
Authors’ Response to Editors/Reviewers of

SMASH v1.0: A Differentiable and Regionalizable High-Resolution
Hydrological Modeling and Data Assimilation Framework

GMD,

RC: Reviewers’ Comment, AR: Authors’ Response, □ Manuscript Text

Dear Editors and Reviewers,

We greatly appreciate your time and effort in handling our manuscript. We extend special thanks to the
reviewers for their thorough and constructive comments, which have significantly improved our work. Below,
we provide a point-by-point response addressing the reviewers’ concerns.

We hope these revisions have strengthened our manuscript and made it more suitable for publication in GMD.

François Colleoni and Pierre-André Garambois, on behalf of the authors.

1. Reviewer 1

1.1. Major comments
RC: The description of the hydrological model is not clear. Could the authors provide a brief description of

what processes are included in the hydrological model? If there is no space in the main text, the authors
should consider adding it to the supplementary text.

AR: Thank you for the suggestion. We will clarify the description of the different model structures in the revised
manuscript and strengthen the reference to the detailed online documentation available at https://smash.recover.inrae.fr.
While it would be possible to replicate the full model structure in the supplementary material, we believe this
is unnecessary given that the online documentation provides comprehensive and openly accessible information
on the hydrological operators, which are classical but employed in an original way in our framework.

The operators available in smash are listed above, and further detailed in Appendix D and in the on-
line documentation (https://smash.recover.inrae.fr/math_num_documentation/
forward_structure.html).

◦ zero
This snow operator simply means that there is no snow operator.

mlt(x, t) = 0

with mlt the melt flux.

...

RC: What is the assumption of the routing model in smash? There exist different types of routing models. For
example, large-scale 1D river routing models are commonly applied at relatively coarse spatial resolution
with the assumption that each grid cell contains a representative channel. A 2-dimensional routing model
that solves kinematic, diffusion, or dynamic wave routing at high spatial resolution, such as less than 1km,
does not need such an assumption. However, it may not be appropriate to apply such 2-dimensional routing
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model at coarse spatial resolution. Which type of routing model was implanted in smash? It has been
applied at 3km resolution for CONUS and 500m resolution for France application. It would be helpful if
the authors could elaborate on the routing method.

AR: We will clarify in the revised manuscript that the routing module implemented in smash is a classical 1D
conceptual kinematic wave model, applied over a D8 flow direction network. This reduces the routing
problem to a 1D structure along predefined flow paths. The model is solved numerically using a linearized
implicit scheme (Chow et al., 1998). Despite its simplicity, this approach has shown good performance and
robustness in large-sample applications, both at 3 km resolution over CONUS and 500 m resolution over
France.

A classical 1D conceptual kinematic wave model, applied over a D8 drainage plan DΩ without channel.
The model is solved numerically using a linearized implicit scheme (Chow et al., 1998).

RC: Could the author report the computation time for the regionalization simulations vs. an individual forward
run? This can help the readers to better understand the benefits of differentiable models. For example, in
typical hydrological model calibrations, one has to run the model many times, e.g., 1000, with perturbed
parameters, to obtain the optimal parameters. I think the differentiable model requires much fewer
simulations to get the optimal parameter values, making its application to large scales more feasible.

AR: We will report the computation times for the regionalization simulation, particularly for the most compu-
tationally demanding configuration using the ANN, as well as the corresponding forward run times. For
reference, the full regionalization procedures (including calibration, input, and output operations) already
take approximately 95 hours for the CONUS case and 31 hours for the Aude case. We will additionally run
and report the computation times of the associated forward simulations.

Regarding computation times, the calibration with ANN mapping over periods p1 and p2 took 95
hours. This calibration involved 350 iterations, corresponding to 350 calls to the adjoint model, and
was performed using 16 threads. For comparison, a single adjoint model run takes approximately 16
minutes, whereas a direct model run takes around 5 minutes using the same number of threads.

