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Abstract. Background ozone (O3) represents the baseline concentrations in the absence of local 8 

anthropogenic emissions and is critical for understanding and mitigating tropospheric O3 pollution. 9 

Accurate estimation of background O3 constrains the maximum achievable benefits of precursor 10 

emissions control and informs effective air quality management. This review synthesizes the definition 11 

and estimation methods for background O3, including in situ measurement, statistical analysis, numerical 12 

modeling, and integrated methods. A meta-analysis of background O3 in China from 1994 to 2020 reveals 13 

pronounced spatial variability, with concentrations ranging from 33 ppb in the Northeast China to 48 ppb 14 

in the Northwest China, and a national mean of 41 ppb, accounting for 79% of the tropospheric maximum 15 

daily 8-hour average O3. Methodological discrepancies are evident for background O3: in situ and 16 

statistical methods yield higher estimates, whereas integrated approaches produce lower yet more 17 

consistent values. Placed in a global context, background O3 levels in China are medium-to-high and 18 

exhibit an increasing trend. This review highlights the need for integrated estimation methods to improve 19 

accuracy, underscores the international collaboration to address long-range pollutant transport, and calls 20 

for further research on the interactions between background O3 and climate change. By advancing the 21 

understanding of background O3 dynamics, it provides critical insights for atmospheric chemistry and air 22 

pollution control in China and beyond. 23 

1 Introduction 24 

Since the implementation of the “Air Pollution Prevention and Control Action Plan” in 2013 and the 25 

subsequent “Three-Year Action Plan for Winning the Blue Sky War”, China has achieved remarkable 26 
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improvement in air quality, particularly in reducing fine particulate matter (PM2.5) concentrations. 27 

Nationwide PM2.5 levels declined by approximately 50% between 2013 and 2020 (Geng et al., 2024). 28 

However, surface ozone (O3) pollution has emerged as a growing concern. From 2015 to 2022, the 29 

number of O3 pollution days increased steadily in major cities such as Beijing, Shanghai, and Guangzhou 30 

(Li et al., 2019; Wang et al., 2023), with exceedance days more than doubling in some regions (Ozone 31 

Pollution Control Committee of Chinese Society of Environmental Sciences, 2024). In response, the 32 

“Opinions on Deepening the Fight Against Pollution”, issued by the Central Committee of the 33 

Communist Party of China and the State Council, incorporated coordinated control of both PM2.5 and O3 34 

into the “14th Five-Year Plan” (2021–2025), marking a strategic shift toward multi-pollutant 35 

management. 36 

Tropospheric O3 is a secondary pollutant formed through photochemical reactions involving 37 

volatile organic compounds (VOCs) and nitrogen oxides (NOx). It consists of two components: locally 38 

produced O3 from anthropogenic emissions and background O3, both of which impact human health, 39 

ecological ecosystems, and agricultural productivity (McDonald-Buller et al., 2011; Wang et al., 2009b). 40 

Background O3 refers to the O3 concentration present in the absence of local anthropogenic precursor 41 

emissions. It originates from a variety of natural and non-local processes, including methane (CH4) 42 

oxidation, stratosphere–troposphere exchange (STE), vegetation, soil, lightning, wildfires and long-43 

range pollutants transport, as shown in Fig. 1 (Dolwick et al., 2015; Thompson, 2019). Among these 44 

sources, CH4 is unique due to its long atmospheric lifetime (8–9 years) and globally well-mixed 45 

distribution (Fiore et al., 2002b; Vingarzan, 2004; West and Fiore, 2005; Thompson, 2019). In the pre-46 

industrial era (~1750), natural CH4 sources (e.g., wetlands, inland waters, geological emissions) 47 

contributed ~95% of global emissions (Lassey et al., 2000; Prather et al., 2012; Valdes et al., 2005), 48 

making CH4 oxidation a stable background contributor to tropospheric O3 (Skipper et al., 2021; Sun et 49 

al., 2024; Thompson, 2019; Vingarzan, 2004; Wu et al., 2008). However, over the past century, 50 

anthropogenic CH4 emissions from agriculture, fossil fuels, and waste have increased substantially, 51 

accounting for over 60% of global CH4 by 2012 (Fiore et al., 2002b; Jackson et al., 2024; Kirschke et al., 52 

2013; Lelieveld et al., 1998; Saunois et al., 2016). This transition challenges the traditional classification 53 
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of CH4-driven O3 as part of the “background,” and calls for a more precise attribution that excludes 54 

anthropogenic CH4 from background O3 estimates. Differentiating natural from anthropogenic CH4 55 

contributions is thus crucial for improving the accuracy and policy relevance of background O3 56 

assessments. 57 

Background O3 typically contributes 60–80% of total tropospheric O3 at both global and regional 58 

scales (Akimoto et al., 2015; Chen et al., 2022; Dolwick et al., 2015; Lee and Park, 2022; Lefohn et al., 59 

2014; Zhang et al., 2011). Unlike PM2.5, which can be more directly mitigated through local emission 60 

reductions, O3 management is more complex due to its nonlinearity and the presence of a large, 61 

unmodifiable background component (Chen et al., 2022). Although emission control measures in Europe, 62 

the United States (U.S.), and Japan have reduced O3 exceedances, background O3 levels have continued 63 

to rise (Akimoto et al., 2015; Cooper et al., 2012; Wilson et al., 2012; Yan et al., 2021). For example, in 64 

the U.S., the relative contribution of background O3 to total ground-level O3 has risen by approximately 65 

