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Abstract. Wildfires have been an increasing concern for the environment, yet the ozone (O3) production from wildfires
remains poorly characterized. Here, we aim to elucidate the role of aerosols from wildfire smoke in near-surface O3
photochemistry by integrating insights from 0-D box model (FOAM) to 3-D chemical transport model (GEOS-Chem).
While smoke aerosols typically inhibit O3 production through heterogeneous chemical and radiative pathways, we

find that for most fires, the O3 enhancement driven by precursor emissions outweighs these aerosol-driven suppression

effects, The relative importance of the two aerosol effects varies, with the heterogeneous chemical effect generally .
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overshadowing the radiative effect in the far field of fires. However, near the sources of extremely large fires, the *

radiative effect dominates, leading to an overall suppression of O3 production. By assessing the chain termination of
hydrogen oxide radicals (HOx) and introducing the “light-limited” regime determination in GEOS-Chem, we find that
a significant portion of O3 production occurred within light-limited and heterogeneous chemistry-inhibited regimes
during the 2020 wildfire season in California. Building on the discovery that both aerosol and nitrogen oxide (NOx)
concentrations modulate aerosol influence, we demonstrate that the surface PMa s to tropospheric NO2 column ratio—
a metric retrievable from satellite—can serve as an indicator for identifying aerosol-dominated regimes through

observations.
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Summary. This study shows large chemical and radiative effects of smoke aerosols from fires on near-surface O3
production. Aerosol loading and NOx levels are identified as the primary factors influencing these effects. Furthermore,
we show that the surface PMzs to NO:2 column ratio can be used as an indicator for identifying aerosol-dominated

regimes, facilitating the assessments of aerosol impacts on O3 formation through satellite observations.

1. Introduction

Over recent years, wildfires have surged in size and severity (Cattau et al., 2020; Collins et al., 2021; Hanes
etal., 2019; Li and Banerjee, 2021), presenting escalating challenges to air quality, ecosystems, social economics and
human health (Duane et al., 2021; Jaffe et al., 2020; Jones et al., 2022; Reid et al., 2016; Wardle et al., 2003). Wildfires
release substantial amounts of carbon monoxide (CO), volatile organic compounds (VOCs), oxides of nitrogen (NOx)
and aerosols or particulate matter (PM) (Akagi et al., 2011). Wildfires also markedly complicate Os air pollution
mitigation, as many studies have documented exceedances of the O; air quality standard and enhanced background
Os level due to fires (Dreessen et al., 2016; Gong et al., 2017; Jaffe et al., 2004; Jaffe and Wigder, 2012). Fires not

only emit abundant Os precursors but also provide important sources of hydrogen oxide radicals (HOx = OH + HOz +

organic peroxy radical (RO2)) through the photolysis of nitrous acid (HONO), formaldehyde (HCHO), pther aldehydes

and O3, as well as the ozonolysis of alkenes (Jaffe and Wigder, 2012; Robinson et al., 2021; Xu et al., 2021), These
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radicals catalyze the chain oxidation of VOCs in the presence of NOx to produce O3, (Xu et al., 2021), The NOx-VOCs-

radical controlled Os formation mechanism has been well-established over several decades (Pusede et al., 2014).

The impact of aerosols on O3 formation, particularly in the context of wildfires, remains poorly understood.
Generally, aerosol particles affect Os chemistry through two mechanisms: a radiative effect and a chemical effect. The
radiative effect occurs when aerosols reduce light transmission, thereby slowing down photochemical reactions (He
and Carmichael, 1999). The chemical effect refers to the role of aerosols in providing surfaces for the reactive uptake
of HO2, RO2, oxygenated volatile organic compounds such as HCHO and reactive nitrogen species including NO2,

NO; and N2Os; among these chemical effects, HO> uptake dominates, especially in the daytime near-surface Os
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chemistry (Carlos-Cuellar et al., 2003; Ha et al., 2020; Jacob, 2000; Li et al., 2019). Aerosols typically inhibit O3
formation (Benas et al., 2013; Jiang et al., 2012; Li et al., 2019; Xu et al., 2012), except in certain instances where the
reduction in photolysis rates disproportionately affects O3 loss more than O3 production (Real et al., 2007). Os
formation in wildfires exhibits considerable variability, with some studies reporting even suppressed O3 in plume
center or downwind areas and in Mediterranean/boreal regions (Alvarado et al., 2010; Paris et al., 2009; Strada et al.,
2012; Verma et al., 2009). Model studies often invoke underestimated heterogeneous chemistry as a source of
persistent bias in overpredicting Oz (Jaffe and Wigder, 2012; Konovalov et al., 2012), yet, the impacts of aerosols on
O3 chemistry remain notably under-characterized. There is a pressing need to comprehensively evaluate the chemical
and radiative effects of aerosols across different types of fires and at various stages of fire aging. Furthermore,

understanding conditions under which fire emissions of NOx or VOCs,or aerosols predominate is crucial for detangling

the fire-related O3 chemistry.

