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Abstract. For the hydromechanically coupling of solid-fluid porous media, this study 12 

presents an explicit stabilized two-phase material point method (MPM) formulation 13 

based on the one-point two-phase MPM scheme. To mitigate the spurious pore 14 

pressure and maintain the numerical stability, the stabilized techniques including the 15 

strain smoothing method and the multi-field variational principle are implemented in 16 

the proposed formulation. The strain smoothing technique is used to smooth the 17 

volumetric strain rate, and the calculation of the pore pressure increment at particles is 18 

based on the multi-field variational principle. Four numerical examples are performed 19 

to evaluate the performance of the proposed formulation. With its effective and easy-20 

to-implement stabilized techniques, the proposed formulation provides stable and 21 

reliable outcomes that align well with analytical solutions and results from other 22 

approaches, offering extensive validation that the proposed two phase MPM 23 

formulation is an effective and reliable approach for the simulation of solid-fluid 24 

porous media under both static and dynamic conditions. 25 

1 Introduction 26 

The hydromechanically coupling of solid-fluid porous media widely presents in 27 
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nature and engineering, from natural processes like rainfall-induced landslide and 28 

earthquake-induced liquefaction, to coastal dike-breaking and offshore foundations 29 

(Jerolmack and Daniels, 2019; Zhan et al., 2025; Guan and Shi, 2023). Due to the 30 

practical importance, reproducing and understanding the physical nature of such a 31 

two-phase system have attracted strong research interests across many scientific and 32 

engineering disciplines, which has become increasingly recognized with recent 33 

advances in both observational and simulation tools (Li et al., 2023; Taylor‐Noonan et 34 

al., 2022; Pudasaini and Mergili, 2019). Numerical modeling of this two-phase 35 

coupling system is of great interest in geological hazard prevention and geotechnical 36 

field, yet it remains a significant challenge for researchers in many disciplines alike. 37 

In soil-fluid coupling problems, the motion of each constituent is governed by stress 38 

distributions, external gravity forces and interaction forces (Pudasaini and Mergili, 39 

2019; Baumgarten and Kamrin, 2018; Bandara and Soga, 2015). For the simulation of 40 

this two-phase system, various numerical methods have been proposed, including the 41 

smoothed particle hydrodynamics (SPH) method (Lian et al., 2023; Chen et al., 2023), 42 

the particle finite element method (Yuan et al., 2022; Jin and Yin, 2022), and the 43 

material point method (MPM) (Bandara and Soga, 2015; Bandara et al., 2016; Jassim 44 

et al., 2013; Yerro et al., 2015; Wyser et al., 2020). Among these methods, MPM has 45 

proven to be both effective and efficient for simulating large deformation problems 46 

with history-dependent materials. Originated from the particle-in-cell (PIC) method, 47 

MPM is a hybrid Euler-Lagrangian method that has significant advantages in dealing 48 

with large deformation problems (Li et al., 2020; Zhao et al., 2023; Fernández et al., 49 

2023). In MPM, a continuum body is discretized by a group of material points 50 

carrying all physical information like displacement, velocity, stress, strain, etc. At 51 

each time step, the physical information at particles is interpolated to the background 52 

mesh, which is essentially Eulerian mesh, and then the governing equations can be 53 

solved on it. Subsequently, the solution is re-interpolated to each material particle for 54 

the update of particle physical information. The original background mesh can be 55 

used again in the new time step, which can eliminate the mesh distortion problem in 56 

Lagrangian method, and the accuracy of large deformation problem simulations can 57 
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be guaranteed (Fig. 1). Currently, various coupling MPM formulations have been 58 

proposed (i.e. the one-point or two-point schemes (Bandara and Soga, 2015; Jassim et 59 

al., 2013), the solid displacement-fluid pressure or solid velocity-fluid velocity 60 

formulation (Zhang et al., 2009; Lei et al., 2020)) and have been widely used in two-61 

phase coupling problems and engineering applications (Du et al., 2023; Ceccato et al., 62 

2024; Shen et al., 2024; Zheng et al., 2024a; Yamaguchi et al., 2023; Zheng et al., 63 

2024b; Zhan et al., 2025). 64 

 65 

Figure 1. Standard algorithm of MPM: (a) interpolating information from particles to 66 

nodes; (b) solving governing equations on nodes; (c) interpolating information from 67 

nodes to particles; (d) update particles information. 68 

However, the standard MPM formulation usually employs low-order shape functions 69 

within an explicit time integration scheme for simplicity and efficiency, which suffers 70 

from the cell-crossing error and the volumetric locking when applied to coupled 71 

hydromechanical problems (Li et al., 2024; Sang et al., 2024). The cell-crossing error 72 

during particle movement arises from the use of low-order shape functions, which 73 

exhibit discontinuous gradients between background mesh elements. To address this 74 

issue, higher-order interpolation functions with continuous gradients across elements 75 

can be employed, such as the Generalized Interpolation Material Point (GIMP) 76 
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method (Bardenhagen and Kober, 2004), the B-spline method (De Vaucorbeil et al., 77 

2020) and the Convected Particle Domain Interpolation (CPDI) (Wang et al., 2023b). 78 

