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Abstract. The smash software is a differentiable and regionalizable framework enabling modular high-resolution hydrological

modeling and data assimilation, from catchment to regional and country scales, for water research and operational applications.

smash combines various process-based conceptual operators for vertical and lateral flows, which can be hybridized with a

descriptors-to-parameters neural network for regionalization. smash features an efficient, differentiable Fortran solver using

Tapenade to automatically derive the adjoint model that supports CPU forward-inverse parallel computing and spatially dis-5

tributed optimization of large parameter vectors thanks to accurate cost gradient, interfaced in Python using f90wrap. This

article presents smash algorithms, their open-source code, documentation and tutorials. It highlights foundational research,

benchmarking on state-of-the-art datasets, and readiness for scientific and operational use. To ensure reproducibility, open-

source datasets are used to demonstrate the main functionalities of smash, including parallel computation performances and

the application of multiple spatially distributed conceptual model structures over a large catchment sample. These functional-10

ities include uniform or spatially distributed calibration and regionalization by learning the relation between descriptors and

parameters. Provided Python tool allows application to any other catchment from globally available datasets. Using CAMELS,

as per recent articles, median KGE > 0.8 are obtained in local spatially distributed calibration for daily GR-like and VIC-like

model structures at dx= 1′30′′ (∼ 3km) and KGE > 0.6 in spatio-temporal validation in a regionalization context. The re-

gionalization of a high resolution hourly GR-like model structure at dx= 500m over a difficult mediterranean flash-flood prone15

case results in NSE > 0.6 in spatio-temporal validation. The proposed differentiable and regionalizable spatially distributed

modeling framework is designed for gradient-based variational data assimilation, applicable to initial states (not shown) and

parameters estimation at multiple time scales, and is intended for collaborative research and operational applications. Ad-

ditionally, smash supports the implementation of other differentiable hydrological and hydraulic models, as well as hybrid

physics-AI models, further enhancing its versatility and applicability.20

1 Introduction

Hydrological models are indispensable tools for hydrosystems functionning understanding, floods and low flows forecasting,

sustainable water management and infrastructure design, environmental protection, and adaptation to a changing climate.
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Indeed, measurements of hydrological responses are not ubiquitously available (e.g. Beven (2011)) while "everywhere relevant"

(Bierkens et al., 2015) estimation of hydrological state-fluxes is expected. A model is hence needed to extend and predict those25

quantities of interest based on available data.

High-resolution spatial datasets have become increasingly accessible, often on a global scale, and enable describing topo-

graphy-soil-vegetation properties as well as atmospheric variables. Examples include the ECMWF atmospheric reanalysis

version 5 (ERA5) (Hersbach et al., 2020) and rainfall product MSWEP (Beck et al., 2019), flow directions IHU (Eilander et al.,

2021) from MERIT terrain elevations (Yamazaki et al., 2017), the SoilGrids pedology (Hengl et al., 2017), daily discharge from30

Caravan-CAMELS (Kratzert et al., 2023; Addor et al., 2017), that will be used hereafter. Such data can be directly exploited by

grid based spatially distributed hydrological models, whose development at "hyper-resolution" (1km2 or finer) is recognized

as a “grand challenge for hydrology” to address water problems facing society (Wood et al., 2011; Bierkens et al., 2015).

Hydrological responses result from combined non-linear vertical and lateral physical processes occurring at multiple scales

in the critical zone and their limited observability (e.g. Beven, 1989; Milly, 1994; Blöschl and Sivapalan, 1995; Refsgaard,35

1997; Vereecken et al., 2019) makes hydrological modeling uncertain and difficult (e.g. Liu and Gupta, 2007)). In the absence

of directly exploitable first principles in hydrology (e.g., Dooge (1986)), as opposed to flow mechanistic equations in continuous

media such as river hydraulics, meteorology or oceanography, and given the high heterogeneities of continental hydrosystems

compartments and the lack of ”scale-relevant theories” (Beven, 1987), process-based hydrological models generally include a

certain amount of empiricism. It represents an avenue for the fusion of data assimilation (DA) and uncertainty quantification40

(UQ) with machine learning (ML) and deep learning (DL) techniques to better exploit the informative richness of multi-source

data.

Differentiability of the forward numerical model is a key technology to achieve, for gradient based optimization of large

parameter vectors (e.g. variational data assimilation in 2D or 1D hydraulic models (Monnier et al., 2016; Brisset et al., 2018),

in spatialized hydrology (Castaings et al., 2009; Jay-Allemand et al., 2020)) and for solver hybridization with neural networks45

(cf. framework proposed for learnable regionalization (Huynh et al., 2024b) and internal flux correction (Huynh et al., 2024a)

in spatialized hydrology, enhanced and analyzed over a large sample in (Huynh et al., 2025)) model parameterization and

structure learning. An important aspect is also to deliver carefully tested and documented code, user guides and datasets

to ensure reproductibility of results and foster the diffusion of approaches and their evolution, taking advantage of other

algorithms and advances from other scientific fields (e.g. other geophysical and environmental models, applied mathematics,50

signal processing, scientific computing).

The "resolution-complexity continuum" (Clark et al., 2017) has been explored over the past five decades through various

modeling approaches, ranging from point-scale processes numerically integrated at larger scales to spatially lumped repre-

sentations of system responses (Hrachowitz and Clark, 2017). Among the diverse hydrological models and their underlying

hypotheses, components generally describe water storage and transfer (e.g. Fenicia et al. (2011)) through various combinations55

and parameterizations of vertical and lateral storage-flux operators. Several model comparison experiments have analyzed dif-

ferences between various modeling approaches, evaluating performance in terms of streamflow modeling (Perrin et al., 2001;

Reed et al., 2004; Duan et al., 2006; Orth et al., 2015) and internal states such as soil moisture (Orth et al., 2015; Bouaziz
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et al., 2021). Orth et al. (2015) concluded that "added complexity does not necessarily lead to improved performance of hy-

drological models". Notably, parsimonious conceptual models, whether lumped or semi-lumped, have performed efficiently60

in large sample studies (e.g. GR model in Perrin et al. (2001), GRSD model in De Lavenne et al. (2019), GR and MORDOR

models in Mathevet et al. (2020), FUSE models in Lane et al. (2019) and references therein). Large sample studies have also

been undertaken with spatially distributed models among which VIC (Mizukami et al., 2017) with a Multiscale Parameter

Regionalization (MPR) (Samaniego et al., 2010) or with pixel-wise calibration on global maps of streamflow characteristics

(Yang et al., 2019), a gridded version of HBV applied with MPR like descriptors-to-parameters regressions on a global dataset65

(Beck et al., 2020), GloFas (Hirpa et al., 2018), NHM (Towler et al., 2023), Wflow (Aerts et al., 2022; van Verseveld et al.,

2024) or runoff relevant parameters of E3SM using a surrogate-assisted Bayesian framework (Xu et al., 2022). Differentiable

numerical hydrological modeling has made significant progress in recent years (spatially distributed variational data assimila-

tion in Castaings et al. (2009); Lee et al. (2012); Jay-Allemand et al. (2020)), for large catchment sample studies with hybrid

physics-AI, both with lumped approaches (e.g., Feng et al. (2024)) and with high-resolution, spatially distributed frameworks70

(Huynh et al., 2024b, 2025). These large sample studies enable more general and statistically sound analyses of model perfor-

mances (Andréassian et al., 2009; Gupta et al., 2014), addressing large-scale challenges with consistent methodologies across

various scales and conditions.

All hydrological models are inherently conceptual and calibration or learning is generally required due to limitations and

uncertainties in their structure, parameter representativity, data availability and initial and boundary conditions. These models75

are typically calibrated and validated using discharge time series at the catchment outlet(s) (Sebben et al., 2013). However,

calibrating hydrological model parameters from sparse and integrative discharge data is a challenging inverse problem com-

plicated by equifinality issues (Bertalanffy, 1968; Beven, 1993, 2001) especially for distributed models with a large number

of cells and parameters ("curse of dimensionality"). Using spatially uniform parameters may not be the best way to exploit a

spatially distributed model (under parameterization), while fully distributed parameters calibration, which requires a gradient80

based approach (Castaings et al., 2009; Lee et al., 2012; Jay-Allemand et al., 2020), is facing over parameterization. There-

fore, a parameter regionalization approach using multilinear descriptors-to-parameters transfer functions has been proposed for

distributed models (Beck et al., 2020). More recently, this approach has been advanced with regionalization neural networks

(Huynh et al., 2024b) integrated into the differentiable spatialized smash model (Colleoni et al., 2022), which is the focus of

the present article introducing a new numerical code and conducting original tests on a large sample of catchments with open85

source data. This approach also enables learning via cost functions based on hydrological signatures, which are obtained using

automatic signal analysis algorithms applicable to large samples with smash (Huynh et al., 2023).

This article presents the computational framework smash dedicated to Spatially distributed Modeling and ASsimilation for

Hydrology. The smash framework combines vertical and lateral flow operators, either process-based conceptual or hybrid with

neural networks (allows learning regionalization relations between descriptors and parameters), and perform high dimensional90

optimization from multi-source data. It is based on an efficient and automatically differentiable Fortran solver enabling CPU

parallel computing, that is interfaced in Python using f90wrap (Kermode, 2020; Jay-Allemand et al., 2022). This open-source

smash code, in its version v1.0 (https://github.com/DassHydro/smash), is presented here in terms of mathematical formulation,
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numerical modeling approach and functionalities while full details can be found in our research articles from which this soft-

ware stems (Colleoni et al., 2022; Huynh et al., 2023, 2024b) and in the online documentation (https://smash.recover.inrae.fr).95

Note that smash has also been developed for operational applications. It is the core solver of the French flash flood fore-

casting system (Piotte et al., 2020). The proposed framework leverages adjoint-based variational data assimilation (VDA),

enabling the simultaneous inference of high-dimensional and spatially distributed parameters (as illustrated) and initial states

(implementation available and tested in smash v1.0 but not shown), applicable at both long and short time scales.

