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Abstract. Based on aerosol particle number size distributions measured > 85° N on I/B Oden covering the summers
of 1991, 1996, 2001, 2008, and 2018, regional atmospheric circulation regimes (nodes) delineated with self-
organizing maps (SOMs) were investigated as potential controllers of Arctic aerosol sources. The three most
prominent nodes were not connected to regional source-related differences and did not vary systematically
throughout the study period. Instead, the seasonal course of sea ice melt and freeze-up appeared to affect the shape
of the aerosol size distributions significantly. High sub-Aitken concentrations occurred during the “freeze-up”,
most commonly associated with the low wind, restricted sea ice movement, and effective radiative cooling. The
high concentrations of newly formed particles measured during “freeze-up” were interpreted as deriving from frost
flower formation. With the data on ice and atmospheric conditions and their seasonal course, the study was
extended to cover all years from 1991 to 2023 to enable speculations about changing aerosol source conditions in
the warming Arctic climate. Over the 33 years of the study, the significant increases in sea and air temperatures
nearly doubled the favorable ice conditions for new particle formation > 85° N, lengthening both “melt” and
“freeze-up” parts of the illuminated Arctic by more than a week. Whereas the sum effect of counteracting
processes during the ice melt season on the airborne biogenic Arctic aerosol in a warming climate is unclear, the
net effect of the changing the freeze-up of sea ice is expected to enhance the biogenic Arctic aerosol in late

summer/autumn.

1 Introduction
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Over the past few decades, climate change has had a profound impact on the Arctic, affecting it more than any

other region on Earth. Averaged over the years 1979-2012, the temperature north of 66.5° N has risen almost four
times faster than the global average in recent decades (Rantanen et al., 2022). One of the most noticeable
consequences is the alarming reduction in the extent and mass of sea ice, which occurs in all seasons but is most
dramatic in late summer, when the sea ice extent reaches its annual minimum (Meier et al., 2014). The minimal
ice cover in late summer follows the gradual creation of melt ponds and reduction of dry ice caused by solar energy
input and rising air temperatures, which commence as the sun rises above the horizon in March. This period is
referred to as "melt." During the start of new ice formation, called "freeze-up,” the first ice layer forms when the
sea temperature is close to its freezing point, dropping below = -1.8° C. This first layer of greased ice rapidly
solidifies into thin sheets, thickening through rafting and ridging processes until it is fully frozen (Comiso, 2010).
During the freezing process, saline brine gets trapped within ice crystals, creating a brine-wetted surface on the
new ice. Highly saline centimeter-scale frost flowers will also form when the brine migrates upward or is expelled
from the sea surface under the new ice, which is typical during high-pressure atmospheric systems with calm winds
and cold temperatures (< -8°C) (Galley et al., 2015;Perovich and Richter-Menge, 1994).

Low-altitude liquid clouds are particularly important in Arctic climate change. By influencing the surface energy
budget, these clouds can partially offset regional warming. These clouds in the summer high Arctic north of 80°
contain fewer but larger droplets than clouds in other regions (Mauritsen et al., 2011). Coupled with the semi-
permanent ice cover, even small changes in either can significantly influence heat transfer to the ice and its melting
process. As such, the regional aerosol and its sources over the pack ice potentially play a significant role in

regulating the surface energy budget through-aeresel-eleud-interactions acrosol-cloud interactions. Ceteris paribus,

if more aerosol becomes available for water uptake, clouds may form with numerous smaller droplets. This
increases their sunlight reflection, leading to surface cooling (Twomey, 1974).

The air mass analyses of Heintzenberg et al. (2015) showed that the summer aerosol over the pack ice has
different potential source regions both within the pack ice itself and along its edge at the Marginal Ice Zone (MIZ).

The Arctic's synoptic-scale atmospheric circulation exhibits strong seasonal patterns along with notable
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interannual variability. This is evident in large-scale seasonal shifts in the location and strength of cyclones, their
primary pathways, and maxima of anticyclones. To generalize, cyclonic activity in winter and spring is mainly
confined to the eastern Arctic, with local maxima near Svalbard, and the northern part of Novaya Zemlya, and in
winter, east of the North Pole. These systems are migratory, primarily entering from the North Atlantic and Barents
Sea. Anticyclone maxima occur in the Canada Basin, in the sector encompassing the Siberian, Chukchi, and
Beaufort Seas, extending up to 85° N. The summer circulation pattern has attracted most research attention among
the seasons due to its close timing with the September sea-ice minimum. Unlike winter and spring, the Canada
Basin experiences its highest cyclone activity during summer, driven by land-ocean temperature differences and
the arrival of mid-latitude cyclones. Systems mainly migrate into this region from along the Siberian coast,
resulting in persistent low-pressure systems. The autumn season serves as a transitional phase, exhibiting a
combination of summer and winter circulation patterns (see Ding et al., 2017;Lee and Kim, 2019;Serreze and
Barrett, 2008 for more details).

Another conclusion from Heintzenberg et al. (2015) indicated that ice conditions with 10% to 30% open water a
few days before the air mass arrived at the observation site promoted the presence of aerosol sources. Previous
findings over the Arctic pack ice during “melt” showed that local emissions of nascent organic sea spray aerosols,
from the upper ocean's microbial community, can alter particle concentrations or composition (e.g., organic
fragments or coatings on salt particles: Leck et al., 2002;Leck and Bigg, 2005a;Leck and Svensson, 2015). Orellana
etal. (2011) confirmed that organic material in near-surface aerosols acts like marine polymer gels' , originating
from the surface microlayer (SML) on open leads. It should be noted that the contribution of inorganic salts from
sea spray is observed to have a negligible impact on the number population of cloud-active aerosols over the pack
ice in summer (Leck et al., 2002). Moreover, Bowman and Deming (2010) found that frost flowers formed during
“freeze-up” have higher levels of bacteria and extracellular polymer gels than brine, young ice, or lead water. Their
findings suggest that frost flowers allow SML and young sea ice to interact chemically with the atmosphere,
potentially serving as a source of polymer gels. Another piece of evidence supporting the connection between
marine life and new particle formation is the reaction of iodic acid and sulfuric acid (Baccarini et al., 2020; Beck
et al., 2021). Iodic acid is believed to form from atmospheric photooxidation of iodine, which is mainly produced
by microalgae beneath sea ice and released through brine channels and frost flowers (Saiz-Lopez et al., 2015), or
possibly through abiotic processes from pack ice, especially during “freeze-up”. During advection over the pack
ice, sulfuric acid forms through the photooxidation of gas-phase dimethyl sulfide (DMS), which is primarily
influenced by the conditions of the marine microbial food web in the open ocean and in the wake of the receding
ice at the MIZ, rather than locally within the pack ice (Karl et al., 2007;Kerminen and Leck, 2001;Leck and
Persson, 1996a,b).