Regarding computation times, the calibration with ANN mapping over period p1 took 31 hours. This
calibration involved 350 iterations, corresponding to 350 calls to the adjoint model, and was performed
using 10 threads. For comparison, a single adjoint model run takes approximately 6 minutes, whereas a
direct model run takes around 1 minute and 30 seconds using the same number of threads

RC: There is no description of the calibrated parameters and their possible range. In addition, how are the
parameters perturbed to solve the adjoint of the forward model in Figure 2 is not clear. Are the parameters
perturbed at watershed level or are they perturbed at grid level within each watershed?

AR: Thank you for pointing this out. We will include the calibration parameter ranges for all tested model
structures in an appendix, in the form of a table listing parameter names and their respective ranges. A link to
the online documentation will also be provided to clarify the meaning and role of each parameter, so as to
avoid overloading the main text.

A description of the calibrated parameters is provided in the Appendix {A, B, C}

Regarding the computation of cost function derivatives with respect to the parameters, these are not obtained
through perturbation methods. Instead, they are computed accurately using the numerical adjoint model,
derived via automatic code differentiation as described in the manuscript. This approach is more suitable for
high-dimensional and nonlinear models, where perturbation methods tend to be less reliable. We will make
this explanation more explicit in the revised version.

2



smash features an efficient, differentiable Fortran solver using Tapenade to automatically derive
the adjoint model that supports CPU forward-inverse parallel computing and spatially distributed
optimization of large parameter vectors thanks to accurate cost gradient, interfaced in Python using
f90wrap

Flowchart of the inverse algorithm that uses ∇ρJ the cost gradient with respect to the tunable control
parameter ρ obtained by solving the adjoint model DρM of the forward model M obtained by
automatic source code differentiation and enabling accurate gradient computation

Finally, the calibration can be performed in various modes: (i) uniform calibration with a single parameter
set per watershed, (ii) fully distributed calibration with one parameter set per grid cell, or (iii) constrained
calibration using physical descriptor maps for example, using binary masks over sub-basins to enable
semi-distributed parameter configurations.

1.2. Specific comments
RC: Line 61: Please provide the full name of MPR.

AR: We will provide the full name of MPR.

Large sample studies have also been undertaken with spatially distributed models among which VIC
(Mizukami et al., 2017) with a Multiscale Parameter Regionalization (MPR) (Samaniego et al., 2010)

RC: Line 60 – Line 65: There are more large sample studies in terms of calibration of spatially distributed
models using efficient statistical approaches. For example,

Yang, Y., Pan, M., Beck, H. E., Fisher, C. K., Beighley, R. E., Kao, S. C., Hong, Y., and Wood, E. F.: In
quest of calibration density and consistency in hydrologic modeling: distributed parameter calibration
against streamflow characteristics, Water. Resour Res., 55, 7784–7803, 2019.

Xu, D., Bisht, G., Sargsyan, K., Liao, C., and Leung, L. R.: Using a surrogate-assisted Bayesian framework
to calibrate the runoff-generation scheme in the Energy Exascale Earth System Model (E3SM) v1, Geosci.
Model Dev., 15, 5021–5043, https://doi.org/10.5194/gmd-15-5021-2022, 2022.

Hirpa, F. A., Salamon, P., Beck, H. E., Lorini, V., Alfieri, L., Zsoter, E., and Dadson, S. J.: Calibration
of the Global Flood Awareness System (GloFAS) using daily streamflow data, J. Hydrol., 566, 595–606,
https://doi.org/10.1016/j.jhydrol.2018.09.052, 2018.

AR: We will expand the bibliography in this section.

Large sample studies have also been undertaken with spatially distributed models among which VIC
(Mizukami et al., 2017) with a Multiscale Parameter Regionalization (MPR) (Samaniego et al., 2010) or
with pixel-wise calibration on global maps of streamflow characteristics (Yang et al., 2019), a gridded
version of HBV applied with MPR like descriptors-to-parameters regressions on a global dataset (Beck
et al., 2020), GloFas (Hirpa et al., 2018), NHM (Towler et al., 2023), Wflow (Aerts et al., 2022; van
Verseveld et al., 2024) or runoff relevant parameters of E3SM using a surrogate-assisted Bayesian
framework (Xu et al., 2022).