Due to the low compressibility of pore fluid and limited permeability, the volumetric 79 

locking and erroneous strain may occur during simulation, which may not only result 80 

in undesired pore pressure oscillation but also render the simulation highly unstable. 81 

Various numerical stabilization techniques have been implemented in MPM to solve 82 

this issue, including the reduce integration (Bandara and Soga, 2015; Zheng et al., 83 

2021), the B-bar approach (Wang et al., 2018; Tang et al., 2024), the nodal or cell 84 

smoothing method (Lei et al., 2020; Wang et al., 2023a), the fractional stepping 85 

method (Kularathna et al., 2021; Jassim et al., 2013), the polynomial pressure 86 

projection method (Zhao and Choo, 2020), the multi-field variational principle (Liu et 87 

al., 2020; Zheng et al., 2021; Tang et al., 2024; Zheng et al., 2022), and coupling with 88 

other algorithms (Baumgarten et al., 2021; Li et al., 2024; Tran et al., 2023; Sang et 89 

al., 2024). Although these techniques produce results that overcome volumetric 90 

locking and reduce pore pressure oscillation, some are conditionally stable, and some 91 

require significant modifications of the existing MPM algorithm, leading to additional 92 

computation cost and difficulty (Lei et al., 2020; Li et al., 2024). Therefore, their 93 

usage should depend on the specific problem at hand. More features and limitations of 94 

these techniques can be found in the summary of Li et al. (Li et al., 2024) and Sang et 95 

al. (Sang et al., 2024). 96 

Here, based on the one-point two-phase MPM scheme (Jassim et al., 2013), we 97 

proposes an explicit stabilized two-phase MPM formulation for both static and 98 

dynamic analyses of solid-fluid porous media. To avert the volumetric locking and 99 

maintain the numerical stability, the stabilized techniques including the strain 100 

smoothing method (Mast et al., 2012) and the multi-field variational principle (Chen 101 

et al., 2018) have been implemented in the proposed formulation. The strain 102 

smoothing method is employed to smooth the volumetric strain rate, and the 103 

calculation of the pore pressure increment at particles is based on the multi-field 104 

variational principle for accuracy and stability. The spurious pore pressure oscillation 105 

can be well mitigated during pore pressure calculation and interpolation. With these 106 
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effective and easy-to-implement techniques, the volumetric locking can be 107 

significantly eliminated under both static and dynamic conditions. The study is 108 

organized as follows. First, the governing equations for solid-fluid two-phase system 109 

are briefly introduced in Section 2. The numerical implementation of the proposed 110 

formulation and the stabilized techniques are presented in section 3. And then four 111 

numerical examples for the verification of the proposed method are performed and 112 

analyzed in section 4. Finally, discussion and conclusion are drawn in the last section. 113 

2 Governing equations 114 

 115 

Figure 2. Sketch of material point composition in single-point-two-phase MPM 116 

model (Kularathna et al., 2021). 117 

In one-point two-phase MPM formulation, according to the theory of mixture 118 

(Baumgarten and Kamrin, 2018), the representative volume (RVE) Vp of a particle 119 

material particle is a summation of solid phase volume Vsp and fluid phase volume Vfp, 120 

and each phase (solid, fluid) in the RVE can be characterized by its volume fraction 121 

(Fig. 2). The apparent density of each phase is characterized by the intrinsic density 122 

with the volume fraction, which reads, 123 

s s = , f fn =                                               (1) 124 

where φ is the solid volume fraction, n is the porosity, ρs and ρf are the intrinsic 125 

density of solid and fluid, respectively; s  and f  are the apparent density of solid 126 

and fluid, respectively. 127 

2.1 Mass conservation equations 128 

The mass conservations in a part of the solid/fluid phase continuum in Lagrangian 129 
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description are expressed as, 130 
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where vs, vf are the velocity of solid and fluid phases in their reference frame, 133 

respectively. In microscale, the solid grain is assumed to be incompressible, so ρs is 134 

constant. However, s  will change when the solid phase compacts or dilates due to 135 

the deformation of the solid skeleton structure. Therefore, a simple expansion of Eq. 136 

(2) using the definition of porosity yields an expression for the change rate of the local 137 

measure of porosity, 138 

(1 )
s

s

D n
n

Dt
= −   v                                                    (4) 139 

In one-point two-phase MPM formulation, all constituents are represented by the 140 

same Lagrangian material point in the current configuration. The material time 141 

derivative of the fluid phase with respect to the motion of the solid phase is described 142 

as follows, 143 

( )
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= + − v v                                           (5) 144 

So, Eq. (3) can be expressed as, 145 
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And Eq. (6) can be further written as, 147 

( ) 0
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Assuming the fluid phase is barotropic, density variation in a barotropic fluid obeys 149 

the following relationship, 150 

1 1
s s

f f

f f

D D p

Dt K Dt




=                                            (8) 151 

where Kf is the bulk modulus of fluid, pf is the pore fluid pressure. 152 

Combining with Eq. (4) and neglecting spatial variations in density and porosity, the 153 

pore pressure change rate can be obtained, 154 

[(1 ) ]

s

f f

s f
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= − −  +  v v                              (9) 155 
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2.2 Momentum conservation equations 156 