6% over the past two decades (Jaffe et al., 2018), driven by climate change, rising CH4, and 66 

transboundary pollution (Chen et al., 2022; Vingarzan, 2004). This trend is especially concerning in East 67 

Asia, where background O3 is further elevated by regional transport from neighboring countries, 68 

exacerbating the problem (Vingarzan, 2004). As anthropogenic NOx and VOCs emissions decline under 69 

stricter regulations, the relative importance of background O3 in shaping observed pollution will only 70 

increase (Jaffe et al., 2018; Lam and Cheung, 2022; Skipper et al., 2021), limiting the effectiveness of 71 

local controls and demanding new international and multi-scale mitigation strategies. 72 

Background O3 defines the “baseline” for regional O3 pollution and sets the upper bound of 73 

achievable air quality improvements through domestic anthropogenic emission controls (Fiore et al., 74 

2014; Wang et al., 2009a; Zhang et al., 2011). Persistently high background O3 levels complicate 75 

compliance with current and future O3 standards, a challenge recognized by major agencies such as the 76 

National Aeronautics and Space Administration (NASA) (Huang et al., 2015; Thompson, 2019; 77 

Vingarzan, 2004) and in China’s “Blue Book on Prevention and Control of Atmospheric Ozone Pollution” 78 

(Ozone Pollution Control Committee of Chinese Society of Environmental Sciences, 2022). Despite its 79 

importance, understanding of background O3 remains constrained by inconsistent definitions, diverse 80 
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estimation methods, and limited regional assessments. While several recent reviews have touched on 81 

background O3 in the broader context of O3 pollution (Lu et al., 2019b; Liu et al., 2020; Sahu et al., 2021; 82 

Wang et al., 2022b; Xu, 2021), and a few studies have provided quantitative estimates and source 83 

apportionment of background O3 in China (Sahu et al., 2021; Wang et al., 2022b; Chen et al., 2022; Wang 84 

et al., 2011), no dedicated, methodologically focused synthesis is available.  85 

This study addresses that gap by: (i) systematically reviewing the evolution of the background O3 86 

concept; (ii) providing a comparative assessment of the methods (i.e., in situ measurement, statistical 87 

analysis, numerical modeling, and integrated methods) employed to estimate background O3; and (iii) 88 

synthesizing the spatiotemporal patterns of background O3 in China within a broader global context, 89 

examining the spatial and temporal variations of background O3 across China using publicly available 90 

data. Finally, we identify key knowledge gaps and propose future research priorities to advance 91 

understanding and inform effective policy responses. As background O3 increasingly shapes the O3 92 

landscape, this review provides timely insight into the scientific and regulatory frontiers of O3 pollution 93 

control both in China and globally. 94 

 95 
Figure 1: Conceptual diagram of tropospheric O3 components and sources. 96 
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2 Materials and methods 97 

2.1 Data source and study area 98 

To provide a comprehensive synthesis of advancements in the study of background O3, a systematic 99 

literature search was conducted across major academic databases, including the Web of Science, Google 100 

Scholar, Science Direct (Elsevier), Scopus, Springer, Wiley, and China National Knowledge 101 

Infrastructure (CNKI). The search was centered on the following key thematic terms: 102 

background/baseline/natural ozone/O3, regional background ozone/O3, and policy relevant background 103 

ozone/O3, ensuring the inclusion of a wide range of relevant studies. This study identified 153 pertinent 104 

documents, comprising 132 peer-reviewed English-language papers, 10 peer-reviewed Chinese-language 105 

papers, 6 English-language reports, 1 English-language books, 2 Chinese-language books, and 2 106 

Chinese-language master’s theses. These documents form the core foundation of this review, which 107 

traces the evolution of the definition and estimation method for background O3 over a span of seven 108 

decades (1952–2024), providing a comprehensive historical perspective on the development of the field.  109 

In addition to reviewing the definition and estimation method for background O3, we also analyzed 110 

the spatial and temporal characteristics of regional background O3 concentrations in China during the 111 

period 1994–2020. This analysis was based on 44 peer-reviewed papers, including 28 papers in English 112 

and 16 papers in Chinese, which collectively provided over 700 data points on background O3 113 

concentration from various regions and time periods within China. To ensure the reliability and 114 

comparability of compiled background O3 estimates, we adopted strict inclusion criteria: (i) reported 115 

values must specify temporal coverage and measurement or estimation methods; (ii) study location must 116 

be clearly identifiable within China; and (iii) data must originate from peer-reviewed publications, 117 

official reports, or other authoritative sources. All values considered in this study had already undergone 118 

rigorous quality control and screening by the original authors; therefore, no further outlier removal was 119 

performed. Where necessary, datasets were harmonized through standardized unit conversions and 120 

consistent temporal categorization to enhance comparability. 121 

Based on these criteria and harmonization procedures, the final dataset integrates estimates across 122 

diverse temporal resolutions: annual data (31%, 235 data points), seasonal data (26%, 195 data points), 123 
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and monthly data (43%, 326 data points). The seasonal and monthly data were classified into spring 124 

(March–May; 24%, 127 data points), summer (June–August; 28%, 145 data points), autumn (September–125 

November; 24%, 125 data points), and winter (December–February; 24%, 124 data points). A detailed 126 

breakdown of regional and temporal distributions is provided in Table S1. In addition, maximum daily 127 

8-hour average (MDA8) O3 concentrations for the seven regions during 2013 to 2018 were obtained from 128 

He et al. (2023). 129 

To assess the regional differences in background O3 concentrations across China, the country was 130 

categorized into seven geo-administrative regions based on a combination of social, natural, economic, 131 

and human environmental factors (He et al., 2023). These regions include Northeast China (NEC), North 132 