RC: Line 98: What type of mesh does smash support? Structured or unstructured?

AR: smash only supports structured mesh.
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It is designed to simulate discharge hydrographs and hydrological states at any spatial location within a
structured mesh and it ...

RC: Line 114 – Line 129: Are the snow, hydrological, and routing operators process-based functions or
data-driven operators?

AR: All operators in smash version 1.0 snow, hydrological, and routing are classical process-based conceptual
models. We will clarify this point in the revised manuscript and include a reminder of the link to our detailed
online documentation for further reference.

Several process-based conceptual operators are available in smash for composing a model

RC: Line 159: Is equal weight used for wg? Please specify how wg was estimated for each gauge. In addition,
how jreg was estimated?

AR: Thank you for highlighting this point. We acknowledge that this part was not clearly described in the
manuscript and will clarify it in the revised version. In this study, equal weights were assigned to each
watershed, which corresponds to minimizing the average of the individual cost functions. Additionally, no
regularization term (jreg) was applied in this work.

In this study, equal weights were assigned to each gauge (i.e. wg = 1/NG), which corresponds to
minimizing the average of the individual cost functions. Additionally, no regularization term was
applied.

RC: Line 215: Which year was chosen?

AR: The evaluation period selected for this study was from July 31, 2010 to July 31, 2011. This information will
be added to the revised manuscript for clarity.

We compare smash over 3 zones: Sardinia, Great Britain/Ireland and North America at a spatial
resolution of 1’30” (∼ 3km × 3km) over a period of 1 year, from July 31, 2010 to July 31, 2011,
randomly chosen, at a daily time step.

RC: Line 221: Please specify how the computation times were evaluated. According to my experience, it is
unrealistic for a model to take only 0.1 seconds to run 365 time steps for 3846 grid cells. This relates to my
previous comments: are the snow, hydrological, and routing operators process-based models?

AR: The computation time reported in the manuscript corresponds to the average time for a pure forward or inverse
run, excluding the time required for input and output processes. After re-evaluating the results, we confirm
that this time reflects the computational cost of our relatively simple and efficient forward hydrological model,
which involves only a small number of numerical operations per grid cell. Additionally, as mentioned earlier,
the snow, hydrological, and routing operators are indeed process-based models.

RC: Line 226: The better scaling in the inverse run is likely due to it being more computationally expensive
than the forward run since the inverse run requires more computations.

AR: We agree with your observation and this will be explicitly stated in the revised version.

This difference highlights better thread scaling for the adjoint run, with a speedup of around 4 for a
direct run and 7 for an adjoint run with 16 threads likely because the adjoint run is more computationally
demanding than the forward run.
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RC: Line 229: Why the routing scheme not be parallelized? There are a lot of global river routing models, and
2-dimensional hydrodynamic models are well parallelized.

AR: You are correct, and we apologize for the confusion. The routing scheme is indeed parallelized, and we
will correct this in the manuscript. What we intended to convey is that the routing scheme cannot be fully
parallelized over the entire spatial domain, as it must be solved in a sequential manner from upstream to
downstream. This distinction will be clarified in the revised version.

Since the time-stepping loop cannot be parallelized at all and the routing scheme cannot be fully
parallelized at pixel scale over the entire spatial domain, as it must be solved in a sequential manner
from upstream to downstream

RC: Figure 5: Please add longitude and latitude to the figure. Also, consider adding a colorbar to show what is
plotted.

AR: We will add both the longitude and latitude axes to the figure, as well as a colorbar to clearly indicate that the
variable plotted is flow accumulation.

Figure 5

RC: Line 268: Which 10 years are used for “warm-up”?

AR: The "warm-up" period corresponds to the following:

• p1: from August 1, 1990, to July 31, 2000

• p2: from August 1, 1997, to July 31, 2007

For each period, the 10 preceding years are used as model "warm-up"

RC: Line 270: What parameters are calibrated?