Consequently, in the present study, the question of whether regional-scale atmospheric circulation patterns or
the temporal development of the “melt”/”freeze-up” season plays a key role in summer aerosol sources over the
inner Arctic is pursued. Here, we present a synopsis of all aerosol number size distributions accumulated during
five I/B Oden expeditions, 1991-2018, to the inner Arctic north 85-90° N (Leck et al., 1996; Leck et al., 2001;
Leck et al., 2004; Tjernstrom et al., 2014; Leck et al., 2019). The largest number of observations occurred while

! Marine polymer gels are exudates from phytoplankton, ice algae, and bacteria consisting of Ca*”’Mg?* cross-linked
polysaccharides that bind together small particulates and organic molecules such as amino acids, peptides, proteins, and lipids
(Orellana et.al., 2021).
2 Open leads are openings of sea water in pack ice and characteristically form long, narrow channels, 1-100m wide and up to
kilometers long.
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I/B Oden was moored to an ice floe in the inner pack ice area between 85-90° N, drifting passively. This period
marked the transition from the biologically most active summer “melt” to the autumn “freeze-up”, roughly from
mid-August to mid-September.

As a first step, to provide context for the relatively short observation periods from each of the five expeditions,
the self-organizing maps (SOMs) classification method was employed to identify Arctic circulation patterns during
the summer-to-autumn months of August and September. The SOM method uses unsupervised learning to identify
generalized patterns in data and, consequently, clusters a large volume of synoptic pressure fields based on similar
large-scale circulation distributions. Each timestep of the input data will belong to one of the resulting circulation
regimes called nodes. The SOM method will also provide circulation distributions or regimes (nodes) of, e.g.,
horizontal moisture transport, total cloud water, radiation, evaporation, and surface temperature. The nodes were
subsequently linked to the number size distributions of all aerosol number size distributions accumulated during
the past five I/B Oden expeditions covering the years 1991-2018.

Connecting air mass analyses with sea ice cover revealed that broken ice conditions favor aerosol sources over
the inner Arctic (Heintzenberg et al., 2015). The second focus of the present study was stimulated by these
findings, which employed the detailed seasonal evolution of sea ice to understand its impact on aerosol sources
and factors affecting the shape of their size distributions over the summertime Arctic pack ice area. The daily ice
maps were used to analyze sea ice conditions during the “melt” and “freeze-up” periods. This analysis was
conducted for August and September each year from 1991 to 2018. The data from the ice maps were then
connected to all aecrosol number size distributions compiled over the past five I/B Oden expeditions.

In the final part of the study, SOMs covering all summers from 1991 to 2018, along with ice maps, sea surface
temperatures, and atmospheric temperature data from ERAS (the fifth generation of the European Centre for
Medium-Range Weather Forecasts, ECMWF), were integrated up to 2023 across two geographic regions. The
inner Arctic pack ice region, located at latitudes greater than or equal to 85° N, was compared with the marginal
ice region between 78° N and 82° N. With marginal ice and advanced summer melt, the latter region can reference
today's conditions that may govern the inner Arctic within a few decades, as indicated in Fig. 1 of Wassman and
Reigstad (2011). This extensive dataset explores potential long-term trends and future implications of atmospheric

and ice conditions for Arctic aerosol sources in summer.

2 Methods
2.1 Self-Organizing Maps and Surface Air and Ocean Temperatures

The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERAS) mean sea level
pressure (MSLP) fields were clustered using the Self-Organizing Maps (SOM) method to identify the Arctic's
main large-scale atmospheric circulation regimes. The SOM method, developed by Kohonen (2001), is an
unsupervised learning method, i.e., a machine-learning approach, to identify generalized patterns in data. The
method has previously proven valuable in atmospheric applications (Nygérd et al., 2019;Thomas et al., 2021),

providing physically meaningful composites of field patterns.

data—fer-the SOM-analyses—The MSLP data were collected at 12-hour intervals, covering days from August to
September 1991-2018, and served as input for the SOM analyses. These input data were chosen because they

aligned with the periods when shipboard measurements were most frequently available.
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As a first step, the MSLP data were re-gridded to an equal-area grid. Then, the SOM algorithm created an initial
SOM array containing six nodes with random reference vectors of an equal dimension as the input MSLP data.
After that, each input data vector was compared with the reference vectors, and the reference vectors most similar
to the input data vector were adjusted towards the input data vector. This was repeated until the reference vectors
converged. Finally, the SOM algorithm provided an organized SOM array of MSLP patterns, having the most
similar nodes (i.e., circulation regimes) next to each other. However, in this paper, composites of the MSLP fields
associated with each node were presented, not the output reference vectors of the SOM analysis. For a more
detailed description of the SOM method, please see Kohonen (2001) and Hewitson and Crane (2002).

The choice of the SOM output array size is always, to some extent, subjective (Alexander et al., 2010). The results
for a 2 x 3 array and a 3 x 4 array were compared, and it was concluded that the 2 x 3 array should be proceeded

with.

Aretie—These six nodes in the 2 x 3 array can adequately represent the range of large circulation patterns in the
Arctic, so that their variation is captured in the variation of the circulation patterns of the nodes in enough detail
for the aims of the study.

It is also beneficial for only a few nodes to be present when our aerosol observational data was later associated
with the circulation regimes; this will ensure that sufficient observational data is available to be associated with

each node to provide statistically representative results.

assimiate—various—ebservations—The European Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis v5 (Hersbach et al., 2020;Hersbach, 2023, (last accessed 2024-10-31)) mean sea level pressure (MSLP)

fields were clustered using the SOM method to identify the Arctic's main large-scale atmospheric circulation
regimes. ERAS is a state-of-the-art global atmospheric reanalysis that applies a four-dimensional variational data
assimilation method to assimilate various observations.

Uncertainties in the representation of MSLP fields by ERAS are assumed to be minor, as in global reanalyses in
general (Nygérd et al., 2021). However, uncertainties in ERAS radiation, especially cloud variables, may be

considerably more significant (Nygard et al., 2021).

In this study, the means of variables, including 10-meter wind vectors, temperatures (at 2 meters and 850 hPa),

vertically integrated moisture vectors, total cloud water, net longwave (LW) radiation, and surface temperature in
°C were calculated separately for each of the six MSLP circulation regimes.

In addition, an extended period of two meter-air temperatures from the ERAS analyses for August and September
of 1991-2023 was also utilized. Arctic-wide average temperature values north of 85° N were calculated +6h about
each time step of the SOMs to interpret SOMs, sea ice, and aerosol data.

Half-day mean (06 — 18 and 18 — 06) 2m temperature (T2m) and Sea Surface Temperature (SST) values were
calculated from hourly ERAS data. Areal-meantime-series—were—constractedfor-two—areas =85> N-and-in-the

latitede band 782 N—82° N-from-half-day-mean—valses—Arcal-mean time series were constructed using half-day
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mean values for two distinct areas: the entire inner Arctic pack ice region north of 85° N and the marginal ice zone
within the 78° N — 82° N latitude band.