This article is organized as follows. Section 2 describes the smash forward model and the inverse algorithm. In section 3 we100

describe the smash build system framework, documentation and computational performance. Some applications of smash

are demonstrated in section 4 using open-source datasets focusing on the contiguous United States (CONUS) and on a high-

resolution flash flood-prone case study in France. Section 5 illustrates other aspects of smash not presented in section 4,

followed by conclusions in section 6.

2 Model and optimization algorithms description105

The smash framework contains various hydrological model structures with varying vertical and lateral flow operators as

well as spatialized routing schemes. It is designed to simulate discharge hydrographs and hydrological states at any spatial

location within a structured mesh and it reproduces the hydrological response of contrasted catchments by taking advantage of

spatially distributed meteorological forcings, physiographic data and hydrometric observations. Cost function gradient maps

with respect to tunable parameters are a key feature of smash and can easily be combined to gradients of external operators110

such as a regionalization neural network (Huynh et al., 2024b) with chain rule in context of high dimensional optimization.

2.1 Forward model statement

Let Ω⊂ R2 denote a 2D spatial domain that can contain one to many gauges, with x ∈ Ω the spatial coordinate, t ∈ ]0,T ]

the physical time and DΩ a drainage plan over Ω. The spatially distributed rainfall-runoff model M is a dynamic operator

projecting the input fields of atmospheric forcings I onto the fields of surface discharge Q, internal states h, and internal115

fluxes q, as expressed in Equation 1.

U(x,t) = [Q,h,q] (x,t) =M(DΩ;I(x,t); [θ,h0] (x)) (1)

with U(x,t) the modeled state-flux variables, θ and h0 the spatially distributed parameters and initial states of the hydrological

model.

The spatially distributed rainfall-runoff model M is obtained by partial composition (each operator taking various other120

input data and parameters) of the flow operators as follows:

M=Mhy ( . ,Mrr ( . ,Msnw)) (2)

Several process-based conceptual operators are available in smash for composing a model:
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– Snow operator Msnw (optional): simulates melt flux mlt(x,t) feeding the hydrological operator in addition to rain.

◦ zero: no module125

◦ ssn: degree-day module

– Hydrological operator Mrr: simulation at pixel scale of elementary runoff qt(x,t) feeding the routing operator.

◦ gr4: Génie Rural (GR)-like module (Perrin et al., 2003; Mathevet, 2005)

◦ gr5: GR-like module (Le Moine, 2008; Ficchì et al., 2019)

◦ grd: GR-like module (Perrin et al., 2003; Jay-Allemand et al., 2020)130

◦ loieau: GR-like module (Perrin et al., 2003; Folton and Arnaud, 2020)

◦ vic3l: Variable Infiltration Capacity (VIC)-like module adapted from (Liang et al., 1994)

– Routing operator Mhy: runoff routing from pixels to pixel to obtain spatio-temporal discharge Q(x,t).

◦ lag0: Instantaneous module

◦ lr: Linear reservoir module135

◦ kw: Kinematic wave module. A classical 1D conceptual kinematic wave model, applied over a D8 drainage plan

DΩ without channel. The model is solved numerically using a linearized implicit scheme (Chow et al., 1998).

The operators chaining principle is schematized in Figure 1 with input data and internal states and fluxes. The operators

available in smash are listed above, and further detailed in Appendix D and in the online documentation (https://smash.

recover.inrae.fr/math_num_documentation/forward_structure.html).140

Originally, a differentiable descriptors-to-parameters mapping ϕ can be used to constrain spatially distributed conceptual

parameters θ(x) and initial states h0(x) from physical descriptors D(x), for regionalization learning (Huynh et al., 2024b):

[θ,h0] (x) = ϕ(D (x) ,ρ), ∀x ∈ Ω (3)

with D the ND-dimensional vector of physical descriptor maps covering the spatial domain Ω and ρ the vector of tunable

regionalization parameters of the available mappings (written for θ only for brevity):145

1. A set P of multiple regression operators for each parameter of the forward hydrological model M:

θk(x,D,ρk) = sk

(
αk,0 +

ND∑
d=1

αk,dD
βk,d

d (x)

)
, ∀k ∈ [1..Nθ] (4)

with sk(z) = lk +(uk − lk)/(1+ e−z) , ∀z ∈ R a transformation based on a sigmoid function with values in [lk,uk]

imposing constrains into the forward model such that lk < θk(x)< uk, ∀x ∈ Ω. The bounds lk and uk associated to each

conceptual parameter θk are spatially uniform. The regional parameter control vector to estimate in this case is: ρ≡150 [
(ρk)

Nθ

k=1

]T
≡
[(

αk,0,(αk,d,βk,d)
ND

d=1

)Nθ

k=1

]T
; a multiple linear regression mapping is obtained by imposing βk,d = 1.
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2. An ANN denoted N , consisting of a multilayer perceptron, aimed at learning the descriptors-to-parameters mapping

such that:

θ(x,D,ρ) =N (D(x),W ,b) ,∀x ∈ Ω (5)

where W and b are respectively weights and biases of the neural network composed of NL dense layers. The architecture155

of the neural network and the forward propagation is detailed in Huynh et al. (2024b). Note that an output layer consisting

of a scaling transformation is used to impose bound constraints as above. The regional control vector in this case is

ρ≡ [W ,b]
T ≡

[
(W j ,bj)

NL

j=1

]T
Note that:

– The available mappings for ϕ are also implemented to predict initial state vector h0 using physical descriptors fields that160

can include previous states and can be used for short range data assimilation (not studied here).

– By construction, the complete forward model M is learnable in terms of parameters regionalization, through the region-

alization mapping ϕ embedded into M that is also differentiable, and its parameters ρ can be trained using cost gradient

as explained after.

Figure 1. Flowchart of input data, operators chaining to obtain the forward differentiable model M that includes a learnable regionalization

mapping ϕ (Huynh et al., 2024b), and simulated states and fluxes. The forward model M is obtained by partial composition (each operator

taking various other input data and parameters) of the flow operators M=Mhy ( . ,Mrr ( . ,Msnw)).
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2.2 Inverse algorithm165

Given observed and simulated discharge times series Q∗ = (Q∗
g=1..NG

)T and Q= (Qg=1..NG
)T with NG the number of

gauges over the study domain Ω, the model misfit to multi-site observations is measured through a cost function J that writes

as

J(Q∗,Q) =

NG∑
g=1

wgjg
(
Q∗

g,Qg

)
+ jreg, (6)

with wg the weight associated to the cost function jg at each gauge g, where
∑Ng

g=1wg = 1. This multi-gauge observation170

cost function is also used for mono-gauge calibration with NG = 1. A regularization term jreg can be considered for ill-

posed inverse problems (cf. Jay-Allemand et al. (2020, 2024)). In this study, equal weights were assigned to each gauge (i.e.

wg = 1/NG), which corresponds to minimizing the average of the individual cost functions. Additionally, no regularization

term was applied.

The gauge cost function is defined as175

jg(Q
∗
g,Qg) =

NC∑
c=1

wcjc
(
Q∗

g,Qg

)
, (7)

with jc being respectively based on any efficiency metric (NSE, KGE (Gupta et al., 2009), etc) or a signature-based cost

function including NC continuous and event-based components (Huynh et al., 2023) and wc their relative weights. For multi-

score calibration strategy using continuous NSE and event-based flood signatures see Huynh et al. (2023).

The global cost function J is defined as a convex and differentiable function, involving the response of the forward model180

M through its output Q, and consequently depends on the model parameters θ, hence on the parameters ρ of the regional

mapping ϕ when used (Eq. 3).

Therefore, the optimization problem formulates as in Equation 8:

ρ̂= argmin
ρ

J (Q∗,M(.,ϕ(.,ρ))) (8)

This high-dimensional inverse problem can be tackled with gradient-based optimization algorithms. A limited-memory quasi-185

Newton approach, such as L-BFGS-B (Zhu et al., 1997), is suitable for smooth objective functions, while an adaptive learning

rate approach, exemplified by Adam (Kingma and Ba, 2014), is effective for non-smooth objective functions. These approaches

necessitate obtaining the gradient ∇ρJ of the cost function with respect to the tunable control parameter ρ obtained by solving

the adjoint DρM of the forward model M. The adjoint model is obtained by automatic differentiation using the Tapenade

engine (Hascoet and Pascual, 2013). The complete forward model and variational data assimilation process are illustrated in190

Figure 2.

3 Computational software and performance

In this section, we focus on code architecture, documentation and computational performance. smash is based on a computa-

tionally efficient Fortran core enabling parallel computations over large domains with OpenMP (Dagum and Menon, 1998), and

7

https://team.inria.fr/ecuador/fr/tapenade/
https://smash.recover.inrae.fr/
https://www.openmp.org/


Figure 2. Flowchart of the inverse algorithm that uses ∇ρJ the cost gradient with respect to the tunable control parameter ρ obtained by

solving the adjoint model DρM of the forward model M, obtained by automatic source code differentiation and enabling accurate gradient

computation (adapted from VDA course Monnier (2024)).

that is automatically differentiable with the Tapenade engine (Hascoet and Pascual, 2013) to generate the numerical adjoint195

model. It is interfaced in Python using f90wrap (Kermode, 2020) to provide a user-friendly and versatile interface for quick

learning and efficient development, as well as to directly make accessible the wealth of Python modules and libraries (Tab. 1)

developed by a large and active community (Data pre/post-Processing, Geographic Information System, Deep Learning, etc).

3.1 From sources to ready-to-use Python library

smash contains a Python core for all the user interface functions, both pre- and post-processing, and a Fortran core (with a200

few C files) for high-performance numerical computations. In order to produce a Python library, including binary files, that

can be installed directly from the package manager, PyPI, several steps are necessary. The first step is to generate the Fortran

adjoint file from the Fortran sources. This is done via Tapenade automatic differentiation engine (Hascoet and Pascual,

2013), which requires the use of Java. Next, the Fortran code is wrapped for use in Python. f90wrap (Kermode, 2020) builds

on the capabilities of the popular F2PY utility by generating a simpler Fortran interface to the original Fortran sources which is205

then suitable for wrapping with F2PY, together with a higher-level Pythonic wrapper that makes the existence of an additional

layer transparent to the final user. The entire build system (except for the generation of the adjoint file, which is external for

debugging reasons) is handled by meson, a multi-platform, multi-language open-source build system that allows us to generate

smash binaries on Linux, macOS and Windows quite easily (Fig. 3).
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Table 1. External Python libraries used by smash.

