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Highlights:
1. Soil organic carbon concentrations are consistently greater under aspen compared to
spruce

2. Microbial Efficiency - Matrix Stabilization model helps explain SOC differences
Smaller aggregate sizes under aspen further help explain SOC concentrations
4. Alower probability of SOC destabilization likely persists under aspen stands
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Abstract

Soil organic carbon (SOC) is often retained more effectively in aspen-dominated forests
compared to coniferous forests in North America, yet the reasons why are unclear. A potential
driver could be differences in SOC protection mechanisms. Over decades to centuries, chemical
(e.g., mineral association) and physical (e.g., aggregation) processes can work to preserve SOC
stocks, which can vary across cover types. To investigate this hypothesis, we evaluate controls
on SOC concentrations in the Coal Creek watershed (CO, USA), a montane ecosystem
dominated by quaking aspen and Engelmann spruce and underlain by granite and sandstone.
We examined a combination of biological, chemical, physical, and environmental conditions to
evaluate potential abiotic and biotic mechanisms of SOC preservation at multiple depths. As
expected, we observed greater SOC concentrations under aspen compared to spruce. Growing
season soil moisture, temperature, and CO2 and O; varied with slope position and aspect, and
thus forest cover type. Dissolved organic carbon (DOC) was lower under aspen compared to
spruce. Exo-enzyme data indicate that aspen soil microbes exhibited greater effort to seek
organically-bound resources; consistent with this, soil organic N exhibited higher 6*°N values,
hinting at a greater degree of organic matter processing. Finally, aspen soils exhibited greater
root abundance, and aspen mineral soils revealed smaller mean aggregate diameters compared
to conifer sites. Our data suggest enhanced biotic activities in aspen-dominated forest soils that
promote both chemical and physical protection of SOC in aspen- relative to spruce-dominated
forests, and associated limitations on potential DOC export.

Keywords (1-7 words): Critical Zone, Ecohydrology, Montane Ecosystems, Soil Organic Carbon,
Climate Change

1 Introduction

The distribution and composition of temperate montane forests are changing (Alexander et
al.,1987, Anderegg et al., 2013), driven by increasing air temperature, earlier snowmelt, earlier
onset and extent of the growing season (Godsey et al., 2014; Mote et al., 2018; Rhoades et al.,
2018), and increasing frequency and intensity of disturbance (e.g., drought, fire, logging, and
insect infestation; Canelles et al., 2021). For example, aspen stands have lost substantial live
density and basal area to Englemann spruce, sub-alpine fir, and Douglas Fir since 1964 with an
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increasing rate of decline since 1994 (Alexander, 1987; Coop et al., 2014). Changes in montane
forest cover can directly impact soil organic carbon (SOC) stability. Given that SOC influences
the availability of nutrients, soil stability, ecosystem water fluxes, and biosphere-atmosphere
exchange of greenhouse gases (Jackson et al., 2017), and that global SOC reservoirs represent
far more C than plant biomass and the atmosphere (Scharlemann et al., 2014), unraveling
drivers of SOC stability remains an important research goal (Billings et al., 2021). Between
paired aspen and conifer stands at numerous sites throughout North America, SOC pools differ
substantially (review in Langaniere et al., 2017). Studies consistently show that C under conifers
is more readily destabilized than under aspen (Woldeselassie et al., 2012; Laganiere et al., 2013;
Boca et al., 2020; Roman Dobarco et al., 2021). Further, SOC pools in aspen-dominated
environments tend to be composed of larger stocks of mineral-associated organic C (MAOC),
which is a relatively stable SOC fraction, than those under conifers (66% compared to 48%
MAOC to SOC, respectively; Roman Dobarco and Van Miegroet, 2014; Roman Dobarco et al.,
2021). Yet, the mechanisms driving such differences in SOC stability under aspen and conifer
remain elusive.

Examining soil physical attributes and how they can differ with plant cover type may help us
understand differences in MAOC fate in aspen vs. conifer forests. For example, soil aggregation
is a key process promoting SOC protection in many soil types (Blanco-Canqui and Lal, 2004). Soil
aggregation refers to the clustering or binding of soil particles into larger units. This process is
promoted by interactions among colloidal material and binding compounds (microaggregates;
Six et al., 2004; Blanco-Canqui and Lal, 2005; Weil and Brady, 2017; Araya and Ghezzehei, 2019)
and among particulate organic C (POC; Cotrufo et al., 2019), and clay minerals or clay-sized
particles (Six et al., 2000). The collapse and formation of aggregates influence the protection of
SOC. For example, the breakdown of macroaggregates into microaggregates often leads to the
release of dissolved organic C (DOC) (Cincotta et al., 2019), some of which can undergo
microbial uptake and mineralization to CO>. In contrast, aggregate formation can limit soil
microbial access to SOC on aggregates’ interiors, helping to shield it from exo-enzymatic attack
(Jastrow 1996; Six et al., 2000; Woolf et al., 2019).

Multiple mechanisms may drive differences in soil aggregation across aspen and conifer soils.
First, soils beneath conifers are often more acidic (Poponoe et al., 1992; Buck and St. Clair,
2012) and thus may promote a greater abundance of relatively small aggregates, given that
increases in soil solution [H*] can weaken soil aggregation processes (Statescu et al., 2013).
Second, differences in rooting abundance among aspen and conifers may drive differences in
aggregate formation across these cover types. Aspen tends to produce shallow roots that
generally extend to ~ 30 cm deep (Sheppard et al., 2006), while conifers tend to develop both
lateral and tap roots, the latter of which can extend relatively deep into the soil and bedrock
(Mauer et al., 2012). Spruce tends to exhibit lower fine root biomass compared to aspen
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(Mekontchou et al., 2020). Fine roots may promote aggregate formation through enmeshment
processes, while coarse roots may promote aggregate collapse because of roots perforating
aggregates (Bronick and Lal, 2005). Differences in soil moisture between aspen and conifers
driven by differences in aspect, foliar cover, and transpiration rates (Buck and St. Clair, 2012)
may also influence aggregate stability, as rapid changes in soil moisture can cause aggregates to
burst while a gradual increase in moisture can stabilize aggregates (Amezketa, 1999).
Combined, these concurrent and competing processes may drive differences in soil aggregation
between aspen- vs. conifer-dominated soils in ways that are difficult to predict due to complex
and non-linear interactions, and require the synthesis of findings across biological and
pedological disciplines to understand.

Soil moisture and temperature not only influence physical aggregation processes, and thus the
protection and preservation of SOC, but also the degree to which microbes transform SOC into
CO; or alter the transport of organic C pools to depth. Where soil moisture is higher, greater
transport of organic C pools into the subsurface may be feasible, potentially increasing the
amount of organic matter sorbed to minerals at greater depths (Mikutta et al., 2019).
Conversely, DOC leaching may increase, and subsequent DOC export could reduce SOC
concentrations (Roulet and Moore, 2006; Monteith et al., 2007). Soil temperature also may
drive differences in SOC transformations across aspen and conifer sites, given that aspect exerts
strong control on aspen distribution. Soil temperatures tend to be warmer under the sunnier,
aspen-dominated stands compared to conifer stands (Buck and St. Clair, 2012). In a
temperature-limited montane system, warmer temperatures under aspen stands may increase
microbial metabolic activity and turnover, and thus accelerate microbial necromass formation,
a process linked to greater stocks of relatively persistent SOC (Liang et al., 2019), perhaps due
to necromass-promoting aggregate formation and stabilization (Sae-Tun et al., 2022). Thus,
understanding soil hydrologic behaviors as well as solute transport down-profile, traditionally
the realms of hydrologists and soil biogeochemists, in addition to biological and pedological
processes, is important for understanding patterns of SOC transformations.