Only ocean areas where the land fraction is less than 0.1 were included in the calculation. T2m was calculated
in the ERAS assimilation cycle. Still, since the atmospheric model used to produce the ERAS5 reanalysis does not
include ocean model SSTs, these are provided as input for assimilation. Two datasets have been used to provide
SST values for ERAS. Before September 2007, SST for ERAS was supplied by the HadISST2 dataset (Titchner
and Rayner, 2014), and from September 2007 onward, it was provided by the OSTIA dataset (Good, 2022).

2.2 Aerosol measuring systems and platforms

Number-size distributions of aerosol particles have been measured on I/B Oden on all five Arctic expeditions.
From 1991 through 2008, the same type of differential mobility analyzer was deployed, albeit with varying upper
and lower size limits and the number of steps in particle diameter. Relative humidities in the instruments were
below 20%. Direct ship contamination was prevented using a pollution controller connected to the sampling
manifold, consisting of a TSI-3025 UCPC linked to the system described by Ogren and Heintzenberg (1990).
Aditionally, safe wind sectors were identified by releasing smoke from the ship while adjusting wind speed and
direction (Leck et al., 1996). If the wind was within £70° of the bow and above 2 m 5!, no ship pollution reached
the sample inlets. In 2001 and 2008, a third criterion was added: excluding data when one-minute toluene levels
exceeded 75% of their running mean. To maximize pollution-free sampling time, the manifold was kept facing
upwind, requiring a “harbor” in the ice to moor the ship and allow rotation with changing wind directions. Details
of the respective instrument setups and measures to minimize the risk of contamination from the platform are
described in Covert et al., (1996), Leck et al., (2001), and Heintzenberg and Leck (2012).

In 2018, a new type of aerosol spectrometer was added to a scanning differential mobility analyzer that extended

the size range down to one nanometer (Baccarini et al., 2020;Karlsson and Zieger, 2020). Whenever the measured

data did not cover this set completely the values at the respective interpolation diameters were flagged as ‘missing’.

The size distributions from the five expeditions were harmonized before the fitting procedure by linear
interpolation of the measured data on a common set of 50 diameters from 3.37 to 900 nanometers with
logarithmically equal spacing. Whenever the measured data did not cover this set completely, the values at the
respective interpolation diameters were flagged as ‘missing’.

Previous studies (Covert et al., 1996; Heintzenberg and Leck, 2012) had shown that the surface aerosol in the
inner Arctic exhibited number size distributions as a combination of several modes. These included nucleation
modes below 10 nanometer, ultrafine particle modes below 25 nm, Aitken modes with a maximum between 25

and 60-80 nm, and accumulation modes above 60-80 nm in diameter. Censequently—the—harmonizedsize

a-procedure-outlinedin-Whitby-and MeMurry-(1997h—The lognormal fitting was accomplished with an algorithm
written in FORTRAN that follows the procedure described by Whitby and McMurry (1997). The multimodal

character of the sub-micrometer aerosol size distribution is well established in the summer Arctic. Thus, with two
to six lognormal modes, a given number size distribution is approximated over the total diameter range 1-1000 nm
by randomly varying positions, logarithmic standard deviations, and total number concentrations of the modes.

When an optimal fit is arrived at, the number of modes is reduced as much as possible while keeping the average

8
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difference between model and measurement below a given upper limit. Absolute concentrations should be
maintained within 50% of the measurements, while relative differences between model and measurements are
maintained within 25%. The latter condition secures a good simulation of the wings of the particle size
distribution. Statistics of the five expeditions in Table Al show that on average the quality of the lognormal
approximations are substantially better than given by the constraints of the algorithm and less than 10% of the
could not be approximated within the set limits. Only aerosol data > 85° N were utilized for our focus on the inner
Arctic. The exact periods and numbers of used hourly aerosol data are collected in Table 1. Aerosol data coverage

in relation to “melt” and “freeze-up” is shown in Fig. A1l in the Appendix.

Table 1: Start and end date of hourly I/B Oden aerosol data utilized in this study in 1991, 1996, 200, 2008, and 2018, and the
number of utilized hourly averaged distributions (Scans) > 85° N after screening for possible ship pollution (total 2476). Also
shown are the aerosol upper and lower size detection limits of the instruments used in the different expedition years.

Year Start date End date Lower size ~ Upper size Scans
limit (nm) limit (nm)

1991 23 August 20 September 3 500 560

1996 1 August 9 September 5 600 715

2001 1 August 24 August 3 900 503

2008 10 August 3 September 3 800 411

2018 15 August 16 September 2.1 921 287

2.3 Air-mass back trajectories

Hourly five-day air-mass back trajectories were calculated arriving at I/B Oden. They cover each hour of the
utilized size distribution data. The trajectories were based on the meteorological fields kindly made available by
the US National Weather Service's National Center for Environmental Prediction (NCEP). Before 2005, the
trajectories were based on NCEP/NCAR reanalyzed meteorological fields with 2.5°x2.5° resolution
(https://www.ready.noaa.gov/gbl_reanalysis.php, last accessed 2023-09-08). After 2005, the calculations were
based on the Global Data Assimilation System (GDAS1). In horizontal grids of 1° x 1° resolution, meteorological
parameters are stored every three hours with a vertical grid spacing of 23 pressure surfaces between 1000 and 20
hPa. Verticalayers-one through25-hPaseparatesfive fayers: All higher layers (with the exception of the top layer)
are separated by 50 hPa, (Kanamitsu, 1989). The HYSPLIT-model for trajectory calculation, (Stein et al., 2015),
analyzes the meteorological inputs to determine the appropriate internal vertical model resolution so that there are
sufficient levels to interpolate all the meteorological input without skipping data due to insufficient vertical
resolution.

For the present study, the trajectory ensemble option of HYSPLIT was used. It starts multiple trajectories from
a given starting location to estimate the uncertainty associated with the center point trajectory. Each member of
the trajectory ensemble is calculated by offsetting the meteorological data by a fixed grid factor (one

meteorological grid point in the horizontal and 0.01 sigma units in the vertical). This results in 27 members for

9
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The summer Arctic boundary layer is typically well-mixed and shallow (approximately 100 — 400 m), capped

by a temperature inversion. At times, the inversion can be strong, especially when warmer air is advected from
lower latitudes while the free troposphere remains stably stratified (Viillers et al., 2021). An arrival height of 300
meters was chosen to ensure an optimal ensemble configuration, such that the receptor point is within the well-
mixed boundary layer and close enough to the acrosol sampling height (25 meters above sea level). Additionally,
the chosen receptor height reduces the risk of surface contact in the trajectory calculations caused by rounding

errors or interpolation.