The momentum conservation equations for each continuum phase are given as,  157 

s

s

s s b d s

D
f f

Dt
 = − − +

v
b σ                                 (10) 158 

f

f

f f b d f

D
f f

Dt
 = + + + 

v
b σ                               (11) 159 

where b is the body force, which is equal to the gravitational acceleration; fb and fd are 160 

the buoyant force and inter-phase body force, respectively; σs and σf are the solid and 161 

fluid stress, respectively. Due to the viscous effects, a flow through porous media 162 

results in a drag force, which can be considered as a body force enforced on one phase 163 

from the other phase. The classic Darcy’s law describes a linear drag force as, 164 

( )
f

d

s

s f

n g
f

K


= −v v                                            (12) 165 

where Ks, in the unit of m/s, is the hydraulic conductivity (Ks = ρfgk/μf, where k is 166 

intrinsic permeability in the unit of m2 and μf is the dynamic viscosity of fluid). This 167 

linear relation has been employed in several studies (Zhan et al., 2023; Liu et al., 2017) 168 

to model the drag force in saturated porous media when the pore flows are in the 169 

laminar flow range with a relatively low Reynolds number. While, the buoyant force, 170 

fb, which yields the form for immiscible mixtures, 171 

b ff p n=                                                    (13) 172 

And the solid phase stress σs is taken following the effective stress classic form, 173 

(1 )s s fn p= − −σ σ I                                          (14) 174 

where I is a 3×3 identity matrix, σ′s is the effective solid phase related to the 175 

deformation of the solid phase matrix, which excludes the pressurization of the solid 176 

phase due to the pressure of the pore fluid. And the fluid phase stress σf is simplified 177 

into an isotropic pressure, npfI, which is expressed as, 178 

f fnp= −σ I                                                     (15) 179 

Finally, the momentum equations for solid and fluid phase are given as, 180 

(1 )
s

s

s s d s f

D
g f n p

Dt
  = − +  − − 

v
σ                      (16) 181 
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D
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With a proper constitutive rule governing the mechanical behavior of the solid 183 

effective stress σ′s, the equations can fully capture the motion and physical behavior 184 

of this two-phase system. 185 

3 Numerical implementations 186 

3.1 Discretized of governing equations 187 

In MPM, the material domain is discretized into Lagrangian material points under 188 

Euler background mesh. And the field variables of particles can be interpolated to the 189 

background mesh nodes through shape functions. For instance, the displacement and 190 

its derivative at particle p is expressed as, 191 

1

gN

pi Ip Ii

I

u N u
=

=                                                     (18) 192 

, ,

1

gN

pi j Ip j Ii

I

u N u
=

=                                                 (19) 193 

where subscripts i and j denote the components of tensor, which follow the Einstein 194 

summation convention, and comma between the subscripts indicates partial 195 

derivatives; uIi is the displacement at grid node I, NIp = NI(xp) is the shape function of 196 

particle p at grid node I, xp denotes the coordinates of particle p, NIp, j is the derivative 197 

of shape functions, Ng is total the grid node number. In this study, the GIMP shape 198 

function (Bardenhagen and Kober, 2004) and discretization is used to avoid the stress 199 

oscillation promoted by the cell-crossing error. 200 

By this way, the momentum equations are discretized in space by means of the 201 

Galerkin method considering nodal shape functions. And a discretized form of 202 

momentum equation of solid phase Eq. (16) on background mesh node is expressed as, 203 

int ext

sI sIi sIi sIim a f f= +                                            (20) 204 

where 
1

pN

sI Ip sp

p

m N m
=

=  is the node mass for solid, in which Np is total the number of 205 

particles and msp is the particle solid mass; asIi is the solid acceleration at node, 
int

sIif  206 
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and ext

sIif  are the internal and external nodal forces, respectively. 207 

The internal nodal force is expressed as, 208 

, ,

1 1

(1 )
p pN N

int

siI p Ip j pspijfp p Ip j

p p

f n N p V N V
= =

= − −                       (21) 209 

where spij   is the effective stress of material particle p, pfp is the pore pressure of 210 

material particle, np is the material particle porosity, Vp is the volume of material 211 

particle p. 212 

The external grid nodal force is expressed as, 213 

1 1
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p p
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p I
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p p
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where sT  and P  are the prescribed traction and the prescribed pressure on the 215 

boundary ∂Ω, respectively; dS denotes the surface integral that is only non-zero at the 216 

boundary ∂Ω. 217 

Likewise, a discretized form of the momentum equation of fluid phase Eq. (17) on the 218 

mesh node can be expressed as, 219 

int ext

fI fIi fIi fIim a f f= +                                               (23) 220 

where 
1
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p
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=

=  represents the grid node mass for fluid, in which mfp is the 221 

particle fluid mass; ,

1
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p

f if n N p V
=

=  represents the nodal internal force from pore 222 

pressure gradient, 
1 1
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p d p

e
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=


=

= −+  P  denotes the nodal external 223 

forces from body force, inter-phase drag force and the boundary prescribed pressure, 224 

fIia  is the fluid phase acceleration at mesh node, bi is the body force vector. 225 