Finally, differences in the chemical composition of aspen and conifer biomass and their root
exudates may explain differences in MAOC stocks between the two stand types (Boca et al.,
2020). For example, aspen litter tends to exhibit lower lignin concentrations than coniferous
litterfall (Moore et al., 2006). The Microbial Efficiency - Matrix Stabilization (MEMS) framework
(Cutrofo et al., 2013) would suggest this more labile plant material may be easier for soil
microbes to assimilate and transform into microbial necromass, which can become more
physically or chemically protected through aggregation and chemical bonding (Kleber et al.,
2007; von Litzow et al., 2008; Cutrofo et al., 2013) and lead to relatively more persistent stocks
of SOC (Liang et al., 2019; Buckridge et al., 2022). Differences in microbial activities between
aspen and conifer may further be exacerbated by differences in root exudation between these
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species. For example, Norway spruce can exhibit lower exudation rates than silver birch (Sadnes
et al., 2005), and deciduous trees appear to experience greater exudation rates than pines
(Wang et al., 2021). Though many studies explore the biotic, chemical, physical, and hydrologic
processes that can influence SOC transformations and preservation, these processes are rarely
examined at the same time. Thus, it remains unclear why conifer-dominated forests
consistently harbor smaller amounts of SOC, and why aspen-dominated forests exhibit greater
SOC stabilization.

Here, we use a holistic, critical-zone approach (Chorover et al., 2007) to understand SOC
dynamics and drivers. We explore a suite of abiotic and biotic factors as they relate to SOC
pool sizes across two forest cover types at Coal Creek, a watershed in central Colorado, USA,
dominated by Englemann spruce (Picea engelmanni) on the north-facing hillslopes, and aspen
(Populus tremuloides) on the south-facing hillslopes. Coal Creek has experienced relatively high
variability in stream water DOC concentrations in recent years (2005-2019; Leonard et al.,
2022). The mysterious, almost tripling of stream DOC concentrations in some years (2018-2019)
may indicate recent shifts in upslope biogeochemical processes such as greater forest stress
associated with climate change (Leonard et al., 2022) and subsequent changes in hydrologic
flow paths (Zhi et al., 2020; Kerins et al., 2023) that influence C transport from soil profiles to
stream water. We test the hypothesis that oft-observed greater stocks of SOC in soils under
aspen stands compared to conifer-dominated soils are linked to greater soil microbial activities
in aspen stand soils. We further hypothesize that relatively stable microaggregates are more
abundant in aspen-dominated soils than spruce-dominated soils, resulting from higher
microbial activities, and thus higher necromass production rates. Differences in rooting
strategies and ecohydrology (e.g., evapotranspiration, soil moisture) between aspen and spruce
stands will likely exert a secondary control on C stability. We finally hypothesize that the
proliferation of fine roots in aspen-dominated soils are linked to smaller water-stable
aggregates, and the generally coarser and deeper roots under spruce facilitate the transport of
moisture and dissolved C down through the soil profile to a greater extent than under aspens, a
process directly linked to DOC export to streams.

To test these hypotheses, we quantified multiple metrics describing basic abiotic conditions,
SOC pools, soil microbial activities, soil aggregate-size distributions, and rooting distributions on
five hillslopes dominated by either spruce or aspen, underlain by two contrasting lithologies
and located at two hillslope positions (i.e., backslope and footslope). We aim to clarify some of
the mechanisms governing aspen- and conifer-dominated forest soil microbial activity, soil
aggregation, and soil moisture dynamics and their impact on SOC protection and potential DOC
transport into surface water, illuminating the possible trajectories of SOC and DOC in rapidly
changing, montane forest watersheds.
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Figure 1: A map of the Coal Creek catchment. Colors represent land cover types, where aspen (orange)
are dominantly at lower south-facing slopes while conifer (green) are on both north and south facing
slopes. Shapes represent lithology type where granite sites (blue triangles) are in the western part of the
catchment and sandstone sites (pink circles) are in the eastern part of the catchment. AS is aspen
sandstone, and SS is spruce sandstone. ESG and EAG are spruce granite and aspen granite, respectively.
They are in Elk Creek, a sub catchment of the Coal Creek catchment. While ESG is on a dominantly south
facing slope, it is north facing within the Elk Creek catchment. SG is also a spruce granite site. Note that

all sites reside at contrasting hillslope positions: backslope = AS and SG, and footslopes =SS, ESG, and
EAG.

Coal Creek (53 km?) is a high-elevation (2715 m), headwater tributary of the Upper Colorado
River Basin located in the Colorado Rocky Mountains near the town of Crested Butte (Fig. 1).
Coal Creek is a sub-catchment of the larger East River watershed (300 km?) and falls within the
research domains of the U.S. Department of Energy funded Watershed Function Science Focus
Area and Rocky Mountain Biological Laboratory (RMBL). The watershed is seasonally snow-
covered from November through June. The area has a continental, subarctic climate with long,
cold winters and short, cool summers. The mean annual temperature is 0.9 °C and the mean
annual precipitation is 670 mm (Carroll et al., 2018), with approximately 60% falling as snow
between October and May. This area has been warming since the 1980s and the fraction of
snow has been decreasing roughly at 1% per year (Zhi et al., 2020). Due to these warming
temperatures, the growing season in Crested Butte appears to be extending (Wadgymar et al.,
2018).
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The geology of Coal Creek is underlain by sandstone, siltstone, shale, and coal units from the
Mesa Verde Formation, variegated claystone and shale from the Wasatch Formation, and some
intrusive granite diorite, granite, quartz, and monzonite that are Middle Tertiary aged (Gaskill et
al., 1991). Soils are predominantly mapped as carbonate free Alfisols, Mollisols, and Inceptisols
(Soil Survey Staff, 2023).

Spruce, aspens, and alpine meadows can be found in the Coal Creek watershed. North-facing
slopes are dominated by Engelmann Spruce, while aspen and Engelmann spruce can be found
on south-facing slopes. We focused on five sites during this study. Three of our sites lie within
the main drainage of Coal Creek including two spruce sites (spruce sandstone, SS; spruce
granite, SG) and one aspen (aspen sandstone (AS). The last two sites are located in Elk Creek, a
sub-catchment of Coal Creek, which includes one spruce site and one aspen site, both underlain
by granite (Elk spruce granite (ESG) and Elk aspen granite (EAG). While ESG is on a dominantly
south facing slope, it is north facing within the Elk Creek catchment.

