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Abstract. For the hydromechanically coupling of solid-fluid porous media, this study
presents an explicit stabilized two-phase material point method (MPM) formulation
based on the one-point two-phase MPM scheme. To mitigate the spurious pore
pressure and maintain the numerical stability, the stabilized techniques including the
strain smoothing method and the multi-field variational principle are implemented in
the proposed formulation. The strain smoothing technique is used to smooth the
volumetric strain rate, and the calculation of the pore pressure increment at particles is
based on the multi-field variational principle. Four numerical examples are performed
to evaluate the performance of the proposed formulation. With its effective and easy-
to-implement stabilized techniques, the proposed formulation provides stable and
reliable outcomes that align well with analytical solutions and results from other
approaches, offering extensive validation that the proposed two phase MPM
formulation is an effective and reliable approach for the simulation of solid-fluid

porous media under both static and dynamic conditions.
1 Introduction

The hydromechanically coupling of solid-fluid porous media widely presents in
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nature and engineering, from natural processes like rainfall-induced landslide and
earthquake-induced liquefaction, to coastal dike-breaking and offshore foundations
(Jerolmack and Daniels, 2019; Zhan et al., 2025; Guan and Shi, 2023). Due to the
practical importance, reproducing and understanding the physical nature of such a
two-phase system have attracted strong research interests across many scientific and
engineering disciplines, which has become increasingly recognized with recent
advances in both observational and simulation tools (Li et al., 2023; Taylor-Noonan et
al., 2022; Pudasaini and Mergili, 2019). Numerical modeling of this two-phase
coupling system is of great interest in geological hazard prevention and geotechnical
field, yet it remains a significant challenge for researchers in many disciplines alike.

In soil-fluid coupling problems, the motion of each constituent is governed by stress
distributions, external gravity forces and interaction forces (Pudasaini and Mergili,
2019; Baumgarten and Kamrin, 2018; Bandara and Soga, 2015). For the simulation of
this two-phase system, various numerical methods have been proposed, including the
smoothed particle hydrodynamics (SPH) method (Lian et al., 2023; Chen et al., 2023),
the particle finite element method (Yuan et al., 2022; Jin and Yin, 2022), and the
material point method (MPM) (Bandara and Soga, 2015; Bandara et al., 2016; Jassim
et al., 2013; Yerro et al., 2015; Wyser et al., 2020). Among these methods, MPM has
proven to be both effective and efficient for simulating large deformation problems
with history-dependent materials. Originated from the particle-in-cell (PIC) method,
MPM is a hybrid Euler-Lagrangian method that has significant advantages in dealing
with large deformation problems (Li et al., 2020; Zhao et al., 2023; Fernandez et al.,
2023). In MPM, a continuum body is discretized by a group of material points
carrying all physical information like displacement, velocity, stress, strain, etc. At
each time step, the physical information at particles is interpolated to the background
mesh, which is essentially Eulerian mesh, and then the governing equations can be
solved on it. Subsequently, the solution is re-interpolated to each material particle for
the update of particle physical information. The original background mesh can be
used again in the new time step, which can eliminate the mesh distortion problem in
Lagrangian method, and the accuracy of large deformation problem simulations can
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be guaranteed (Fig. 1). Currently, various coupling MPM formulations have been
proposed (i.e. the one-point or two-point schemes (Bandara and Soga, 2015; Jassim et
al., 2013), the solid displacement-fluid pressure or solid velocity-fluid velocity
formulation (Zhang et al., 2009; Lei et al., 2020)) and have been widely used in two-
phase coupling problems and engineering applications (Du et al., 2023; Ceccato et al.,
2024; Shen et al., 2024; Zheng et al., 2024a; Yamaguchi et al., 2023; Zheng et al.,
2024b; Zhan et al., 2025).
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Figure 1. Standard algorithm of MPM: (a) interpolating information from particles to
nodes; (b) solving governing equations on nodes; (c) interpolating information from

nodes to particles; (d) update particles information.

However, the standard MPM formulation usually employs low-order shape functions
within an explicit time integration scheme for simplicity and efficiency, which suffers
from the cell-crossing error and the volumetric locking when applied to coupled
hydromechanical problems (Li et al., 2024; Sang et al., 2024). The cell-crossing error
during particle movement arises from the use of low-order shape functions, which
exhibit discontinuous gradients between background mesh elements. To address this
issue, higher-order interpolation functions with continuous gradients across elements