2.4 Sea ice and open water

Daily Arctic ice maps were downloaded from the U.S. National Snow and Ice Data Center database
(https://nsidc.org/data, last accessed 2024-09-22) every day from 1991 through 2023. North of =~ 87°N, a circular
mask covers the irregularly shaped data gap around the North Pole caused by the ice-sensing satellites' orbit
inclination and instrument swath. After 2007, improved satellite technology reduced this pole gap to >89°N. At
each trajectory point, the ice map nearest in time was utilized to identify up to four pixels of this ice map within
50 km of the trajectory point. The average open-water information taken over these nearest pixels was added to
the respective trajectory point.

Within the periods of the nodes in the SOMs, probability frequency distributions (pdf) of open water under the
back trajectories of the respective particle size distributions were accumulated. These pdfs yield estimates of
aerosol-related ice conditions during the different large-scale flow conditions represented by the nodes. The
information from the ice maps was also utilized directly in specific statistics of ice conditions >85° N by relating
the number of pixels with given ice conditions, e.g., > 20 % open water, to the total number of pixels >85° N. By
doing this for August and September of each of the 33 years 1991-2023, long-term statistics and trends of ice

conditions relevant to the present study were constructed.

3 Results

Six characteristic summer atmospheric Mean Sea Level Pressure (MSLP) patterns or circulation regimes were
identified as results of the SOM analysis, which can be seen in Fig. 1a. The mean 10-m wind vectors associated
with the circulation regimes can also be seen in Fig. 1b. The MSLP circulation patterns, corresponding anomalies,
and wind vectors were calculated based on the August-September 1991-2018 average. The six circulation regimes
represent distinct pressure conditions, particularly over Greenland, Alaska, and northern parts of Russia. The
circulation regimes that occurred most commonly during 1991-2018 were nodes 2, 3, and 6 (see Fig. 2a), and those
nodes were selected for further investigation.

Circulation regime 2 is characterized by high pressure over Greenland and anomalously low MSLP over northern
Eurasia (Fig. 1a and Appendix Fig. A2). In this regime, the central Arctic Ocean experienced a relatively strong
airflow primarily from the direction of the Beaufort, Chukchi, and East Siberian Seas towards the Fram Strait and
the Greenland Sea. The air mass was anomalously warm, as indicated by the roughly 2° C temperature anomaly

at 850 hPa level, over the Beaufort, Chukchi, and East Siberian Seas (Fig. 3b, left side chart). However, this warm
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air mass did not extend to Greenland and Barents Seas, which have negative temperature anomalies at the 850 hPa
level. Circulation regime 2 was also associated with an anomalously large amount of cloud water over the ice-
covered Arctic Ocean (Fig 4a, left side chart), which was linked to enhanced net longwave radiation at the surface
(Fig 4b, left side chart). The combination of large-scale temperature advection and radiative heating by the clouds
was associated with anomalously high temperatures of 2m (T2m) over most of the Arctic Ocean (Fig. 4c, left side
chart).

The main feature of circulation regime 3 was the anomalously low pressure over Greenland, which steers the
airflow from the northern North Atlantic towards the North Pole and further towards the Canadian Arctic
Archipelago (Fig. la-b and Appendix Fig. A2). This regime efficiently transported large amounts of heat and
moisture from the northern North Atlantic to the Arctic (Fig. 3¢, middle chart). The air mass at 850 hPa was
anomalously warm over Greenland, Barents, and Kara Seas (Fig. 3b, middle chart). This also led to an anomalously
high amount of cloud water and enhanced net longwave radiation over the Greenland and Barents Seas (Fig. 4a-
b, middle chart), which, together with the warm air advection, explained the anomalously warm T2m conditions
(Fig. 4c, middle chart).

Circulation regime 6 (Fig. 3a-c and Fig. 4a-c, right side charts) was characterized by weak pressure gradients
and, thus, by very weak large-scale winds over the Arctic Ocean. Advection of heat and moisture is weak, meaning
that the Arctic conditions were not affected mainly by large-scale horizontal transport, but the conditions were
somewhat more locally driven. This regime was associated with an anomalously small amount of cloud water,
which enabled enhanced cooling by the longwave radiation. In particular, the T2m was anomalously low (Fig. 4c,

right side chart).
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Figure 1: (a) Mean sea-level pressure and (b) wind vector at 10m height above ground level circulation regimes (2x3 nodes):
calculated for August-September, including all years from 1991 to 2018.
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Figure 2: (a) August to September circulation regimes of occurrence for the six nodes displayed in Figure 1; calculated for all
years from 1991 to 2018, (b) the mean persistence of nodes (in days).
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Figure 4: (a) total cloud water anomaly in kg m?, (b) net LW radiation anomaly in W m™2, (¢) and anomaly of temperature at
the surface in © C for circulation regimes (nodes) 2,3 and 6; were calculated for August-September, including all years from
1991 to 2018.

4 Linking particle size distributions to SOMs and conditions of “melt” and “freeze-up”

Whenever available, the hourly size distribution data of the five I/B Oden cruises were averaged +6h around the
SOM times before being grouped into the six SOM nodes. When the statistics of SOM occurrence were reduced

to the five expedition years in Fig. 5, the dominance of nodes 2, 3, and 6 in Fig. 2 was maintained.
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Figure S: Probabilities of the occurrence of the six nodes in Figure 2 in August and September for the five expedition years:
1991, 1996, 2001, 2008, and 2018.

The I/B Oden expeditions all started in the developing “melt” and ended before “freeze-up” was complete (cf
Appendix Fig. Al). Near-surface temperatures dropping below zero characterize the transition from “melt” to the
start of “freeze-up.” Tjernstrom et al. (2012) suggested using a threshold of - 2° C for this transition. The net
surface energy balance could also indicate melting and freezing; as the surface temperature is practically at zero,
a negative net surface energy balance indicates freezing, and a positive one provides energy for melting. However,
in this study, the -2° C temperature threshold was augmented by adjusting it with onboard observations of ice
formation during the individual cruises. With this procedure, hourly timelines were formed with conditions of
“melt” and “freeze-up” for each expedition. The aerosol observations were then grouped according to the two ice
conditions. The start of “freeze-up” was estimated to be August 18, 19, 19, 21, and 27 for 1991, 1996, 2001,2008,
and 2018 data sets, respectively.

Statistics of the occurrence of the nodes in the two ice conditions were collected in Fig. 6. Figure 6a indicates
that melt conditions were mainly associated with circulation regime 3. This was a consequence of the strong
advection of heat and moisture from the North Atlantic and enhanced longwave radiative heating at the surface
due to warm and moist air and excessive cloud water. The freeze-up was most commonly linked to circulation
regime 6 as seen in Fig. 6b, where there was very weak horizontal transport of heat and moisture, and the
meteorological conditions were more locally driven. Regime 6 enabled enhanced radiative cooling at the surface.
The combination of low wind speeds, calm waters that limit the sea ice movement, and efficient radiative cooling

created favorable circumstances for the freeze-up.