AR: A detailed description of the calibrated parameters and their respective optimization ranges has been added in
the appendix for reference.

A description of the calibrated parameters is provided in the Appendix {A, B, C}

RC: Line 275 – Line 280: Can you also report the default forward model performance?

AR: Reporting the performance of the default forward model is not particularly meaningful in the context of
this conceptual hydrological model. Our "default" model refers to a spatially uniform calibration of the
parameters, which serves as a baseline for comparison.

RC: Line 279: Please show the calibrated parameter values. Also, for the spatially uniform parameters, are
they spatially uniform for the whole CONUS? Or are they only spatially uniform for each basin?

AR: Thank you for your comment. We will include statistics on the calibrated parameter values in the appendix.
Regarding the spatially uniform parameters, they have been optimized independently for each watershed. As
a result, we have a spatially uniform set of parameters within each watershed.
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Summary statistics of the calibrated parameters are provided in Appendix A

2 calibration mappings on each catchment are tested:

◦ Uniform: spatially uniform parameters

◦ Distributed: spatially distributed parameters

RC: Line 279: I found the performance between spatially uniform and spatially distributed simulations is very
close.

AR: Indeed, for this daily and 3 km resolution model, the performance between spatially uniform and spatially
distributed simulations is very close. However, we do observe a slight improvement in the KGE when using
a spatially distributed calibration compared to a uniform one. At higher spatio-temporal resolutions, the
performance gap becomes more pronounced, with uniform parameters yielding lower performance than a
distributed calibration. This was clearer in a similar study conducted with an hourly and kilometric model
over France (cf. https://hal.science/hal-04989183/document).

RC: Line 341: For the non-inertial shallow water models, do you mean diffusion wave routing?

AR: The shallow water model we refer to includes the convective inertia term in the momentum equation, which
allows for a simple finite difference solution.

RC: Line 342- 344: I wonder if the authors can give some comments on how to implement the differentiable
model to more complex land surface models or hydrological models?

AR: Any hydrological or land surface model can be integrated into the smash framework, provided it is com-
patible with the constraints of automatic differentiation imposed by the Tapenade tool. In particular, the
model must be written in a differentiable form and comply with Tapenade’s supported syntax and struc-
tures. We provide technical guidance on how automatic differentiation is implemented within smash
in the online documentation, in the section: Automatic Differentiation – Development Process Details
(https://smash.recover.inrae.fr/contributor_guide/development_process_details.html#automatic-differentiation).

RC: Line 368: Why change the evaluation metric from KGE to NSE in the application of France?

AR: The change in evaluation metric from KGE to NSE in the France application serves two purposes: (i) to
demonstrate that our advanced calibration and regionalization approaches can be used with different cost
functions, and (ii) to focus on a case study with a relatively fine spatial and temporal resolution, where greater
emphasis is placed on the high-water aspects. Hence, the use of NSE as both a calibration and evaluation
metric in this context.

This section is similar to the previous one, using the same regionalization method, but with differences
in the gauges selected for calibration and validation, as well as in the cost function. This section focuses
on national data at a finer spatio-temporal scale, applying the method at the watershed level, which is
more relevant for operational flood forecasting

RC: Line 403: I agree with the authors that the smash framework represents an advancement in data assimila-
tion in the hydrological model. However, I disagree that the smash framework represents an advancement
in the hydrological model. Based on the method section, smash implements simplified hydrological
processes.

AR: We agree with your observation and will revise the sentence accordingly. We believe that the smash
framework represents an advancement in modular, regionalizable, differentiable numerical modeling, as well
as in hydrological data assimilation.
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The recently released smash framework represents an advancement in modular, regionalizable, differ-
entiable numerical modeling, as well as in hydrological data assimilation.

2. Reviewer 2

2.1. Minor comments
RC: Data assimilation is not implemented or validated in this study, so I suggest removing it from the title and

abstract.