China (NC), East China (EC), Central China (CC), Northwest China (NWC), Southwest China (SWC), 133 

and South China (SC), as shown in Fig. 4. A detailed description of these regional divisions is provided 134 

in Table S2.  135 

2.2 Data process 136 

The background O3 concentrations presented in this study are reported as volume mixing ratios in parts 137 

per billion (ppb). In some studies, however, values are expressed as mass concentration (μg m−3). To 138 

ensure consistency with international standards and comparability with global datasets, unit conversions 139 

were performed using Eq. (1):  140 

𝑝𝑝𝑏 = (
24.5 L mol−1

48 g mol−1 ) × (μg m−3),             (1) 141 

Where 48 g mol−1 is the molar mass of O3 and 24.5 L mol−1 is the molar volume of an ideal gas 142 

under the reference conditions of 25 ℃ and 1013.25 hPa, as specified in the 2018 amendment to China’s 143 

Ambient Air Quality Standards (GB 3095–2012) issued by the Ministry of Ecology and Environment 144 

(https://www.mee.gov.cn/gkml/sthjbgw/sthjbgg/201808/t20180815_451398.htm). These reference 145 

conditions are consistent with international practices, such as 25 ℃ in the U.S. (U.S. EPA, 2011), 20 ℃ 146 

in the European Union (European Parliament and Council, 2008) and better reflect typical meteorological 147 

conditions across most regions of China. 148 



 

 

7 

 

2.3 Trend analysis 149 

This study employed linear regression analysis to examine the annual trend in background O3 150 

concentration and assess the statistical significance of these trends over time. Specifically, linear 151 

regression was applied to the mean background O3 concentrations (derived from scatter plot data) across 152 

different years, using the least squares method to determine the relationship between background O3 153 

concentration and time. 154 

To evaluate the model’s performance, the coefficient of determination (R2) was calculated. R² 155 

represents the proportion of variance in background O3 concentration explained by the linear model, 156 

indicating how well the model fits the observed data. Higher R² values suggest a strong fit, while lower 157 

values indicate a weaker fit. The P-value was also calculated to test the statistical significance of the 158 

linear relationship between background O3 concentration and time. A smaller P-value (typically less than 159 

0.05) indicates a statistically significant linear relationship, suggesting that the observed trend is unlikely 160 

to have occurred by chance. In contrast, larger P-values imply that the trend may not be statistically 161 

significant and could result from random variation. 162 

It is important to note that, for the analysis of interannual variations in background O3 concentration, 163 

only annual data from the compiled dataset were used. To ensure robustness, individual data points that 164 

deviated markedly from the overall regional trend were excluded, whereas consecutive deviations were 165 

retained to preserve temporal continuity. Here, “deviation” refers to values that differ substantially from 166 

most annual data within the aggregated regional dataset – likely reflecting spatial heterogeneity – rather 167 

than statistical outliers at the level of individual studies. In case where background O3 concentrations 168 

were estimated using multiple methods within the same geographical region of a single study, the results 169 

were averaged to provide a more representative value.  170 

3 Background ozone: conceptual evolution and key definitions 171 

Background O3 generally refers to the portion of O3 concentrations that are not influenced by direct local 172 

anthropogenic emissions, though its definition varies across studies globally. In contemporary 173 

atmospheric research, background O3 is commonly categorized into two distinct types: natural 174 
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background ozone (NBO) and regional background ozone (RBO). These two categories are crucial for 175 

understanding the sources and variations of background O3 on both local and global scales. Figure 2 176 

presents the historical evolution of background O3 concepts, including their definitions and key 177 

characteristics. 178 

Natural background ozone (NBO) is defined as tropospheric O3 that exists in the complete absence 179 

of anthropogenic emissions, originating solely from natural processes (McDonald-Buller et al., 2011; 180 

Vingarzan, 2004; Wu et al., 2008). The primary sources of NBO include VOCs and NOx emitted by 181 

natural sources such as vegetation, soil, lightning, wildfires, and the oxidation of CH4, as well as O3 182 

exchange between the stratosphere and troposphere (Thompson, 2019). Historically, research into NBO 183 

originated with studies on atmospheric photochemistry. In the 1950s, investigations into photochemical 184 

smog in Los Angeles identified O3 as a major component of smog, linking vehicular emissions of VOCs 185 

and NOx to its formation (Haagen-Smit, 1952). While these studies primarily focused on anthropogenic 186 

sources, they also observed detectable O3 concentrations in remote regions, far from urban pollution, 187 

suggesting natural processes contributed to O3 production (Galbally et al., 1986; Volz and Kley, 1988). 188 

By the late 1970s, systematic studies in the U.S. identified key natural sources of O3, such as biogenic 189 

VOCs (BVOCs), lightning, and soil-emitted NOx, leading to the formation of the NBO concept (Crutzen, 190 

1974; Jacob et al., 1999; Liu et al., 1987). Although NBO holds significant scientific importance, its 191 

practical application as a regulatory tool remains limited, particularly in the Northern Hemisphere, where 192 

anthropogenic emissions dominate regional O3 production (Berlin et al., 2013). Nonetheless, NBO is a 193 

critical reference for establishing baseline O3 levels globally, facilitating the evaluation of human 194 

contribution to atmospheric O3 concentration. 195 

In the 1990s, researchers in the U.S. began to recognize the critical role of long-range transport 196 

from anthropogenic sources in regional O3 levels (Fiore et al., 2002a; Jacob et al., 1999; Vingarzan, 2004). 197 