NODE in % of SOM MELT (expeditions) NODE % av SOM FREEZE-UP (expeditions)
6 I
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w

1 ——
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Figure 6: Probabilities of the occurrence of the six nodes in Figure 2 in August and September for the five expedition years:
1991, 1996, 2001, 2008, and 2018. The data is sorted into (a) “melt” and (b) “freeze-up”.
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In addition to melting and freezing (i.e., thermodynamic) conditions, the circulation regimes have dynamic impacts
on sea ice. The pack ice in the central Arctic Ocean moves in response to air stress, water stress, sea surface tilt,
and the Coriolis force. The geostrophic wind influences approximately half of the long-term ice motion, while the
other half is attributed to mean ocean circulation. Over shorter time scales, more than 70 % of ice velocity
variability can be accounted for by the geostrophic wind (Thomdike and Cheung, 1977).

The wind-driven Arctic ice circulation consists of the Beaufort Gyre, a clockwise circulation north of Alaska
that spawns low winds, and the Transpolar Drift Stream (Timmermans and Marshall, 2020). The latter moves ice
from Siberia across the Arctic basin to the North Atlantic off the east coast of Greenland. Sea ice transport towards
the Fram Strait follows. Wind vector circulation regime 2 (Fig. 1b) can thus significantly affect the central Arctic
Ocean’s Sea ice concentration by inducing sea ice transport via the Fram Strait. On the other hand, the winds
associated with regime 3 (Fig. 1b) tend to mechanically push and pack the sea ice towards the central Arctic Ocean
and the coast of the Canadian Arctic Archipelago. However, the sea ice field responds relatively slowly to the
atmospheric circulation field, and therefore, it was relevant to how persistent the circulation regimes were at the
time. Persistent, long-lasting occurrences of circulation regimes have more potential to modify the sea ice field.
As shown in Fig. 2b, regime 2 was the most persistent, lasting on average for 4 days, while regimes 3 and 6
typically prevailed for 3 days, calculated for all years from 1991 to 2018.

In Fig. 7, the pressure regimes of nodes 2, 3, and 6 were compared to average particle size distributions during
“melt” and “freeze-up” of the respective nodes for data > 85° N. Despite strongly differing regional meteorological
conditions, all size distributions during “freeze-up” exhibited high particle concentrations in the sub-Aitken region
below 30 nm and a secondary mode or at least a concentration shoulder above 100 nm diameter. The high sub-
Aitken concentrations were missing during the melt in nodes 3 and 6. In contrast, the size distributions in node 2,
also in “melt” indicated new particle formation with high nucleation mode concentrations below ca. 15 nm
diameter, which will be discussed with below. The consideration is limited to new particle formation from the gas
phase or from the division of sub-micrometer particles in their airborne state (Baccarini et al., 2020; Covert et al.,
1996; Heintzenberg et al., 2006; Karl et al., 2013; Lawler et al., 2021; Leck and Bigg, 2010). A more detailed

discussion will follow in section 5.4.
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506 Figure 7: (a) Nodes 2, 3, and 6 surface pressure regimes, (b) Average particle size distributions during “melt” and “freeze-up”
507 of the nodes in the left panel. Only aerosol data >85° N are displayed. Also displayed are error bars representing the standard
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The probability frequency distributions (pdfs) of open water conditions in Fig. 9 show the differences between
nodes and ice conditions more clearly than maps. Figure 9a connects to the maps in Fig. 8. It showed very little
solid ice in “freeze-up” compared to “melt” and high probabilities for broken-up ice with a distinct peak around
10 % open water. The corresponding pdf maximum lay at 5 % open water in “melt.” Both ice conditions exhibit
broad shoulders towards 50 % open water, albeit with higher probabilities in freeze-up. Completely open water
under the back trajectories occurred in both conditions with about 20 % probability. The pdfs for nodes 2, 3, and
6 in Fig. 9b confirmed and emphasized the widespread occurrence of broken ice during freeze-up for node 3, as

shown in Fig. 8b.
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Figure 9: (a) Probability frequency distributions (pdfs) of open water under the back trajectories of node 3 in “melt” and
“freeze-up”, (b) As top panel but for “freeze-up” in nodes 2, 3, and 6, (¢) As top panel but for node 2 and average conditions
during the “melt” of nodes 1, 3, 4, 5, and 6. When the probabilities of 0% and 100% open water lie outside the scale of a graph,
the respective values are given as numbers in text boxes.

9e—The outlier size distributions of node 2 in Fig. 7b, which show a high concentration of nucleation mode

remaining in the melt group, can now be understood by referring to the pdfs for “melt” in Fig. 9¢c, These pdfs
represent the average of nodes 1, 3, 4, 5, and 6 and show an overall decrease from a 14% probability of solid sea
ice to a low probability of broken ice beyond 50% open water, with a narrow probability extreme of 100% open

water.
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In node 2, the sea ice distribution was very different. Solid ice had a 32 % probability, and 100 % open water

only 2 %. At the same time, broken ice occurred with frequencies of up to 10 % and a broad peak of around 30 %
in open water. Inspecting the expedition years contributing to the aerosol data in the “melt” of node 2 revealed
that almost exclusively, the year 1996 controlled the aerosol data in this node during “melt.” The persistent, strong,
high-pressure system over Greenland and the western Canadian Arctic Archipelago in 1996 led to the early
formation of broken ice during “melt.” This peculiar situation in 1996 was discussed by Nilsson and Barr (2001).

In conclusion, the shape of particle size distributions, which exhibited high sub-Aitken concentrations, notably
below 10 nm in diameter, indicated strong particle formation over the Arctic pack ice area >85° N. These particle
sources appeared to be linked to the occurrence of broken ice during “freeze-up” - a condition most commonly
associated with Node 6 (cf. Fig. 6b). The combination of low wind speeds, restricted sea ice movement, and

effective radiative cooling contributed to favorable freeze-up conditions.

5 Atmospheric and ice conditions in the inner Arctic in summer and early autumn and long-term
implications for regional aerosol sources

5.1 Trends of nodes and related ice conditions

SOMs were available for all years 1991-2018. With this more extensive dataset, the potential of the general
occurrence of the most significant nodes was explored. Over the years analyzed, there was no systematic variation
in the frequency of node occurrences (cf. Table A2 in the Appendix). Therefore, the following discussion
disregarded their interannual variation.