Meanwhile, the strain rate associated with the material point is calculated with its 226 

corresponding nodal velocity, 227 

,
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where vsi and vfi are the nodal velocity for the solid phase and fluid phase, respectively; 230 

spij  and fpij  are the particle strain rate for the solid phase and fluid phase, respectively. 231 

3.2 Numerical stability 232 

As mentioned above, the solid-fluid coupling MPM suffers from the volumetric 233 

locking. The stabilized technique is needed for the stability of the simulation. Here, to 234 

mitigate the pore pressure oscillation and maintain the numerical stability, the strain 235 

smoothing method is used to smooth the particle volumetric strain rate, while the pore 236 

pressure increment at particles is calculated based on the multi-field variational 237 

principle for the stability, accuracy and smoothness of the results. 238 

3.2.1 Strain smoothing method 239 

The numerically stress/strain smoothing method has been used in the two-phase 240 

saturated and unsaturated MPM formulations (Lei et al., 2020; Wang et al., 2023a) 241 

and can effectively mitigate the stress oscillation in a simple way. Here, for simplicity 242 

and efficiency, a cell-based average approach (Mast et al., 2012) is employed to 243 

smooth the particle volumetric strain rate. By doing this, the volumetric strain rate of 244 

material points p is replaced by the averaged field value of the cell c which it belongs, 245 

/p p p p

p c p c

m m 
 

=                                           (26) 246 

where αp represents the variables include the volumetric strain rate of solid and fluid, 247 

mp is the mass of material point, representing the solid or fluid mass in different 248 

phases. 249 

From the averaged volumetric strain rates v , the updated strain rates ij  is computed 250 

by means of, 251 

/ 3ij d v ij   = +                                                 (27) 252 

where d  is the deviatoric strain rate, δij is the Kronecker delta. On the basis of the 253 

modified strain rates, stresses can be directly computed using the constitutive relation. 254 

3.2.2 The multi-field variational principle 255 
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Since the formulation of MPM is analogous to that of the traditional finite element 256 

method (FEM), the similar techniques used in FEM for the volumetric locking are 257 

also applicable to MPM. The multi-field variational principle is a commonly used 258 

anti-locking technique in FEM without using high-order shape functions. In MPM, 259 

Chen et al. (Chen et al., 2018) first used the multi-field variational principle to 260 

mitigate volumetric-locking and numerical oscillation in weakly compressible 261 

problems. And then Liu et al. (Liu et al., 2020) and Tang et al. (Tang et al., 2024) 262 

applied this technique in the sing-point two phase unsaturated MPM formulation to 263 

mitigate volumetric-locking and carried out the simulation of the Hong Kong Tsui 264 

Load landslide and Yanyuan landslide. Zheng et al. (Zheng et al., 2021, 2022) used 265 

the multi-field variational principle for the patch recovery of pore pressure increment 266 

in the explicit two-point two phase MPM formulation and fully implicit MPM 267 

formulation. Based on the multi-field variational principle, the pore pressure field is 268 

approximated by expressing the pore pressure increment and the test function as 269 

(Chen et al., 2018), 270 

( , ) ( ) ( )T

fp t Q a t=x x                                               (28) 271 

( , ) ( ) ( )T

fp t a t Q =x x                                           (29) 272 

where Q and a are the polynomial basis function and coefficient vector to be solved. 273 

The polynomial basis function can be constant, linear, or quadratic (i.e., Q = [1], [1, x, 274 

y, z], or [1, x, y, z, x2, xy, y2, yz, z2, zx], and the corresponding coefficient a = [a0], [a0, 275 

a1, a2, a3]
T, or [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10]

T). Here, in the single-point two-276 

phase MPM formulation, the weak form of the pore pressure rate can be expressed as, 277 
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K
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And then, the weak form can be changed to, 279 
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The coefficient can be further expressed as, 281 
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K
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Q−
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where 
T dQQ


= H . In order to solve the coefficient vector, the node-based method 283 

(Mast et al., 2012) is used due to its simplicity and efficiency. Using the node-based 284 

method, the node coefficient vector is written as, 285 

1

1

[(1 ) ]
pn

f

I I Ip p s s p

p

K
N Q n n V

n

−

=

= − −  +  a H v v                     (33) 286 

where 
1

pn

T

I p p Ip p

p

Q Q N V
=

=H . After solving the coefficient vector for each node, the 287 

changing rate of pore pressure can be written as 288 

1

gn

T

fp p I Ip

I

p Q a N
=

=                                                  (34) 289 

where 
1

gn

I Ip

I

a N
=

  is the node value interpolated to the particle. 290 

3.3 Numerical algorithm 291 
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 292 

Figure 3. Numerical implementation procedure of the proposed stabilized two phase 293 

MPM formulation. 294 

In the proposed formulation, each time step is solved explicitly according to the 295 

following sequence of sub-steps (see Fig. 3): 296 

(1) All the variables associated with each material point are initialized first (initial 297 

position, stress, pore pressure, etc.); 298 

(2) Interpolate the variables of material points to the nodes of the background mesh 299 

using the shape function calculated based on particle locations with respect to the 300 

background mesh nodes; 301 



14 

(3) Combined with the correct boundary conditions, the accelerations of each phase 302 

on the background mesh node are obtained based on Eq. (20) and (23); 303 

(4) Update the velocity of all material points for both phases using the FLIP scheme 304 