Library Website Reference Description

NumPy https://numpy.org Harris et al. (2020) Numerical computing

SciPy https://scipy.org Virtanen et al. (2020)

pandas https://pandas.pydata.org pandas development team (2020) Data analysis and manipulation tool

f90wrap https://github.com/jameskermode/f90wrap Kermode (2020) Fortran to Python interface generator

Rasterio https://rasterio.readthedocs.io/en/stable Input/output

h5py https://docs.h5py.org/en/stable

3.2 Documentation210

The smash online documentation (Fig. 4) is divided into four main sections:

– Getting Started (https://smash.recover.inrae.fr/getting_started)

This section describes how to install smash from the Python package index PyPI.

– User Guide (https://smash.recover.inrae.fr/user_guide)

This section provides step-by-step examples (and scripts) from basic (simulation run) to complex (regionalization) ap-215

plications of smash as well as input data conventions.

– API Reference (https://smash.recover.inrae.fr/api_reference)

This section details the different modules and the application programming interface. Modules are documented using the

NumPy-style Python docstring.

– Math / Num Documentation (https://smash.recover.inrae.fr/math_num_documentation)220

This last section details the conceptual and mathematical basis of the forward and inverse modeling problems, their

numerical resolution along with optimization and estimation algorithms.

The whole documentation is implemented using Sphinx to automatically compile and update an online version.
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Figure 3. The smash build system framework. It starts with source files written in Fortran and Python (0). In the intermediate step (1), Fortran

sources are processed by Tapenade to generate the adjoint code, and wrapped using f90wrap to create Python interfaces (f90wrap-itf).

The F2PY tool is then used to generate a Fortran/C/Python binding from the wrapped interfaces. During the compilation step (2), the original

Fortran sources, adjoint code, and f90wrap-itf are compiled with appropriate compilers to produce a binary Python/C extension module.

Finally, in the installation step (3), the Python module is assembled, combining the original Python sources with the f90wrap-itf and the

compiled binary Python/C extension module, making the high-performance Fortran code accessible from Python.

3.3 Computational performance

In this section, we compare the performance of smash in terms of computation time and memory usage between direct and225

adjoint runs (an adjoint run is equivalent to a single call to the adjoint model DρM here). The aim is to highlight the resources

required to run smash on configurations similar to real cases. We compare smash over 3 zones: Sardinia, Great Britain/Ireland

and North America at a spatial resolution of 1’30” (∼ 3km × 3km) over a period of 1 year, from July 31, 2010 to July 31,

2011, randomly chosen, at a daily time step. These 3 zones were chosen simply to provide 3 zones of variable surface area

(Fig. 5). In addition to the 3 zones, with smash enabling different assemblies of operators, two structures are compared, s1230

and s2, representing respectively the simplest (Msnw: zero, Mrr: grd and Mhy: lag0) and the most complex (Msnw: ssn,
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Figure 4. smash documentation home page accessible at https://smash.recover.inrae.fr.

Mrr: vic3l and Mhy: kw) structure in terms of number of operations per cell. All the simulations (1 year of simulation at daily

time step) were run on a server with AMD EPYC 7643 CPUs (Annexe E) and 255 GB of RAM.

The range of computation times across all simulations (Fig. 6) varies from approximately 0.1 second for a direct run with 8

threads on the Sardinia region using the s1 structure to just over an hour for an adjoint run with 1 thread on the North America235

region using the s2 structure. Systematically, regardless of the region, number of threads, or type of run, the difference in

computation time between the s1 and s2 structures is about a factor of 2. Regarding the differences between a direct run and

an adjoint run, the computation time factor varies depending on the number of threads, ranging from a factor of 12 for 1 thread

to a factor of 6 for 16 threads. This difference highlights better thread scaling for the adjoint run, with a speedup of around 4

for a direct run and 7 for an adjoint run with 16 threads likely because the adjoint run is more computationally demanding than240

the forward run. It is worth noting that in the case of the Sardinia region, which has the fewest grid cells, thread scaling is poor

compared to the other two regions, even reaching the limit where thread overhead increases the computation time. Since the
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time-stepping loop cannot be parallelized at all and the routing scheme cannot be fully parallelized at pixel scale over the entire

spatial domain, as it must be solved in a sequential manner from upstream to downstream, it results in a non-linear scaling but

it remains interesting as it significantly reduces computation time.245

About memory usage (Tab. 2), values range from 0.17 GB for a direct run on the Sardinia region with the s1 structure to 27

GB for an adjoint run on the North America region with the s2 structure. Systematically, memory usage is higher in an adjoint

run than in a direct run and scales with the size of the domain. The main contributor to memory usage in an adjoint run is

the forward sweep, which includes a time-stepping loop where iteration n depends on the results of previous iterations. The

memory allocation during the forward sweep is freed during the backward sweep, but it still results in a significant memory250

peak. This memory peak has been considerably reduced in the smash version presented here by including checkpoints within

the time-stepping loop. These checkpoints allow to alternate between forward and backward sweeps, leading to much smaller

memory peaks compared to a single sweep. The downside of using checkpoints is the increase in computation time, but this

was considered less significant compared to the memory savings (see Hascoet and Pascual (2013) for further details about

forward/backward sweep and checkpointing).255

In conclusion, these computation times and memory usage demonstrate the feasibility of the model for large-scale appli-

cations. The critical point is parameters estimation. In the case of parameters estimation using a gradient-based optimizer,

one or more adjoint runs are evaluated at each iteration, significantly multiplying the total computation time. As an example,

Huynh et al. (2024b) performed a calibration at a spatial resolution of 1km over a domain of more than 20,000 cells, and at a

temporal resolution of one hour over a period of 4 years. The calibration required 350 calls to the adjoint model, resulting in a260

computation time of around 180 hours. Currently, memory usage in an adjoint run is less of a limiting factor than computation

time for large-domain applications. Thus, further improving computation time is a priority to expand the model’s application

to finer spatial and temporal scales.

Table 2. Memory usage in Gigabyte (GB) for both direct and adjoint run simulations over a period of 1 year at daily time step.

Zone Structure Memory Usage (GB)

Direct run

Memory Usage (GB)

Adjoint run

Sardinia s1 0.17 0.18

s2 0.18 0.20

Great Britain/Ireland s1 0.37 0.46

s2 0.52 0.86

North America s1 7.64 11.27

s2 12.7 26.68
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Figure 5. Spatial representations of the three different geographical regions used in the performance benchmarks.

4 Applications

4.1 Numerical experiments presented265

Main functionalities and operators of smash are illustrated on open-source global datasets over contiguous United States

(CONUS) (Tab. 3, Fig. 7) and on a higher resolution open-source regional dataset in France (Tab. 4, Fig. 7). Models on

CONUS will be at a spatial resolution of 1’30” (∼ 3km × 3km) and daily time step while higher resolution models will be

setup on the French case at 500-m spatial resolution and hourly time step. The numerical results presented are:
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Figure 6. Benchmarking results for both direct (top row) and adjoint (bottom row) run simulations over a period of 1 year at daily time step,

using varying numbers of threads (from 1 to 16). Each plot corresponds to a different geographical region: Sardinia, Great Britain/Ireland

and North America from left to right.
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– Split-sample temporal cross-validation of different model structures combinations over CONUS (Sect. 4.2)270

– Regionalization over CONUS (Sect. 4.3)

– High-resolution regionalization over the Aude river in France (Sect. 4.4).

Figure 7. Location of the catchments for the CONUS (left) and France (right) applications. For the split-sample test over CONUS, all the 482

catchments from the CAMELS dataset (Addor et al., 2017) are used (orange and black circles) whereas for the regionalization a subset of

398 catchments is used (only orange circles), removing catchments whose performance are less than 0.75 KGE from local calibration. For

the France application over the Aude river, a set of 25 sub-catchments is used for regionalization with 12 upstream catchments (red shaded

regions) and 13 downstream catchments (gray shaded regions).

4.2 CONUS - CAMELS - Split-sample temporal cross-validation

4.2.1 Numerical experiment settings

A set of 482 catchments (Fig. 7) is modeled with the following experimental design:275

– A set of hydrological models is considered, including 4 GR-like structures (Perrin et al., 2003) (Mrr: gr4, gr5, grd,

loieau) and one VIC-like structure (Liang et al., 1994) (Mrr: vic3l). The way in which these models are integrated

into smash, that differs from the original models, is described in the documentation (https://smash.recover.inrae.fr/

math_num_documentation/forward_structure.html) in the forward structure section. For each hydrological model, the

same snow module (Msnw: ssn) and routing module (Mhy: kw) are used. A description of the calibrated parameters is280

provided in the Appendix A.
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Table 3. Model input data from open-source databases available worldwide used over CONUS: atmospheric forcings I = {P ,N ,E,T },

flow direction map DΩ, physical descriptors D = {d1, ...,d6} for regionalization based on Beck et al. (2020) study and discharge time series

Q∗. The liquid and solid precipitation, P and N , derive from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) (Beck et al.,

2019) divided into liquid and solid parts using a parametric S-shaped curve (Garavaglia et al., 2017) and disaggregated from 0.1° to 0.025°.

The temperature and potential evapotranspiration, T and E, derive from ERA5 (Hersbach et al., 2020) disaggregated from 0.25° to 0.025°,

using the Oudin formula (Oudin et al., 2005) to obtain the potential evapotranspiration. The flow direction,DΩ, from MERIT Hydro IHU

(Eilander et al., 2021) was upscaled from 0.008° to 0.025° using pyflwdir (Eilander, 2023). The topographic slope, d1, derives from

MERIT DEM (Yamazaki et al., 2017) upscaled from 0.008° to 0.025° using gdaldem slope . The sand and clay content, d2 and d3, from

SoilGrids (Hengl et al., 2017) were upscaled and reprojected from 250m to 0.025°. The meteo-climatic data, d4, d5 and d6 derive from P

and E. The discharge time series, Q∗, comes from Caravan-CAMELS (Kratzert et al., 2023; Addor et al., 2017).