3 Methods

To quantify the impact of aspen vs. conifer land cover on soil organic C dynamics at Coal Creek,
we dug two pits roughly one meter deep at all five sites. The first series of pits were dug in the
summer 2020 and 2021 (Table 1). The second series of pits were dug in the summer of 2022.
Aspen was dominant at two sites (AS and EAG), while spruces were dominant at three sites (SS,
ESG, and SG). Because aspen- and conifer-dominated forests in this region tend to occur on
hillslopes of contrasting aspects, it was not possible to isolate land cover from aspect affects
(e.g., temperature, radiation). While the sites were selected based on their land cover, other
key ecosystem features underlying lithology (either granite or sandstone), and hillslope position
(either backslopes or footslopes) (Fig. 1) also differed across the sites. We address these site
features as potential sources of variation in our response variables in the discussion.

Soil pits were described following Schoeneberger et al. (2012), then each pit face was
photographed with a high-resolution, digital single-lens reflex camera (D5600, Nikon, Minato
City, Tokyo, Japan) to quantify rooting depth distributions following Billings et al. (2018). Bulk
soil samples were collected by depth every 10 cm for the first set of pits (2020-2021), and by
horizon for the second set of pits (2022). Samples were then immediately stored in a
refrigerator or freezer until they could be ground, sieved to 2 mm and analyzed. Twice in the
summer of 2022 (late June and mid-August), soil was collected from 3 auger sampling locations
within ~100 meters of each pit to characterize soil chemistry. Soils were augured at 10 cm
intervals to 110 cm (or deepest possible depth), and samples were stored in coolers with ice
packs in the field and transported back to the lab and stored at 4 °C (most analyses) or frozen
(DOC and microbial biomass C, exo-enzyme assays, nitrate).

Table 1. Sampling design and analysis for the soil pits and augers samples.

Auger
Soil Pits Soil Pits Samples
Timing | 2020-2021 ‘ 2J3|2y2 ‘ 2022
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(uly and (June and
September) August)
Total Depth (cm) ~110 ~110 ~110
Soil Sampling Intervals 10 cm Horizon 10 cm
3 depths
Soil moisture and gas sensors | (15,45, 110
cm)
Root Distributions X
%C and %N X X X
Extractable nitrate concentrations X
&N X
pH X X X
Effective cation exchange capacity (ECEC)
Texture
Wet aggregate size distribution (ASD) X
Dissolved organic carbon (DOC) X X
Microbial biomass carbon X
B-glucosidase and N-acetyl-3-D- X
glucosaminidase

3.1 Measuring Soil Organic C and Nitrogen Dynamics
We assessed SOC and SON concentrations and stocks and the likelihood of SOC and SON

degradation by microbes by analyzing bulk soil samples at 10-cm intervals. We determined SOC
and SON on subsamples (~75 mg) via an elemental analyzer (Vario Macro Cube, Elementar,
Ronkonkoma, NY). We used SOC and SON concentration measurements to calculate each
subsample’s C:N ratio. To determine stocks of SOC in each horizon, we multiplied SOC
concentrations by soil bulk density obtained in each horizon. Bulk density was measured using a
three-dimensional laser scanner (3D Scanner Ultra HD, NextEngine, Inc., Santa Monica, CA)
following Rossi et al. (2008).

We measured extractable, dissolved organic C (DOC) to estimate organic C that can be
relatively easily mobilized and transported out of the soil profiles; note that this differs from
DOC measured in soil porewater using lysimeters, and instead represents a salt-extractable
pool. We analyzed soil samples at 10-cm intervals to auger refusal collected at each site during
the growing season. Soil samples were extracted within three months of collection date. A total
of 7.5 g of soil at field moisture was extracted with 30 ml of simulated rainwater (Laegdsmand
et al., 1999). The rainwater extracts were comprised of 47.9 uM NaNOs, 4.69 uM KCl, 23.81 uM



256
257
258
259
260
261
262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289

290
291
292

CaCly x 2H20, 12.09 uM MgS04 x 7H20, and 18.24 uM (NHa),S04 and adjusted to a pH of 4.2 £
0.5 using HCI. Samples were placed on a shaker table for 30 minutes and centrifuged at 80 Hz (s
1) for 15 minutes. Samples were filtered through 0.45 um nylon syringe filters and 50 ml acid
washed syringes. Filtered samples were stored in 10 ml centrifuge tubes, frozen and shipped
overnight in a cooler with dry ice to the University of Kansas. DOC was analyzed from the
thawed samples using a Violet-pink Mn (lll)-pyrophosphate solution and a microplate reader
(Biotek, UT).

To better understand the potential for microbial activity in these soils, we quantified microbial
biomass C by horizon from pits dug in the summer of 2022 (Brooks et al. 1985). We exposed 5 g
of each soil sample to chloroform for 24 h. To these fumigated sub-samples and to 5 g of
unfumigated sub-samples, we added 20 ml of 0.5 M K2SO4 and shook for 30-40 minutes at 220
rpm. These samples were filtered through a 0.45 um polyethersulfone (PES) filter and their DOC
concentration was determined via colorimetry (Bartlett and Ross 1988) on a Synergy HT
microplate reader (Agilent, USA). To assess the degree to which soil microbial communities
were generating exo-enzymes that catalyze soil organic matter decay and thus can provide
assimilable C- and N-rich compounds, we quantified potential activity rates of two such
enzymes. We measured activity of B-glucosidase and N-acetyl-B-D-glucosaminidase, herein
referred to as BGase and NAGase, which are linked to microbial C (BGase) and N and C
(NAGase) acquisition (Sinsabaugh and Moorhead, 1994; Allison et al., 2011, Stone et al., 2014),
using 4-methylumbelliferyl -D-glucopyranoside (for BGase) and 4-methylumbelliferyl N-acetyl-
B-D-glucosaminide (for NAGase) fluorescent tags. These tags were added to slurries made from
approximately 1 gram of soil and pH-adjusted 50 mM sodium acetate. We pipetted the blended
sample into the desired substrate and incubated all plates at 25 °C for 18 hours. Fluorescence
from a Synergy HT plate reader (Agilent, USA) was used as a proxy for each enzyme’s capacity
to cleave monomers from the respective molecules undergoing decay (DeForest, 2009; German
et al., 2011).

We quantified salt-extractable NOs™ because of its importance as a biotically-available form of
N, and also because of its status as a readily leachable ion. As such, it can serve as an indicator
of each soil’s capacity to undergo elemental loss in surface soil with hydrologic fluxes, and
provides a valuable point of comparison to DOC values. We extracted ~10 g (fresh weight) of
each soil sample with 0.5M K;SO4 and repeated the shaking and filtering steps described above
for MBC. Extracts were analyzed for NO3™ (Synergy HT, Agilent, USA) using Shand et al. (2008), a
microplate-based approach that relies on hydrazine sulphate and sulphanilamide to generate a
color intensity directly related to NO3™ concentration.

We also quantified soil organic matter 51°N, given these signatures’ value as an indicator of the
degree to which soil microbes have processed soil organic matter (Nadelhoffer and Fry 1988;
Billings and Richter 2006). Sub-samples of each soil were dried, ground to fine powder, and
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weighed into a tin capsule for analysis. Values of 3°N were obtained at the Kansas State
University Stable Isotope Lab, where an Elementar EA Vario Pyrocube linked to an Elementar
GeovislON Isotope Ratio Mass Spectrometer determine N concentration and 3°N, respectively.