Photochemical regimes indicating Os sensitivity towards different precursor emissions, have been used to

guide regional air quality control strategies (Kleinman, 1994; Kleinman et al., 1997; Milford et al., 1994; Tonnesen
and Dennis, 2000a, b). The two classical O3 regimes are NOx-limited and NOx-saturated (or VOC-limited). Os
production is fueled by HOx and the termination of the HOx free radical chain by either self-reaction to yield peroxides

(NOx-limited) or with NOx to yield HNO3; and RONO: (NOx-saturated) defines the regime (Ivatt et al., 2022; Sillman

and He, 2002). However, large aerosol loadings—typical of wildfire smoke and many polluted areas—pften

complicate O3 formation in ways that the classical regimes do not capture. For instance, an aerosol-inhibited regime
was recently identified in heavily polluted areas of China and India, pointing to a strong impact of heterogeneous
chemistry on O3 formation (Ivatt et al., 2022). Moreover, dense smoke can create a dark environment that makes O3
production limited by light (Jiang et al., 2012). As wildfires intensify and smoke plumes spread to downwind urban
areas, understanding if and how such aerosol-inhibited behavior occurs in wildfire plumes becomes crucial for

potential policy interventions and more accurate fire-related O3 predictions. Therefore, in this study, we refine the

current O3 regime framework by introducing a new regimesthe light-limited regime to better represent the role of

aerosols in O3 formation.

The 2020 California fires provide a valuable opportunity to study the impacts of acrosols on O3 chemistry in

wildfire plumes because they were especially extensive, varied in their intensity and well documented. Throughout

the year, 8648 fires burned approximately 4.3 million acres across the state, with intense fire activities, spanning from

mid-August to November (CAL FIRE, 2020a). Fig. 1 illustrates the distribution and burned area of major fires that

occurred from August to October in 2020. The widespread wildfire season in the western US in 2020, far from being

an outlier, is considered a harbinger of a new norm in a warming climate (Coop et al., 2022; Xie et al., 2022). PM2s
pollution in western US is projected to double or even triple by the late 21% century under intermediate- and low-

mitigation scenarios (Xie et al., 2022).
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represent MODIS-detected burned area, with blue, purple and pink indicating fires occurring in August,
105  September and October, respectively,

Figure 1. Major fires during the 2020 California wildfire season (August—October). The map is sourced from+. .

NASA’s Fire Information for Resource Management System (FIRMS) (NASA-FIRMS, 2025). Shaded areas

In this study, we employ a 3-D global chemical transport model (GEOS-Chem) and a box model (Framework
for 0-D Atmospheric Modeling, FOAM) as well as observational constraints to elucidate the aerosol chemical and
radiative effects on O3 production in the near field and far field of fires, as well as for different types of fires. We

examine the role of emissions and of aerosols in O3 production and delve into the,underlying processes. We provide a
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110  comprehensive evaluation of Os production regimes by introducing two additional regimes, light-limited and aerosol
chemistry-inhibited, to the well-established two-regime (NOx-limited and VOC-limited) classification. Furthermore,
we explore the potential of the PMa.s to NO2 ratio as an indicator for identifying aerosol-dominated regimes. We derive
the threshold based on the model diagnostic approach and apply it to observation-derived PM2.s and NO2 datasets to

distinguish the aerosol-dominated O3 regimes.
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2. Materials and Methods
2.1 GEOS-Chem simulations

We use the GEOS-Chem (Bey et al., 2001) chemical transport model version 12.7.1 to examine the effects
of aerosols on O3-NOx—VOCs chemistry. We run nested simulations over California regions (27° N-47° N, 110° W—
130° W) with a resolution of 0.25° (latitude) x 0.3125° (longitude) and 47 vertical levels for the year 2020. The model
is driven by the Goddard Earth Observation System Forward Processing product (GEOS-FP) assimilated
meteorological field, with a three-hour temporal resolution for three-dimensional variables and one-hour resolution
for surface variables. Boundary conditions for the simulations are generated from a global simulation at a resolution
of 2° x 2.5° with one-year spin-up. The standard tropospheric chemical scheme includes detailed O3~ NOx—VOCs—
aerosol-halogen chemistry. Additionally we have incorporated the ethene and ethyne chemistry as introduced in

GEOS-Chem version 13.3.0 (Kwon et al., 2021). Hourly anthropogenic emissions in the US are based on the EPA

2011 National Emission Inventory (NEI),and are scaled to 2020 jising national interannual gmission trends QUS EPA,
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2025). Fire emissions are sourced from the Global Fire Emissions Database (GFED, Version 4.1), with emissions
categorized by fuel types, including tropical forest, temperate forest, boreal forest, savanna, peat and agricultural waste
(Randerson et al., 2015). We allocate 65% of these fire emissions within the boundary layer (Fischer et al., 2014), so

our findings primarily reflect fires that predominantly impact the boundary layer.

Photolysis rates in GEOS-Chem are calculated using the fast-JX scheme (Bian and Prather, 2002). The
influence of aerosols on the photolysis rates are considered (Martin et al., 2003), with the adjustments for aerosol size
distribution and optical properties in response to relative humidity changes. GEOS-Chem treats black carbon (BC) as
externally mixed, making it challenging to explicitly simulate the lensing effect, where BC exhibits larger absorption
when coated by a non-absorbing shell. To incorporate this effect, we apply an absorption enhancement factor (the ratio
of mass absorption efficiency (MAE) with and without coating) of 1.5 to hydrophilic BC and 1 for hydrophobic BC
(Wang et al., 2014).

The heterogeneous uptake of HO: is represented by a reaction probability parameterization as shown in Eq.