This realization was pivotal in developing the concept of United States Background Ozone (USBO), 198 

which includes O3 contributions from global NBO as well as anthropogenic emissions originating outside 199 

the country, such as from neighboring regions like Canada and Mexico (Skipper et al., 2021; Thompson, 200 

2019). Acknowledging these external sources highlighted that background O3 levels could not be fully 201 
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mitigated through domestic emission reductions alone. 202 

By the early 21st century, research on background O3 increasingly intersected with air quality policy 203 

development. A notable milestone was the introduction of Policy Relevant Background Ozone (PRBO) 204 

by the United States Environmental Protection Agency (EPA) in 2006 during revisions to the National 205 

Ambient Air Quality Standards (NAAQS) (U.S. EPA, 2006; Zhang et al., 2011). PRBO refers to ground-206 

level O3 concentrations that exclude all anthropogenic emissions from North America (the U.S., Canada 207 

and Mexico) while accounting for natural sources and long-range transport from anthropogenic and 208 

natural sources outside North America (Emery et al., 2012; Nopmongcol et al., 2016). This concept aimed 209 

to help policymakers assess the effectiveness of domestic control measures in reducing O3 pollution and 210 

inform the establishment of stricter O3 standards. By differentiating controllable from uncontrollable O3 211 

sources, PRBO enabled a more targeted approach to air quality management, framing policy discussions 212 

around the limitations of local pollution control in addressing O3 levels (Duc et al., 2013; Zhang et al., 213 

2011). The introduction of PRBO marked a significant transition in background O3 research, shifting 214 

from a predominantly scientific focus to one directly informing air quality policy and regulatory 215 

frameworks (Hosseinpour et al., 2024; U.S. EPA, 2006, 2007). 216 

Although USBO and PRBO share some common elements, their definitions differ primarily in 217 

geographic scope. PRBO focuses on transboundary contributions from regions outside North America, 218 

whereas USBO includes emissions from neighboring countries, such as Canada and Mexico, that affect 219 

the U.S. O3 concentration. To address regional variations and better capture the dynamic of background 220 

O3 in specific areas, advancements in atmospheric chemistry models have enabled scientists to 221 

differentiate the contributions of various sources to background O3. This led to the emergence and 222 

widespread adoption of the term Regional Background Ozone (RBO) around the 2010s (Kemball-Cook 223 

et al., 2009; Langford et al., 2009; Ou-Yang et al., 2013). RBO refers to O3 concentrations within a 224 

defined region that are unaffected by direct local anthropogenic emissions. Its main sources include 225 

natural emissions (e.g., BVOCs, soil, wildfires, and lightning), the oxidation of CH4, stratosphere–226 

troposphere exchange, and long-range transport (McDonald-Buller et al., 2011; Skipper et al., 2021; Sun 227 

et al., 2024; Wang et al., 2022a). 228 
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The distinction between NBO and RBO is crucial for understanding the complexity of background 229 

O3 concentrations, as each reflects different sources and scales of influence. NBO represents a natural 230 

baseline, dominated by non-anthropogenic factors, serving as a reference point for assessing the human 231 

impact on atmospheric composition. In contrast, RBO reflects the interplay of natural and anthropogenic 232 

sources at local and global scales. Advancing our understanding of both NBO and RBO is essential for 233 

improving air quality models, refining emission control strategies, and establishing science-based 234 

standards for O3 pollution reduction. 235 

 236 

Figure 2: Historical evolution of background O3 concepts: definitions (left box) and characteristics (right box). 237 

4 Methods for estimating background ozone concentrations 238 

The estimation of regional background O3 is typically conducted using four primary methods: (1) in situ 239 

measurement estimation, (2) statistical analysis estimation, (3) numerical modeling estimation, and (4) 240 

integrated methods estimation. Figure 3 summarizes the advantages, limitations, and applicability of each 241 

method, providing a comparative overview of their respective strengths and weaknesses. 242 
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4.1 In situ measurement estimation 243 

The in situ measurement estimation method involves the deployment of monitoring stations in remote or 244 

elevated areas, typically located far from direct pollution sources, to measure O3 concentrations directly 245 

(Lam and Cheung, 2022; Wang et al., 2009b). This approach is widely recognized as one of the most 246 

direct and commonly used methods for estimating regional background O3. It is relatively straightforward 247 

to implement, requires minimal post-measurement processing, and provides continuous, high frequency 248 

data on O3 variations across spatial and temporal scales. These attributes render it an invaluable tool for 249 

tracking long-term trends in background O3 concentrations. 250 

However, this method has limitations, particularly concerning the spatial representativeness of the 251 

data. The limited number of monitoring stations, especially in regions with complex terrain or vast 252 

geographic areas, can result in insufficient coverage of the region’s environmental conditions. 253 

Furthermore, measurements from background stations are subject to local meteorological conditions, 254 

such as temperature, humidity, and wind patterns, which can introduce uncertainties into background O3 255 

concentrations estimates (Skipper et al., 2021; Wu et al., 2017). This challenge is particularly pronounced 256 

in the Northern Hemisphere, where widespread anthropogenic emissions complicate the identification of 257 

truly “background” stations that are unaffected by human activities (Cooper et al., 2012; McDonald-258 

Buller et al., 2011; Skipper et al., 2021; Vingarzan, 2004). 259 

Despite its limitations, the in situ measurement estimation method remains an indispensable tool 260 

for estimating background O3 concentrations. For instance, Vingarzan (2004) reported that background 261 

O3 concentration in the Northern Hemisphere rose from approximately 10 ppb before the Industrial 262 