AR: The proposed framework adopts a variational data assimilation (VDA) approach, utilizing a numerically
differentiable solver to enable accurate estimation of cost function gradients for solving the inverse problem.
In the study, the inverse problem consists in searching parameter maps from discharge data, without or
with descriptors-to-parameters regionalization mapping in the forward model (the so called Hybrid Data
Assimilation and Parameter Regionalization (HDA-PR) approach Huynh et al. (2024)), over long time
windows with the VDA algorithm. The smash framework also enables to perform VDA at shorter time scales
and to infer initial states (not illustrated). These aspects will be clarified in the revised version, including a
distinction between data assimilation for reanalysis and near real-time applications, and upgrades required for
background and observation covariances matrices, aimed at inferring uncertain parameters—including initial
states.

The proposed differentiable and regionalizable spatially distributed modeling framework is designed
for gradient-based variational data assimilation applicable to initial states (not shown) and parameters
estimation at multiple time scales

The proposed framework leverages adjoint-based variational data assimilation (VDA), enabling the
simultaneous inference of high-dimensional and spatially distributed parameters (as illustrated) and
initial states (implementation available and tested in smash v1.0 but not shown), applicable at both long
and short time scales.

RC: Introduction: Differentiable modeling for large sample and high-resolution hydrologic studies have seen
notable progress in recent years. I encourage the authors to mention some related works to fully reflect
recent progress in this area.

AR: We will expand the bibliography in this section.

Differentiable numerical hydrological modeling has made significant progress in recent years (spatially
distributed variational data assimilation in Castaings et al. (2009); Lee et al. (2012); Jay-Allemand
et al. (2020)), for large catchment sample studies with hybrid physics-AI, both with lumped approaches
(e.g., Feng et al. (2024)) and with high-resolution, spatially distributed frameworks (Huynh et al., 2024,
2025).

RC: Line 118-120: What does GR stand for? It needs to be explained above.

AR: "GR" stands for "Génie Rural," which translates to "Rural Engineering" in English.

gr4: Génie Rural (GR)-like module (Perrin et al., 2003; Mathevet, 2005)

RC: Line Line 137: Typo “[lk, uk]”

AR: Thank you for pointing that out. We will correct the typo in the revised manuscript.
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a transformation based on a sigmoid function with values in [lk, uk]

RC: Line 170: I think here should be the optimization/training problem rather than a typical variational data
assimilation method, which typically uses near-real-time observations to update model states and forecasts.
As mentioned above, data assimilation is not examined in this study.

AR: VDA is traditionally used to infer uncertain or unknown model parameters and initial states from available
data using gradient based optimization, which is enable by the proposed smash framework that incorporates a
VDA algorithm. You are right, the primary focus of this study is on model parameters training in reanalysis,
but using the VDA algorithm, rather than "real-time" data assimilation. This will be clarified.

RC: Line 221-220: Is the model parallelized across grids using OpenMP? How many threads per CPU were
used for parallel execution? Please clarify.

AR: Thank you for your comment. Yes, the model is parallelized across the spatial grid using OpenMP. We made
an error in referring to CPUs; in this case, only one thread is used per CPU. In the revised manuscript, we
will consistently refer to threads rather than CPUs to avoid any confusion.

CPU replaced by thread

RC: Line 233-234: The inverse run includes an iteration loop from the optimization algorithm, and within each
iteration, there is a time loop. Is this correct? Please clarify.

AR: There is some confusion in the manuscript between the terms "inverse run" and "inverse routine." To clarify,
an "inverse run" refers to a single call to the adjoint model during the optimization process. The number of
adjoint model calls within each optimization iteration may vary depending on the optimization algorithm
used, such as L-BFGS-B. On the other hand, the "inverse routine" described in Figure 2 refers to multiple
calls to the adjoint model. To resolve this confusion, we will maintain the term "inverse routine" in Figure 2
and rename "inverse run" to "adjoint run" in the ’Computational performance’ section.

inverse run replaced by adjoint run

RC: Figure 4: Instead of using the number of CPUS, it is more reasonable to use the number of cores/threads
as x axis.

AR: You are correct. We will make this adjustment in the revised manuscript.

Figure 6

RC: The difference between the experiments in Section 4.2 and Section 4.3 is not very clear. Please clarify.