(1), with the loss rate limited by diffusion or free molecular collision (Martin et al., 2003).

k=Gt )7A M

The first-order rate constant k for the chemical loss of the gas (i.e., HOz) is calculated based on the mean molecular .

speed (v), gas-phase molecular diffusion coefficient (D), aerosol radius (a), reaction probability upon impacting the -

acrosol surface (y) and aerosol surface area per unit volume of air (A). Consistent with numerous modeling studies

(Ivatt et al., 2022; Jacob, 2000; Li et al., 2019; Martin et al., 2003), we adopt a uniform value of 0.2 for y,,, aligning

with the field measurements (Taketani et al., 2012; Zhou et al., 2020, 2021). GEOS-Chem assumes the same y,, for, - "
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To examine the aerosol effects on Os, we conduct pne BASE simulation and five perturbation simulations in
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GEOS-Chem, as summarized in Table 1. The difference between BASE and BASE NO RAD is considered as the

(AN
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radiative effect of all aerosols, and the difference between NO_FIRE and NO_FIRE NO RAD represents the radiative
effect of aerosols other than fire smoke aerosols. The radiative effect of fire smoke aerosols is therefore calculated as
BASE - BASE_NO_RAD — (NO_FIRE — NO_FIRE_NO_RAD). Similarly, the chemical effect of smoke aerosols is
calculated as BASE — BASE_NO_CHEM — (NO_FIRE — NO_FIRE_NO_CHEM). Hourly species concentrations,
meteorology, photolysis rates and reaction rates for the bottom five layers of the model (approximately 0—-550 m) are

averaged to investigate aerosol effects on near-surface O3 and perform regime calculations. ,
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heterogeneous HO> uptake is turned off, (4) NO_FIRE with fire
emissions switched off, (5) NO_FIRE_NO_RAD, where both fire
emissions and aerosol radiative effect are deactivated, (6)
NO_FIRE _NO_CHEM, which turns off both fire emissions and
reactive uptake of HO> by aerosols

Deleted: We evaluate model predicted O3 with daily ground
measurements from the EPA Air Quality System (AQS) (EPA AQS,
2020), as depicted in SI Figure S1. The modeled average Os levels in

# Simulation Name Description - California for 2020 are approximately 48 + 4.3 ppb, in good
fll BASE  Lagreement with ground observations of 44 + 8.6 ppb (R? of 0.73).
— - - - (Formatted Table )
Q) BASE NO RAD Aecrosol extinction on photolysis rates is turned off
[K))] BASE NO_CHEM Heterogeneous HO» uptake is turned off
(€] NO_FIRE Fire emissions are switched off
(&) NO_FIRE NO RAD Both fire emissions and aerosol radiative effect are deactivated
©® NO_FIRE NO CHEM  Both fire emissions and reactive uptake of HO» by aerosols are turned off
Jable 1. Summary of the BASE simulation and five perturbation simulations conducted in GEOS-Chem. Fy (Formatted: Font: Bold

2.2 Fire plume evolution analysis

GEOS-Chem’s Eulerian framework does not explicitly resolve individual plume pathways or their detailed

Y [Formatted: Font: Bold
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evolution. We jdentify about 1633 fire plumes in 2020 that show clear plume patterns with an identifiable plume

source and use the Hybrid Single-Particle Lagrangian Integrated Trajectory (HY SPLIT) dispersion model to calculate
plume trajectories and plume age. The plume identification method is described in the work of Jin et al. (2023). Fire
centers are identified using the Moderate Resolution Imaging Spectroradiometer (MODIS) Active Fire products and
subsequently used as starting points for calculating one-day plume dispersion using the HYSPLIT model with

meteorological fields from North American Regional Reanalysis (NARR). The HYSPLIT model is run at an injection
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height of 1000 m and initialized at the same time of the day (18 UTC). In the absence of strong wind variability, the
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predicted plume trajectories should reasonably represent the progression from the near to far field of fires. The
locations of the fire plumes are matched to GEOS-Chem grids to demonstrate changes in aerosol effects along the

plumes. In this study, we define plume age as physical age of the plume,determined as the time required for the plume

to reach designated smoke-affected areas.

2.3 Box model setup

We employ FOAM (Wolfe et al., 2016) version 4.3 to assess the effectiveness of GEOS-Chem in resolving
the aerosol effects on O3 within fire plumes. We use the Master Chemical Mechanism (MCM) version 3.3.1 (Jenkin

et al.,, 2015), which features a near-explicit chemical mechanism with detailed gas-phase chemical processes.
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Additionally, we incorporate the heterogeneous uptake of HO2 by aerosols as described in Eq. (1) and assume a

220  monodisperse size distribution for each aerosol type.

We first evaluate whether the aerosol effects resolved in GEOS-Chem are reproducible in FOAM by

initializing FOAM with output from GEOS-Chem. The fire plumes are modeled with a pseudo-Lagrangian style in

FOAM, where we set the initial chemical concentrations based on GEOS-Chem grids with plume age of one hour and

allow them to evolve over the subsequent five hours. Species used to initiate FOAM include CO, Os, reactive nitrogen

1225 species and some VOCs_(Table S2). Meteorological variables and photolysis-relevant parameters are constrained at
each model step and held constant during the integration time of one hour. We adopt the FOAM’s hybrid method for

| J-values calculations, which uses JTropospheric Ultraviolet and Visible (TUV)-calculated solar spectra but does not (Deleted:

include explicit aerosol effects. J-values of HONO and HCHO from GEOS-Chem are applied to scale box model-
calculated J-values. CO is an approximately conservative tracer (Robinson et al., 2021); we calculate the first-order

230 dilution rate in FOAM at each model step using the temporal changes in CO concentrations along the fire plumes

| (Miiller et al., 2016), as determined by GEOS-Chem. Configuration details of the FOAM setup are provided in Table (Deleted: SI

S2. Chemical species, meteorological and photolysis variables from GEOS-Chem are matched to those in the MCM.
To exhibit the aerosol effects on O3, we run one base simulation and two perturbation simulations in FOAM: one

eliminating the chemical effect and another removing the radiative impact of fire-related aerosols.