can be employed, such as the Generalized Interpolation Material Point (GIMP)
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method (Bardenhagen and Kober, 2004), the B-spline method (De Vaucorbeil et al.,
2020) and the Convected Particle Domain Interpolation (CPDI) (Wang et al., 2023b).
Due to the low compressibility of pore fluid and limited permeability, the volumetric
locking and erroneous strain may occur during simulation, which may not only result
in undesired pore pressure oscillation but also render the simulation highly unstable.
Various numerical stabilization techniques have been implemented in MPM to solve
this issue, including the reduce integration (Bandara and Soga, 2015; Zheng et al.,
2021), the B-bar approach (Wang et al., 2018; Tang et al., 2024), the nodal or cell
smoothing method (Lei et al., 2020; Wang et al., 2023a), the fractional stepping
method (Kularathna et al., 2021; Jassim et al., 2013), the polynomial pressure
projection method (Zhao and Choo, 2020), the multi-field variational principle (Liu et
al., 2020; Zheng et al., 2021; Tang et al., 2024; Zheng et al., 2022), and coupling with
other algorithms (Baumgarten et al., 2021; Li et al., 2024; Tran et al., 2023; Sang et
al., 2024). Although these techniques produce results that overcome volumetric
locking and reduce pore pressure oscillation, some are conditionally stable, and some
require significant modifications of the existing MPM algorithm, leading to additional
computation cost and difficulty (Lei et al., 2020; Li et al., 2024). Therefore, their
usage should depend on the specific problem at hand. More features and limitations of
these techniques can be found in the summary of Li et al. (Li et al., 2024) and Sang et
al. (Sang et al., 2024).

Here, based on the one-point two-phase MPM scheme (Jassim et al., 2013), we
proposes an explicit stabilized two-phase MPM formulation for both static and
dynamic analyses of solid-fluid porous media. To avert the volumetric locking and
maintain the numerical stability, the stabilized techniques including the strain
smoothing method (Mast et al., 2012) and the multi-field variational principle (Chen
et al., 2018) have been implemented in the proposed formulation. The strain
smoothing method is employed to smooth the volumetric strain rate, and the
calculation of the pore pressure increment at particles is based on the multi-field
variational principle for accuracy and stability. The spurious pore pressure oscillation
can be well mitigated during pore pressure calculation and interpolation. With these
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effective and easy-to-implement techniques, the volumetric locking can be
significantly eliminated under both static and dynamic conditions. The study is
organized as follows. First, the governing equations for solid-fluid two-phase system
are briefly introduced in Section 2. The numerical implementation of the proposed
formulation and the stabilized techniques are presented in section 3. And then four
numerical examples for the verification of the proposed method are performed and

analyzed in section 4. Finally, discussion and conclusion are drawn in the last section.

2 Governing equations

Representative volume Homogenization of each phase

V. v

ps ef
Figure 2. Sketch of material point composition in single-point-two-phase MPM

model (Kularathna et al., 2021).

In one-point two-phase MPM formulation, according to the theory of mixture
(Baumgarten and Kamrin, 2018), the representative volume (RVE) V), of a particle
material particle is a summation of solid phase volume ¥, and fluid phase volume Vy,
and each phase (solid, fluid) in the RVE can be characterized by its volume fraction
(Fig. 2). The apparent density of each phase is characterized by the intrinsic density

with the volume fraction, which reads,

P, =9p,, Py =np; (1)
where ¢ is the solid volume fraction, n is the porosity, ps and pr are the intrinsic
density of solid and fluid, respectively; p, and p, are the apparent density of solid

and fluid, respectively.
2.1 Mass conservation equations

The mass conservations in a part of the solid/fluid phase continuum in Lagrangian
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description are expressed as,

DS[_)v _
S+pV-v. =0 2
RRTARY (2)

D.//—jf _
D +p,V-v, =0 3)

where v,, vy are the velocity of solid and fluid phases in their reference frame,
respectively. In microscale, the solid grain is assumed to be incompressible, so ps is
constant. However, o, will change when the solid phase compacts or dilates due to
the deformation of the solid skeleton structure. Therefore, a simple expansion of Eq.
(2) using the definition of porosity yields an expression for the change rate of the local

measure of porosity,
D'n

Dt =1-n)V-v, (4)

In one-point two-phase MPM formulation, all constituents are represented by the
same Lagrangian material point in the current configuration. The material time
derivative of the fluid phase with respect to the motion of the solid phase is described

as follows,

D' D
Dt Dt (Vf Vs) ( )
So, Eq. (3) can be expressed as,
D'p,
(3, V)V, + PV, =0 ©

And Eq. (6) can be further written as,

D‘Ypf D'n
D +pf7t+(vf—VS)'Vnp/+npt.V'vf=0 (7)

n

Assuming the fluid phase is barotropic, density variation in a barotropic fluid obeys

the following relationship,

1 Dp 1D 8
p, Dt K, Dr ®)

where Kris the bulk modulus of fluid, pris the pore fluid pressure.
Combining with Eq. (4) and neglecting spatial variations in density and porosity, the

pore pressure change rate can be obtained,

D'p,

K v ,
O —7[(1 mV-v +nV-v, ] 9
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2.2 Momentum conservation equations