(Hammerquist and Nairn, 2017); 305 

(5) Update the nodal velocities for both phases by interpolating velocities back from 306 

the material points; 307 

(6) Strain rate increments of solid and fluid phase on particles are calculated, and the 308 

cell-based strain smoothing technique expressed in Eq. (26) is applied to smooth the 309 

volumetric strain rate; 310 

(7) Update the effective stress based on its constitutive model and the pore pressure 311 

based on the multi-field variational principle; 312 

(8) Update the state variables at particles, such as particle volume, porosity and 313 

position; 314 

(9) Reset the background mesh for the next step and store all the updated information 315 

in material points. 316 

4 Numerical examples 317 

In this section, four numerical examples are conducted to demonstrate the 318 

performance of the proposed MPM formulation. First, a one-dimensional 319 

consolidation under both small and large conditions is simulated. Subsequently, the 320 

two-dimensional consolidation under localized loading and cyclic loading are 321 

performed to show its efficacy under external loading. And then, the self-wight 322 

consolidation is analyzed to illustrate its capability in simulating undrained and 323 

drained conditions, as well as large deformation situation. 324 

4.1 One-dimensional consolidation 325 

The one-dimensional consolidation problem has been frequently studied to verify and 326 

assess numerical methods, as it allows a direct comparison with analytical solutions. 327 

Here, both small and large deformation conditions are conducted, and the numerical 328 

results are compared with their corresponding analytical solutions. 329 
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4.1.1 Small deformation 330 

As shown in Fig. 4, a saturated soil column with a width of 0.1 m and a length of 1.0 331 

m is considered for the simulation. An isotropic linear elastic constitutive model is 332 

employed, with parameters detailed in Table 1. The background mesh consists of cells 333 

sized 0.05 m × 0.05 m, with 4 material points in each mesh element, resulting in a 334 

total of 160 material points. Roller normal impermeable boundary is applied to the 335 

lateral surfaces, while the bottom is fully fixed and impermeable. The top surface of 336 

the column is permeable, allowing fluid to flow out through it. The initial conditions 337 

include an excess pore pressure p0 = 10 kPa and zero effective stress. Not considering 338 

gravity, the consolidation process begins by applying a 10 kPa traction to the top 339 

material point layer and keeping it constant during the calculation. The time step is set 340 

to be 1.0 × 10−5 s with the total simulation time of 2.0 s. 341 

 342 

Figure 4. Schematic of the one-dimensional consolidation. 343 

 344 

 345 

 346 

 347 
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Table 1  Material parameters for the one-dimensional consolidation 348 

Parameter Value 

Solid grain density ρs(kg·m-3) 2650 

Young’s modulus E (MPa) 10 

Poisson’s ratio υ 0.0 

Fluid density ρw (kg·m-3) 1000 

Initial porosity n 0.3 

Bulk modulus of fluid Kf (Gpa) 2.2 

Hydraulic conductivity Ks (m·s-1) 0.001 

 349 

Figure 5. Comparison of pore pressure profiles from the proposed formulation with 350 

Terzaghi’s solution. 351 
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 352 

Figure 6. Comparison of the average degree of consolidation from the proposed 353 

formulation with Terzaghi’s solution. 354 

Under such a constant loading, the deformation of the column is very small and 355 

Terzaghi’s one-dimensional consolidation theory is applicable. Fig. 5 presents a 356 

comparison of the normalized pore pressure distribution at different time factors 357 

between the numerical solution and the analytical solution (the time factor Tv = Cvt / 358 

H2, where Cv is the coefficient of consolidation and H is the drainage path length). 359 

Initially, the pore pressure equals the external load, with the fluid phase undertaking 360 

the external loading. Since the external loading is constant, the pore fluid is gradually 361 

discharged from the top surface and the pore pressure begins to dissipate 362 

progressively from the top. The numerical results show excellent agreement with the 363 

analytical solutions, effectively capturing the dissipation process of the excess pore 364 

pressure during consolidation. Additionally, the comparison of the average 365 

consolidation degree (defined by strain) is presented in Fig. 6, indicating that the 366 

numerical results accurately replicate the deformation process as the analytical 367 

solution shows. 368 

4.1.2 Large deformation 369 
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For the large deformation condition, the same geometry and discretization as in the 370 

small deformation case are used. However, a larger top traction (0.2 MPa) is applied, 371 

a softer material (E = 1MPa) is considered, and the hydraulic conductivity Ks is 372 

adjusted to be 0.0001 m·s-1. Accordingly, the pore pressure is initialized at 0.2 MPa, 373 

ensuring that the loading is initially fully carried by the fluid phase. Similar to the 374 

small deformation case, the pore pressure will gradually dissipate after applying the 375 

constant loading, but now this process will generate considerable vertical deformation. 376 

The decrease of the column-length is not negligible, therefore the small-strain 377 