Notation Type Description Unit Source

P Atmospheric forcing Liquid precipitation (mm/day) MSWEP (Beck et al., 2019)

N Atmospheric forcing Solid precipitation (mm/day) MSWEP (Beck et al., 2019)

E Atmospheric forcing Potential evapotranspiration using

Oudin formula (Oudin et al., 2005)

(mm/day) ERA5 temperature (Hersbach et al.,

2020)

T Atmospheric forcing Temperature (°C) ERA5 temperature (Hersbach et al.,

2020)

DΩ Topography Flow direction (−) MERIT Hydro IHU (Eilander et al.,

2021)

d1 (slope) Topography Topographic slope (◦) MERIT (Yamazaki et al., 2017)

d2 (sand) Soil Sand content, averaged over all

layers

(g/kg) SoilGrids (Hengl et al., 2017)

d3 (clay) Soil Clay content, averaged over all

layers

(g/kg) SoilGrids (Hengl et al., 2017)

d4 (prcp) Meteo-Climatic Mean annual precipitation (mm/yr) MSWEP (Beck et al., 2019)

d5 (pet) Meteo-Climatic Mean annual potential

evapotranspiration using Oudin

(Oudin et al., 2005)

(mm/yr) ERA5 temperature (Hersbach et al.,

2020)

d6 (hi) Meteo-Climatic Mean annual humidity index (ratio

of precipitation to potential

evapotranspiration)

(−) MSWEP (Beck et al., 2019), ERA5

temperature (Hersbach et al., 2020)

Q∗ Hydrometric Discharge time series (m3/s) Caravan-CAMELS (Kratzert et al., 2023;

Addor et al., 2017)

– A split-sample temporal validation procedure (Klemeš, 1983) is set up splitting the time window covered by hydrometric

data into two complementary subsets over sub-periods of 7 years: p1 (from 1 August 2000 to 31 July 2007) and p2 (from
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Table 4. Model input data from national open-source databases used over the Aude river in France: atmospheric forcings I = {P ,E},

flow direction map DΩ, physical descriptors D = {d1, ...,d7} for regionalization and discharge time series Q∗. The liquid precipitation, P ,

comes from the ANTILOPE J+1 Météo-France product (Champeaux et al., 2009), a radar-gauge reanalysis disaggregated from 1km to 500m.

The potential evapotranspiration, E, derives from the SAFRAN Météo-France temperature (Quintana-Seguí et al., 2008; Vidal et al., 2010)

disaggregated from 8km to 500m, using the Oudin formula (Oudin et al., 2005) to obtain a daily interannual potential evapotranspiration.

The flow direction, DΩ, comes from HydroDem (Leblois and Sauquet, 1999). The land cover data, d1, d2, d3 and d4 derive from CORINE

Land Cover 2018 (doi.org) rasterized at 50m and upscaled to 500m using the average resampling method. The topographic slope, d5, derives

from HydroDem DEM (Leblois and Sauquet, 1999) using gdaldem slope. The drainage density, d6 comes from (Organde et al., 2013)

representing the number of cells crossed by a river. The percentage of karst, d7, comes from BDLISA (https://bdlisa.eaufrance.fr/) rasterized

at 50m and upscaled to 500m using the average resampling method. The discharge time series, Q∗, comes from HydroPortail Service Central

Vigicrues (https://hydro.eaufrance.fr/).

Notation Type Description Unit Source

P Atmospheric forcing Liquid precipitation (mm/h) Antilope J+1 from Météo-France

(Champeaux et al., 2009)

E Atmospheric forcing Potential evapotranspiration using

the Oudin formula (Oudin et al.,

2005)

(mm/h) SAFRAN temperature from

Météo-France (Quintana-Seguí et al.,

2008; Vidal et al., 2010)

DΩ Topography Flow direction (−) HydroDem (Leblois and Sauquet, 1999)

d1 (artif ) Land cover Artificial cover rate (−) CORINE Land Cover 2018 (doi.org)

d2 (forest) Land cover Forest cover rate (−) CORINE Land Cover 2018 (doi.org)

d3 (veg) Land cover Vegetation cover rate (−) CORINE Land Cover 2018 (doi.org)

d4 (ow) Land cover Open water cover rate (−) CORINE Land Cover 2018 (doi.org)

d5 (slope) Topography Topographic slope (◦) HydroDem (Leblois and Sauquet, 1999)

d6 (ddr) Topography Drainage density (−) (Organde et al., 2013)

d7 (karst) Hydrogeology Percentage of karst (%) BDLISA (https://bdlisa.eaufrance.fr/)

Q∗ Hydrometric Discharge time series (m3/s) HydroPortail SCHAPI

(https://hydro.eaufrance.fr/)

1 August 2007 to 31 July 2014) are both used for calibration and validation. For each period, the 10 preceding years are

used as model "warm-up".285

– 2 calibration mappings on each catchment are tested:

◦ Uniform: spatially uniform parameters

◦ Distributed: spatially distributed parameters

– The use of a single-gauge cost function based on the KGE (J = 1−KGE)
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4.2.2 Results290

The performance of the models resulting from the spatially uniform or distributed calibration is evaluated using the Kling-

Gupta Efficiency (KGE) for both the calibration and the validation on period p2 only for brevity in this software article (Fig.

8). Overall performance is satisfactory, with a median between 0.8 and 0.87 for KGE over the calibration period and between

0.72 and 0.78 for KGE over the validation period. With regard to the calibration method, for any model, calibration and

validation performances are better with a spatially distributed calibration. This is an expected result for the calibration period,295

given that spatially distributed calibration is over-parameterized and offers the maximum level of flexibility in the search for

the optimal set of parameters, unlike spatially uniform calibration, which is under-parameterized, imposing a single parameter

set for each catchment. However, despite this over-parametrization with calibration of spatially distributed parameters, which

can lead to over-fitting over the calibration period, the models offer good performance in temporal validation. The differences

between the structures are mainly explained by (i) the varying levels of model complexity, 2 parameters for the grd model and300

4 for the gr5 model, and (ii) the expert knowledge of the different models, which influences, among other things, the choice

of initial values, bounds and parameters to be optimized. The smash historical development based on the GR-like models led

to a much more substantial expert knowledge than for the VIC-like model recently implemented. Summary statistics of the

calibrated parameters are provided in Appendix A.

Concerning the spatial distribution of KGE values (Fig. 9), the results for the gr4 hydrological model after a spatially305

distributed calibration show that the best performances are located over the east and west sides of CONUS while worst perfor-

mances are located over the Great Plains area. This spatial pattern of hydrological model performance has also been obtained

in other studies (Newman et al., 2015; Beck et al., 2016; Mizukami et al., 2017).

4.3 CONUS - CAMELS - Regionalization

4.3.1 Numerical experiment settings310

A set of 398 catchments (Fig. 7) from the CAMELS dataset (Addor et al., 2017) is evaluated in a regionalization context at a

spatial resolution of 1’30" and at a daily time step using worldwide databases (Tab. 3). The experimental design is as follows:

– Selection of a subset of catchments from Section 4.2, eliminating catchments where KGE < 0.75 from local calibration.

This selection is made in order to avoid introducing catchments whose performance could greatly degrade the calibration

metric in a multi-gauge context.315

– One hydrological model is considered, identical to the gr4 model in Section 4.2 with the same snow and routing module

(Msnw: ssn, Mrr: gr4, Mhy: kw). A description of the calibrated parameters is provided in the Appendix B.

– A spatio-temporal validation procedure is set up by:
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Figure 8. Comparison of the Kling-Gupta Efficiency (KGE) performance of different smash hydrological models under spatially uniform

and distributed calibration. The models evaluated include gr4, gr5, grd, loieau, and vic3l. The left panels show results for the calibration,

while the right panels display results for temporal validation on period p2. For each model, results are shown for spatially uniform (solid

boxes) and spatially distributed (hatched boxes) calibrations with the median value highlighted at the top of the boxplot.

Figure 9. Spatial distribution of the Kling-Gupta Efficiency (KGE) scores across different catchments for the gr4 model under local

calibration with spatially distributed parameters. The left map shows KGE scores during the calibration period while the right map shows

results for temporal validation, using the p2 period.

◦ splitting the time window covered by hydrometric data into two complementary subsets over sub-periods of 7 years:

p1 (from 1 August 2000 to 31 July 2007) and p2 (from 1 August 2007 to 31 July 2014), with p1 used as calibration320

period and p2 as validation period. For each period, 10 years are used as model "warm-up".
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◦ randomly splitting the catchment set into 4 groups, calibrating on 3 of the groups, with the 4th group held out and

used for validation, then rotating such that each group is used for validation once.

– 3 calibration mappings across the whole CONUS are tested:

◦ Uniform: spatially uniform parameters325

◦ Multi-Linear: a multiple linear regression is used as transfer function from descriptors to spatialized parameters

◦ ANN: a multi-layer perceptron composed of 3 hidden layers is used as a transfer function from descriptors to

spatialized parameters

– The use of a multi-gauge cost function based on the average KGE of the calibrated catchments (J = 1
NG

∑NG 1−
KGE)330

– A final calibration over the total period p1 + p2 including all gauges with the ANN mapping and the same multi-gauge

cost function to analyze the output model parameters and their correlations with input descriptors.