As mentioned in the Introduction, Heintzenberg et al. (2015) showed that ice conditions with open water between
10 % and 30 % a few days before air mass arrival at the observation favored aerosol sources, of which the latter
will be discussed further within section 5.4. Consequently, a lower limit of 20 % open water was adopted in the
general discussion of aerosol sources over the inner Arctic. In the daily ice maps for August and September 1991-
2018, the average number of pixels with open water of at least 20 % relative to the total number of pixels north of
85° N, termed “open water fraction” (OWF), was calculated and plotted as a black line in Fig. 10, which was
extended to the end of 2023 for the subsequent discussion of possible trends. The interannual variability of OWF
is substantial and appears to be stronger after the shift in 2006. Despite this high variability, the fraction of open
water increases, at least when the time series is divided into two segments: before and after 2006 (cf. Table A2 in
the Appendix). This division into two segments is also discussed in detail in Polyakov et al. (2023) describes an
Arctic “switchgear mechanism” involving oceanic circulation. The five expeditions' average open water fractions
during August and September, marked as filled yellow circles in Fig. 10, show that neither trend nor variability of
the black curve could have been assessed with the expedition data only. The interannual variations of OWF are
similar in all nodes (2, 3, and 6). Therefore, only the respective curve for the most prominent node, 3, is shown in
Fig. 10 (orange line). Beyond that, segment averages of OWF of all three prominent nodes are marked as dotted
and dashed lines, shown in Fig. 10. The segment ratios (before and after 2006) for nodes 2, 3, and 6 are 1.6, 2.1,

and 1.6, respectively. The most significant ratio was observed for the wind-driven ice circulation associated with
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node 3 (cf. Fig. 1b), mechanically pushing and packing the sea ice towards the central Arctic Ocean and the coast
of the Canadian Arctic Archipelago. As discussed in Chapter 3, this regime would, in addition, have effectively
transported significant amounts of heat and moisture from the northern North Atlantic to the inner Arctic with

potential impacts on sea ice melt and increased OWF (Mortin et al., 2016).
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Figure 10: Average open water fractions > 20 % Open Water (OWF in %) > 85° N during August and September of the years
1991-2023 (full black line) and during regional Arctic circulation according to node 3 (full orange line). Average OWF values
during August - September (8-9) and for nodes 2, 3, and 6 before and after 2006 are shown as dotted and dashed lines. Open-
water conditions during the five I/B Oden cruises are indicated in full yellow circles.

Thus, the features of circulation regime 3 were suggested to explain not only the unusually warm (T2m) conditions
shown in Fig. 4c (middle chart) but also the most significant change in the average open water fractions (> 20 %)
for latitudes >85° N during August and September before and after 2006. However, the average value of 1.7 for
all three node segment ratios was close to the segment ratio of 1.8 for all August and September days. This
similarity leads us to conclude that the different atmospheric circulation patterns of the most prominent nodes (2,
3, and 6) did not significantly lead to differing ice conditions in the inner Arctic, including all years from 1991 to
2018, which deviates from the findings of Thomdike and Cheung (1977) concerning the importance of the
geostrophic wind for the movement of the sea ice. Therefore, the atmospheric circulation regimes cannot explain
the substantial temporal changes and high interannual variability of ice conditions seen in Fig. 10. In Chapter 4,

the locally determined freeze-up was decisive in initiating the conclusion of summer through early autumn, with

strong new particle formation subsequently observed on I/B Oden. Thus—thisstudy's-available-atmospheric-and
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Figure 11: Average values of open water fractions > 20 % (OWT, full orange line), surface air temperatures (T2m, full black
line), and sea surface temperatures (SST, full gray line), (a) >85°N and in marine regions (b) 78° N-82° N for all
August/September months from 1991 to 2023. Averages < 2006 and > 2007 are drawn as dotted and dashed lines in the
respective colors.

5.2 Trends in critical atmospheric and oceanic parameters

The analysis was extended over the whole inner Arctic (=85° N) using the ice maps and average ERAS
temperatures, and it was extrapolated over all the years, from 1991 to 2023. In Fig. 11, average summer, including
September T2m, SST, and OWF values, are collected in the two analyzed Arctic regions during 1991-2023. With
substantial interannual variations, nearly all parameters increased with time in both geographic regions (cf. Table
A2 in the Appendix). SST >85° N is the exception, for which ERAS gives fixed values of -1.69° C, which is close
to the freezing point of seawater of ca 35 %o. Average levels in the two segments <2006, and >2007 are shown as
dotted and dashed lines. In these segments, T2m increased on average by 0.7° C and 1.2° C in sectors >85° N and
78° N-82° N, respectively, whereas SST in the latter region increased by 0.2° C. The corresponding increases are

1.8 and 1.3, expressed as ratios in OWF, i.e., the open water fraction increased by 80 % and 30 %, respectively.
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Some correlations of the parameters in Fig. 11 are apparent. The highest values are reached in the region 78° N-
82 ° N with T2m and OWF showing an r>= 0.7. The following highest correlation concerns T2m and SST in the

same region with an r>= 0.6.

5.3 Seasonal Changes in Ice Conditions

Employing the ERAS T2m-data, “melt” and “freeze-up” were delineated according to the following schemes in
the two studied geographic regions:

- Start of melt: Day of year (DOY) when regional average T2m rises over -1° C,
- End of melt (start of freeze-up): DOY when regional average T2m sinks below -2° C,
- End of freeze-up: DOY when regional average T2m sinks below -10° C.

The threshold of -1° C for the start of “melt” follows the approach presented in Rigor (2000). As mentioned
previously, the value of -2° C for the onset of “freeze-up” was suggested by Tjernstrom et al. and (2012). When
the regional average surface air temperature is considered to be below the somewhat arbitrarily chosen -10° C, the
completion of the freeze-up of leads is noted. The variation of the resulting DOY-values over the study period
1991-2023 allows the formulation of trends in the seasonality of the ice cover that may be relevant for regional
aerosol sources.

For the region >85 °N, the temporal development of the three critical DOY-values is depicted in Fig. 12. Over
the studied period of 33 years, climate warming yielded systematic trends with an earlier start of melting and later
start and end of “freeze-up,” albeit with substantial variabilities, being highest at the end of “freeze-up.” As a
result, the length of both “melt” and “freeze-up” increased with time. For the reference region 78° N-82° N, the
directions of the trends are the same, albeit with different slopes. The trends are not statistically significant, but

they are obvious.
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Figure 12: Annual day-of-year-values (DOY) with onset of “melt” (average T2m >-1° C, full gray line), onset of “freeze-up”
(average T2m < -2° C, full black line), and end of “freeze-up” (average T2m < -10° C, full orange line) for the region >85° N.
Respective linear trends are shown as dotted and dashed lines.
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Table 2 collects the changes in critical DOY values and length of “melt” and “freeze-up” from 1991 to 2023 for
assumed linear developments in the two studied Arctic regions. In 2023, “melt” started =5 days earlier than 1991
for latitudes > 85° N; “freeze-up” =5 days later, ending 16 days later, yielding an increase of =9 days for melt and
~12 days for “freeze-up”. Further south, the shifts in critical DOY-vales are more substantial in the reference
region. Consequently, the length of “melt” nearly doubled, whereas the length of “freeze-up” is somewhat shorter

than further north.