The momentum conservation equations for each continuum phase are given as,

_ D’v,

p. =5 =Pb=f,~f,+V s, (10)
Df i
Byl =pb+ S+ fi+V o, (D

where b is the body force, which is equal to the gravitational acceleration; f; and f; are
the buoyant force and inter-phase body force, respectively; o, and oy are the solid and
fluid stress, respectively. Due to the viscous effects, a flow through porous media
results in a drag force, which can be considered as a body force enforced on one phase

from the other phase. The classic Darcy’s law describes a linear drag force as,

_npg
K

K

£ (vy=v,) (12)

where K, in the unit of m/s, is the hydraulic conductivity (Ks = psgk/us, where k is
intrinsic permeability in the unit of m? and uris the dynamic viscosity of fluid). This
linear relation has been employed in several studies (Zhan et al., 2023; Liu et al., 2017)
to model the drag force in saturated porous media when the pore flows are in the
laminar flow range with a relatively low Reynolds number. While, the buoyant force,

f», which yields the form for immiscible mixtures,

Jo=p,Vn (13)
And the solid phase stress o; is taken following the effective stress classic form,

6, =c —(1-n)p,I (14)

where I is a 3x3 identity matrix, o'y is the effective solid phase related to the
deformation of the solid phase matrix, which excludes the pressurization of the solid
phase due to the pressure of the pore fluid. And the fluid phase stress oy is simplified

into an isotropic pressure, npAd, which is expressed as,
o, =-np,I (15)
Finally, the momentum equations for solid and fluid phase are given as,

_Dv _ ,
PsTt‘s=psg—fd+V~cs—(l—n)Vp‘/. (16)
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_D'v, _
P, th =p,g+f,—nVp, 17)

With a proper constitutive rule governing the mechanical behavior of the solid
effective stress o'y, the equations can fully capture the motion and physical behavior

of this two-phase system.
3 Numerical implementations
3.1 Discretized of governing equations

In MPM, the material domain is discretized into Lagrangian material points under
Euler background mesh. And the field variables of particles can be interpolated to the
background mesh nodes through shape functions. For instance, the displacement and

its derivative at particle p is expressed as,

j\GZ
u, = Nyu, (18)
I=1
j\/g
w, = N, u, (19)
I=1

where subscripts i and j denote the components of tensor, which follow the Einstein
summation convention, and comma between the subscripts indicates partial
derivatives; uy; is the displacement at grid node 7, Nj, = Ni(x,) is the shape function of
particle p at grid node /, x, denotes the coordinates of particle p, Ny, ; 1s the derivative
of shape functions, Ng is total the grid node number. In this study, the GIMP shape
function (Bardenhagen and Kober, 2004) and discretization is used to avoid the stress
oscillation promoted by the cell-crossing error.

By this way, the momentum equations are discretized in space by means of the
Galerkin method considering nodal shape functions. And a discretized form of

momentum equation of solid phase Eq. (16) on background mesh node is expressed as,

i t
ms[ asli = f;llrzlt + 55? (20)

NI’
where m, = ZN »M,, 1s the node mass for solid, in which N, is total the number of
p=1

int

particles and my, is the particle solid mass; ay; is the solid acceleration at node, f;
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and f,;" are the internal and external nodal forces, respectively.

The internal nodal force is expressed as,

N, N,
‘f;ll?t = Z(l_np)Nlp,jpfpr _ZNIp,jo-slpiij (21)
p=1

p=1
where o0y, is the effective stress of material particle p, py is the pore pressure of

material particle, n, is the material particle porosity, V), is the volume of material
particle p.

The external grid nodal force is expressed as,
Ny Ny _ _
[ =2 Nymb =Y N [V, + [ N, TdS—| (-n,)N,PdS (22)
p=l p=1
where T, and P are the prescribed traction and the prescribed pressure on the

boundary 0%, respectively; dS denotes the surface integral that is only non-zero at the
boundary 0Q.
Likewise, a discretized form of the momentum equation of fluid phase Eq. (17) on the
mesh node can be expressed as,

mgd g = f";'t + fi‘g (23)

NP
where m, =Y m,N, represents the grid node mass for fluid, in which my, is the
p=1

N

=Y'n,N, p,V, represents the nodal internal force from pore
p=1

int
i

particle fluid mass; f,

N, N, _
pressure gradient, /&' =Y N, m b +> N, f.V, —LQ n,N,PdS denotes the nodal external
p=l p=l

forces from body force, inter-phase drag force and the boundary prescribed pressure,
a g 1is the fluid phase acceleration at mesh node, b; is the body force vector.

Meanwhile, the strain rate associated with the material point is calculated with its

corresponding nodal velocity,

= DN, vy +(N, v)'1/2 24
I=1
Epy = Z[pr,j"fi +(Ny,vi)'1/2 (25)
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where vy; and vy are the nodal velocity for the solid phase and fluid phase, respectively;

¢,; and €, are the particle strain rate for the solid phase and fluid phase, respectively.