235 We further assess whether the resolution of GEOS-Chem can resolve the in-plume O3 chemistry by focusing
on fresh plumes in FOAM. Unlike previous setup using GEOS-Chem outputs, here we initiate FOAM with gas phase

pollutants and aerosols (primarily OC and BC) for various fire types according to the GFED emission factors. We
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2.4 Observational data
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resolution, gapless PM> s dataset spanning 2017-2022. This dataset was generated using a 4-Dimensional Space-Time

Extra-Trees (4D-STET) model, which reconstructs missing satellite AOD, establishes AOD-PMb s relationships and

P60 predicts high-resolution surface PMa s concentrations. This observation-based 1 km product improves upon earlier 10

km datasets, providing finer spatial detail for plume analysis, Tropospheric NOp column data are sourced from .- Deleted: featuring 1 km resolution PMas estimates generated
. o . X . L. L% through an integration of ground-based measurement, satellite
JTROPOspheric Monitoring Instrument (TROPOMI) retrievals provided by Jin et al. (2023), which incorporate,a priori ‘ observations and machine learning models.

profiles from GEOS-Chem simulations and explicitly account, for smoke aerosols during retrieval. Both the surface ;
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regime based on the maximum term. We focus on 1:30 PM local time because it coincides with a period of strong

solar radiation that drives ozone photochemistry and aligns with typical satellite overpass time, facilitating integration

280 of satellite-based observations to identify chemical regimes. Monthly mean regimes are determined by averaging the

magnitudes of four terms rather than counting the occurrences of each regime, to reflect the cumulative influence of

these processes over time.

We further investigate how PMos levels influence Os
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3. Results and Discussion

3.1 The role of smoke aerosols in O3 production

We first evaluate GEOS-Chem predicted O; with daily ground measurements from the EPA AQS, as

presented in Figure S1. The comparison is conducted between AQS sites and the corresponding GEOS-Chem grid
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cells for the year 2020 around 1 PM local time. The modeled average Os levels in California for 2020 are

approximately 48 + 4 ppb. in good agreement with ground observations of 44 + 9 ppb (R? of 0.64).

Next, we assess the aerosol effects and the overall impact of fires on O3 in GEOS-Chem in both the near and -

far field of fires,(Figure 2). Fire pixels are categorized based on PM enhancement (APM»:5), calculated as the difference

in PM> s mass between the BASE and NO FIRE simulations for each individual grid cell. Specifically, APM> s values

fire pixels, respectively. It reveals that for fire pixels with small to large PM enhancements, which represent the

PM enhancement are associated with larger increase in Os concentrations. In contrast, pixels affected by extreme fires |
f of NOx into peroxyacetyl nitrate (PAN) in the near field of fires
see suppressed Os levels in their immediate vicinity, suggesting the aerosol effect overshadows the emission effect. | (Jaffe and Wigder, 2012). For extreme fires, the ...3 suppression by
. L . L . 3 ,’ smoke ...erosols may extend to distant areas of the fires...s stronger
Furthermore, this O3 suppression is likely driven by the strong aerosol radiative effect associated with dense plumes [ in the near field and weakens downwind, and a modest. ..cading to a
L . . / net increase in O levels ...oncentrations is observed ...n the far
near the centers of fires. In the near field of the fires, the average radiative impact on Os concentrations for extreme | field (Figure 21 [ED

fire pixels is about 60 times that observed in the others. Other factors contributing to the decreased O3 concentrations

may be NOx titration_og, sequestration of NOx into peroxyacetyl nitrate (PAN) in the near field of fires (Jaffe and

Wigder, 2012). For extreme fires, O3 suppression by aerosols js stronger in the near field and weakens downwind

Jeading to a net increase in O3 goncentrations jn the far field (Figure 2).
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Figure 2, Total fire effects and aerosol chemical and radiative impacts on O3 resolved in GEOS-Chem, across

near and far fields at 20:30 UTC for fire plumes in 2020. Grid cells with a plume age of 1-3 hours are marked

as near field (triangles), and 4-24 hours as far field (circles). To further elucidate the dependence of aerosol
impacts on PM, we classify fire pixels into different groups based on the enhancement of PMz.s (APM::s) at each
grid box: small (APM2.5 <50 ug m*), medium (50-100 pg m™), large (100200 ug m*) and extreme (>200 pug m-
%). The total fire impact, chemical and radiative impacts on Os concentrations are represented by red, green
and orange colors, respectively. Error bars denote standard grrors. The overall fire effect is indicated by the

difference in O3 concentrations between the BASE and NO_FIRE simulations. Calculations of the aerosol
effects are provided in the method section.

Both aerosol chemical and radiative effects are shown to decrease Os in the fire plumes. For grid cells affected
by small to large fires, the aerosol chemical effect outweighs the radiative effect. Contrary to the consistent behaviors
observed in both the near-field and far-field regions for these fire pixels, those experiencing extreme PM enhancement

exhibit pronounced variations. In the proximal areas of fire origins, the radiative effect on O3 concentrations is much

higher than the heterogeneous chemical effect for these extreme fire pixels. Yet, this radiative effect represents a
temporary suppression of Os production, with its influence decaying rapidly—on average, the effect on O;
concentrations diminishes by about half within five hours_(Figure S3). Moving further from the fire centers, the
chemical effect starts to dominate over the radiative effect on Os. The aerosol impacts on O3 concentrations, through
both chemical and radiative pathways, tend to intensify as APMa.s increases. The aerosol effects on O3 concentrations

mirror those on O3 net production (Figure S4). However, a notable difference exists when comparing large and extreme