4.3.2 Results

The regional calibration over CAMELS dataset was performed on 4 groups of randomly selected catchments as explained

above. The performances in spatial and/or temporal validation are shown in Figure 10 and detailed by catchment groups in335

Table B2 for the ANN mapping, which is the best performer. In spatio-temporal validation, the most challenging extrapolation

case, a uniform mapping leads to a median KGE of 0.5 while the two regionalization methods result in KGE of 0.61 or 0.63,

respectively for Multi-Linear and ANN mapping. These fairly good performances, obtained with a relatively simple setup in

terms of descriptors and cost function in particular, are comparable with regionalization works in the literature (Mizukami

et al., 2019; Beck et al., 2020; Feng et al., 2024). In a similar way to the previous section (Sect. 4.2), the worst performances340

are located in the Great Plains but also, more clearly than in the local calibrations, in the western part of the country.

Following the evaluation of performance in spatio-temporal validation, a regional calibration with the ANN mapping over

the period including p1 and p2 and with all gauges is carried out. This calibration enables us to analyze the correlations between

the physiographic descriptors and the parameters obtained (Fig. 11), in a more robust way than with the various spatio-temporal

validation groups. The correlation matrix highlights significant linear correlations, notably between the melt coefficient (kmlt)345

and the topographical slope (d1), the size of the production reservoir (cp) and the mean annual rainfall (d4), as well as the

moisture content (d6) and the routing parameters (akw, bkw) with the same moisture content (d6). Conversely, the exchange

parameter (kexc), a parameter directly affecting the model’s mass balance in a non-conservative way, shows almost no linear

correlation with the descriptors and is almost spatially uniform over the whole domain around the value of 0. While a detailed

regionalization study on CAMELS datasets using our original adjoint-based algorithms is beyond the scope of this software350

article, the achieved performance across this large sample already showcases the algorithm’s potential for global applicability.

It also demonstrates the algorithm’s effectiveness in enforcing spatially distributed hydrologic model constraints at the pixel

scale, leading to seamless parameter maps at a reasonable computational cost. Regarding computation times, the calibration
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with ANN mapping over periods p1 and p2 took 95 hours. This calibration involved 350 iterations, corresponding to 350 calls

to the adjoint model, and was performed using 16 threads. For comparison, a single adjoint model run takes approximately 16355

minutes, whereas a direct model run takes around 5 minutes using the same number of threads.

Finally, leveraging the fully distributed nature of smash, regional streamflow maps can be generated. An example is shown

in Figure 12, which illustrates the dynamics of Hurricane Katrina over a 6-day period from August 27 to September 1, 2005.

Notably, the routing model used in this exercise, the kinematic wave, was applied uniformly across the entire domain, includ-

ing areas outside its validity range, such as downstream of major rivers on flat topography. Further work focuses on enriching360

smash with hydraulic models, starting with 1D and 2D non-inertial shallow water models for numerical implementation sim-

plicity. Additionally, physics-based differential equations for hydrologic water balance at the pixel scale will be incorporated.

Hybrid physics-AI formulations, which embed neural networks capable of learning parametrization and potentially uncertain

model operators from data, can be explored thanks to the differentiable nature of the models within smash.

Figure 10. Spatio-temporal validation performance over period p2. The boxplots on the left panel represent the distribution of Kling-Gupta

Efficiency (KGE) scores for three calibration methods: Uniform, Multi-Linear, and Artificial Neural Network (ANN). Median values are

displayed at the top of each boxplot. The map on the right illustrates the spatial distribution of the KGE values for the ANN mapping across

different catchments.

4.4 France - Aude river - High-resolution regionalization365

4.4.1 Numerical experiment settings

A set of 35 catchments (Fig. 7) over the Aude river in France (Addor et al., 2017) is evaluated in a regionalization context at

a spatial resolution of 500m and at a hourly time step using national databases (Tab. 4). This section is similar to the previous
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Figure 11. Analysis of input descriptors and output model parameters for the ANN mapping. Spatial distribution of physical descriptors

(d1-d6) on the top panel, details provided in (Tab. 3); spatial distribution of calibrated hydrological parameters (kmlt, cp, ct, kexc, akw, bkw)

on the lower left panel and linear correlation between descriptors and parameters on the lower right panel.

one, using the same regionalization method, but with differences in the gauges selected for calibration and validation, as well as

in the cost function. This section focuses on national data at a finer spatio-temporal scale, applying the method at the watershed370

level, which is more relevant for operational flood forecasting. The experimental design is as follows:

– One hydrological model is considered, identical to the gr4 model in Section 4.2 with the same routing module but without

any snow modeling given the limited impact of snow in this Mediterranean basin (Msnw: zero, Mrr: gr4, Mhy: kw). A

description of the calibrated parameters is provided in the Appendix C

– A spatio-temporal validation procedure is set up by:375

◦ splitting the time window covered by hydrometric data into two complementary subsets over sub-periods of 4 years:

p1 (from 1 August 2015 to 31 July 2019) and p2 (from 1 August 2019 to 31 July 2023), with p1 used as calibration

period and p2 as validation period. For each period, 1 year is used as model "warm-up".

◦ splitting the catchment set into 2 groups, upstream and downstream, calibrating on the upstream group and validat-

ing on the downstream group.380

– 3 calibration mappings across the whole Aude river are tested:
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Figure 12. Streamflow dynamics during Hurricane Katrina from August 27 to September 1, 2005 for the ANN mapping. Each panel depicts

the streamflow distribution across the affected region. To visualize the temporal evolution of the spatialized discharge pattern ; note that the

kinematic wave routing was applied on flat topography, i.e. out of its validity range.

◦ Uniform: spatially uniform parameters

◦ Multi-Linear: a multiple linear regression is used as the transfer function from descriptors to spatialized parameters

◦ ANN: a multi-layer perceptron composed of 3 hidden layers is used as the transfer function from descriptors to

spatialized parameters385

– The use of a multi-gauge cost function based on the average NSE of the calibrated catchments (J = 1
NG

∑NG(1−
NSE)).

4.4.2 Results

The results of the regional mappings were validated on downstream gauges following Huynh et al. (2024b). The spatio-temporal

validation performance, which assesses the model outside of the calibration gauges and period, is particularly challenging at390

such a high resolution and given the complex variabilities of physical factors and hydrological responses over this Mediter-

ranean flash flood-prone case. The results are shown in validation only, for brevity again, in Figure 13. A uniform mapping
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yields a poor median NSE of 0.15, while descriptors-to-parameters mappings achieve 0.62 and 0.69 for Multi-Linear and ANN

approaches, respectively. Conceptual parameters maps obtained by learning from physical descriptors are shown in Figure 14

for the ANN mapping only (with the best NSE result). The correlation matrix highlights significant correlations, especially395

between production capacity (cp) and topographic slope (d5), as well as exchange parameter (kexc) or routing parameter (akw)

with topographic slope (d5). For each parameter, a correlation is also found with vegetation cover rate (d3) or forest cover

rate (d2). This illustrates the interpretability of our neural network-based regionalization algorithm, in the space of concep-

tual model parameters. Regarding computation times, the calibration with ANN mapping over period p1 took 31 hours. This

calibration involved 350 iterations, corresponding to 350 calls to the adjoint model, and was performed using 10 threads. For400

comparison, a single adjoint model run takes approximately 6 minutes, whereas a direct model run takes around 1 minute and

30 seconds using the same number of threads. A key feature of smash is its ability to accurately and efficiently compute spa-

tially distributed cost gradients, as shown in Figure 16 in the conceptual parameter (θ) space for interpretability, in the case of

a differentiable spatially distributed hydrological model including a NN-based regionalization mapping and a kinematic wave

routing model (the partial differential equation numerical solver being also differentiated). Finally, simulated hydrographs are405

plotted for the six most downstream validation gauges in Figure 15 with a better reproduction for most downstream gauges in

the present test configuration with the calibrated ANN regionalization (coherent with results of Huynh et al. (2024b) over the

whole French Mediterranean region).

These performances are very encouraging since they were obtained with a relatively simple regionalization setup on a com-

plex flash flood-prone area. Further research with smash will focus on improving the versatility of the hydrological model, to410

better account for high rainfall intensities (e.g. Daniela Peredo and Oudin (2022)) or groundwater/karstic effects, with classical

or hybrid differential equations capable to learn from data at multiple scales, and to enrich the regionalization algorithms with

advanced cost functions and spatial relaxation/regularization strategies. These improvements are necessary to better extract

information, with our variational data assimilation algorithm, from multiple discharge gauges and other data sources (descrip-

tors, satellite moisture, temperature, etc.). Additionally, incorporating more realistic hydraulic routing embedded within the415

differentiable hydrologic model will also enable the integration of hydraulic information (water levels, flow videos, etc), as

introduced in Pujol et al. (2022).

5 Other smash features

In addition to the core differentiable spatialized hydrological solvers and regionalization learning algorithms illustrated above,

smash enables performing:420

– Automatic hydrograph segmentation and flood detection over large samples (Huynh et al., 2023).

– Parameter calibration using signature-based cost functions (Huynh et al., 2023) in addition to continuous metrics.

– Parameter calibration using a spatial regularization term (Jay-Allemand et al., 2020).
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Figure 13. Performance in spatio-temporal validation over period p2 using calibration on upstream gauges (triangles). The boxplots on the

left panel represent the distribution of Nash-Sutcliffe Efficiency (NSE) scores for the three calibration methods: Uniform, Multi-Linear,

and Artificial Neural Network (ANN). Median values are displayed at the top of each boxplot. The map on the right illustrates the spatial

distribution of the NSE values for the ANN mapping for the downstream validation catchments.

– Initial state estimation, including with regionalization mapping, even over short time windows which is applicable for

short range variational data assimilation for operational forecasting425

– Simulation of discharge ensembles from rainfall ensemble forecasting.

– Bayesian approach for parameter estimation and uncertainty quantification, with the consideration of structural model

error and observation errors.