Terzaghi's theory is no longer applicable. Based on the large deformation analytical 378 

solution (Xie and Leo, 2004), the evolution of pore pressure, top settlement and the 379 

average degree of consolidation (defined by strain) can be expressed as, 380 
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where mvl = 1 / E is the one-dimensional compressibility, pa is applied external load, 384 

𝐻0 is the initial depth of the column, z is the distance to the top surface. With the same 385 

time step, the total simulation time is 300.0 s. 386 

 387 

Figure 7. Comparison of pore pressure profiles from the proposed formulation with 388 

analytic solution. 389 
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 390 

Figure 8. Comparison of the top settlement from the proposed formulation with 391 

analytic solution. 392 

Fig. 7 shows the numerical solution of pore pressure evolution along the column 393 

height against the results from the analytic solution at different average degrees of 394 

consolidation. In the small deformation case, the consolidation coefficient Cv is equal 395 

to 1. While for the large deformation case, the consolidation coefficient Cv is very 396 

small, so the consolidation is a long process. Hence, the pore pressure dissipation here 397 

is much slower than that in the small deformation case. The comparison shows that 398 

the numerical results are consistent with the analytic solutions and accurately depict 399 

this large deformation consolidation process. The cell average method used in the 400 

strain smoothing method will give the same volumetric strain rate for the particles in 401 

the same mesh cell, resulting in the same pore pressure distribution in each mesh cell, 402 

but the overall trend of this large consolidation process can still be captured. And Fig. 403 

8 shows the evolution of the settlement at the top surface. The numerical result (final 404 

top settlement: 0.1815 m) is very close to the analytic result (final top settlement: 405 

0.1802 m). The comparison demonstrates the validation and applicability of the 406 

proposed formulation in this two-phase large deformation process. 407 

4.2 Two-dimensional consolidation under localized loading 408 
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In this section, a two-dimensional elastic consolidation under a localized loading is 409 

simulated, with the geometry and boundary conditions illustrated in Fig. 9. Due to the 410 

symmetry of the problem, only half of the domain is modeled. The saturated material 411 

domain possesses a dimension of 10.0 m × 10.0 m, while the background mesh 412 

consists of cell elements sized 0.05 m × 0.05 m, with 4 material points in each cell 413 

element, resulting in 1600 particles. Roller normal impermeable boundary is applied 414 

to the lateral surfaces and the bottom, while the top surface is permeable and 415 

unconstrained. Initially, a constant local loading of 20.0 kPa, spanning a width of 0.3 416 

m, is applied on the left side of the top surface. Without considering gravity, the initial 417 

stress and pore pressure are set to be zero. The isotropic linear elastic constitutive 418 

model is used and the material parameters are provided in Table 2. The time step of 419 

the simulation is 2.0 × 10−4 s and the total simulation time is 0.1 s. The same 420 

simulation has been conducted in the previous studies by semi-implicit MPM scheme 421 

(Yuan et al., 2023; Kularathna et al., 2021). 422 

 423 

Figure 9. Model setup for the two-dimensional consolidation. 424 

 425 

 426 

 427 
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Table 2  Material parameters for the two-dimensional consolidation 428 

Parameter Value 

Solid density ρs(kg·m-3) 2700 

Young’s modulus E (MPa) 10 

Poisson’s ratio υ 0.3 

Fluid density ρw (kg·m-3) 1000 

Initial porosity n 0.3 

Bulk modulus of fluid Kw (Gpa) 2.2 

Hydraulic conductivity Ks (m·s-1) 0.0001 

 429 

Figure 10. Pore pressure distribution with stabilize techniques and without stabilize 430 

techniques at t = 0.1 s. 431 

Fig. 10 illustrates the distribution of pore pressure at time t = 0.1 s, comparing the 432 

results obtained with and without stabilized techniques. In Fig. 10b, a spurious pore-433 

pressure field with a checkerboard distribution is observed. In contrast, the result with 434 

stabilized techniques shows a smooth excess pore pressure field caused by the 435 

external loading (Fig. 10a). It demonstrates that the stabilized techniques can well 436 

mitigate pore pressure oscillation in the two phase MPM formulation, offering a stable 437 

pressure distribution. And the displacement distribution at t = 0.1 s is shown in Fig. 11. 438 

Consistent with the applied local loading, the displacement mainly occurs in the local 439 

loading region, indicating that the local loading is undertaken by the upper left corner 440 

area. The maximum displacement (6.737 mm) occurs at top left corner, which is 441 
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consistent with the result from the semi-implicit MPM formulation (Yuan et al., 2023). 442 

Similar results are also obtained using the semi-implicit MPM with artificial 443 

compressibility stabilization and fractional–step method (Yuan et al., 2023; 444 

Kularathna et al., 2021). The stabilized techniques employed here can yield equivalent 445 

results that are free of stress oscillations while accurately preserving the mechanical 446 

behavior. 447 

 448 

Figure 11. Distribution of displacement field at time t = 0.1 s. 449 

4.3 Cyclic loading test 450 

Inspirited by the lateral cycle loading test (Liang et al., 2023), we conduct a vertical 451 

cyclic loading test of a saturated granular material. The model setup is shown in Fig. 452 