3.2 Measuring Soil Chemical and Physical Properties
To better assess possible differences in the chemical and physical controls on SOC stability we

also measured pH, effective cation exchange capacity (ECEC), soil texture, and wet aggregate
size distribution (ASD). We focused on pH as it is known to strongly control microbial
communities and mineral associated organic C (MAQOC) (Kleber et al., 2015). The soil pH was
determined in a 1:1 H,O0 soil slurry (Soil Survey Staff, 2022). We focused on ECEC because ECEC
has a high positive correlation with SOC, clay content, and aluminum and iron oxides (Solly et
al., 2020), which are highly correlated with the formation of MAOC (Kleber et al., 2015). ECEC
was determined by summing Ca, Mg, and K extracted using a Mehlich-3 solution (Culman et al.,
2019). Mehlich-3 extraction was used instead of an ammonium acetate extraction, because the
soils samples had a pH of <7.5 and there is very little to no calcium carbonate. In these
conditions Mehlich-3 and ammonium acetate extractions yield similar ECEC values (Rutter et
al., 2021).

We examined soil texture at each pit for several reasons. First, the total amount of clay is
important to MAOC, and second, texture is known to impact the distribution and connectivity
of pores. This connectivity influences how easily oxygen can diffuse into a soil profile and thus
processes such as microbial respiration (Schjgnning et al., 1999; Moldrup et al., 2001), and
further regulates water and solute transport down-profile. Soil texture was analyzed on pit
samples collected from 2020-2021 using a laser diffraction (LD) unit (Bettersizer S3, Bettersize
Instruments, Dandong, Liaoning, China). Five grams of soil was sieved to 2 mm, and organic
matter was removed by treating samples with 30% hydrogen peroxide. Ten ml of 10% sodium
hexametaphosphate (HMP) was added to the solution to prevent flocculation. The soil solution
was pipetted into the Bettersizer until obscuration levels were between 14-20. We set clay- silt
and silt-sand boundaries to be 6.6 and 60.33 um, respectively (Makd et al., 2017).

We quantified aggregate size distributions as one key metric of soil structure. Aggregate-size
distributions were measured on each soil horizon following Nimmo and Perkins (2002). Briefly,
around 25 g of the largest air-dried aggregates were fully saturated with a Dickson apparatus
(Dickson et al., 1991), and placed on a Yoder device where sieves (#4, 10, 17, 70) and soil
samples were raised and lowered in the water 2.8 cm per stroke at a rate of 36 strokes per a
minute for 10 minutes. Following this agitation in water, the sieves with their respective
aggregates were placed in a drying oven at 105 °C for 12 hours. The soil material remaining on
each sieve was dispersed with 200 ml of 2 g L' HMP, mixed for 10 minutes, passed through the
sieve again, and oven-dried at 105 °C for 2 hours. Weights were recorded and mass fractions of
water-stable aggregates were then calculated. Sieves divided aggregates into 5 classes:

10
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aggregates > 4.76 mm, aggregates between 2—4.76 mm, aggregates between 0.21-1 mm, and
aggregates less than 0.21 mm. To simplify our analysis, we agglomerated these into 3 classes
following Souza et al. (2023): fine aggregates (< 0.21 mm), intermediate aggregates (0.21-4.76
mm), and coarse aggregates (> 4.76 mm). A weighted geometric mean aggregate diameter
(GMD) was calculated for each triplicate using the mass fractions of each aggregate-size class;
the mean and standard deviation were calculated from these triplicate values to represent the
aggregate diameter of each sample. The GMD values were divided by SOC content and the
resulting values were used to characterize the propensity of C to form aggregates.

3.3 Measuring Rooting Distributions
To determine the relationship between roots, and C stability and transport, we measured the

fraction of soil volume containing fine and coarse roots throughout the soil profiles using
images collected from all 10 pits (e.g., 2020/2021 and 2022). We used ImageJ (Schneider et al.,
2012) to overlay each image with a 1x1 cm grid. We then manually checked each 1x1 cm grid
cell for the presence of a fine root (diameter < 1 mm) or coarse root (diameter > 1mm) and
noted these presence/absence scores for each grid cell. Our focus is the soil volume containing
roots and thus directly influenced by roots. As such, only presence/absence and not count data
were recorded, and in any cell containing both fine and coarse roots the presence of only the
coarse root(s) was recorded given their greater volume (Billings et al., 2018). These measures
are thus a conservative measure of direct root influence on soil volumes, derived at the cm
scale for soil pedons. Centimeter-scale cell presence/absence data were transformed into the
fraction of each 1-cm thick layer containing roots.

3.4 Sensor Data
Soil sensor arrays were installed in the first set of pits (2020/2021) at the completion of

sampling. Sensors were installed at depths of 15 cm, 45 cm, and 110 cm (or deepest depth) to
monitor soil temperature (°C) and volumetric water content (VWC ; EC-5, Meter Group,
Pullman, WA), matric potential (kPa) (Teros 21, Meter Group, Pullman, WA), O, concentration
(%) (1B201806, Apogee Instruments, Logan, UT) and CO concentration (ppm) (F0275476,
Eosense, Dartmouth, Canada). Data were collected every 30 minutes for moisture, matric
potential, and temperature and hourly for O, and CO> given the power requirements. We focus
on CO2 and O, as they are indicators of soil microbial and root biotic activities including
heterotrophic respiration. Microbial activity directly and indirectly affects the formation of
MAOC, SOC stabilization, and microaggregation (Dohnalkova et al., 2022). We used sensor data
to investigate additional environmental controls on C dynamics. We converted O, from millivolt
readings to % by adding calibrated values to the millivolt value of O,. Each calibrated value was
specific to the sensor installed and determined using atmospheric concentrations prior to
installation. To focus on the growing season, we selected data from June 15-August 29, which
was 14 days before the first sample was collected (June 29™) and ending 14 days after the last
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sample was collected (August 15%). AS reflects 2021 data, SS reflects average daily 2021 and
2022, and ESG, EAG, and SG reflects 2022 data. These differences were because pits were
installed with sensors in different years and some of the instrumentation had power outages
and other unforeseen issues. We averaged daily temperature and VWC by week and examined
average and standard deviation of the O, and CO; over the growing season.

3.5 Data Analysis

Spatial replicates controlling for all ecosystem-scale factors were not feasible in this study.
Instead, we advance our understanding of SOC stability by examining a more diverse suite of
biotic and abiotic ecosystem characteristics than is often the case in SOC-focused work. Our
work begins to unravel the complex interactions among cover type characteristics, soil
properties, and hydrologic settings in SOC dynamics. We used Wilcoxon Rank sum tests to
determine if differences between aspen and spruce concentrations of SOC, DOC, total soil
nitrogen and nitrate, and of ratios of DOC to SOC were significant. We used linear mixed effects
(LME) methods via the R package Ime4 (Bates et al., 2014) to assess the influence of vegetation
type, depth, and their interaction (N=5) on soil abiotic conditions, various forms of soil nitrogen
and C and 8'°N, ASD, and root abundances. We tested if variables were normally distributed
using the Shapiro-Wilks test and transformed the data to achieve a normal distribution if they
were non-normal. The soil chemical properties of SOC, EOC, EOC:SOC, ECEC were log
transformed, while C:N data were transformed with the function x/3. Root fractions and soil
solution pH did not require transformation to meet model assumptions. We assessed if
vegetation type exerted a meaningful influence on the previously mentioned variables by
constructing four models. The two simplest models included only vegetation type or depth,
both as fixed effects. A third model included those fixed effects additively (e.g., Vegetation +
Depth), and a fourth model included their interaction. We resolved the lack of independence of
soil depth within each pedon by incorporating site identifiers as a random effect term in the
model. We then tested the normality of the model residuals using Shapiro-Wilk test. For all
models that passed this test, we compared the model fits using analysis of variance (ANOVA)
and visually examined model residual errors for homogeneity of variance; the best model fit
was selected based on the lowest Akaike information criterion (AIC) following Hauser et al.
(2020). We interpret the results of these LME models conservatively, given the low number of
replicate sites for each land cover type. We could not perform a LME model on microbial
biomass and enzyme data due to the relatively limited number of samples. This limited our
ability to include vegetation*depth interactions in those models.
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4 Results
4.1 Soil Properties and Development