3.2 Numerical stability

As mentioned above, the solid-fluid coupling MPM suffers from the volumetric
locking. The stabilized technique is needed for the stability of the simulation. Here, to
mitigate the pore pressure oscillation and maintain the numerical stability, the strain
smoothing method is used to smooth the particle volumetric strain rate, while the pore
pressure increment at particles is calculated based on the multi-field variational

principle for the stability, accuracy and smoothness of the results.
3.2.1 Strain smoothing method

The numerically stress/strain smoothing method has been used in the two-phase
saturated and unsaturated MPM formulations (Lei et al., 2020; Wang et al., 2023a)
and can effectively mitigate the stress oscillation in a simple way. Here, for simplicity
and efficiency, a cell-based average approach (Mast et al., 2012) is employed to
smooth the particle volumetric strain rate. By doing this, the volumetric strain rate of

material points p is replaced by the averaged field value of the cell ¢ which it belongs,

a, =2 a,m,/ 3 m, (26)

pec pec

where o, represents the variables include the volumetric strain rate of solid and fluid,
m, is the mass of material point, representing the solid or fluid mass in different
phases.
From the averaged volumetric strain rates &, , the updated strain rates gﬁ is computed
by means of,

&, =€,+£0,/3 (27)

where &, is the deviatoric strain rate, d; is the Kronecker delta. On the basis of the

modified strain rates, stresses can be directly computed using the constitutive relation.

3.2.2 The multi-field variational principle
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Since the formulation of MPM is analogous to that of the traditional finite element
method (FEM), the similar techniques used in FEM for the volumetric locking are
also applicable to MPM. The multi-field variational principle is a commonly used
anti-locking technique in FEM without using high-order shape functions. In MPM,
Chen et al. (Chen et al., 2018) first used the multi-field variational principle to
mitigate volumetric-locking and numerical oscillation in weakly compressible
problems. And then Liu et al. (Liu et al., 2020) and Tang et al. (Tang et al., 2024)
applied this technique in the sing-point two phase unsaturated MPM formulation to
mitigate volumetric-locking and carried out the simulation of the Hong Kong Tsui
Load landslide and Yanyuan landslide. Zheng et al. (Zheng et al., 2021, 2022) used
the multi-field variational principle for the patch recovery of pore pressure increment
in the explicit two-point two phase MPM formulation and fully implicit MPM
formulation. Based on the multi-field variational principle, the pore pressure field is
approximated by expressing the pore pressure increment and the test function as

(Chen et al., 2018),
Py (x,0)=0" (X)a(t) (28)
Sp,(x,t)=da" (O(x) (29)
where Q and a are the polynomial basis function and coefficient vector to be solved.
The polynomial basis function can be constant, linear, or quadratic (i.e., @ =[1], [1, x,
v, z], or [1, x, v, z, x%, xy, %, vz, 2%, zx], and the corresponding coefficient a = [ay)], [ao,

ai, az, a3], or [ao, a1, az, a3, as, as, as, az, as, as, aio]"). Here, in the single-point two-

phase MPM formulation, the weak form of the pore pressure rate can be expressed as,
K

[ 6p,(py +=LLA=m)V v, +nV v, HQ=0 (30)
’ ’ n

And then, the weak form can be changed to,
K, ;
[LO=L1-n)V v, +nV v, 4O =—a| 00"dQ (31)
Q n Q
The coefficient can be further expressed as,
G A K,
a=-H jQQ—"[(l—n)V-vS-l-nV-vs]dQ (32)
n

11
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where H= jg 00"dQ . In order to solve the coefficient vector, the node-based method

(Mast et al., 2012) is used due to its simplicity and efficiency. Using the node-based

method, the node coefficient vector is written as,

-1 o Kf
a,=-H,'Y N, 0, 7[(1—n)V'V_Y +nV-v, 1V, (33)
p=1

where H, =) 0,0'N,V, . After solving the coefficient vector for each node, the
p=1

changing rate of pore pressure can be written as

pp=0,2 4N, (34)
I=1
where Za IV}, 1s the node value interpolated to the particle.
I=1

3.3 Numerical algorithm
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Figure 3. Numerical implementation procedure of the proposed stabilized two phase

MPM formulation.