6 Conclusions

The recently released smash framework represents an advancement in modular, regionalizable, differentiable numerical mod-430

eling, as well as in hydrological data assimilation. This conclusion synthesizes the key principles, implementation features,

performance indicators, and future prospects of smash, as presented in this article.

smash is built around three foundational principles: a modular operator chaining, enabling flexible representation of vertical

and lateral hydrological processes; a regionalization mapping through hybrid approaches, combining conceptual models with

descriptors-to-parameters neural networks; and a robust inverse algorithm that support variational data assimilation.435
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Figure 14. Analysis of input descriptors and output model parameters for the ANN descriptors-to-parameters mapping. Spatial distribution

of physical descriptors (d1-d7) on the top panel, details provided in (Tab. 4); Spatial distribution of calibrated hydrological parameters (cp,

ct, kexc, akw, bkw) on the lower left panel and linear correlation between descriptors and parameters on the lower right panel.

The software leverages automatic differentiation to facilitate gradient-based calibration. Its seamless integration with Python

via f90wrap ensures user-friendly access and flexibility, complemented by an automatic build system that simplifies de-

ployment. Furthermore, smash supports parallel computing on CPUs, significantly accelerating computations for large-scale

applications.

In terms of hydrological modeling, smash achieves interesting results. Using CAMELS datasets, median KGE > 0.8 is440

observed in local spatially distributed calibration for daily GR-like and VIC-like model structures at dx= 1′30′′ (∼ 3km).

Additionally, regionalization learning across CONUS of conceptual parameters from physical descriptors yields KGE > 0.6

in spatio-temporal validation. High-resolution hourly modeling at dx= 500m for Mediterranean flash-flood scenarios demon-

strates NSE > 0.6.

smash planned enhancements include the integration of additional differentiable hydrological, hydraulic and land surface445

models, the expansion of hybrid physics-AI frameworks, and the refinement of data assimilation techniques. These advance-
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Figure 15. Observed and simulated streamflow of the six most downstream gauges of the Aude river for the ANN mapping. Each panel rep-

resents streamflow (m3/s) for a specific gauge. Black dashed lines indicate observed values (Obs), while red solid lines represent simulated

values (Sim).

ments aim to further improve model accuracy, computational efficiency, and applicability in both research and operational

settings.

Code and data availability. The source code of smash, Version 1.0, is available and preserved on multiple platforms: GitHub at https:

//github.com/DassHydro/smash/tree/v1.0.2, PyPI at https://pypi.org/project/hydro-smash/1.0.2, and Zenodo with the DOI https://doi.org/10.450

5281/zenodo.14841726 (Colleoni et al., 2025a). The datasets presented in this paper are also available on Zenodo under the DOI https:

//doi.org/10.5281/zenodo.14865491 (Colleoni et al., 2025b). smash is released under the GPL-3 license and is developed openly at https:

//github.com/DassHydro/smash. The documentation is accessible at https://smash.recover.inrae.fr.
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Figure 16. Spatially distributed gradients of the cost function J with respect to the model parameters at initial and final iterations for ANN

mapping. The first row shows the gradients ∇θ∗J at the initial iteration, while the second row presents the gradients ∇θ̂J at the final

iteration after optimization. Each column corresponds to the partial derivative of J with respect to a specific parameter: cp, ct, kexc, akw,

and bkw. These gradients are used in the optimization process of the control vector ρ using ∇ρJ =∇θJ.∇ρθ with θ =N (.,ρ) where N is

the multi-layer perceptron used.

Appendix A: CONUS - CAMELS - Split-sample temporal cross-validation
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Table A1. Summary of model operators and their associated parameters. For each operator, the parameter name, description, initial value,

and allowable value range are provided.

Operator name Parameter name Parameter description Parameter initial value Parameter range

Msnw: ssn kmlt Melt coefficient (mm · °C−1 · day−1) 1 [0.01, 100]

Mrr: gr4 cp Maximum capacity of the production reservoir (mm) 200 [1, 2000]

ct Maximum capacity of the transfer reservoir (mm) 500 [1, 2000]

kexc Exchange coefficient (mm · day−1) 0 [-50, 50]

Mrr: gr5 cp Maximum capacity of the production reservoir (mm) 200 [1, 2000]

ct Maximum capacity of the transfer reservoir (mm) 500 [1, 2000]

kexc Exchange coefficient (mm · day−1) 0 [-50, 50]

aexc Exchange threshold (−) 0 [0.001, 0.999]

Mrr: grd cp Maximum capacity of the production reservoir (mm) 200 [1, 5000]

ct Maximum capacity of the transfer reservoir (mm) 500 [1, 5000]

Mrr: loieau ca Maximum capacity of the production reservoir (mm) 200 [1, 2000]

cc Maximum capacity of the transfer reservoir (mm) 500 [1, 2000]

kb Transfer coefficient (−) 1 [0.01, 4]

Mrr: vic3l b Variable infiltration curve parameter (−) 0.1 [0.001, 0.4]

cusl Maximum capacity of the upper soil layer (mm) 100 [10, 500]

cmsl Maximum capacity of the medium soil layer (mm) 100 [50, 1000]

cbsl Maximum capacity of the bottom soil layer (mm) 100 [500, 2500]

ks Saturated hydraulic conductivity (mm · day−1) 20 Not optimized

pbc Brooks and Corey exponent (−) 10 Not optimized

ds Non-linear baseflow threshold maximum velocity (−) 0.01 [0.001, 1]

dsm Maximum velocity of baseflow (mm · day−1) 0.5 [0.2, 1]

ws Non-linear baseflow threshold soil moisture (−) 0.8 [0.1, 1]

Mhy: kw akw Alpha kinematic wave parameter (−) 5 [0.001, 50]

bkw Beta kinematic wave parameter (−) 0.6 [0.001, 1]
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Table A2. Summary statistics of the calibrated parameters across the set of 482 catchments. For each parameter, the median, standard

deviation, and coefficient of variation (µ/σ) are reported for the two calibration configurations : spatially uniform ("Uniform") and spatially

distributed ("Distributed"). For the spatially distributed calibration, statistics were computed based on the spatial average of parameter values

within each catchment.

Model name Parameter name Median Standard deviation Coefficient of variation

(Uniform || Distributed) (Uniform || Distributed) (Uniform || Distributed)

gr4 kmlt 1.49 || 1.68 18.30 || 18.34 3.14 || 2.92

cp 96.27 || 104.98 247.65 || 240.72 1.39 || 1.37

ct 24.86 || 30.42 278.39 || 262.29 2.56 || 2.41

kexc 0.19 || 0.05 7.70 || 7.96 -6.77 || -5.01

akw 3.61 || 3.55 13.57 || 13.57 1.51 || 1.52

bkw 0.34 || 0.34 0.42 || 0.42 0.96 || 0.96

gr5 kmlt 1.43 || 1.64 17.72 || 17.67 3.25 || 3.09

cp 90.03 || 89.75 211.25 || 201.84 1.32 || 1.32

ct 23.01 || 31.56 317.23 || 310.26 2.72 || 2.60

kexc 0.06 || -0.01 4.52 || 4.90 -21.66 || -15.81

aexc 0.14 || 0.13 0.20 || 0.20 0.96 || 0.97

akw 3.97 || 3.81 15.64 || 15.64 1.45 || 1.46

bkw 0.34 || 0.34 0.41 || 0.41 0.95 || 0.95

grd kmlt 1.39 || 1.76 18.24 || 18.32 3.23 || 2.91

cp 62.13 || 95.86 617.23 || 715.60 2.53 || 2.17

ct 38.84 || 44.99 356.07 || 384.23 2.84 || 2.59

akw 1.89 || 1.96 18.74 || 18.72 1.55 || 1.55

bkw 0.34 || 0.33 0.42 || 0.42 0.92 || 0.92

loieau kmlt 1.46 || 1.65 18.10 || 18.14 3.13 || 2.94

ca 134.24 || 306.95 303.37 || 320.17 1.33 || 0.82

cc 14.27 || 72.51 333.68 || 375.33 2.81 || 1.67

kb 1.10 || 1.17 0.55 || 0.55 0.48 || 0.47

akw 2.66 || 3.65 14.36 || 14.35 1.64 || 1.48

bkw 0.38 || 0.38 0.43 || 0.41 0.92 || 0.89

vic3l kmlt 1.62 || 1.98 18.23 || 18.15 2.86 || 2.59

b 0.15 || 0.14 0.15 || 0.15 0.80 || 0.83

cusl 84.36 || 86.63 122.29 || 121.54 1.03 || 1.00

cmsl 170.56 || 178.35 361.36 || 359.62 1.01 || 1.01

cbsl 1799.74 || 1799.74 704.74 || 702.97 0.44 || 0.44

ds 0.12 || 0.12 0.33 || 0.32 1.26 || 1.24

dsm 0.50 || 0.50 0.23 || 0.23 0.45 || 0.45

ws 0.80 || 0.80 0.26 || 0.26 0.34 || 0.34

akw 50.00 || 49.45 19.93 || 19.89 0.60 || 0.60

bkw 0.44 || 0.43 0.31 || 0.30 0.64 || 0.6430



Appendix B: CONUS - CAMELS - Regionalization455

Table B1. Summary of model operators and their associated parameters. For each operator, the parameter name, description, initial value,

and allowable value range are provided.

Operator name Parameter name Parameter description Parameter initial value Parameter range

Msnw: ssn kmlt Melt coefficient (mm · °C−1 · day−1) 1 [0.01, 100]

Mrr: gr4 cp Maximum capacity of the production reservoir (mm) 200 [1, 2000]

ct Maximum capacity of the transfer reservoir (mm) 500 [1, 2000]

kexc Exchange coefficient (mm · day−1) 0 [-50, 0]

Mhy: kw akw Alpha kinematic wave parameter (−) 5 [0.001, 50]

bkw Beta kinematic wave parameter (−) 0.6 [0.001, 1]

Table B2. Median KGE obtained in regionalization mapping calibration-validation over 4 groups of randomly selected basins.

Group Calibration

KGE50

Spatial Validation

KGE50

Temporal Validation

KGE50

Spatio-Temporal Validation

KGE50

0 0.65 0.62 0.65 0.65

1 0.62 0.58 0.65 0.58

2 0.65 0.65 0.64 0.67

3 0.65 0.63 0.65 0.63
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Appendix C: France - Aude - High-resolution Regionalization

Table C1. Summary of model operators and their associated parameters. For each operator, the parameter name, description, initial value,

and allowable value range are provided.