Clay, silt, and sand content at the aspen sites (AS and EAG; Fig. S1) and one of the conifer sites
(ESG) exhibited little variation with depth (average 33.1% clay and 18.8% sand), while the two
other conifer sites had a greater sand and lower silt and clay content, particularly at depths
greater than 25 cm (SS and SG; Fig. S1). Cation exchange capacity was similar among the aspen
and conifer sites with averages of 7.2 £ 4.9 and 8.2 + 6.8 (meq/100 g soil), respectively, with
elevated values at the surface that declined with depth (Fig S2).

We were able to access and describe soil profiles to approximately 100 cm (Fig. 2, Table. S1). All
sites had weak to moderately strong subangular blocky structure throughout the soil profile,
and most sites had weak to moderately strong granular structure in A and upper B horizons.
Dendritic tubular pores, interpreted to be abandoned root channels, were present throughout
the soil profile of aspen sites, while they were less common in the conifer soil profiles. Aspen
sites exhibited faint organic stains and organoargillans (i.e., dark, organic stained clay films)
throughout the soil profile, while conifer sites had clay bridges and krotovina throughout the
soil profile. The krotovina suggest greater bioturbation under conifer than aspen. Both
vegetation types exhibited ferriargillans (i.e., clay coats that include Fe oxides), clay films, and
charcoal, although ferriargillans and clay films were more prominent under conifer. Clay
bridges, organoargillans, and ferriagllians indicate illuviation. Lithologic discontinuities were
identified in SS, ESG, and EAG indicating colluvial inputs into these footslope pedons.

AS SS ESG EAG SG
Aspen S‘andstone Spruce Slandstone Elk Spruce Granite Elk Aspep Granite Spruce‘Granite
o A A
A
A A Btl E
E/Btl
251 Bw
_ Bwtl E/Bt2
c Bwt2 B/Ct
X 2Bt2 cBw1 Bt1
£ 501 Btl
Q
8 2%A Bt2
wt
2Bt 2CBw2
75 - Bt2
2CBw 2883 Bt2 Cr
100 1

Site

Figure 2: Soil profiles described at each site. Horizon colors represent the moist color of the soils as
matched to the soil-color or Munsell chart.

Soils at both aspen sites (AS and EAG) are Ustic Haplocryolls with thick, SOC-enriched surface
horizons (mollic epipedons) and showing evidence of incipient subsoil development in the form
of moderately thick cambic horizons. Soils under conifer sites are Typic Haplocryepts (SS and
SG) and Eutric Haplocryalfs (ESG). Although surface horizons under conifer were not as well-
developed (ochric epipedons), the subsurface showed similar incipient pedogenesis in the form
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of cambic horizons for SS and SG and greater development in the case of ESG where an argillic
horizon was identified between 19-90 cm below the mineral surface.

4.2 Soil abiotic conditions

To understand how soil abiotic conditions are linked to SOC forms and processing pathways, we
focused our analysis of soil temperature and moisture during the growing season (June —
August; Fig. 3). As expected, soil temperature increased at all sites as the growing season
progressed peaking in mid to late July, with the warmest temperatures observed near the
surface and lower variability observed at depth. We also observed that the aspen sites (AS &
EAG), which are on south-facing slopes, are warmer than conifer sites with an average surface
soil (15 cm deep) temperature of 14.3 £ 1.2 and 10.4 + 1.0 °C, respectively, during the growing
season. Aspen sites were generally drier than conifer. The average volumetric water content in
the surface soils (15 cm deep) at aspen sites was 0.15 + 0.05 and the average volumetric water
content at spruce sites was 0.24 + 0.05 cm®cm™.

We also examined soil pH. Across the entire soil profile, pH was similar at the aspen and spruce
sites (5.6 £ 0.3 and 5.3 + 0.4, respectively) but their depth trends differed with spruce soils
having slightly more acidic pH near the surface compared to the aspen (Fig. S2). This trend
reversed at approximately 60 cm, where the aspen soils became slightly more acidic compared
to the conifer soils.

AS SS ESG EAG SG
Aspen Spruce Spruce Aspen Spruce
Sandstone Sandstone Granite Granite Granite

SF Backslope NF Footslope NF Footslope SF Backslope NF Backslope

15 cm o
_g
o
45 cm g. Temperature (C)
= 50
10.0
£ 110 cm O W s
8 W 150
Ny ———
= - ' e
o J
10) 0.10
A 15cm 0.15
020
025
0.30
45 cm o035

110 cm

-
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Figure 3: Temperature (a-e; °C) and volumetric water content (VWC (cm?®cm3); f-j) data for aspen
sandstone (AS; a, f), spruce sandstone (SS; b, g), spruce granite (ESG; c, h), aspen granite (EAG, d, i), and
spruce granite (SG; e, j). AS reflects 2021 data, SS reflects averaged 2021 and 2022, ESG, EAG, and SG
reflects 2022 data.

4.3 Soil Organic C and Nitrogen

Across all sites, SOC concentrations ranged from 46.0-62.6 mg g near the surface (5 cm deep)
to 4.8 to 29.0 mg g* at depth (Fig. 4a). SOC concentrations were generally higher under aspen
compared to spruce sites (p < 0.0001; Fig. 4a), but LME models also suggest that the best fit
model included a significant interaction between vegetation and depth (p < 0.001), suggesting
that SOC declines with depth for both vegetation types but to a greater extent under spruce
compared to aspen. Stocks of SOC for all depth intervals ranged between 0.01 and 1.31 kg m™
(Fig. 4b); these values did not exhibit consistent declines with depth or clear differences across
cover type.

In contrast to SOC concentrations, DOC was generally higher under the spruce stands compared
to aspen. Similar to SOC, a model including a significant interaction between vegetation and
depth was the best predictor of DOC values (p < 0.001), likely reflecting variable DOC values at
different depths in both vegetation types (Fig. 4c). The DOC:SOC ratio also exhibited a
significant interaction between vegetation type and depth (Fig. 4d; p = 0.0007). As with DOC,
this significant interaction likely reflects variable ratio values for each cover type across depths.