Revolution to 25–40 ppb by the 2000s, corresponding to an annual growth rate of 0.5–2%. Similarly, 263 

Akimoto et al. (2015) found background O3 concentrations ranging from 60 to 70 ppb in Japan’s Tokyo 264 

and Fukuoka metropolitan areas between 1990 and 2008. In southern China, Wang et al. (2009b) recorded 265 

background O3 levels of 30–40 ppb at the Hok Tsui station in Hong Kong from 1994 to 2018, with an 266 

average annual increment of 0.58 ppb. These studies demonstrate that, despite challenges in achieving 267 

complete representativeness, the in situ measurement estimation method provides valuable insights into 268 

regional background O3 trends and advances our understanding of the long-term impacts of both natural 269 
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and anthropogenic processes on atmospheric chemistry. 270 

4.2 Statistical analysis estimation 271 

The statistical analysis estimation method uses observed O3 concentration data and applies statistical 272 

techniques to estimate regional background O3 levels (Altshuller and Lefohn, 1996; Berlin et al., 2013; 273 

Steiner et al., 2010; Wang et al., 2022a). Historically, such estimations primarily relied on real-time 274 

measurements from monitoring stations. However, limitations in the spatial and temporal coverage of 275 

monitoring networks, along with their susceptibility to local environmental factors, have constrained 276 

their ability to capture the broader regional O3 levels accurately. For example, monitoring stations 277 

situated in areas with complex terrain may yield skewed data due to topographical effects on air 278 

circulation patterns, which in turn significantly influence the distribution of O3 concentration (Wang et 279 

al., 2022a). To overcome these challenges, researchers have increasingly adopted advanced statistical 280 

models that incorporate diverse observational data sources, enhancing the accuracy and reliability of 281 

background O3 estimates (Riley et al., 2023; Rizos et al., 2022). 282 

A notable advantage of statistical analysis estimation methods is their capability to process 283 

extensive datasets over long temporal scales, providing a cost-effective approach to estimating regional 284 

background O3 levels. These methods can leverage large-scale data networks, such as satellite 285 

observations or regional monitoring systems (Langford et al., 2009). However, the reliability of statistical 286 

models is heavily dependent on the quality and spatial representativeness of the input observational data. 287 

High quality data are essential to minimize biases, and the monitoring stations must be strategically 288 

distributed to represent the target region adequately. Additionally, rigorous data preprocessing is critical 289 

to mitigate the influence of external factors, such as extreme weather events, that may distort the 290 

background O3 concentrations estimates (Berlin et al., 2013; Langford et al., 2009). 291 

The commonly used statistical analysis methods include the following: 292 

4.2.1 Principal Component Analysis 293 

Principal Component Analysis (PCA) is a widely used multivariate statistical technique designed to 294 

extract key patterns from datasets containing multiple interrelated variables (Jolliffe, 2005). By 295 
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transforming correlated variables into a smaller set of uncorrelated principal components, PCA 296 

effectively reduces data complexity while preserving the most significant information. In the context of 297 

atmospheric pollution, PCA has proven to be particularly useful for isolating background O3 by 298 

minimizing the influences from meteorological factors, such as temperature, humidity, and wind, as well 299 

as local airflows from urban and industrial sources. This makes PCA an invaluable tool for understanding 300 

regional air quality and estimating background O3 levels, particularly in cases where direct measurements 301 

are confounded by local pollution or short-term meteorological variability.  302 

4.2.2 K-means clustering 303 

K-means clustering is an unsupervised, iterative machine-learning algorithm widely employed for 304 

grouping data, such as O3 concentrations, meteorological parameters, and other environmental factors, 305 

based on shared characteristics (Riley et al., 2023). Clusters with minimal anthropogenic influence are 306 

often interpreted as representative of background O3 concentrations. These clusters, typically defined by 307 

low pollutant levels or specific meteorological conditions, facilitate the identification of periods or 308 

locations where regional background O3 can be reliably assessed (Riley et al., 2023; Zohdirad et al., 309 

2022).  310 

4.2.3 TCEQ method  311 

The Texas Commission on Environmental Quality (TCEQ) method, based on O3 monitoring data from 312 

background regions, has been widely adopted in Texas, as a reliable approach for estimating regional 313 

background O3 levels (Nielsen-Gammon et al., 2005). This approach defines regional background O3 as 314 

the minimum value within maximum daily 8-hour average (MDA8) O3 across all monitoring stations in 315 

a given area, effectively representing the lowest O3 levels unaffected by local emissions (Wu et al., 2017). 316 

By focusing on these minimum values over an extended period, the TCEQ method isolates background 317 

concentrations, which are crucial for understanding regional air quality and evaluating long-term trends 318 

in O3 pollution. 319 

4.2.4 O3-NOz intercept method  320 
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The O3-NOz intercept method is an approach for estimating background O3 concentrations by 321 

establishing the linear relationship between O3 concentrations and its precursors (Altshuller and Lefohn, 322 

1996; Hirsch et al., 1996; Yan et al., 2021). In this approach, NOz is defined as the difference between 323 