7 (Deleted:

fire pixels: while their chemical effects on O; production are similar in the near field (Fig. S4), extreme fires exert a

stronger suppression on O3 concentrations (Fig. 2). This discrepancy likely stems from differences in transport and
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mixing. In the near field of extreme fires, HO, levels are low due to limited photochemical activity, making HO»

uptake less influential on O3 production. Nevertheless, extreme fires may cause greater suppression of O3

concentrations near the source. As O3 is transported downwind, this initial suppression can lead to a greater reduction
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in O3 concentrations despite similar local chemical production. Additionally, extreme fires may experience slower

mixing with background air, reducing dilution of ozone-suppressed air and further enhancing the decrease in O3

concentrations. Overall, aerosol effects resolved in GEOS-Chem highlight the significant heterogeneous chemical

influence on Os for fires and an exceptionally critical radiative effect for extreme fires.

3.2 Comparison between GEOS-Chem and FOAM

We first use FOAM to conduct similar experiments with GEOS-Chem output for fire plumes of different

scales. We select 12 fire plumes spanning small, medium, large and extreme cases, and comparisons for each individual

fire plume are shown in Figure S5 We find that the overall fire impacts on O3 concentrations and the aerosol chemical

and radiative effects simulated in FOAM exhibit good agreement with those resolved in GEOS-Chem across fire
plumes of different scales. Although FOAM does not explicitly account for atmospheric processes such as vertical
mixing, turbulent diffusion, dry and wet deposition, these factors appear to have a negligible impact (beyond their
representation as dilution) on the several-hour time scale examined here. The comparison suggests that chemistry, and

to a lesser extent dilution, are the leading factors explaining most variations in aerosol effects.

Our results indicate relatively consistent acrosol effects resolved by different numerical simulation schemes.
GEOS-Chem is a global Eulerian model, which solves continuity equations on a geographically fixed frame of
reference (Liu et al., 2023; Long et al., 2015), whereas in FOAM plumes are simulated in a pseudo-Lagrangian
approach that follows the movement of air parcels. However, the Eulerian model struggles with an unrealistic dilution
of small plumes. In our comparison, the initial chemical concentrations used in FOAM are adopted from GEOS-Chem
where dilution of initial subgrid plumes has occurred. Consequently, although both GEOS-Chem and FOAM exhibit

comparable results, the near-field behavior of subgrid plumes may not be accurately solved by either model.

Next, instead of initiating FOAM using GEOS-Chem simulations, we explore the aerosol influence on Os in
fresh plumes by initiating FOAM with emission data from GFED. Our analysis reveals that the aerosol influence on

O3 depends on PM mass concentrations (Figure 3), which is consistent with findings from GEOS-Chem (Figure 2).

Furthermore, at the same PM enhancement, the influence of aerosol chemical and radiative pathways on Os
concentrations appears to vary distinctly among various fuel types, suggesting underlying factors beyond PM
concentrations play a role in controlling aerosol influence. PM enhancement thresholds where the radiative effect
outweighs the chemical effect vary by fuel type, being highest for boreal forest fires, followed by peat and temperate

forest, and lowest in deforested/tropical forest, agricultural waste and savanna. In the case of temperate forest fires

even small plumes could exhibit a more pronounced aerosol radiative effect than the chemical effect in the near field.

As we control the PM magnitude, the various patterns across fuel types are due to variations in emission

factors of Os precursors, particularly NOy, According to GFED, emissions from the boreal forest fires exhibit the
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suppression in surrounding areas is transported into these regions.

0 NN NN NNNAJ

(Deleted: as

(Deleted: 4

N AN

- (Deleted: 2

- (Deleted: in particular




430

35

140

145

highest PM to NOx ratio, followed by those from peat, temperate forest and tropical forest fires. The lowest ratios are
observed in agricultural waste and savanna burning. These results highlight that the aerosol influence on Os is not only
dependent on the abundance of PM but also modulated by NOx concentrations. Higher NOx levels can suppress the
chemical effect of aerosols by altering HOx loss pathways; under high-NOx conditions, more HOx is consumed by
reactions with NOx, leaving less HOx for heterogeneous uptake by aerosols. On the other hand, larger PM
concentrations enhance HOx loss through aerosol uptake. The interplay between these two factors largely accounts for

the variations in aerosol impacts on O3 within fire plumes.
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thereby weakening the influences of fire emissions. Nevertheless, the PM enhancement threshold at which the

radiative effect exceeds the chemical effect still decreases from boreal forest, peat, temperate forest, tropical forest

agricultural waste to savanna (from >300 pug m™ down to about 20 pg m). The sensitivity test supports our findings

that both PM and NOj are key factors controlling aerosol effects on Os,,

Jhe dependence of aerosol effects on NOx is alsogvident in GEOS-Chem. Fig. S7 suggests that the radiative

effect tends to surpass the chemical effect at high NOy levels, However, GEOS-Chem also indicates that the aerosol -

chemical effect consistently dominates the radiative effect for regular fires, a phenomenon not reproduced in FOAM.

Jhis discrepancy may arise because GEOS-Chem does not accurately resolve the aerosol effects on O; for the subgrid-
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scale young plumes. But for plumes that are not in the immediate vicinity of the fire source, where mixing with

background air has occurred, or in the case of large-scale fires that exceed the size of a grid cell, GEOS-Chem should
be capable of resolving the aerosol impacts. Additionally, for the range of PM enhancement examined here (within

300 pg m), FOAM suggests that fire generally gnhances O3 concentrations, aligning with our findings from GEOS-

Chem.