Vegetation ® Aspen @ Conifer
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Figure 4: The mean and standard deviation of (a) soil organic carbon (SOC) concentrations, (b) SOC stock
[by horizon per pit, solid lines indicate sites underlain by granite and dotted lines aspen], (c) dissolved
organic carbon (DOC), and (d) the ratio of dissolved organic carbon to soil organic carbon (DOC:SOC)
with depth under two different vegetation types, aspen (orange) and spruce (green).

Total soil nitrogen ranged from 0.2 mg g! at depth to 4.63 mg g near the surface. A model
including an interaction between vegetation type and depth was the best fit (p = 0.003; Fig. 5a).
Aspen values were greater than those in spruce-dominated soils at all depths; the significant
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interaction implies that the decline with depth was greater in spruce soils. Nitrate
concentrations averaged 214 + 323 ng g'! near the surface and 2.3 + 3.8 ng g at depth. Nitrate
was elevated under the aspen compared to the spruce sites (Fig. 5b), and values under both
vegetation types varied with depth. A model that included both depth and vegetation type with
no interaction was a meaningfully better predictor of nitrate concentrations than either depth
or vegetation alone (p = 0.035), and including a depth-vegetation interaction did not improve
model fit. Aspen soil C:N averaged 10.9 £ 1.1 and remained fairly constant with depth (Fig. 5c).
The spruce sites showed greater variation with depth with a similar mean value of 19.3 in the
top 20 cm but widely variable values at the deepest points, ranging from 4.6 to 28.7 (Fig. 5c). A
model including a vegetation and depth interaction was a meaningfully better fit than all
simpler models (p = 0.0008), suggesting that the visibly greater variation in C:N with depth in
spruce soils was a significantly different depth trend from the fairly constant aspen values. The
lowest value measured, at depth in one of the spruce forests, is suggestive of soil organic
matter highly-processed by microbial communities (Ziegler et al. 2017).

8°N signatures showed less distinct depth trends compared to the total nitrogen and nitrate,
mirroring the relative lack of clear depth trends in C:N. Though variation across sites limited our
ability to find statistically-significant differences across vegetation types or a significant
influence of depth, 81°N of soil organic matter in spruce plots tended to be lower than that of
the aspen (Fig. 5d), hinting that soil N has undergone more microbial processing (Nadelhoffer
and Fry 1988; Billings and Richter 2006) under aspens compared to under conifers. This
interpretation is consistent with the mean spruce C:N values being greater than those in aspen
forests (Fig. 5¢).

Vegetation ® Aspen @ Conifer
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Figure 5: The mean and standard deviation of (a) soil nitrogen, (b) soil nitrate, (c) carbon to nitrogen
ratio (C:N), and 6*°N with depth under two different vegetation types, aspen (orange) and spruce
(green). For each mean and standard deviation, where error bars are not visible the deviation is smaller
than the point.

4.4 Biotic activity
4.4.1 Roots
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The LME models indicate that models including vegetation-depth interactions were the most
effective at describing total and coarse root fractions (p <0.001), with generally greater root
abundances in the aspen compared to the spruce (Fig. 6a &c). In contrast, vegetation type
offered no additional explanatory power to the depth-dependent fine root abundance (p >
0.05; Fig. 6b), suggesting that the greater total root abundance under aspen was driven by the
coarse root fraction. The difference between aspen and spruce root abundances were
continuous with depth for the total root fraction but more punctuated with coarse root
fraction. For example, higher coarse root fractions were observed from 30-60 cm and greater
than 90 cm for the aspen as compared to the spruce. Interestingly, overall spruce root fractions
decreased faster with depth than aspen root fractions. When we standardized DOC with
rooting abundance, we found generally greater concentrations of DOC per unit root abundance
under spruce soils, particularly with respect to total and fine roots (Fig. 7).

Vegetation Aspen ® Spruce
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Figure 6: The mean (points) and standard deviation(shading) of (a) total, (b) fine, and (c) coarse root
fractions quantified at 1-cm depth interval under two different vegetation types, aspen (orange) and
spruce (green).
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Figure 7: The mean (points) and standard deviation (bars) of DOC divided by mean (a) total, (b) fine, and
(c) coarse root fractions every 10 cm under two different vegetation types, aspen (orange) and spruce
(green). Root fractions represent the count of fine (<1 mm) or coarse (21 mm) in 10 cm depth
increments.

4.4.2 Enzyme activity and microbial biomass
Exo-enzyme activity, their ratios, and microbial biomass C decreased from the surface

with depth (Fig. 8a.-d.). Exo-enzyme activity standardized by microbial biomass lacked
distinct depth trends (data not shown). Beta values of exponential decay curves fit to these
data, merged for each cover type, were larger (more negative) for the spruce sites
compared to aspen, indicating steeper declines in exo-enzymatic activities, microbial
biomass C, and BGase activity relative to NAGase activity in spruce-dominated forest
soils.
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Figure 8: Exponential curves fitting enzyme and microbial biomass data. Panels (a) B-glucosidase (BGase)
(b) B-N-acetyl glucosaminidase (NAGase) (c) microbial biomass and (d) the ratio of BGase to NAGase.
Each point represents one site and one depth, with each curve thus defined by multiple spruce and
aspen sites.
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4.4.3 Soil O, and CO;,

We examined soil O; and CO; concentrations during the growing season to better understand
patterns of respiration (Fig. 9). Soil CO, concentrations increased with depth across all sites,
while O, concentrations were more variable. Soil O, concentrations remained relatively stable
at aspen sites and at spruce granite sites (AS, EAG, and SG). However, O, concentrations
decreased with depth at the remaining two spruce sites—one sandstone and one granite (SS
and ESG).

0.75+
EAG
——@©—— | AS .
sG Vegetation Depth (cm)
-0 9 Aspen 15
°~ 0.501 Ss Aspen 45
@) @® Aspen 110
O @ Spruce 15
@ Spruce 45
@ Spruce 110
0.251
. ESG
10 15 20

O, %

Figure 9: Average and standard error (obscured by symbols) of the soil O, (%) and CO, (%)
concentrations during at aspen (orange) and confer (green) sites during the growing season at depths 15
cm (light), 45 cm (medium), and 110 cm (dark), with lines connecting depths within each profile. AS,
Aspen Sandtone; EAG, Elk Aspen Granite; ESG, Elk Spruce Granite; SG, Spruce Granit; SS, Spruce
Sandstone.

