winter. We showed that TSm and T2m
should not be considered equivalent when performing model evaluations: despite a limited mean difference over winter at our
mid- and high-altitude research sites, both temperatures can differ significantly in specific situations, especially low-winds and
clear skies. Therefore, taking one for another introduces errors. Furthermore, at the instance of the Arome model, atmospheric

models may present very different biases at these different heights, so that the confusion between both temperatures leads to
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erroneous interpretations of model biases. We therefore recommend a distinct evaluation of modeled T5Sm and T2m against

the relevant observations in mountain terrain. Only such kind of altitudinally differentiated evaluation can foster a better un-

derstanding of the model limitations and promote efficient model improvements over mountain regions. We-find-that-the-relief

We then questioned whether this difference in height plays a detrimental role in assimilation, as observations at 2 or5 m

are not discriminated within the assimilation system of Arome, an approximation that we estimate may be common among
NWP systems. We showed that indeed, this confusion between heights in the assimilation process, leads in the case of Arome
to an overestimation of the analysis increment in high-altitude regions, inducing an overestimation of T5m analysis at night
and a degradation of performances with respect to the model without assimilation (background or forecast), while relying on

upper-air data (satellite, radar..) assimilation only would produce a better analysis.

Finally, we questioned the effect of station vs model relief mismatch, and higher density in valley stations, onto the assim-
ilation. The differences in altitude between stations and model grid-points, does not affect significantly the performance of
assimilation, a result that is hard to generalize to other mountain regions or NWP systems as it likely depends on station den-
sities across altitudes and model resolution. Similarly, we quantified that the density imbalance between valley and mountain
stations, does not have a dominant effect on assimilation results, despite a non-null contribution from stations from distinct
altitude ranges featuring different model biases and hence of limited relevance, on the order or 0.3 °C.

To summarize, this study helped define guidelines for the improvement of high-resolution NWP systems in mountain ter-
rains: In particular, sensors’height should be considered both in model evaluation and assimilation; topography should be
accounted for in the spatial structure functions involved in assimilation; model biases at 2 m height and lower could possibly
be reduced by the use of diagnostics more appropriate to mountain terrain, a higher number of vertical levels in the models and

enhanced work on the surface scheme to improve the representation of soil-snow-atmosphere energy transfers.

Code availability. The code used for the assimilation experiments in Arome-France is owned by the members of the ACCORD consortium.
This agreement allows each member of the consortium to license the shared ACCORD codes to academic institutions in their home countries

for non-commercial research. Access to codes used for the figures, can be obtained by contacting the corresponding author.
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Data availability. The main data from the Col du Lac Blanc and Col de Porte instrumented sites are available at https://doi.osug.fr/public/
(GLACIOCLIM-CLB, 2024, 2023). Complementary data for the CLB used in the present paper, namely the interpolated 2 m and 5 m
temperatures, and surface temperature computed using incoming longwave radiation, have been made available here : https://zenodo.org/
records/14989735 (GLACIOCLIM-CLB, 2025). Data from the Meteo-France surface observation network and from the operational Arome-
FRANCE model (analyses and forecasts) are freely available at https://portail-api.meteofrance.fr/web/en/ (Météo-France, 2025). Data from

the numerical experiments performed within this study are available at https://zenodo.org/records/14975065 (Préaux, 2025).

Code and data availability. All computations were performed with Python software version 3.12.3. The codes handling the station data
and the numerical assimilation experiment are available from a Zenodo repository (https://zenodo.org/records/14975065; Préaux, 2025). It
notably includes the scripts for the following tasks: performing all data preprocessing, reading the different data sources, statistical analyses

leading to the tables, and plotting the figures.
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Appendix A: Summary of key abbreviations used in the study

Category Abbreviation Signification
T5m_mod Temperature at the first level of the model (approximately 5 m)
MODEL . . .
T2m_mod Temperature diagnostic at 2 m according to Geleyn (1988)
Ts_mod Surface temperature of the ground for Arome
m ob Observed temperature at 2 m, above the bare ground for standard stations and above the
m_obs
h surface at instrumented sites CDP and CLB
OBSERVED
T5m_obs Observed temperature at 5 m above the surface; measured at Nivose stations and at CLB
Ts_obs Observed temperature at the surface; measured at instrumented sites
CDP Instrumented site of the Col du Lac Blanc, located at 2720 m
STATIONS CLB Instrumented site of the Col de Porte, located at 1325 m
Automatic stations providing hourly surface data to Météo-France; sensors are 2 m
Standard
above the bare ground
Nivose Automatic stations designed for the mountains; sensors are 7 m above the bare ground
OPER Operational Arome forecast (Arome-OPER)
Numerical assimilation experiment in which observations of T2m and relative humidit
EXPERIENCE NO_VALLEY p . ' y
at 2 m (RHU2m) below 1100 m a.s.l. are blacklisted before entering the 3DVar.
Numerical assimilation experiment in which T2m and RHU2m are not assimilated at
NO_NIGHT ) ) )
night, i.e. when the solar angle is less than 10°
150M Numerical assimilation experiment which do not assimilate station data when their al-
titude differs from more than 150 m from their grid-point altitude in the Arome mode

Table Al. Key abbreviations used in the study for modeled and observed temperatures, type of stations and numerical assimilation experi-

ments
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Appendix B: Diurnal cycles of surface, screen-level and 5 m temperatures at the Col de Porte and Col du Lac Blanc
sites

Observed and modelled temperatures over djf
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Figure B1. Diurnal cycle of the 5 m, 2 m and surface observed (OBS) and modeled (OPER) temperatures averaged over the winters of the
study period at the CDP and CLB research sites.
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