In the proposed formulation, each time step is solved explicitly according to the
following sequence of sub-steps (see Fig. 3):

(1) All the variables associated with each material point are initialized first (initial
position, stress, pore pressure, etc.);

(2) Interpolate the variables of material points to the nodes of the background mesh
using the shape function calculated based on particle locations with respect to the

background mesh nodes;
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(3) Combined with the correct boundary conditions, the accelerations of each phase
on the background mesh node are obtained based on Eq. (20) and (23);

(4) Update the velocity of all material points for both phases using the FLIP scheme
(Hammerquist and Nairn, 2017);

(5) Update the nodal velocities for both phases by interpolating velocities back from
the material points;

(6) Strain rate increments of solid and fluid phase on particles are calculated, and the
cell-based strain smoothing technique expressed in Eq. (26) is applied to smooth the
volumetric strain rate;

(7) Update the effective stress based on its constitutive model and the pore pressure
based on the multi-field variational principle;

(8) Update the state variables at particles, such as particle volume, porosity and
position;

(9) Reset the background mesh for the next step and store all the updated information

in material points.
4 Numerical examples

In this section, four numerical examples are conducted to demonstrate the
performance of the proposed MPM formulation. First, a one-dimensional
consolidation under both small and large conditions is simulated. Subsequently, the
two-dimensional consolidation under localized loading and cyclic loading are
performed to show its efficacy under external loading. And then, the self-wight
consolidation is analyzed to illustrate its capability in simulating undrained and

drained conditions, as well as large deformation situation.
4.1 One-dimensional consolidation

The one-dimensional consolidation problem has been frequently studied to verify and
assess numerical methods, as it allows a direct comparison with analytical solutions.
Here, both small and large deformation conditions are conducted, and the numerical

results are compared with their corresponding analytical solutions.



330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

4.1.1 Small deformation

As shown in Fig. 4, a saturated soil column with a width of 0.1 m and a length of 1.0
m is considered for the simulation. An isotropic linear elastic constitutive model is
employed, with parameters detailed in Table 1. The background mesh consists of cells
sized 0.05 m x 0.05 m, with 4 material points in each mesh element, resulting in a
total of 160 material points. Roller normal impermeable boundary is applied to the
lateral surfaces, while the bottom is fully fixed and impermeable. The top surface of
the column is permeable, allowing fluid to flow out through it. The initial conditions
include an excess pore pressure po = 10 kPa and zero effective stress. Not considering
gravity, the consolidation process begins by applying a 10 kPa traction to the top
material point layer and keeping it constant during the calculation. The time step is set

to be 1.0 x 1073 s with the total simulation time of 2.0 s.

10 kPa

|

1m Roller normal
impermeable boundary

Fixed impermeable
boundary

>

0.1m

Figure 4. Schematic of the one-dimensional consolidation.



348 Table 1 Material parameters for the one-dimensional consolidation

Parameter Value
Solid grain density ps(kg-m™) 2650
Young’s modulus £ (MPa) 10
Poisson’s ratio v 0.0
Fluid density p,, (kg'm™) 1000
Initial porosity n 0.3
Bulk modulus of fluid K (Gpa) 22
Hydraulic conductivity K (m-s™) 0.001
1.0
08F
Numerical solution
Analytic solution
T,=0
06 T,=0.1
T
349 ) 7,=03
04F T,=05 :
T,=07
02F
T,=2
%90 ' 02 ' 04 ' 0.6 ' 08 ‘ 1.0
PflPo
350 Figure 5. Comparison of pore pressure profiles from the proposed formulation with
351

Terzaghi’s solution.
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Figure 6. Comparison of the average degree of consolidation from the proposed

formulation with Terzaghi’s solution.

Under such a constant loading, the deformation of the column is very small and
Terzaghi’s one-dimensional consolidation theory is applicable. Fig. 5 presents a
comparison of the normalized pore pressure distribution at different time factors
between the numerical solution and the analytical solution (the time factor 7, = Cyt /
H?, where C, is the coefficient of consolidation and H is the drainage path length).
Initially, the pore pressure equals the external load, with the fluid phase undertaking
the external loading. Since the external loading is constant, the pore fluid is gradually
discharged from the top surface and the pore pressure begins to dissipate
progressively from the top. The numerical results show excellent agreement with the
analytical solutions, effectively capturing the dissipation process of the excess pore
pressure during consolidation. Additionally, the comparison of the average
consolidation degree (defined by strain) is presented in Fig. 6, indicating that the
numerical results accurately replicate the deformation process as the analytical

solution shows.

4.1.2 Large deformation
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For the large deformation condition, the same geometry and discretization as in the
small deformation case are used. However, a larger top traction (0.2 MPa) is applied,
a softer material (£ = 1MPa) is considered, and the hydraulic conductivity K is
adjusted to be 0.0001 m-s™. Accordingly, the pore pressure is initialized at 0.2 MPa,
ensuring that the loading is initially fully carried by the fluid phase. Similar to the
small deformation case, the pore pressure will gradually dissipate after applying the
constant loading, but now this process will generate considerable vertical deformation.
The decrease of the column-length is not negligible, therefore the small-strain
Terzaghi's theory is no longer applicable. Based on the large deformation analytical
solution (Xie and Leo, 2004), the evolution of pore pressure, top settlement and the

average degree of consolidation (defined by strain) can be expressed as,

1 Py 2 . Mz _ypep
p,(z.t) =m—v[1n[l+(e . —1);Msm(7)e M (35)
o0 2 )
S, =Hy(1-e™") (1= e ™) (36)
m=1 M
00 2 _ 2
U, =1—”§W€ v (37)

where m,; = 1 / E is the one-dimensional compressibility, p, is applied external load,
Ho is the initial depth of the column, z is the distance to the top surface. With the same

time step, the total simulation time is 300.0 s.