Observations of PM2.s and NO> within fire plumes reveal that NOz columns decay more rapidly than PMa.s

(Fig. 4), An even steeper decline is expected for surface NO,, as surface measurements are more sensitive to local

emission sources compared to large-scale satellite observations (Lamsal et al., 2014). This observational finding

implies that as plumes age, the aerosol heterogeneous chemical effect becomes increasingly important, as reflected by
the higher PM to NOz ratio in the far field compared to near sources. This also accounts for why, in GEOS-Chem
simulations, the chemical effect tends to outweigh the radiative effect away from fire origins. By integrating GEOS-
Chem and box model with observational constraints, our study provides a detailed and comprehensive depiction of

aerosol effects within fire plumes and the potential underlying mechanisms.
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Figure 4, Decay of NO: column (pink) and surface PM2 s (blue) within fire plumes. Surface PM:s data are from

Wei et al. (2023) and TROPOMI NO: tropospheric columns are from Jin et al. (2023).

To summarize, for most fires, there is generally a net positive effect on O3 concentrations. Near the source,

Jheterogeneous chemical or radiative effects may outweigh each other depending on NOx levels. As the plumes age,

NOx is rapidly consumed in the plumes, and the aerosol chemical effect tends to be increasingly important. In contrast,
extremely large fires are dominated by the aerosol radiative effect, leading to an overall suppression of O; in the near
field that can extend further from the fire sources. Even for these fires, the radiative effect diminishes rapidly with

dilution and is eventually surpassed by the chemical effect downwind.

The importance of aerosol effects on O3, especially the heterogeneous chemical effect, has been a subject of
significant debate. Xu et al. (2021) found that the conceptual model based on gas phase chemistry adequately explains
the O3 chemistry in western US wildfire plumes (R? of 0.64) and thus aerosol heterogeneous chemical processes are
likely minor. Conversely, Li et al. (2019) and Ivatt et al. (2022) highlighted a significant role of the heterogeneous
chemical effect on the near-surface O3 formation in eastern China and the Indo-Gangetic Plain during the mid-2010s.
Even among studies that supported the importance of the aerosol chemical effect, some emphasized its significance
in environments with high aerosol loadings, while others pointed to its relevance in clean suburban areas (Li et al.,

2022; Xue et al., 2014).

Our findings reconcile seemingly contradictory studies by showing that the aerosol effects on O; are
determined by both aerosol loading and NOx concentrations. The study by Xu et al. (2021) focused on relatively fresh

plumes, which are usually associated with high NOx concentrations, where the inhibitive effects of smoke aerosols
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may be secondary. However, as plumes age and both NOx and PM concentrations decay, the longer-lived accumulation
mode aerosols (lifetime of 5-7 days, compared to hours to a day for NOx) (Jin et al., 2021; Seinfeld and Pandis, 2016)
can become more influential in O3 production. The shift in the relative importance of aerosols vs. NOx may differ in
urban/suburban settings, where PM and NOx can originate from different sources and possibly lead to more varied
concentration patterns. Os production can be significantly impacted by heterogeneous chemistry in conditions ranging

from heavily polluted areas with high aerosol loadings to cleaner areas with moderate aerosol loadings but low NOx.

3.3 Prevalence of aerosol-dominated regimes during the 2020 California fire season

Our findings emphasize that both the heterogeneous chemical and radiative effects can significantly influence
Os production depending on fire conditions. Driven by these insights, we propose a novel Os production regime,
termed the “light-limited regime”, which is identified through a sensitivity test in which the radiative effect is turned
illustrates the O3 production regime over California from July to December under a no biomass burning scenario. In
the absence of fire impacts, most of the areas are in NOx-limited regimes during the summertime, with a NOx-saturated
regime in urban cores of Los Angeles and San Francisco. During the cooler months, a large number of regions shift to

a VOC-limited regime.

Accounting for the impacts of fires on O3 reveals significant changes in the O3 production regimes during

the fire season, as shown in Figure 5, (and Figure S9). Details about significant fire events and emissions during the

2020 wildfire season in California are summarized in Text S1. It is evident that numerous areas transition to either the
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heterogeneous chemistry-inhibited regime or the light-limited regime, which we collectively term as “aerosol-

dominated regimes”.

From August to October, the monthly mean proportions of grid boxes in California entering the aerosol-+

dominated regimes were 8.9%, 75%, and 43%, respectively (Figure 5). Specifically, 8%, 60% and 41% corresponded

to the heterogeneous chemistry-inhibited regime, and 0.9%, 15%, and 1.7% were classified as light-limited regime.
The impact of fires on these regimes was minimal for November, when most wildfires were contained. Furthermore,
the episodic nature of wildfires caused large daily variations of the Os production regime; the heterogenous chemistry-
inhibited regime had an average + standard deviation of 19 + 13%, 48 + 16% and 33 + 24% for the periods of August
16—August 31, September and October, respectively. Similarly, the light-limited regime showed 1.6 £ 1.4%, 13 £9.6%

and 3.2 + 5.9% for the same periods. ,
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Figure 5, Monthly-mean GEOS-Chem derived Os photochemical regimes at 20:30 UTC (corresponding to 13:30

local time during daylight saving and 12:30 otherwise) over California, during the fire season (August to
October), when fires are accounted.