AR: The main distinction lies in the "precision" of the modeling approach. Both sections use the same regionaliza-
tion method, with differences in the watersheds selected for calibration and validation, as well as the cost
function. In Section 4.2, we use global data over a large spatio-temporal scale and apply the regionalization
algorithm at a country-wide scale. In Section 4.3, we focus on national data at a finer spatio-temporal scale,
applying the method at the watershed level, which is more relevant for operational flood forecasting.

This section is similar to the previous one, using the same regionalization method, but with differences
in the gauges selected for calibration and validation, as well as in the cost function. This section focuses
on national data at a finer spatio-temporal scale, applying the method at the watershed level, which is
more relevant for operational flood forecasting.

8



References

Aerts, J.P.M., Hut, R.W., van de Giesen, N.C., Drost, N., van Verseveld, W.J., Weerts, A.H., Hazenberg,
P., 2022. Large-sample assessment of varying spatial resolution on the streamflow estimates of the
wflow_sbm hydrological model. Hydrology and Earth System Sciences 26, 4407–4430. URL: https:
//hess.copernicus.org/articles/26/4407/2022/, doi:.

Beck, H.E., Pan, M., Lin, P., Seibert, J., van Dijk, A.I.J.M., Wood, E.F., 2020. Global fully dis-
tributed parameter regionalization based on observed streamflow from 4,229 headwater catch-
ments. Journal of Geophysical Research: Atmospheres 125, e2019JD031485. URL: https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031485, doi:,
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JD031485.
e2019JD031485 10.1029/2019JD031485.

Castaings, W., Dartus, D., Le Dimet, F.X., Saulnier, G.M., 2009. Sensitivity analysis and parameter estimation
for distributed hydrological modeling: potential of variational methods. Hydrology and Earth System
Sciences 13, 503 – 517.

Chow, V.T., Maidment, D.R., Mays, L.W., 1998. Applied Hydrology. McGraw-Hill Series in Water Resources
and Environmental Engineering.

Feng, D., Beck, H., de Bruijn, J., Sahu, R.K., Satoh, Y., Wada, Y., Liu, J., Pan, M., Lawson, K., Shen, C.,
2024. Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and
physics-informed differentiable models (δhbv-globe1.0-hydrodl). Geoscientific Model Development 17,
7181–7198. URL: https://gmd.copernicus.org/articles/17/7181/2024/, doi:.

Hirpa, F.A., Salamon, P., Beck, H.E., Lorini, V., Alfieri, L., Zsoter, E., Dadson, S.J., 2018. Cali-
bration of the global flood awareness system (glofas) using daily streamflow data. Journal of Hy-
drology 566, 595–606. URL: https://www.sciencedirect.com/science/article/pii/
S0022169418307467, doi:.

Huynh, N.N.T., Garambois, P.A., Colleoni, F., Renard, B., Roux, H., Demargne, J., Jay-
Allemand, M., Javelle, P., 2024. Learning regionalization using accurate spatial cost gra-
dients within a differentiable high-resolution hydrological model: Application to the french
mediterranean region. Water Resources Research 60, e2024WR037544. URL: https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2024WR037544, doi:,
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2024WR037544.
e2024WR037544 2024WR037544.

Huynh, N.N.T., Garambois, P.A., Renard, B., Colleoni, F., Monnier, J., Roux, H., 2025. A distributed
hybrid physics-ai framework for learning corrections of internal hydrological fluxes and enhancing
high-resolution regionalized flood modeling. URL: https://egusphere.copernicus.org/
preprints/2025/egusphere-2024-3665/, doi:.

Jay-Allemand, M., Javelle, P., Gejadze, I., Arnaud, P., Malaterre, P.O., Fine, J.A., Organde, D., 2020. On the
potential of variational calibration for a fully distributed hydrological model: application on a mediterranean
catchment. Hydrology and Earth System Sciences 24, 5519–5538.