NOy (the total reactive nitrogen species, including nitric acid and peroxy nitrates) and NOx (which 324 

comprises NO and NO2). NOz serves as an indirect indicator of background O3 level, based on the 325 

assumption that it reflects the presence of O3-producing precursors in the atmosphere. Through 326 

regression analysis, O3 levels are extrapolated to the intercept where NOz equals zero, representing an 327 

approximation of background O3 concentrations unaffected by local emissions and photochemical 328 

influences.  329 

However, Yan et al. (2021) noted that the method’s accuracy could be compromised in areas with 330 

high rates of nitric acid (HNO3) deposition. Elevated HNO3 deposition sequesters reactive nitrogen 331 

compounds at the surface, potentially masking near-surface O3 levels and leading to overestimations of 332 

background O3 concentrations. To address these limitations, Yan et al. (2021) proposed a modified 333 

version of the O3-NOz method, referred to as the 1-σ O3-NOz method. This refinement involved excluding 334 

regions with high HNO3 deposition rates and minimizing the influence of regional emissions through 335 

improved data selection criteria.  336 

4.2.5 O3-CO-HCHO response method 337 

Cheng et al. (2018) introduced an innovative approach for estimating background O3 concentrations by 338 

using carbon monoxide (CO) and formaldehyde (HCHO) as chemical indicators to trace the production 339 

and consumption of O3. This method integrates the chemical reaction dynamics between O3, CO, and 340 

HCHO, resulting in a rapid-response O3 estimator. This approach was specifically designed to enhance 341 

the efficiency and accuracy of O3 estimation by leveraging the dynamic chemical processes that influence 342 

O3 levels. Building upon this foundation, Yan et al. (2021) proposed the O3-CO-HCHO approach, which 343 

refines the original concept by eliminating the influence of both anthropogenic and natural emissions of 344 

O3 precursors, enabling a more accurate estimation of background O3 concentrations.  345 

The O3-CO-HCHO method is particularly advantageous due to its applicability to both 346 

observational data and model outputs, offering robust results for regions with high isoprene emissions. 347 
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The method is governed by the following key equations:  348 

O3 = k1(COtotal − COback) − (k1k2 − k3)(HCHOtotal − HCHOback) + O3back,    (2) 349 

O3back = O3 − k1(COtotal − COback) + (k1k2 − k3)(HCHOtotal − HCHOback),    (3) 350 

Here, k1 =
∆O3

∆COanthro
 , k2 =

∆CObio

∆HCHObio
 , k3 =

∆O3

∆HCHObio
 . The terms “anthro”, “bio”, “total”, and 351 

“back” refer to anthropogenic sources, biogenic sources, total sources, and background sources, 352 

respectively. 353 

4.2.6 Percentile method 354 

The percentile method is a widely adopted statistical approach for estimating regional background O3 355 

concentrations, offering a straightforward and practical alternative to complex modeling techniques 356 

(Berlin et al., 2013; Jenkin, 2008). This method involves analyzing O3 concentration data over a specific 357 

time period and selecting a particular percentile to represent the background O3 levels. The selected 358 

percentile is assumed to reflect minimal O3 concentrations that are largely unaffected by local pollution 359 

sources, thereby serving as a proxy for regional background O3 concentrations.  360 

4.2.7 Temperature-ozone relationship method 361 

The temperature-ozone relationship method estimates background O3 contributions by analyzing the 362 

correlation between O3 concentrations and temperature (Mahmud et al., 2008). Generally, O3 363 

concentrations increase with rising temperatures, as elevated temperatures enhance the photochemical 364 

reactions that produce O3. However, within a specific temperature range, O3 concentrations tend to 365 

stabilize due to the equilibrium between O3 production and destruction processes. These stabilized O3 366 

levels, typically observed during periods of relatively stable meteorological conditions, are often 367 

regarded as indicative of regional background O3 concentrations, reflecting natural influence rather than 368 

anthropogenic emissions (Mahmud et al., 2008; Sillman and Samson, 1995; Steiner et al., 2010).  369 

4.2.8 Nocturnal ozone concentration method 370 

The nocturnal O3 concentration method leverages the relatively stable O3 levels observed during 371 

nighttime, when photochemical reactions driven by sunlight are absent, making it a valuable approach 372 
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for estimating regional background O3 levels (Chan et al., 2003). At night, O3 levels generally remain 373 

constant or exhibit minimal fluctuations, as they are primarily governed by the equilibrium between O3 374 

production and destruction through reactions with NOx and other atmospheric components. However, 375 

this method is not without its challenges. A key limitation arises from the titration reaction between O3 376 

and NO, which produces NO2 and depletes ambient O3 levels. This phenomenon, known as O3 titration, 377 

can result in underestimation of true background O3 concentrations, particularly in areas with elevated 378 

NO emissions (Akimoto et al., 2015; Itano et al., 2007; Shin et al., 2012).  379 

To mitigate the impact of O3 titration, researchers have introduced adjustments to nocturnal O3 380 

estimates by incorporating a “total O3” concentration, denoted as O3total
, which serves as a proxy for 381 

background O3 levels. The “total O3” is calculated using the following equations: 382 

[O3total
] = [O3] + [NO2] − α × [NOx] ,                                           (4) 383 

Here, [O3], [NO2], and [NOx](= [NO] + [NO2]) represent the mixing ratios of O3, NO2, and NOx, 384 

respectively. The parameter 𝛼 accounts for the fraction of NO2 in NOx from primary emissions, with a 385 

typical value of 𝛼 = 0.1 used in most studies (Akimoto et al., 2015; Itano et al., 2007; Shin et al., 2012). 386 