The newly defined light-limited regime extensively reflects the central areas of megafires (Figure 1). The
August Complex, SCU Lightning Complex, Creek, LNU Lightning Complex, and North Complex ranked the top five
fires by burned areas in 2020 (CAL FIRE, 2020b). Notably, during September, the August Complex, Creek and North

Complex fires peaked, leading to extensive areas falling under the light-limited regime due to these large-scale

wildfires, with the peripheral zones exhibiting heterogeneous chemistry-inhibited regime (Figure 5). The period from

September 8 to 10, during the fire season, experienced the most extensive coverage of the light-limited regime across

the state (32-42%, Figure S10), coinciding with significant wildfire events. Notably, despite the exceptionally large

scale of the SCU and LNU Lightning Complex fires, their impacts on the light-limited regime were much less
pronounced compared to the other three fires based on both daily and monthly average. A NOx-saturated regime was
predominant under the impact of these two wildfires. We attribute the difference in regimes to the distinct
environments where fires occurred. Contrary to the fires in forest areas, the SCU and LNU fires occurred in the Bay

area, an urban yegion characterized by significant higher background levels of NOx. Elevated NOx concentrations

enhance HOx termination through reactions with NOx, necessitating higher aerosol concentrations for the light effect
term to surpass this termination pathway. The observed reduction in the light-limited regime under high NOx

conditions further corroborates our earlier findings on the interactions among aerosol effects, PM and NOx.

3.4 Uncertainties in GEOS-Chem resolved aerosol effects and O3 regimes

The aerosol effects and regime calculations derived from modeling are subject to uncertainties, primarily
associated with the HO: uptake coefficient (y,,) and fire emission inventory. Due to the challenges of directly
observing or constraining the aerosol heterogeneous uptake through measurements, we rely on model simulations to
estimate the chemical effect. Consequently, the results are influenced by the yy,, values used in the analysis, a

parameter that varies with aerosol types and relative humidity. A summary of y;,, reported in previous laboratory

measurements and field studies is provided in Table S1. Organics constitute a major fraction of biomass burning

aerosols. Laboratory studies measuring the uptake coefficient from single-component organics have reported values
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0f 0.007-0.09 for humic acid (Lakey et al., 2015), <0.01-0.13 for levoglucosan (Taketani et al., 2010) and 0.02-0.18
for dicarboxylic acids (Taketani et al., 2013), across a variety of relative humidity levels. In comparison, field studies
generally report higher values (0.08-0.40) (Taketani et al., 2012; Zhou et al., 2020), likely due to the presence of
copper and iron ions in the particles that are known to enhance HO: uptake (Mao et al., 2013). To our knowledge, no
studies have specifically measured yy, for biomass burning aerosols in field settings, but Taketani et al. (2012)
reported values of 0.2-0.37 for samples strongly affected by biomass burning. To assess the impact of y0, on our

results, we conduct sensitivity tests using ¥y, of 0.1 and 0.02 for a one-month simulation during September. Under

the ¥0,= 0.1 scenario, aerosol effects across fire sizes are similar to Fig. 2: the aerosol chemical effect outweighs the

radiative effect for small to large fire pixels, while extreme fire pixels show a pronounced radiative effect (Fig. 11 (a)

Spatial pattern of photochemical regimes remains largely unchanged under this scenario (Fig, ,S12 (a)).
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Given that y,,, measured for single-component organics likely underestimates values for ambient aerosols

the yy0, = 0.02 case is tested as a conservative lower bond. Under this assumption, aerosol chemical and radiative

effects on O3 concentrations become comparable for most fire pixels, whereas extreme fire pixels continue to exhibit

a pronounced radiative effect (Fig. 11 (¢) (d)). Although this strong radiative effect suppresses O3 production in near-

field extreme fire pixels, O3 concentrations still increase, possibly due to transport of ozone produced earlier near the

fire source. With this substantially reduced uptake coefficient, the spatial extent of heterogeneous chemistry-inhibited

regimes decreases markedly. Nevertheless, overall aerosol influences remain important, with 31% of California falling

into aerosol-dominated regimes (Fig. S12 (b)). Future research measuring yy0, for smoke aerosols is needed to better

constrain this parameter.

Furthermore, we evaluate GEOS-Chem simulations of PMz s with ground-based measurements from EPA’s
AQS. We find that GEOS-Chem tends to overestimate PMz s, simulating 2020 daily average PMas levels at 24 + 23
ug m3, compared to 12 + 5.5 pug m? from ground-based observations. During the fire season, modeled PMzs
concentrations are about 1.2, 4.1 and 2.4 times higher than the ground observations in August, September and October,

respectively. Outside the peak fire months, the agreement improves, with modeled PM. s concentrations being 0.6, 1.4

and 0.9 times the observed values in July, November and December, respectively. The overestimates of PMa s is likely

driven by overestimated fire emissions in GFED (Qiu et al., 2024). These comparisons, however, are limited by factors
such as the sparse ground observations (~72 sites for PM2 ), the potential unrepresentativeness of a single site for the

coarse grid in GEOS-Chem, and the GEOS-Chem modeled decay of PM further from the fires. To assess the potential

impacts of model overestimates on our analysis, we perform additional simulations py scaling ynonthly biomass .

burning emissions based on the model—observation comparisons, Specifically, GFED fire emissions are adjusted by i

dividing total emissions by 0.6, 1.2, 4.1, 2.4, 1.4 and 0.9 for July through December, respectively. Despite the =
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substantial reduction in overall fire emissions, the aerosol and total fire effects on O3 concentrations for most fires

remain consistent with Fig. 2, whereas the radiative effect for extreme fires declines markedly in both the near and far
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field due to reduced acerosol loading (Fig. S11 (e) (f)). Agrosol-dominated regimes still accounted for about 7%, 54%
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and 17% of the total area in August, September and October, respectively (Fig. S13). Notably, aerosol-dominated

regimes remain dominant in September during the 2020 fire season.