1.0 | Numierical solution
Analytic solution
08 IS S SO - . S S
06 I Us=01
T
E U,=0.3
04 | U,=05
u,=07
U, =0.9
02 °
0.0 : : : :
0.0 0.2 0.4 0.6 0.8 1.0
P! Po

Figure 7. Comparison of pore pressure profiles from the proposed formulation with
analytic solution.
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Figure 8. Comparison of the top settlement from the proposed formulation with

analytic solution.

Fig. 7 shows the numerical solution of pore pressure evolution along the column
height against the results from the analytic solution at different average degrees of
consolidation. In the small deformation case, the consolidation coefficient C, is equal
to 1. While for the large deformation case, the consolidation coefficient C, is very
small, so the consolidation is a long process. Hence, the pore pressure dissipation here
is much slower than that in the small deformation case. The comparison shows that
the numerical results are consistent with the analytic solutions and accurately depict
this large deformation consolidation process. The cell average method used in the
strain smoothing method will give the same volumetric strain rate for the particles in
the same mesh cell, resulting in the same pore pressure distribution in each mesh cell,
but the overall trend of this large consolidation process can still be captured. And Fig.
8 shows the evolution of the settlement at the top surface. The numerical result (final
top settlement: 0.1815 m) is very close to the analytic result (final top settlement:
0.1802 m). The comparison demonstrates the validation and applicability of the

proposed formulation in this two-phase large deformation process.

4.2 Two-dimensional consolidation under localized loading
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In this section, a two-dimensional elastic consolidation under a localized loading is
simulated, with the geometry and boundary conditions illustrated in Fig. 9. Due to the
symmetry of the problem, only half of the domain is modeled. The saturated material
domain possesses a dimension of 10.0 m x 10.0 m, while the background mesh
consists of cell elements sized 0.05 m x 0.05 m, with 4 material points in each cell
element, resulting in 1600 particles. Roller normal impermeable boundary is applied
to the lateral surfaces and the bottom, while the top surface is permeable and
unconstrained. Initially, a constant local loading of 20.0 kPa, spanning a width of 0.3
m, is applied on the left side of the top surface. Without considering gravity, the initial
stress and pore pressure are set to be zero. The isotropic linear elastic constitutive
model is used and the material parameters are provided in Table 2. The time step of
the simulation is 2.0 x 10 s and the total simulation time is 0.1 s. The same
simulation has been conducted in the previous studies by semi-implicit MPM scheme

(Yuan et al., 2023; Kularathna et al., 2021).

3m

I
—>
1

. Localized loading

/‘
Free permeable
boundary (p;= 0)

:E 10m

Roller normal
impermeable boundary

e / ]

10m

Figure 9. Model setup for the two-dimensional consolidation.
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Table 2 Material parameters for the two-dimensional consolidation

Parameter Value

Solid density ps(kg'm™) 2700
Young’s modulus £ (MPa) 10
Poisson’s ratio v 0.3

Fluid density p,, (kg-m™) 1000
Initial porosity n 0.3
Bulk modulus of fluid K,, (Gpa) 2.2

Hydraulic conductivity K; (m-s™) 0.0001

Pore pressure / kPa

(a) With stabilize techniques (b) Without stabilize techniques

Figure 10. Pore pressure distribution with stabilize techniques and without stabilize

techniques at = 0.1 s.

Fig. 10 illustrates the distribution of pore pressure at time ¢ = 0.1 s, comparing the
results obtained with and without stabilized techniques. In Fig. 10b, a spurious pore-
pressure field with a checkerboard distribution is observed. In contrast, the result with
stabilized techniques shows a smooth excess pore pressure field caused by the
external loading (Fig. 10a). It demonstrates that the stabilized techniques can well
mitigate pore pressure oscillation in the two phase MPM formulation, offering a stable
pressure distribution. And the displacement distribution at # = 0.1 s is shown in Fig. 11.
Consistent with the applied local loading, the displacement mainly occurs in the local
loading region, indicating that the local loading is undertaken by the upper left corner

area. The maximum displacement (6.737 mm) occurs at top left corner, which is
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consistent with the result from the semi-implicit MPM formulation (Yuan et al., 2023).
Similar results are also obtained using the semi-implicit MPM with artificial
compressibility stabilization and fractional-step method (Yuan et al.,, 2023;
Kularathna et al., 2021). The stabilized techniques employed here can yield equivalent
results that are free of stress oscillations while accurately preserving the mechanical
behavior.
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Figure 11. Distribution of displacement field at time = 0.1 s.
4.3 Cyclic loading test