Operator name Parameter name Parameter description Parameter initial value Parameter range

Mrr: gr4 cp Maximum capacity of the production reservoir (mm) 200 [1, 2000]

ct Maximum capacity of the transfer reservoir (mm) 500 [1, 2000]

kexc Exchange coefficient (mm ·hour−1) 0 [-20, 0]

Mhy: kw akw Alpha kinematic wave parameter (−) 5 [0.001, 50]

bkw Beta kinematic wave parameter (−) 0.6 [0.001, 1]
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Appendix D: smash operators

This section describes the various operators available in smashwith mathematical/numerical expressions, input data [I,D] (x,t),

tunable conceptual parameters θ(x,t), and simulated states and fluxes U(x,t) = [Q,h,q] (x,t). These operators are written

below for a given pixel x of the 2D spatial domain Ω and for a time t in the simulation window ]0,T ].460

D1 Snow operator Msnw

◦ zero

This snow operator simply means that there is no snow operator.

mlt(x,t) = 0465

with mlt the melt flux.

◦ ssn

This snow operator is a simple degree-day snow operator.

Update the snow reservoir state hs for t∗ ∈ ]t− 1, t[470

hs(x,t
∗) = hs(x,t− 1)+S(x,t)

Compute the melt flux mlt

mlt(x,t) =

 0 if Te(x,t)≤ 0

min(hs(x,t
∗),kmlt(x) ·Te(x,t)) otherwise.

475

Update the snow reservoir state hs

hs(x,t) = hs(x,t
∗)−mlt(x,t)

with mlt the melt flux, S the snow, Te the temperature, kmlt the melt coefficient and hs the state of the snow reservoir.

D2 Hydrological operator Mhy480

◦ gr4

This hydrological operator is derived from the GR4 model (Perrin et al., 2003)

Interception

Compute interception evapotranspiration ei:

ei(x,t) = min
(
E(x,t), P (x,t)+mlt(x,t)+ h̃i(x,t− 1) · ci(x)

)
485
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Compute the neutralized precipitation pn and evapotranspiration en:

pn(x,t) = max
(
0, P (x,t)+mlt(x,t)− ci(x)(1− h̃i(x,t− 1))− ei(x,t)

)
en(x,t) = E(x,t)− ei(x,t)

490

Update the normalized interception reservoir state h̃i:

h̃i(x,t) = h̃i(x,t− 1)+
P (x,t)+mlt(x,t)+ ei(x,t)− pn(x,t)

ci(x)

Production

Compute the production infiltrating precipitation ps and evapotranspiration es:

ps(x,t) = cp(x)
(
1− h̃p(x,t− 1)2

)
·

tanh
(

pn(x,t)
cp(x)

)
1+ h̃p(x,t− 1)tanh

(
pn(x,t)
cp(x)

)495

es(x,t) = h̃p(x,t− 1) · cp(x) ·
(
2− h̃p(x,t− 1)

)
·

tanh
(

en(x,t)
cp(x)

)
1+

(
1− h̃p(x,t− 1)

)
tanh

(
en(x,t)
cp(x)

)
Update the normalized production reservoir state h̃p:

h̃p(x,t
∗) = h̃p(x,t− 1)+

ps(x,t)− es(x,t)

cp(x)

500

Compute the production runoff pr:

pr(x,t) =

0 if pn(x,t)≤ 0

pn(x,t)−
(
h̃p(x,t

∗)− h̃p(x,t− 1)
)
cp(x) otherwise

Compute the production percolation perc:

perc(x,t) = h̃p(x,t
∗) · cp(x)

1−

(
1+

(
4

9
h̃p(x,t

∗)

)4
)−1/4

505

Update the normalized production reservoir state h̃p:

h̃p(x,t) = h̃p(x,t
∗)− perc(x,t)

cp(x)
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Exchange

Compute the exchange flux lexc:510

lexc(x,t) = kexc(x) · h̃t(x,t− 1)7/2

Transfer

Split the production runoff pr into two branches (transfer and direct), prr and prd:

prr(x,t) = 0.9(pr(x,t)+ perc(x,t))+ lexc(x,t)

prd(x,t) = 0.1(pr(x,t)+ perc(x,t))515

Update the normalized transfer reservoir state h̃t:

h̃t(x,t
∗) = max

(
0, h̃t(x,t− 1)+

prr(x,t)

ct(x)

)

Compute the transfer branch elemental discharge qr:520

qr(x,t) = h̃t(x,t
∗) · ct(x)−

((
h̃t(x,t

∗) · ct(x)
)−4

+ ct(x)
−4

)−1/4

Update the normalized transfer reservoir state h̃t:

h̃t(x,t) = h̃t(x,t
∗)− qr(x,t)

ct(x)

525

Compute the direct branch elemental discharge qd:

qd(x,t) = max(0, prd(x,t)+ lexc(x,t))

Compute the elemental discharge qt:

qt(x,t) = qr(x,t)+ qd(x,t)530

with qt the elemental discharge, P the precipitation, E the potential evapotranspiration, mlt the melt flux from the snow op-

erator, ci the maximum capacity of the interception reservoir, cp the maximum capacity of the production reservoir, ct the

maximum capacity of the transfer reservoir, kexc the exchange coefficient, h̃i the state of the normalized interception reservoir,

h̃p the state of the normalized production reservoir and h̃t the state of the normalized transfer reservoir.

535
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◦ gr5

This hydrological operator is derived from the GR4 model (Le Moine, 2008). It consists in a GR4 like model structure (see

above) with a modified exchange flux with two parameters to account for seasonal variations.

Interception

Same as gr4 Interception540

Production

Same as gr4 Production

Exchange

Compute the exchange flux lexc:

lexc(x,t) = kexc(x) · h̃t(x,t− 1)7/2545

Transfer

Same as gr4 Transfer

with qt the elemental discharge, P the precipitation, E the potential evapotranspiration, mlt the melt flux from the snow op-

erator, ci the maximum capacity of the interception reservoir, cp the maximum capacity of the production reservoir, ct the

maximum capacity of the transfer reservoir, kexc the exchange coefficient, aexc the exchange threshold, h̃i the state of the nor-550

malized interception reservoir, h̃p the state of the normalized production reservoir and h̃t the state of the normalized transfer

reservoir.

◦ grd

This hydrological operator is derived from the GR models and is a simplified structure used in Jay-Allemand et al. (2020).555

Interception

Compute the interception evapotranspiration ei:

ei(x,t) = min(E(x,t), P (x,t)+mlt(x,t))

Compute the neutralized precipitation pn and evapotranspiration en:560

pn(x,t) = max(0, P (x,t)+mlt(x,t)− ei(x,t))

en(x,t) = E(x,t)− ei(x,t)

Production

Same as gr4 Production565

Transfer
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Update the normalized transfer reservoir state h̃t:

h̃t(x,t
∗) = max

(
0, h̃t(x,t− 1)+

pr(x,t)

ct(x)

)

Compute the transfer branch elemental discharge qr:570

qr(x,t) = h̃t(x,t
∗) · ct(x)−

((
h̃t(x,t

∗) · ct(x)
)−4

+ ct(x)
−4

)−1/4

Update the normalized transfer reservoir state h̃t:

h̃t(x,t) = h̃t(x,t
∗)− qr(x,t)

ct(x)

575

Compute the elemental discharge qt:

qt(x,t) = qr(x,t)

with qt the elemental discharge, P the precipitation, E the potential evapotranspiration, mlt the melt flux from the snow oper-

ator, cp the maximum capacity of the production reservoir, ct the maximum capacity of the transfer reservoir, h̃p the state of

the normalized production reservoir and h̃t the state of the normalized transfer reservoir.580

◦ loieau

This hydrological operator is derived from the GR model (Folton and Arnaud, 2020).

Interception

Same as gr4 Interception585

Production

Same as gr4 Production

Transfer

Split the production runoff pr into two branches (transfer and direct), prr and prd:

prr(x,t) = 0.9(pr(x,t)+ perc(x,t))590

prd(x,t) = 0.1(pr(x,t)+ perc(x,t))

Update the normalized transfer reservoir state h̃c:

h̃c(x,t
∗) = max

(
0, h̃c(x,t− 1)+

prr(x,t)

cc(x)

)
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595

Compute the transfer branch elemental discharge qr:

qr(x,t) = h̃c(x,t
∗) · cc(x)−

((
h̃c(x,t

∗) · cc(x)
)−3

+ cc(x)
−3

)−1/3

Update the normalized transfer reservoir state h̃c:

h̃c(x,t) = h̃c(x,t
∗)− qr(x,t)

cc(x)
600

Compute the direct branch elemental discharge qd:

qd(x,t) = max(0, prd(x,t))

Compute the elemental discharge qt:605

qt(x,t) = kb(x) · (qr(x,t)+ qd(x,t))

with qt the elemental discharge, P the precipitation, E the potential evapotranspiration, mlt the melt flux from the snow oper-

ator, ca the maximum capacity of the production reservoir, cc the maximum capacity of the transfer reservoir, kb the transfer

coefficient, h̃a the state of the normalized production reservoir and h̃c the state of the normalized transfer reservoir.

610

◦ vic3l

This hydrological operator is derived from the VIC model (Liang et al., 1994).

Canopy Layer Interception

Compute the canopy layer interception evapotranspiration ec:

ec(x,t) = min
(
E(x,t)h̃cl(x,t− 1)2/3, P (x,t)+mlt(x,t)+ h̃cl(x,t− 1)

)
615

Compute the neutralized precipitation pn and evapotranspiration en:

pn(x,t) = max
(
0, P (x,t)+mlt(x,t)− (1− h̃cl(x,t− 1))− ec(x,t)

)
en(x,t) = E(x,t)− ec(x,t)

620

Update the normalized canopy layer interception state h̃cl:

h̃cl(x,t) = h̃cl(x,t− 1)+P (x,t)− ec(x,t)− pn(x,t)
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Upper Soil Layer Evapotranspiration

Compute the maximum infiltration im and the corresponding soil saturation infiltration i0:625

im(x,t) = (1+ b(x))cusl(x)

i0(x,t) = im(x,t)
(
1− (1− ˜husl(x,t− 1))1/(1−b(x))

)

Compute the upper soil layer evapotranspiration es:

es(x,t) =

en(x,t) if i0(x,t)≥ im(x,t)

β(x,t)en(x,t) otherwise
630

with β, the ARNO evapotranspiration beta function (Todini, 1996).