3.5 What is the PM. s threshold for reaching aerosol-dominated regimes?

Recognizing that the regime classification discussed above may be affected by model inputs and performance,
we further explore how these model-based findings can be applied to observational data, with a primary focus on
identifying aerosol-dominated regimes. We first investigate whether PM2s as an indicator of aerosol concentrations

can be used to identify the regime shift. Fig. 6 (a) shows the average fractional contribution of each HOx termination

pathway at various PM2s levels. As PM levels increase, HOx loss via self-reaction declines, while aerosol

probability of each regime at various PMz.s levels. Low PMas levels are usually associated with a NOx-limited regime.
The heterogeneous chemistry-inhibited regime is more likely to occur as PMz s levels increase until the light-limited
regime overshadows it at extremely high PM2.s concentrations. At PMzs concentration of 30 pg m™, Os production
already transitions to the heterogeneous chemistry-inhibited regime in most areas under the impact of fires. A

considerably higher PMz5 concentration (~500 ug m*) is required to enter the light-limited regime. We observe a

calculation, the PMa s threshold for shifting to a heterogeneous chemistry-inhibited regime increases slightly from 30

to 40 pg m3.
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O3 photochemistry under wildfire conditions. This analysis also highlights the utility of satellite-derived PM2s to NO2

ratio for pinpointing aerosol-dominated regimes. Applying this metric to other regions and environments may need

Jfurther investigation. While the comparison of fire and urban plumes is beyond the scope of this study, it is worth

noting that fire and urban plumes may differ substantially in emissions_and, aerosol composition and thus the O3

(Deleted: We note that the threshold value suggested here warrants)

(Deleted: Although

chemistry. Future research is therefore warranted to jncorporate more sophisticated representations of these differences.

Additionally, it may be valuable to compare the robustness of this metric with a fully satellite-based indicator, such as

the AOD/NOg ratio.

—— I : 3
0 20 40 60 80 100

PM; 5-to-NO,-Column Ratio (x1071%)

Figure 8 Monthly mean Os photochemical regimes identified using the surface PMzs to TROPOMI NO:

column ratio over California from August to October. Red colors represent aerosol-dominated regimes, while
blue colors indicate NOx-limited or NOx-saturated regimes. Monthly mean PM:s and NO: are used to calculate
the ratio, with a threshold of 20 (ug m~)/(10'> molecules cm™) applied to identify aerosol-dominated regimes.

4. Conclusion

Aerosols typically suppress surface O3 formation through heterogeneous uptake of HO: and the reduction of
photolysis rates, yet both pathways are difficult to observe or measure directly. Here, we combine GEOS-Chem, FOAM
box model and observational constraints to examine aerosol effects on O3 formation. We found that for most fires, O3
concentrations increase because emissions of O3 precursors outweigh aerosol effects. In contrast, during extreme large
fires, the strong radiative effect may lead to an Os suppression near the fire sources. As plumes age, the aerosol
chemical effect becomes more pronounced. To represent these effects, we introduce the aerosol heterogenous
chemistry-inhibited and light-limited regimes into GEOS-Chem. Our results suggest that acrosol-dominated regimes

played a significant role during the 2020 wildfire season in California.

Aerosol loading and NOx levels are the key factors governing aerosol effects on near-surface O3 formation.

Under NOx-saturated and aerosol-dominated regimes, O3 chemistry becomes HOx-limited. Higher NOx reduces
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aerosol effects by driving more HOx to react with NOx. These results imply that even at similar aerosol concentrations,
fire and urban plumes are likely to experience different levels of aerosol effects and fall in distinct photochemical
regimes. Within wildfires, areas are apt to achieve the heterogeneous chemistry-inhibited regime when PMas
concentrations approach tens of pg m=. However, the typically high NOx concentrations in urban areas may preclude
the emergence of acrosol-dominated regimes in these regions. These insights have significant implications for O3
pollution in downwind urban areas. Previous studies have pointed out that VOC-rich wildfire plumes can enhance O3
pollution when they mix into high-NOx urban plumes (Jin et al., 2023; Xu et al., 2021). This study, however, unveils
an additional, hidden downside of urban high NOx: it obscures aerosol effects that would otherwise help reduce Os,
thereby exacerbating Os pollution relative to scenarios where wildfire smoke penetrates rural or suburban areas. It
suggests that reducing NOx concentrations in urban downwind areas could yield further benefits for mitigating O3

pollution under fire conditions.

In addition to the diagnostic modeling approach for identifying acrosol-dominated regimes, we propose using
the surface PMas to NO2 column ratio as an indicator. When combined with the widely used HCHO to NO: ratio
(FNR) for identifying NOx-limited or NOx-saturated regimes with satellite remote sensing (Itahashi et al., 2022; Jin et
al., 2020; Souri et al., 2020), this enables a comprehensive identification of O3 regimes on a global scale using
observation-based NO2, HCHO and PM.;s. However, challenges remain for identifying Os regimes under wildfire
conditions due to retrieval uncertainties in thick smoke plumes and significant primary HCHO emissions that may
compromise its effectiveness as an indicator of VOC reactivity (Liao et al., 2021). More work is needed to evaluate
the reliability of FNR thresholds in wildfire plumes and to refine PM2.s to NO: thresholds under diverse environmental

settings to improve our ability to characterize photochemical regimes.
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