However, Wang et al. (2009b) suggested a lower value of 𝛼 = 0.041 , introducing variability in the 387 

estimated [O3total
]. This adjustment helps to compensate for the effects of NO titration, yielding a more 388 

accurate representation of regional background O3 levels. 389 

Statistical analysis methods have been widely used to estimate regional background O3 390 

concentrations. For example, Langford et al. (2009) applied PCA to analyze regional background O3 391 

concentrations in Texas from August to October 2006. Their analysis revealed that the first principal 392 

component accounted for approximately 84% of the variance in the O3 data, strongly indicating its 393 

relevance as a proxy for background O3 levels. Riley et al. (2023) applied K-means clustering to estimate 394 

background O3 concentrations in eastern Australia from 2017 to 2022. Their analysis revealed an average 395 

background O3 concentration of 28.5 ppb, with a decadal increase of 1.8 ppb, reflecting the global trend 396 

of rising background O3 levels. Berlin et al. (2013) and Langford et al. (2009) used TCEQ method to 397 

estimate background O3 concentrations during high-O3 periods (May–October) in Texas between 2000 398 

and 2012. Their estimates ranged from 25 to 45 ppb and 40 to 80 ppb, respectively. Akimoto et al. (2015) 399 
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proposed using the 2nd percentile of MDA8 O3 concentrations as a suitable measure of background O3 400 

levels in Japan, capturing low concentrations unaffected by local anthropogenic emissions during high-401 

O3 episodes. Chen et al. (2022) used temperature-ozone relationship method to assess background O3 402 

levels of the region-specific in China from 2013 to 2019, reporting concentrations of 35–40 ppb during 403 

clean seasons and 50–55 ppb during O3-polluted seasons. 404 

4.3 Numerical modeling estimation 405 

The numerical modeling estimation method, which uses atmospheric chemistry and transport models 406 

such as GEOS-Chem, WRF-Chem, and CMAQ, is widely employed to simulate the formation, 407 

transportation, and variability of regional background O3 concentrations. These models offer several 408 

distinct advantages by incorporating a comprehensive array of atmospheric processes, including 409 

photochemical reactions, vertical mixing, advection, and the transport of pollutants across various spatial 410 

and temporal scales. By accounting for the intricate interactions among emissions, meteorological 411 

conditions, and atmospheric chemistry, numerical models provide a more robust and accurate 412 

representation of regional background O3 levels compared to in situ measurement estimation or statistical 413 

analysis estimation methods alone. Additionally, numerical models can be customized to align with 414 

specific research objectives through adjustments to chemical mechanisms and parameterization schemes, 415 

rendering them adaptable to diverse regions and temporal scales.  416 

A notable strength of numerical models lies in their ability to differentiate the contributions of 417 

various emission sources to regional O3 concentrations (Jaffe et al., 2018; Thompson, 2019; Zhang et al., 418 

2011). This capability sets them apart from in situ measurement estimation and statistical analysis 419 

estimation approaches, which typically lack the granularity to isolate the relative contributions of natural 420 

versus anthropogenic emissions. However, numerical modeling estimation also presents significant 421 

challenges. These models are computationally intensive, requiring substantial resources, especially when 422 

simulating extensive domains or prolonged time periods. Moreover, their accuracy depends heavily on 423 

the quality of input data, such as emission inventories, meteorological conditions, and assumptions 424 

regarding physical and chemical processes, which can introduce uncertainties in estimated O3 425 

concentrations (Dolwick et al., 2015; Guo et al., 2018; Hogrefe et al., 2018; Jaffe et al., 2018). 426 
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Numerical models typically estimate regional background O3 concentrations using two primary 427 

approaches: the emission scenario method and the tracer method (Fiore et al., 2002a). The emission 428 

scenario method employs three-dimensional air quality models, such as GEOS-Chem, MOZART, WRF-429 

Chem, and CMAQ, to simulate background O3 levels by conducting perturbation experiments where 430 

local anthropogenic emissions are reduced or set to predefined values. This approach enables the isolation 431 

of local emissions’ contributions to regional background O3 levels (Zhang et al., 2011; Li et al., 2018; Lu 432 

et al., 2019a; Pfister et al., 2013). In contrast, the tracer method uses chemical tracers to track the transport 433 

and transformation of emissions, offering an alternative approach to estimating background O3 434 

concentrations. Models such as CMAQ-ISAM and CAMx-OSAT, developed by the U.S. Environmental 435 

Protection Agency (EPA), incorporate tracer methods to estimate regional background O3 concentrations 436 

(Lefohn et al., 2014; Li et al., 2012; Reid et al., 2008). 437 

Although both methods have their strengths, studies have highlighted discrepancies in O3 estimates 438 

depending on the approach employed (Jaffe et al., 2018; Skipper et al., 2021). For example, Emery et al. 439 

(2012) found that the CAMx model generally produced higher background O3 concentrations in the U.S. 440 

compared to GEOS-Chem, with CAMx showing a higher correlation with observational data, especially 441 

at remote stations and during high-O3 episodes. Conversely, GEOS-Chem demonstrated greater accuracy 442 

in capturing seasonal mean O3 concentrations in rural areas. Similarly, Dolwick et al. (2015) compared 443 

the tracer and emission scenario methods using CAMx and CMAQ models. Their analysis revealed 444 

consistent estimates of background O3 concentrations in suburban U.S. areas across both methods. 445 