Update the normalized upper soil layer reservoir state ˜husl:

˜husl(x,t) = ˜husl(x,t− 1)− es(x,t)

cusl(x)

635

Infiltration

Compute the maximum capacity cumsl, soil moisture wumsl, and relative state humsl of the first two layers:

cumsl(x) = cusl(x)+ cmsl(x)

wumsl(x,t− 1) = ˜husl(x,t− 1)cusl(x)+ ˜hmsl(x,t− 1)cmsl(x)

humsl(x,t− 1) =
wumsl(x,t− 1)

cumsl(x)
640

Compute maximum im and infiltration i0:

im(x,t) = (1+ b(x))cumsl(x)

i0(x,t) = im(x,t)
(
1− (1−humsl(x,t− 1))1/(1−b(x))

)
645

Compute infiltration i:

i(x,t) =

cumsl(x)−wumsl(x,t− 1) if i0(x,t)+ pn(x,t)> im(x,t)

cumsl(x)−wumsl(x,t− 1)− cumsl(x)
(
1− i0(x,t)+pn(x,t)

im(x,t)

)b(x)+1

otherwise
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Distribute infiltration between the two upper layers:

iusl(x,t) = min
(
(1− ˜husl(x,t− 1))cusl(x), i(x,t)

)
650

imsl(x,t) = min
(
(1− ˜hmsl(x,t− 1))cmsl(x), i(x,t)− iusl(x,t)

)

Update the reservoir states:

˜husl(x,t) = ˜husl(x,t− 1)+ iusl(x,t)

˜hmsl(x,t) = ˜hmsl(x,t− 1)+ imsl(x,t)655

Compute runoff:

qr(x,t) = pn(x,t)− (iusl(x,t)+ imsl(x,t))

Drainage660

Compute the soil moisture in the first two layers:

wusl(x,t− 1) = ˜husl(x,t− 1)cusl(x)

wmsl(x,t− 1) = ˜hmsl(x,t− 1)cmsl(x)

Compute the initial drainage flux:665

dumsl(x,t
∗) = ks(x) · ˜husl(x,t− 1)pbc

Update the drainage flux:

dumsl(x,t) = min(dumsl(x,t
∗), min(wusl(x,t− 1), cmsl(x)−wmsl(x,t− 1)))

670

Update normalized reservoir states:

˜husl(x,t) = ˜husl(x,t− 1)− dumsl(x,t)

cusl(x)

˜hmsl(x,t) = ˜hmsl(x,t− 1)+
dumsl(x,t)

cmsl(x)
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The same approach is performed for drainage between medium and bottom soil layers. For brevity, we skip the first steps and675

directly give the update equations.

Update of the normalized medium and bottom reservoir states:

˜hmsl(x,t) = ˜hmsl(x,t− 1)− dmbsl(x,t)

cmsl(x)

˜hbsl(x,t) = ˜hbsl(x,t− 1)+
dmbsl(x,t)

cbsl(x)
680

Baseflow

Compute baseflow qb:

qb(x,t) =


dsm(x)ds(x)

ws(x)
˜hbsl(x,t− 1) if ˜hbsl(x,t− 1)≤ ws(x)

dsm(x)ds(x)
ws(x)

˜hbsl(x,t− 1)+ dsm(x)
(
1− ds(x)

ws(x)

)(
˜hbsl(x,t−1)−ws(x)

1−ws(x)

)2
otherwise

685

Update the normalized bottom soil layer reservoir:

˜hbsl(x,t) = ˜hbsl(x,t− 1)− qb(x,t)

cbsl(x)

with qt the elemental discharge, P the precipitation, E the potential evapotranspiration, mlt the melt flux from the snow

operator, b the variable infiltration curve parameter, cusl the maximum capacity of the upper soil layer, cmsl the maximum690

capacity of the medium soil layer, cbsl the maximum capacity of the bottom soil layer, ks the saturated hydraulic conductivity,

pbc the Brooks and Corey exponent, dsm the maximum velocity of baseflow, ds the non-linear baseflow threshold maximum

velocity, ws the non-linear baseflow threshold soil moisture, h̃cl the state of the normalized canopy layer, ˜husl the state of the

normalized upper soil layer, ˜hmsl the state of the normalized medium soil layer and ˜hbsl the state of the normalized bottom

soil layer.695

D3 Routing operator Mrr

◦ lag0

This routing operator is a simple aggregation of upstream discharge to downstream following the drainage plan.

Upstream Discharge700

Compute the upstream discharge qup:

qup(x,t) =


0 if Ωx = ∅∑
k∈Ωx

Q(k,t) otherwise
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where Ωx is the set of upstream cells flowing into cell x.

Surface Discharge705

Compute the surface discharge Q:

Q(x,t) = qup(x,t)+α(x)qt(x,t)

where α(x) is a unit conversion factor from mm ·∆t−1 to m3 · s−1 for a single cell.

with Q the surface discharge, qt the elemental discharge and Ωx a 2D spatial domain that corresponds to all upstream cells

flowing into cell x, i.e. the whole upstream catchment. Note that Ωx is a subset of Ω, Ωx ⊂ Ω and for the most upstream cells,710

Ωx = ∅.

◦ lr

This routing operator is using a linear reservoir to rout upstream discharge to downstream following the drainage plan.

Upstream Discharge715

Same as lag0 Upstream Discharge

Surface Discharge

Update the routing reservoir state hlr:

hlr(x,t
∗) = hlr(x,t)+

1

β(x)
qup(x,t)

where β(x) is a conversion factor from mm ·∆t−1 to m3 · s−1 for the entire upstream domain Ωx.720

Compute the routed discharge qrt:

qrt(x,t) = hlr(x,t
∗)

(
1− exp

(
−∆t

60× llr

))

Update the routing reservoir state hlr:

hlr(x,t) = hlr(x,t
∗)− qrt(x,t)725

Compute the surface discharge Q:

Q(x,t) = β(x)qrt(x,t)+α(x)qt(x,t)

where α(x) is a conversion factor from mm ·∆t−1 to m3 · s−1 for a single cell.

730

◦ kw

This routing operator is based on a conceptual 1D kinematic wave model that is numerically solved with a linearized implicit
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numerical scheme (Chow et al., 1998). This is applicable given the drainage plan DΩ (x) that enables reducing the routing

problem to 1D.

The kinematic wave model is a simplification of the one-dimensional Saint-Venant hydraulic equations.735

First, the mass conservation equation is written as:

∂A

∂t
+

∂Q

∂x
= q (D1)

where ∂□ denotes partial differentiation with respect to time or space, A is the cross-sectional flow area, Q is the discharge,

and q represents lateral inflows.740

The momentum equation is simplified by assuming that the water surface slope equals the bed slope, i.e., the flow is locally

uniform and gradually varied:

S0 = Sf (D2)

where S0 is the bed slope and Sf is the friction slope. This implies that the energy grade line is parallel to the channel bottom.745

This simplification leads to an empirical relation between discharge and flow area or depth, as described by Chow et al. (1998).

A= akwQ
bkw (D3)

where akw and bkw are two empirical constants that can also be related to the Manning friction law.750

Injecting the parameterization from Eq. (D3) into the mass conservation equation (Eq. (D1)) yields the following one-equation

form of the kinematic wave model (Chow et al., 1998):

∂Q

∂x
+ akwbkwQ

bkw−1 ∂Q

∂t
= q (D4)

For the sake of clarity, the following variables are renamed for this section and the finite difference numerical scheme:

Table D1. Renamed variables

Before After

Q(x,t) Qj
i

Q(x,t− 1) Qj−1
i

qt(x,t) qji

qt(x,t− 1) qj−1
i

755
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Upstream Discharge

Same as lag0 Upstream Discharge with qup denoted Qj
i−1.

Surface discharge

Compute the intermediate variables d1 and d2

d1 =
∆t

∆x
760

d2 = akwbkw

(
Qj−1

i +Qj
i−1

2

)bkw−1

Compute the intermediate variables n1, n2 and n3

n1 = d1Q
j
i−1765

n2 = d2Q
j−1
i

n3 = d1
qj−1
i + qji

2

Compute the surface discharge Qj
i

Qj
i =Q(x,t) =

n1 +n2 +n3

d1 + d2
770

with Q the surface discharge, qt the elemental discharge, akw the alpha kinematic wave parameter, bkw the beta kinematic

wave parameter and Ωx a 2D spatial domain that corresponds to all upstream cells flowing into cell x. Note that Ωx is a subset

of Ω, Ωx ⊂ Ω and for the most upstream cells, Ωx = ∅.

Appendix E: CPU Information

Architecture: x86_64775

CPU op-mode(s): 32-bit, 64-bit

Address sizes: 48 bits physical, 48 bits virtual

Byte Order: Little Endian

CPU(s): 192

On-line CPU(s) list: 0-191780

Vendor ID: AuthenticAMD

Model name: AMD EPYC 7643 48-Core Processor

CPU family: 25

Model: 1
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Thread(s) per core: 2785

Core(s) per socket: 48

Socket(s): 2

Stepping: 1

Frequency boost: enabled

CPU max MHz: 2300.0000790

CPU min MHz: 1500.0000

BogoMIPS: 4591.48

Virtualization features:

Virtualization: AMD-V

Caches (sum of all):795

L1d: 3 MiB (96 instances)

L1i: 3 MiB (96 instances)

L2: 48 MiB (96 instances)

L3: 512 MiB (16 instances)

NUMA:800

NUMA node(s): 2

NUMA node0 CPU(s): 0-47,96-143

NUMA node1 CPU(s): 48-95,144-191
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