Inspirited by the lateral cycle loading test (Liang et al., 2023), we conduct a vertical
cyclic loading test of a saturated granular material. The model setup is shown in Fig.
12, where the saturated material is placed in a rigid box and subjected to a vertical
cyclic loading. The material domain measures 2 m in width and 1 m in height, and is
discretized by quadrilateral element with size of 0.05 m x 0.05 m. And there are 4
particles in each element, giving 3200 particles. Both the bottom and laterals are
normal impermeable and supported by rollers, and the top is unconstrained and
permeable. To apply a cycle loading, the top surface is prescribed by a sinusoidal
function periodic load of 40sinSnt kPa. Table 3 lists the material parameters used for
the isotropic linear elastic constitutive model. Before the cyclic stimulation, an
equilibrium condition is achieved by a linear gravity loading from 0 to 9.81 m/s?

within 0 <7< 0.1 s, and then the gravity remains constant. And to monitor the cycle
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loading response, three monitoring points located at the bottle, middle and top of the
material domain (A, B, C) are selected (as shown in Fig. 12). The time step is set to be

1.0 x 107 s, and the simulation is terminated at 2.1 s.

Periodic loading

D A N N R

c(,1°

Free permeable boundary (p;= 0)

{ B(1,0.5). :E 1m

‘\ ‘_"______-»

Roller normal impermeable boundary

A(1,0)

2m

Figure 12. Schematic of cycle loading test.

Table 3 Material parameters for the cycle loading test

Parameter Value

Solid density ps(kg'm™) 2650
Young’s modulus £ (MPa) 600
Poisson’s ratio v 0.3

Fluid density p, (kg-m™) 1000
Initial porosity n 0.23
Bulk modulus of fluid K., (Gpa) 2.2
Hydraulic conductivity K (m-s™") 0.001
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Figure 13. Distribution of pore pressure at = 0.1 s (hydrostatic Pressure), £ =0.51s, ¢
=0.61s,and t=0.71s.

Fig. 13 shows the generated pore pressure at four different time instants. After the
application of linear gravity loading, an equilibrium condition is achieved, and a
hydrostatic pressure field is generated (Fig. 13a). Subsequently, a vertical cyclic
loading is applied to the surface. When the material domain is subjected to
compressive loading, the pore pressure field increases, whereas under tensile loading,
the pore pressure field decreases correspondingly. This vertical cyclic shaking induces
an apparent periodic buildup and dissipation of excess pore pressure in the material
domain. In Fig. 13b, a clear pore pressure decrease due to tensile loading at = 0.51 s
can be seen. As the tensile loading gradually decreases and shifts into compressive
loading, the pore pressure will gradually raise up. As a result, the pore pressure field
returns to the hydrostatic state at # = 0.61 s (Fig. 13c). Subsequently, the compressive
loading leads to a further increase in pore pressure. As depicted in Fig. 13d, a
significant excess pore pressure field is regenerated. Therefore, the pore pressure in
the material domain exhibits periodic variations in response to the cyclic loading.

And to further present the cyclic dynamic response under the applied cyclic loading,
the evolution of pore pressure and displacement at the selected monitoring points is
presented in Fig. 14. The time history of pore pressure and displacement over time
demonstrates this cyclic loading response more quantitatively and vividly. The linear
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gravity loading ends at # = 0.1 s, during which the displacement remains very small.
After that, the vertical loading will induce a relatively large displacement. Under the
sinusoidal periodic loading, the vertical displacement of point B and C exhibits a
sinusoidal variation, and the pore pressure at point A and B also changes accordingly.

These cyclic responses can be well captured by the proposed stabilized MPM

formulation.
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Figure 14. Evolution of pore pressure and displacement at selected points.
4.4 Self-weight consolidation

The large-deformation consolidation of an elastic slumping block under gravity
loading is presented in this section (Fig. 15), which is related to the settlement of a
very soft soil and has been simulated in previous studies (Zheng et al., 2021, 2022;
Sang et al., 2024; Wang et al., 2023a). The simulation focuses on the right half of a
symmetric domain with dimensions of 4 m width and 2 m height. The material
domain is discretized using quadrilateral element of size 0.125 mx 0.125 m, and 4

particles in each element, giving 1024 particles in total. No external load is applied,
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making the consolidation process solely driven by the initial gravitational force at the
start of the simulation. The gravity linearly increases from 0 to 9.81 m/s? within 0 < ¢
< 0.1 s and then remains constant. Both the top and right boundaries are unconstrained
and freely draining, while the left and bottom boundaries are normally impermeable
and supported by rollers. The gravity will give rise to pore pressure build-up, while
the deformation will lead to the dissipation of pore pressure over time. And two points
(P1, P2) at the bottle and middle are selected to evaluate the consolidation process (as
shown in Fig. 15). An isotropic linear elastic constitutive model is used, and the
parameters are listed in Table 4. The total simulation time is 0.5, and the simulation is

performed with a time step equal to 1.0x 10 s.
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boundary (p;= 0)
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\ L Py(1,0)
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Figure 15. Schematic of the self-weight consolidation