Table 2: Changes in critical DOY-values and lengths of “melt” and “freeze-up” from 1991-2023 assuming linear developments
in the two regions >85° N, and 78° N-82° N.

Shift of Shift of onset  Shift of end Extension Extension of

“melt” onset  of “freeze- of “freeze-  of “melt” “freeze-up”
Region (days) up” (days) up” (days) (days) (days)
>85°N -4.6 4.7 16.3 9.3 11.6
78°N-82°N -5.3 12.1 22.4 17.4 10.2

5.4 Long-term implications for central Arctic aerosol sources

Before exploring the future implications of the observed trends for the central Arctic aerosol, this section
summarizes the seasonal variation in particle size distributions, including all available data beyond the SOMS
discussion. Figure 13 presents the averages and medians of all data collected at > 85° N during the five I/B Oden
expeditions, covering both “melt” and “freeze-up' periods. The figure highlights significant differences associated
with the two ice conditions shown in Fig. 7.

The “freeze-up” samples, attributed to Figure 13, typically stayed in the air over the pack ice area for over five
days before being collected at latitudes of 85° N or higher (e.g., Leck and Svensson, 2015). Extended advection
over pack ice has been observed to result in comparatively low particle concentrations for diameters larger than
approximately 80 nm, due to scavenging in low clouds and fog, especially during the first 1-2 days of advection
from the open sea into the pack ice. (Heintzenberg et al., 2006; Nilsson and Leck, 2002). The tiniest particles, with
diameters below 30 nm, have been observed to have very short atmospheric lifetimes, generally ranging from
hours to a day (Leck and Bigg, 1999). Therefore, their presence over the inner pack ice cannot be explained by

advection from more southerly sources.

The somewhat similar median distributions during “melt” and “freeze-up" were interpreted as representing the

inner Arctic background, whereas individual particle formation events strongly influenced the averages. Particles
with diameters under 30 nm, as shown in Figure 13, had particle number concentrations during “freeze-up" that
were more than two orders of magnitude higher than during “melt,” especially for particles under 10 nm, indicating
strong new particle formation. Based on aerosol particle number size distributions measured on I/B Oden covering
the months of August and September of 1991, 1996, 2001, 2008, and 2018, a common characteristic of individual
particle formation events is that the particle concentrations under 10 nm in diameter are often very low. Still, they

can suddenly rise dramatically for 5-12 hours, reaching concentrations of several hundred to 1000 cm™ in a
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background atmosphere with very low total aerosol numbers, typically around 100 ¢m™ or less than 10 ¢cm?
(Covert et al., 1996), with weak subsequent growth before being scavenged by fog or rain (Karl et al., 2013; Leck
and Bigg, 1999; Baccarini et al., 2020). Events with elevated 3—5 nm particles also show increased concentrations
in other size ranges, less than about 30-50 nm, reaching up to 500 ¢m™ for several hours (Leck and Bigg,
1999;2010; Karl et al., 2013). The occurrence of the events is especially notable during the freeze-up period.

The formation of numerous small particles below 10 nm in diameter is likely due to homogeneous nucleation
originating from gaseous precursors, including iodic and sulfuric acids. These acids yield initial particle clusters
that grow further by condensation, potentially supported by iodine acid or biogenic organic compounds vapors, or
as a combination of production via the generation of marine polymer gels, which are released as small nanometer-
sized (nano-granular) particles when clouds or fog droplets dissipate (Baccarini et al., 2020; Heintzenberg et al.,
2006; Karl et al., 2013; Lawler et al., 2021; Leck and Bigg, 1999; 2010). The average number concentration of a
prominent broad peak during “melt” was reported to involve emissions of biogenic particles, especially polymer
gels, from the MIZ or open leads over the pack ice, and growth of pre-existing smaller particles through
heterogeneous condensation of precursor gases like sulfuric and methane sulfuric acids from photochemical
oxidation of DMS and aerosol cloud processing (e.g. Leck and Bigg, 2005b). As noted above, the very low aerosol

concentrations over 300 nm diameter were shown to result from efficient scavenging near the MIZ.
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Figure 13: Average and median particle size distributions at >85°N collected over the years 1991, 1996, 2001, 2008, and 2018
during the "melt” and “freeze-up" phases. Also displayed are error bars representing the standard deviations of the means of
the average size distributions and median absolute deviations of the median size distributions.

Over the study period of 33 years, several atmospheric and oceanic parameters relevant to regional aerosol sources
showed significant changes consistent with the known Arctic warming. Assuming an overall linear change
(instead of the segment changes < 2006/ > 2007), T2m increased by 1.1° C > 85° N and 2° C in the marginal ice
region 78° N-82° N.

Moreover, during the 33 years, this study's results show that OWF nearly doubled >85° N while it increased by
~50 % in the region 78° N-82° N. In the latter region, SST increased by 0.4°C, assuming a linear trend; “melt”
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According to Aslam et al. (2016), these changes must influence sea ice distribution, such as open water and

newly formed leads. As a result, the response of microorganisms in seawater to melting or freezing ice could have
an impact on various biogenic sources at the air-sea interface.

The overall thinning of sea ice, along with earlier and longer melt periods, clearly results in more open water.
This increases the sunlight reaching the ocean surface and promotes phytoplankton growth, utilizing the nutrients
already available and those supplied by melting ice-bottom algae (Arrigo et al., 2012). This would also regulate
polymer gel production via phytoplankton secretions, as reviewed by Deming and Young (2017) and references
therein. However, diminished ice thickness or increased openness of the sea would facilitate more efficient wind
mixing of the surface ocean, thereby augmenting the depth of the mixed layer and potentially mitigating algal
growth. Because of polymer gels that induce aggregation (Orellana et al., 2011), increased carbon flux from sea
ice might occur with earlier ice melt at the MIZ if grazers feeding on aggregates are absent, resulting in less
accumulation of polymer gels in the upper water column (Carmack and Wassmann, 2006).

The extension of “freeze-up” by about ten days with freshly frozen leads restricts the exchange of nascent sea
spray particles with the atmosphere. However, Bowman and Deming (2010) discovered that frost flowers contain
significantly more bacteria and extracellular polymer gels than brines, young ice, or water. Their research indicates
that an increase in frost flower occurrence could promote chemical interactions between sea ice and the
atmosphere, serving as an enriched atmospheric source of polymer gels as well as for iodine released via the frost

flowers from sea-ice brine channels.
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Whereas the sum effect of counteracting processes during “melt” on the biogenic Arctic acrosol in a warming
climate is unclear, the net impact of the changing “freeze-up” is expected to enhance the biogenic Arctic aerosol
in late summer/autumn. In terms of particle size distribution, this may lead to an even more prominent sub-Aitken
mode than shown in Fig. 13.