4.4 Soil Aggregates

The mean geometric diameter of soil aggregates was generally smaller under aspen compared
to spruce (Fig. 10a). Aspen aggregates tended to be finer, with fewer intermediate and coarse
aggregates compared to the spruce soil (Fig. 10b-d). LME models indicated that vegetation-
depth interactions were the most meaningful in driving all three aggregate size classes (p <
0.001). To explore the propensity of SOC to promote and stabilize aggregation in these soils, we
standardized aggregates by SOC concentrations (Fig. 11; Souza et al. 2023). LME models
indicate that an interaction between vegetation type and depth contributes to variation in the
fine aggregate:SOC data (Fig. 11a; p < 0.0001), suggesting that in the bottom third of the
profile, SOC in spruce soils also contributes to fine aggregate formation. Adding an interaction
between vegetation and depth to the model improved model fit for coarse aggregate:SOC
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values (p < 0.0001), highlighting a higher coarse aggregate:SOC ratio in the spruce sites that
varied little with depth compared to aspen soils (Fig. 11b) and suggesting that SOC in spruce-
dominated soils exhibits a higher propensity to form coarse aggregates throughout the soil
profile.
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Figure 10: The geometric mean and standard deviation of (a) all aggregates, and fraction of (b) fine
aggregates (< 0.21 mm), (c) intermediate aggregates (0.21-4.76 mm), and (d) coarse aggregates (> 4.76
mm). Colors are associated with vegetation, aspen (orange) and spruce (green).
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Figure 11: The mean and standard deviation of the fraction of (a) fine aggregates (< 0.21 mm) and (b)
coarse aggregates (> 4.76 mm) divided by the fraction of SOC. Colors are associated with vegetation,
aspen (orange) and spruce (green). Please note each aggregate size class is divided by the total SOC, not
the C associated with each size class.
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5 Discussion

By integrating knowledge from biology, pedology, hydrology, and soil chemistry we were better
able to understand how multiple factors interact to drive observed SOC patterns in aspen and
conifer montane forests. Our data indicate that differences in SOC protection give rise to often
observed patterns of elevated SOC storage in soils under aspen compared to those in conifer
stands (Woldeselassie et al., 2012, Laganiere et al., 2013, Boca et al., 2020, Roman Dobarco et
al., 2021). Furthermore, our study suggests that aspen-dominated soils may experience
enhanced degrees of microbial transformation of SOC, with the products of those
transformations exhibiting a greater tendency to reside in relatively small aggregates and thus
protect C to a greater degree (Fig. 12). Consistent with this idea, we also observed less DOC loss
in aspen soils compared to soil under spruce stands and slightly higher concentrations of DOC
per unit root abundance under the spruce stands. These differences suggest greater infiltration
of DOC to deeper horizons in spruce soils compared to those in aspen stands. It is important to
highlight that spatial replicates controlling for all factors of interest at an ecosystem scale were
not feasible, but that our work moves beyond considerations of vegetation biomass
characteristics that often dominate investigations of contrasting SOC dynamics. Instead we
begin to unravel the complex interactions among cover type characteristics, soil properties, and
hydrologic settings (e.g., hillslope position). Below, we discuss the drivers of SOC form and fate
in greater detail and interpret these findings in light of recent increases in stream water DOC
concentration in this spruce-dominated watershed.
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Figure 12. Summary of observations across aspen and spruce sites at Coal Creek, CO (USA) that are
interpreted to indicate a greater amount of chemical and physical protection of SOC under aspen sites.
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5.1 Microbial data are consistent with the Microbial Efficiency - Matrix Stabilization framework
Our data provide multiple lines of evidence that SOC protection, and thus fate, in these
montane forests is largely controlled by biotic action linked to soil mineral material. Here
greater values of total N, nitrate, BGase and 8'°N and lower C:N under aspen compared to
spruce (Fig. 5, 8), suggest a greater degree of microbially processed organic matter under the
aspen stands where greater SOC contents were measured (Fig. 4). These data hint that the
microbial community under aspen stands functions in a manner consistent with the Microbial
Efficiency - Matrix Stabilization (MEMS) framework (Cotrufo et al., 2012), transforming
relatively labile leaf litter (e.g., under aspen) into byproducts more readily stabilized within soil
profiles to a greater extent than appears to occur with slower-turnover litterfall (e.g., spruce).
Differences in litterfall composition and thus decay rates across aspen and conifer species are
typical, with generally lower lignin and higher nitrogen content in aspen litter (Moore et al.,
2006). Our inference about litterfall differences promoting microbial byproduct stabilization is
consistent with findings from across western Canada, where investigators observe relatively
more active microbial communities under aspen compared to paired spruce stands throughout
a growing season (Norris et al., 2016). Specifically, one interpretation of these C:N, 5!°N, exo-
enzyme, SOC, and DOC data at our sites is that tree species-specific composition of litterfall
appears to have prompted greater microbial activities (Fig. 8), likely promoting greater
contributions of microbial necromass to the SOC pool. This, in turn, may promote greater SOC
retention in aspen-dominated soils; though investigation of specific necromass-derived
compounds in these soils (e.g., Liang et al., 2019) is beyond the scope of this work, it represents
a valuable way forward to testing this inference.

5.2 SOC transformations likely influence aggregate sizes and the probability of destabilization
The smaller aggregate sizes in aspen-dominated soils further support the notion that SOC
stability is enhanced by higher microbial activity and increased necromass production rates.
SOC is better protected and has generally longer mean residence times in smaller aggregates
than larger aggregates (Six and Jastrow, 2002; Six et al., 2004). Literature hints that the larger
size aggregates (Fig. 10c) and greater propensity for C to form large aggregates (Fig. 11b)
observed in the spruce-dominated soils at our sites may be due to a greater abundance of
particulate organic matter (POM) in spruce compared to aspen forest soils (Cotrufo et al., 2015;
Cotrufo et al., 2019); this may be the case if spruce litterfall is more difficult to decompose.
Taken together, these lines of evidence are consistent with aspen-dominated forests harboring
SOC pools that tend to promote relatively small aggregate formation that can preserve SOC to a
greater extent, particularly deeper in the profile where MAOC tends to dominate SOC pools
(Jackson et al. 2017).

We also observed patterns in soil data suggesting that aspen soil SOC pools are more
dominated by MAOC than those under spruce. The greater abundances of smaller aggregates
and total soil nitrogen and nitrate concentrations, and lower C:N ratios (Fig. 5a-c), in aspen
compared to conifer soils are consistent with relatively greater MAOC than POC concentrations
(Kogel-Knaper et al., 2008; Ye et al., 2018; Sokal et al., 2022). Combined with the lower
DOC:SOC ratio in aspen-dominated soils, these data suggest that a greater fraction of SOC in
aspen-dominated soils is mineral-bound and relatively difficult to transform into microbially-
available pools of DOC. We interpret these data to suggest that microbially-mediated
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transformations of SOC promote differences in the abundance of MAOC and the physical
structure of soil aggregates that leads to differences in the SOC protection.

5.3 Roots may indirectly regulate depth profiles of EOC losses

Roots can influence SOC stability through their promotion of both physical and chemical
protection. Specifically, roots can play an important role in the formation and breakdown of soil
aggregates (Oades, 1984; Singer et al., 1992; Le Bissonnais 1996; Attou et al., 1998), they can
create biopores that can support the transport of DOC to depth (Sigen et al., 1997; Angers and
Caron, 1998; Boger et al., 2010; Zhang et al., 2015; Lucas et al., 2019), and root exudates can
prime microbial activity, enhance decomposition, and support the formation of MAOC (Jilling et
al., 2021; Fossum et al., 2022). Our data revealed little direct correspondence of root
abundance with SOC. However, per unit root abundance, spruce soils appear to harbor more
DOC compared to aspen. This was particularly evident per unit total and fine roots, and is
suggestive of greater movement of DOC through spruce soil profiles with potential greater
losses of DOC to stream water compared to aspen-dominated soils. A complementary
explanation would be that there are differences in the amount of DOC exudation by roots
between the two species, and indeed such difference in exudation rates have been
hypothesized in the literature (Buck and St. Clair, 2012; Boca et al., 2020). We might expect that
greater exudation would lead to a greater increase in the MAOC pool and enhanced C stability
(Even and Cotrufo, 2024), which could explain the lower values of DOC relative to SOC observed
under aspen.