12, where the saturated material is placed in a rigid box and subjected to a vertical 453 

cyclic loading. The material domain measures 2 m in width and 1 m in height, and is 454 

discretized by quadrilateral element with size of 0.05 m × 0.05 m. And there are 4 455 

particles in each element, giving 3200 particles. Both the bottom and laterals are 456 

normal impermeable and supported by rollers, and the top is unconstrained and 457 

permeable. To apply a cycle loading, the top surface is prescribed by a sinusoidal 458 

function periodic load of 40sin5πt kPa. Table 3 lists the material parameters used for 459 

the isotropic linear elastic constitutive model. Before the cyclic stimulation, an 460 

equilibrium condition is achieved by a linear gravity loading from 0 to 9.81 m/s2 461 

within 0 ≤ t ≤ 0.1 s, and then the gravity remains constant. And to monitor the cycle 462 
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loading response, three monitoring points located at the bottle, middle and top of the 463 

material domain (A, B, C) are selected (as shown in Fig. 12). The time step is set to be 464 

1.0 × 10-5 s, and the simulation is terminated at 2.1 s. 465 

 466 

Figure 12. Schematic of cycle loading test. 467 

Table 3  Material parameters for the cycle loading test 468 

Parameter Value 

Solid density ρs(kg·m-3) 2650 

Young’s modulus E (MPa) 600 

Poisson’s ratio υ 0.3 

Fluid density ρw (kg·m-3) 1000 

Initial porosity n 0.23 

Bulk modulus of fluid Kw (Gpa) 2.2 

Hydraulic conductivity Ks (m·s-1) 0.001 
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 469 

Figure 13. Distribution of pore pressure at t = 0.1 s (hydrostatic Pressure), t = 0.51 s, t 470 

= 0.61 s, and t = 0.71 s. 471 

Fig. 13 shows the generated pore pressure at four different time instants. After the 472 

application of linear gravity loading, an equilibrium condition is achieved, and a 473 

hydrostatic pressure field is generated (Fig. 13a). Subsequently, a vertical cyclic 474 

loading is applied to the surface. When the material domain is subjected to 475 

compressive loading, the pore pressure field increases, whereas under tensile loading, 476 

the pore pressure field decreases correspondingly. This vertical cyclic shaking induces 477 

an apparent periodic buildup and dissipation of excess pore pressure in the material 478 

domain. In Fig. 13b, a clear pore pressure decrease due to tensile loading at t = 0.51 s 479 

can be seen. As the tensile loading gradually decreases and shifts into compressive 480 

loading, the pore pressure will gradually raise up. As a result, the pore pressure field 481 

returns to the hydrostatic state at t = 0.61 s (Fig. 13c). Subsequently, the compressive 482 

loading leads to a further increase in pore pressure. As depicted in Fig. 13d, a 483 

significant excess pore pressure field is regenerated. Therefore, the pore pressure in 484 

the material domain exhibits periodic variations in response to the cyclic loading. 485 

And to further present the cyclic dynamic response under the applied cyclic loading, 486 

the evolution of pore pressure and displacement at the selected monitoring points is 487 

presented in Fig. 14. The time history of pore pressure and displacement over time 488 

demonstrates this cyclic loading response more quantitatively and vividly. The linear 489 
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gravity loading ends at t = 0.1 s, during which the displacement remains very small. 490 

After that, the vertical loading will induce a relatively large displacement. Under the 491 

sinusoidal periodic loading, the vertical displacement of point B and C exhibits a 492 

sinusoidal variation, and the pore pressure at point A and B also changes accordingly. 493 

These cyclic responses can be well captured by the proposed stabilized MPM 494 

formulation. 495 

 496 

Figure 14. Evolution of pore pressure and displacement at selected points. 497 

4.4 Self-weight consolidation 498 

The large-deformation consolidation of an elastic slumping block under gravity 499 

loading is presented in this section (Fig. 15), which is related to the settlement of a 500 

very soft soil and has been simulated in previous studies (Zheng et al., 2021, 2022; 501 

Sang et al., 2024; Wang et al., 2023a). The simulation focuses on the right half of a 502 

symmetric domain with dimensions of 4 m width and 2 m height. The material 503 

domain is discretized using quadrilateral element of size 0.125 m× 0.125 m, and 4 504 

particles in each element, giving 1024 particles in total. No external load is applied, 505 
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making the consolidation process solely driven by the initial gravitational force at the 506 

start of the simulation. The gravity linearly increases from 0 to 9.81 m/s2 within 0 ≤ t 507 

≤ 0.1 s and then remains constant. Both the top and right boundaries are unconstrained 508 

and freely draining, while the left and bottom boundaries are normally impermeable 509 

and supported by rollers. The gravity will give rise to pore pressure build-up, while 510 

the deformation will lead to the dissipation of pore pressure over time. And two points 511 