Table 4 Material parameters for the self-weight consolidation

Parameter Value

Solid density ps(kg-m™) 2650
Young’s modulus £ (kPa) 100
Poisson’s ratio v 0.3

Fluid density p, (kg-m™) 1000
Initial porosity n 0.4
Bulk modulus of fluid X,, (Gpa) 2.2

Hydraulic conductivity K (m-s™") 0.0001
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Figure 16. Pore pressures distribution at # = 0.05 s obtained with stabilize techniques

and without stabilize techniques.
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Figure 17. Pore pressures distribution at different times.
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Figure 18. Deviatoric stress distribution at different times.

Initially, due to the relatively quick application of gravity loading, the pore fluid
cannot be rapidly discharged, and the loading process is carried out under

approximately undrained condition. Therefore, the applied gravity loading will induce
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excess pore pressure at the beginning. Fig. 16 shows pore pressure fields after gravity
loading (¢ = 0.05 s) with stabilized techniques and without stabilized techniques. It
can be seen that the result without stabilized techniques suffers from pore pressure
oscillations. The stabilized result, in contrast, eliminates spurious oscillations
effectively under the stringent undrained condition. Moreover, the distribution of pore
pressure and deviatoric stress at three different times (0.1 s, 0.3 s and 0.5 s) are
illustrated in Fig. 17 and 18, respectively. Upon the application of linear gravity
loading, a pore pressure field develops, gradually decreasing from the bottom left
corner upwards, as shown at £ = 0.1 s (Fig. 17a). At this stage, the deformation is not
large, with a localized region of deviatoric stress distribution observed near the
bottom right corner (Fig. 18a). Subsequently, gravity continues to generate pore
pressure, and the deviatoric stress gradually increases as deformation progresses. As
deformation develops under gravity, the pore pressure first reaches the maximum
value and then dissipates because of the deformation and drainage at the boundary.
This process can be observed in Fig. 17b, Fig. 18b and Fig. 17c, Fig. 18c. Both pore
pressure and deviatoric stress filed change continuously along the large deformation
process. The absence of checkerboard oscillations shows the stability of the proposed
stabilized formulation in capturing the mechanical behavior of the slumping block
during the consolidation process.

To further verify the accuracy of the results, the time evolution of the pore pressure at
two points (P, P> in Fig. 15) is shown in Fig. 19, and the results are compared with
those of Zheng et al. (Zheng et al., 2022) using implicit stabilized MPM formulation
and Sang et al. (Sang et al., 2024) using implicit coupled MPM formulation. During
the linear gravity loading, pore pressure increases linearly, followed by non-
monotonic dissipation due to the Mandel-Cryer effect. The curves obtained using the
proposed stabilized formulation agree well with those of Zheng et al. (Zheng et al.,
2022) and Sang et al. (Sang et al., 2024). And the final displacement field (Fig. 20)
closely matches the results reported in previous studies (Wang et al., 2023a; Yuan et

al., 2023).
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Figure 19. Pore pressures evolution at two selected points.
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Figure 20. Displacement distribution at 0.5 s.
5 Discussion and conclusion

For the hydromechanical coupling problems in solid-fluid porous media, this study
presents an explicit stabilized two-phase material point method by incorporating the
strain smoothing method and the multi-field variational principle in the single-point
two phase MPM scheme. The proposed model effectively mitigates pore pressure
oscillation and maintains numerical stability.

The proposed two-phase MPM was initially validated through one-dimensional
consolidation problem under both small and large deformation cases, with the
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numerical results showing strong agreement with analytical solutions. It was further
assessed through two-dimensional consolidation under localized loading and cyclic
loading, demonstrating the formulation’s ability in accurately capturing the dynamic
response of saturated porous media under external loads. Finally, the self-weight
consolidation was analyzed to showcase its efficacy in simulating both undrained and
drained conditions, as well as handling large deformation problems. The results
aligned closely with analytical solutions and outcomes from other approaches.
Particularly, the pore pressure instabilities were greatly mitigated by the stabilized
techniques, as clearly validated by the numerical results in terms of pore pressure.

With its effective and easy-to-implement stabilized techniques, the proposed two-
phase MPM formulation is well-suited for analyzing a wide range of hydromechanical
processes under various undrained, drained, and loading conditions. It offers an
effective and reliable approach for simulating both static and dynamic processes in
solid-fluid porous media. While the current work is limited to the linear elastic
behavior of the solid phase, future efforts will focus on the practice and application
involving more complex large deformation problems and advanced constitutive

models.

Code and data availability. The model developed in this study is based on the open
source MPM code, which 1S available on Github:
https://github.com/xzhang66/MPM3D-F90 (Zhang et al., 2016). The current version
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