5.4 Aspect exerts some control on Coal Creek SOC dynamics.

South-facing slopes tend to be warmer and drier than north-facing slopes in the northern
hemisphere (Burnett et al., 2008), and thus they can prompt more microbial decomposition of
SOC. In our study aspen cover co-occurs where soil temperatures are warmer (Fig. 2). As such, it
is possible that the exo-enzymatic signals of generally greater microbial activity in aspen-
dominated soils compared to spruce-dominated soils (Fig. 8) is prompted more so by enhanced
soil temperatures than by differences in aspen and spruce organic matter characteristics, and
that enhanced soil temperatures also contribute to smaller soil aggregates, perhaps also due to
greater microbial activities. We note that the volumetric fraction of soil moisture was also
lower in the aspen, particularly at the shallowest soils, but that aspen soils appear to stay
sufficiently moist (0.10-0.20 under aspen vs. 0.20-0.30 under the spruce) to support microbial
activity responses to the higher temperatures. Consistent with this idea, soil CO, and O,
concentrations generally suggest that microbial activities in the warmer, aspen-dominated soils
are greater than in the cooler, spruce-dominated soils. Cooler, wetter conditions of the spruce-
dominated soils, particularly following snow melt may prompt a deeper infiltration of moisture
and DOC down profile, leading to the elevated DOC/root biomass observed under the spruce
stands. While disentangling the impact of elevated soil temperatures from that of the chemical
composition of organic inputs from aspen trees within the soil profile is difficult, soil nitrogen
and 3'°N data are consistent with the idea that litterfall chemistry, and not just temperatures,
promoted greater microbial activities in the aspen-dominated soils. We suggest that
investigating the comprehensive, integrated effects of warmer, aspen-dominated sites on SOC
dynamics compared to cooler, spruce-dominated sites offer a straightforward approach to
assessing landscape-scale transitions in watershed C dynamics.
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6 Changes in SOC destabilization and release have implications for stream water quality
Widespread increases in stream water DOC concentrations have been reported around the
world in recent decades (Evans et al., 2005; Alvarez-Cobelas, 2012; Stanley et al., 2012; Pagano
et al., 2014). Increases in stream water DOC concentration can harm global water quality by
altering light and thermal regimes, nutrient cycling (e.g., Morris et al., 1995; Cory et al., 2015),
the transport and bioavailability of heavy metals (e.g., Dupré et al., 1999; Trostle et al., 2016),
and creating harmful disinfection byproducts (Leonard et al., 2022). Consistent with these
global trends, recent findings at Coal Creek also report increasing DOC concentrations (Leonard
et al., 2022; Kerins et al., 2024). As such, our research may help to shed light on drivers of
stream water DOC, and thus has implications for changing drinking water quality in the region.
Specifically, our work hints that differences in aggregate-size distributions may play an
underappreciated role in influencing stream water C chemistry. Aggregate size can be
modulated by vegetation type (i.e., smaller aggregates associated with Aspen) (Fig. 11; Jiménez
et al., 2012; Zhao et al., 2017), and aggregation and disaggregation both represent mechanisms
that can influence the transport of DOC to streams (Fan et al., 2022). Larger aggregates appear
more prone to induce DOC transport into streams due to their relatively greater propensity to
undergo fragmentation and associated loss of DOC (Cincotta et al., 2019; Fan et al., 2022).

Understanding how these different types of vegetation affect the chemical and physical
properties of soil, and how this influences C release, is further complicated by climate change.
Increasing temperature, a phenomenon evident in many Rocky Mountain environments
including Coal Creek (Zhi et al., 2020), can cause aggregates to become less stable (Lavee et al.,
1996, Wang et al., 2016), soil microbes to increase their C demand (Belay-Tedla et al., 2009, Hu
et al., 2017), and recalcitrant C to undergo decay more rapidly (Luo et al., 2009). Dry soil
conditions, which are often prompted by warming (Lakshmi et al., 2003), can induce a decrease
in microbial biomass, which is often incorporated into stable aggregates (Gillballi et al.,

2007). In addition to warming induced changes to subsurface properties and function, changing
stand composition prompted by warming and drying can alter C dynamics. Some research
indicates a high mortality rate among aspen stands and the expansion of conifer stands
associated with increases in drought (Anderegg et al., 2013, Brewen et al., 2021), while others
indicate the expansion of bark beetles and wildfires may promote the encroachment of aspen
into conifer stands (Andrus et al., 2021). Our work suggests that the distribution of spruce and
aspen in a watershed may influence soil release of DOC and its subsequent transport into
streams, given that spruce vegetation appears to be associated with larger aggregates (Fig. 10),
a potential for greater DOC loss per unit SOC (Fig. 4c), greater sand content (depth >25 cm; Fig.
S1) and thus likely greater values of hydraulic conductivity, and generally higher soil moisture
content (Fig. 3) compared to aspen-dominated soils. Thus, shifts in stand composition
associated with perturbations linked to large-scale global changes have the potential to
influence DOC transport from the hillslope to the stream.
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7 Conclusions

Our work explores the interplay of different forest cover types and abiotic conditions in
governing soil microbial activities, which then influence the propensity of SOC pools to form
and stabilize soil aggregates of different sizes. In turn, these processes appear to promote
varying capacities of a soil to protect SOC from destabilization. Our work contributes to the on-
going process of examining suites of biotic and abiotic whole-ecosystem (i.e., the critical zone,
Richter and Billings, 2015) features to understand SOC dynamics (e.g., Keller, 2019; Mainka et
al., 2022; Wasner et al., 2024) and offers a springboard for subsequent studies in which a
greater number of spatially replicated sites across all gradients of interest may be feasible.
Specifically, our data suggest that aspen-derived organic matter is linked to greater
transformation rates by soil microbes and greater stabilization of SOC stocks, prompting a
lower probability of relatively labile pools of SOC undergoing transport down-profile. If so, this
suggests that aspen-dominated stands may experience a lower probability of promoting DOC
transport across landscapes into streams. This phenomenon may be driven by greater rates of
microbial necromass formation and generation of relatively smaller aggregates, and highlights
how models like MEMS (Cotrufo et al., 2013) can be important for projecting not just CO;
release to the atmosphere and SOC stabilization, but down-profile and downstream C transport
as well. Though soil temperature differences likely played a role in the greater soil microbial
activities in aspen, the generally higher nitrogen in aspen soils lends credence to the idea that
litterfall chemistry itself played a key role in the higher rates of soil microbial activities. As such,
the patterns that emerge in our data suggest that processes that control landcover ultimately
also control SOC dynamics and soil structure in ways that may directly impact the delivery of
organic C pools deep within soil profiles and stream water quality, and be sensitive to changing
climatic conditions. Here, we demonstrate how the critical zone paradigm offers a valuable
approach for examining, interrogating, and understanding watersheds, linking vegetation
dynamics to subsurface processes and ultimately to the flux of water and C from hillslopes to
streams.

Data statement
Soil sensor and soil properties data can be obtained at HydroShare,
http://www.hydroshare.org/resource/9948ad04a9a74246ad9bd5f8decb40b9
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