(P1, P2) at the bottle and middle are selected to evaluate the consolidation process (as 512 

shown in Fig. 15). An isotropic linear elastic constitutive model is used, and the 513 

parameters are listed in Table 4. The total simulation time is 0.5, and the simulation is 514 

performed with a time step equal to 1.0× 10-6 s. 515 

 516 

Figure 15. Schematic of the self-weight consolidation 517 

Table 4  Material parameters for the self-weight consolidation 518 

Parameter Value 

Solid density ρs(kg·m-3) 2650 

Young’s modulus E (kPa) 100 

Poisson’s ratio υ 0.3 

Fluid density ρw (kg·m-3) 1000 

Initial porosity n 0.4 

Bulk modulus of fluid Kw (Gpa) 2.2 

Hydraulic conductivity Ks (m·s-1) 0.0001 
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 519 

Figure 16. Pore pressures distribution at t = 0.05 s obtained with stabilize techniques 520 

and without stabilize techniques. 521 

 522 

Figure 17. Pore pressures distribution at different times. 523 

 524 

Figure 18. Deviatoric stress distribution at different times. 525 

Initially, due to the relatively quick application of gravity loading, the pore fluid 526 

cannot be rapidly discharged, and the loading process is carried out under 527 

approximately undrained condition. Therefore, the applied gravity loading will induce 528 
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excess pore pressure at the beginning. Fig. 16 shows pore pressure fields after gravity 529 

loading (t = 0.05 s) with stabilized techniques and without stabilized techniques. It 530 

can be seen that the result without stabilized techniques suffers from pore pressure 531 

oscillations. The stabilized result, in contrast, eliminates spurious oscillations 532 

effectively under the stringent undrained condition. Moreover, the distribution of pore 533 

pressure and deviatoric stress at three different times (0.1 s, 0.3 s and 0.5 s) are 534 

illustrated in Fig. 17 and 18, respectively. Upon the application of linear gravity 535 

loading, a pore pressure field develops, gradually decreasing from the bottom left 536 

corner upwards, as shown at t = 0.1 s (Fig. 17a). At this stage, the deformation is not 537 

large, with a localized region of deviatoric stress distribution observed near the 538 

bottom right corner (Fig. 18a). Subsequently, gravity continues to generate pore 539 

pressure, and the deviatoric stress gradually increases as deformation progresses. As 540 

deformation develops under gravity, the pore pressure first reaches the maximum 541 

value and then dissipates because of the deformation and drainage at the boundary. 542 

This process can be observed in Fig. 17b, Fig. 18b and Fig. 17c, Fig. 18c. Both pore 543 

pressure and deviatoric stress filed change continuously along the large deformation 544 

process. The absence of checkerboard oscillations shows the stability of the proposed 545 

stabilized formulation in capturing the mechanical behavior of the slumping block 546 

during the consolidation process. 547 

To further verify the accuracy of the results, the time evolution of the pore pressure at 548 

two points (P1, P2 in Fig. 15) is shown in Fig. 19, and the results are compared with 549 

those of Zheng et al. (Zheng et al., 2022) using implicit stabilized MPM formulation 550 

and Sang et al. (Sang et al., 2024) using implicit coupled MPM formulation. During 551 

the linear gravity loading, pore pressure increases linearly, followed by non-552 

monotonic dissipation due to the Mandel-Cryer effect. The curves obtained using the 553 

proposed stabilized formulation agree well with those of Zheng et al. (Zheng et al., 554 

2022) and Sang et al. (Sang et al., 2024). And the final displacement field (Fig. 20) 555 

closely matches the results reported in previous studies (Wang et al., 2023a; Yuan et 556 

al., 2023). 557 
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 558 

Figure 19. Pore pressures evolution at two selected points. 559 

 560 

Figure 20. Displacement distribution at 0.5 s. 561 

5 Discussion and conclusion 562 

For the hydromechanical coupling problems in solid-fluid porous media, this study 563 

presents an explicit stabilized two-phase material point method by incorporating the 564 

strain smoothing method and the multi-field variational principle in the single-point 565 

two phase MPM scheme. The proposed model effectively mitigates pore pressure 566 

oscillation and maintains numerical stability. 567 

The proposed two-phase MPM was initially validated through one-dimensional 568 

consolidation problem under both small and large deformation cases, with the 569 
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numerical results showing strong agreement with analytical solutions. It was further 570 

assessed through two-dimensional consolidation under localized loading and cyclic 571 

loading, demonstrating the formulation’s ability in accurately capturing the dynamic 572 

response of saturated porous media under external loads. Finally, the self-weight 573 

consolidation was analyzed to showcase its efficacy in simulating both undrained and 574 

drained conditions, as well as handling large deformation problems. The results 575 

aligned closely with analytical solutions and outcomes from other approaches. 576 

Particularly, the pore pressure instabilities were greatly mitigated by the stabilized 577 

techniques, as clearly validated by the numerical results in terms of pore pressure. 578 

With its effective and easy-to-implement stabilized techniques, the proposed two-579 

phase MPM formulation is well-suited for analyzing a wide range of hydromechanical 580 

processes under various undrained, drained, and loading conditions. It offers an 581 

effective and reliable approach for simulating both static and dynamic processes in 582 

solid-fluid porous media. While the current work is limited to the linear elastic 583 

behavior of the solid phase, future efforts will focus on the practice and application 584 

involving more complex large deformation problems and advanced constitutive 585 

models. 586 
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