Results from large eddy simulation models indicate that Aitken mode particles could significantly influence the
cloud's simulated microphysical and radiative properties by forming cloud droplets (Bulatovic et al., 2021). Their
findings aligned with aerosol particle size distribution data collected during the five-year I/B Oden expeditions,
which showed that Aitken particles as small as approximately 50-30 nm in diameter can act as CCN. These
particles also showed an increased tendency to activate into cloud droplets after the commencement of sea ice
formation (Duplesee et al., 2024; Karlsson et al., 2022; Leck and Svenson, 2015). Based on the findings outlined
above, the response of microorganisms in seawater to the processes of melting or freezing of ice could significantly
impact the formation of low-altitude liquid clouds within the high Arctic environment through aerosol-cloud
interactions. This, in turn, may have implications for their radiative properties and the future evolution of the ice

cover.

6 Conclusions

The starting point of the present study was aerosol particle number size distributions measured >85° N on five
cruises of I/B Oden covering the summers of 1991, 1996, 2001, 2008, and 2018, and previous analyses indicating
different potential source regions and ice-related factors affecting Arctic aerosol sources. Regional atmospheric
circulation regimes (nodes) based on the method of self-organizing maps (SOMs) were investigated as potential
controllers of Arctic aerosol sources. Circulation regime 2 featured high pressure over Greenland and low MSLP
in northern Eurasia. The central Arctic Ocean experienced strong airflow from the Beaufort, Chukchi, and East
Siberian Seas towards the Fram Strait and Greenland Sea. Circulation regime 3 displayed low pressure over
Greenland, directing the airflow from the northern North Atlantic to the North Pole and Canadian Arctic.
Circulation regime 6 showed weak pressure gradients, causing extremely light large-scale winds across the Arctic
Ocean. Despite substantial climate change, the three most prominent nodes were not connected to regional source-
related differences and did not vary systematically throughout the study period. Instead, the seasonal course of
sea ice melt and freeze-up appeared to affect the shape of the aerosol size distributions significantly. In particular,
high sub-Aitken concentrations occurred during the “freeze-up”, most commonly associated with the low wind,
restricted sea ice movement, and effective radiative cooling conditions of node 6. The high concentrations of
newly formed particles measured during “freeze-up” were interpreted as deriving from frost flower formation
during this time of the year.

Based on the understanding that ice conditions and their seasonal course are considered major controllers of Arctic
aerosol sources, the study was extended to cover all years from 1991 to 2023 to enable speculations about changing
aerosol source conditions in the warming Arctic climate. With daily ice maps and sea surface and atmospheric
temperatures from the ERAS database, long-term changes in ice conditions were explored. Over the 33 years of
the study, the significant increases in sea and air temperatures nearly doubled the favorable ice conditions for new
particle formation >85° N, lengthening both “melt” and “freeze-up” parts of the illuminated Arctic by more than

a week. Whereas the sum effect of counteracting processes during the ice melt season on the airborne biogenic
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Arctic aerosol in a warming climate is unclear, the net effect of the changing the freeze-up of sea ice is expected

to enhance the airborne biogenic Arctic aerosol in late summer/autumn. The consequences of the foreseen seasonal

changes in biogenic aerosol sources in the inner Arctic remain to be investigated—Fhe-strongaerosel-cloud-elimate

The strong aerosol-cloud-climate correlation necessitates regional model simulations to evaluate potential future
impacts of a doubling in airborne biogenic particles during the freeze-up period and an indeterminate net source

change in the melt season.
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Appendix A

Table Al: Percentage of unfitted data, average absolute and relative deviations of the lognormally fitted distributions from the
measurements for the five expedition years.

Year Unfitted Av. abs. Av. rel.
data (%) Dev. Dev.
1991 9 0.27 0.23
1996 3.7 0.21 0.24
2001 0.7 0.22 0.23
2008 4 0.28 0.23
2018 8 0.19 0.24

Table A2: Statistics and two-tailed statistical tests of significant changes <2006 versus >2007 of node occurrence (node 1-6),
average August/September temperature (T2m) >85° N, and 78° N-82° N, sea surface temperature (SST) 78N-82°N, open water
fraction (OWF) > 20 % > 85° N, and 78° N-82° N, median value of first day-of-year (DOY) with average T2m > 85° N >-1 °C,
median value of first day-of-year (DOY) with average T2m 78° N-82° N > -1° C, median value of latest day-of-year (DOY)
with average T2m > 85° N sinking < -2° C, median value of latest day-of-year (DOY) with average T2m 78 °N-82° N sinking
<-10° C, median value of latest day-of-year (DOY) with average T2m 78° N-82° N sinking < -10° C, length of melt period >
85° N, length of melt period 78° N-82° N, length of freeze-up period > 85° N, length of freeze-up period 78° N-82° N. The
changes are considered significant if P(<t) two tail is less than 5 %.

Parameter Unit Mean Variance Mean Variance P(T<t) Change
<2006 <2006 >2007 >2007 two tail  significant?
Node 1 n.a 0.127 0.008 0.150 0.007 0.560 no
Node 2 n.a 0.251 0.013 0.253 0.015 0.970 no
Node 3 n.a 0.228 0.005 0.194 0.015 0.400 no
Node 4 n.a 0.099 0.002 0.067 0.003 0.096 no
Node 5 n.a 0.100 0.003 0.068 0.003 0.110 no
Node 6 n.a 0.193 0.011 0.199 0.010 0.870 no
T2m_8-9,>85°N n.a -4.5 16.7 -3.6 12.5 3.32E-13 yes
T2m_8-9, 78° N-82° N n.a -33 9.0 2.1 4.6 3.03E-44 yes
SST, 78° N-82° N n.a -1.5 0.005 -1.3 0.012 9.70E-07 yes
OWF, >20% >85°N n.a 22 138 40 267 0.002 yes
OWEF, > 20 % 78° N-82° N n.a 62 54 81 42 5.50E-9 yes
DOYmin, >-1°C>85°N n.a 162 36 160 41 0.370 no
DOYmin, 78° N-82° N n.a 163 16 161 29 0.170 no
DOYmax,<-2°C=> 85°N n.a 239 47 243 43 0.038 yes
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Figure Al: Overview of available number-size distributions of aerosol particles measured on I/B Oden during five Arctic
expeditions, covering days in August and September in 1991, 1996, 2001, 2008, and 2018. Gray days represent “melt”, and
yellow days represent “freeze-up”. White fields indicate days without data.
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Figure A2: Anomaly of mean sea-level pressure in hPa for circulation regimes (nodes) 2, 3, and 6, calculated for August-
September of all years from 1991 to 2018.
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