Lee, H., Seo, D.J., Liu, Y., Koren, V., McKee, P., Corby, R., 2012. Variational assimilation of streamflow into
operational distributed hydrologic models: effect of spatiotemporal scale of adjustment. Hydrology and
Earth System Sciences 16, 2233–2251. URL: https://hess.copernicus.org/articles/16/
2233/2012/, doi:.

9

https://hess.copernicus.org/articles/26/4407/2022/
https://hess.copernicus.org/articles/26/4407/2022/
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031485
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031485
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JD031485
https://gmd.copernicus.org/articles/17/7181/2024/
https://www.sciencedirect.com/science/article/pii/S0022169418307467
https://www.sciencedirect.com/science/article/pii/S0022169418307467
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2024WR037544
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2024WR037544
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2024WR037544
https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3665/
https://egusphere.copernicus.org/preprints/2025/egusphere-2024-3665/
https://hess.copernicus.org/articles/16/2233/2012/
https://hess.copernicus.org/articles/16/2233/2012/


Mathevet, T., 2005. Quels modeles pluie-debit globaux au pas de temps horaire? Développements empiriques
et intercomparaison de modeles sur un large échantillon de bassins versants. Ph.D. thesis. Ph. D. thesis,
ENGREF, 463 pp.

Mizukami, N., Clark, M.P., Newman, A.J., Wood, A.W., Gutmann, E.D., Nijssen, B.,
Rakovec, O., Samaniego, L., 2017. Towards seamless large-domain parameter estima-
tion for hydrologic models. Water Resources Research 53, 8020–8040. URL: https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR020401, doi:,
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR020401.

Perrin, C., Michel, C., Andrèassian, V., 2003. Improvement of a parsimonious model for streamflow
simulation. Journal of hydrology 279, 275–289.

Samaniego, L., Kumar, R., Attinger, S., 2010. Multiscale parameter regionalization of a grid-
based hydrologic model at the mesoscale. Water Resources Research 46. URL: https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008WR007327, doi:,
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008WR007327.

Towler, E., Foks, S.S., Dugger, A.L., Dickinson, J.E., Essaid, H.I., Gochis, D., Viger, R.J., Zhang, Y.,
2023. Benchmarking high-resolution hydrologic model performance of long-term retrospective streamflow
simulations in the contiguous united states. Hydrology and Earth System Sciences 27, 1809–1825. URL:
https://hess.copernicus.org/articles/27/1809/2023/, doi:.

van Verseveld, W.J., Weerts, A.H., Visser, M., Buitink, J., Imhoff, R.O., Boisgontier, H., Bouaziz, L., Eilander,
D., Hegnauer, M., ten Velden, C., Russell, B., 2024. Wflow_sbm v0.7.3, a spatially distributed hydrological
model: from global data to local applications. Geoscientific Model Development 17, 3199–3234. URL:
https://gmd.copernicus.org/articles/17/3199/2024/, doi:.

Xu, D., Bisht, G., Sargsyan, K., Liao, C., Leung, L.R., 2022. Using a surrogate-assisted bayesian framework to
calibrate the runoff-generation scheme in the energy exascale earth system model (e3sm) v1. Geoscientific
Model Development 15, 5021–5043. URL: https://gmd.copernicus.org/articles/15/
5021/2022/, doi:.

Yang, Y., Pan, M., Beck, H.E., Fisher, C.K., Beighley, R.E., Kao, S.C., Hong, Y., Wood, E.F., 2019. In
quest of calibration density and consistency in hydrologic modeling: Distributed parameter calibra-
tion against streamflow characteristics. Water Resources Research 55, 7784–7803. URL: https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR024178, doi:,
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR024178.

10

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR020401
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR020401
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR020401
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008WR007327
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008WR007327
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008WR007327
https://hess.copernicus.org/articles/27/1809/2023/
https://gmd.copernicus.org/articles/17/3199/2024/
https://gmd.copernicus.org/articles/15/5021/2022/
https://gmd.copernicus.org/articles/15/5021/2022/
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR024178
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR024178
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR024178

	Reviewer 1
	Major comments
	Specific comments

	Reviewer 2
	Minor comments