However, in urban areas, the tracer method yielded lower background O3 estimates than the emission 446 

scenario method, indicating a substantial influence of local emissions on O3 concentrations in densely 447 

populated regions. Equally, Fiore et al. (2014) reported differences in background O3 concentrations 448 

between GEOS-Chem and GFDL-AM3 models, with variations ranging from 1 to 10 ppb depending on 449 

region, season, and altitude.  450 

Numerical modeling estimation has been extensively applied to estimate global and regional 451 

background O3 concentrations. For example, using the global model GEOS-Chem, Emery et al. (2012) 452 

and Zhang et al. (2011) estimated average background O3 concentration in the U.S. from March to August 453 
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2006, ranging from 20 to 45 ppb, with 27 ± 8 ppb in low-altitude areas and 40 ± 7 ppb in high-altitude 454 

areas. Guo et al. (2018) reported annual variation of up to 15 ppb in regional background O3 concentration 455 

in the U.S. between June and August from 2004 to 2012. Meanwhile, regional models such as CAMx 456 

and CMAQ yielded background O3 estimates of 25 to 50 ppb in the U.S. between March and August 457 

2006 (Emery et al., 2012). In China, Sahu et al. (2021) found background O3 concentrations exceeded 458 

22 ppb in 2015. 459 

4.4 Integrated methods estimation 460 

The three methods discussed above each possess distinct advantages and limitations, contributing to 461 

uncertainties in estimating regional background O3 concentration. Given these challenges, researchers 462 

have increasingly turned to integrated methods to improve the accuracy and reliability of these 463 

estimations.  464 

For instance, Dolwick et al. (2015) improved model-based estimates of background O3 by 465 

comparing observed and simulated O3 concentrations. Their analysis of rural areas in the western U.S. 466 

during April to October 2007 reported background O3 concentrations ranging from 40 to 45 ppb, with 467 

the lowest concentrations observed along the Pacific coast, ranging from 25 to 35 ppb.  468 

Similarly, Sun et al. (2024) refined estimates by treating model biases as spatial functions, 469 

optimizing regional background O3 estimations. Based on this methodology, Skipper et al. (2021) 470 

extended the methodology by incorporating both spatial and temporal functions to account for variations 471 

driven by regional background O3 and anthropogenic emissions. This revised approach estimated an 472 

average background O3 concentration of approximately 33 ppb for the U.S. in 2017, with peak values 473 

around 38 ppb. Notably, this adjustment improved the consistency of estimates by 28% compared to the 474 

unadjusted model, demonstrating the utility of integrated methods in refining atmospheric models. 475 

The rapid advancement of machine learning (ML) techniques has further facilitated the integration 476 

of these technologies with traditional methods for estimating regional background O3 concentrations. For 477 

example, Hosseinpour et al. (2024) developed a multivariate linear regression (MVLR) model and a 478 

random forest (RF) based ML algorithm to adjust model-derived background O3 concentrations. While 479 

the MVLR model follows an adjustment method akin to that of Skipper et al. (2021), the RF-ML 480 
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algorithm employs the Shapley Additive Explanations (SHAP) method to evaluate the relative 481 

importance of each input variable. The RF-ML model, trained using k-fold cross-validation, 482 

demonstrated superior predictive accuracy. Hosseinpour et al. (2024) showed that the RF-ML algorithm 483 

produced results most consistent with those from the in situ measurement estimation method, 484 

outperforming those from the original CAMx model, MVLR adjustments, and two other ML algorithms. 485 

Utilizing this methodology, they estimated background O3 concentrations in 13 urban areas of the U.S. 486 

during April–June and July–September 2016 to range from 31–46 ppb and 27–45 ppb, respectively. This 487 

finding underscores the potential of ML algorithms to enhance model-based background O3 estimates by 488 

capturing nonlinear relationships and complex variable interactions (Breiman, 2001; Kashinath et al., 489 

2021). 490 

Overall, integrated methods, particularly those integrated with machine learning techniques, 491 

represent a significant advancement in estimating regional background O3 concentrations. These 492 

approaches not only improve the accuracy and robustness of estimates but also provide valuable insights 493 

into the complex dynamics of O3 formation and transport. By combining observational data, statistical 494 

adjustments, and advanced modeling techniques, researchers can achieve a more comprehensive 495 

understanding of regional O3 levels and their temporal variations. 496 

 497 
Figure 3: Summary of the advantages, limitations, and applicability of different estimation methods for 498 

background O3. 499 
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5 Comprehensive assessments of background ozone in China: patterns, trends, sources, and global 500 

comparisons 501 

5.1 Regional patterns of background ozone in China 502 

Figure 4 presents the average background O3 concentrations across various regions in China. On a 503 

national scale, the average background O3 concentration is 41.4 ± 12.2 ppb, accounting for 79% of the 504 

MDA8 O3 concentration. Notable regional variability in background O3 concentrations is observed, 505 

highlighting the differential impacts of local meteorological conditions, pollutant emissions, and 506 

geographic characteristics.  507 

Among the regions, Northwest China (NWC) stands out with the highest background O3 508 

concentrations, reaching 48.2 ± 8.3 ppb, which accounts for 96% of the MDA8 O3 concentration. This 509 

elevated concentration is attributed to several interrelated factors. First, strong solar radiation and arid 510 

atmospheric conditions enhance photochemical reactions, accelerating O3 formation. He et al. (2021) 511 

demonstrated that abundant sunshine and dry conditions significantly increase O3 production due to the 512 

intensified photolysis of precursor compounds. Furthermore, the high altitude and unique surface 513 

characteristics of Northwest China (NWC) promote strong daytime atmospheric convection, facilitating 514 

the downward transport of O3 from the upper atmosphere to the surface levels (Ding and Wang, 2006; 515 

Liu et al., 2019; Ma et al., 2005; Nie et al., 2004). Additionally, the relatively low anthropogenic 516 

emissions result in fewer precursors like NOx and VOCs, thereby minimizing rapid fluctuations in O3 517 

levels. The weaker nocturnal O3 depletion, caused by limited O3 scavenging from sparse emissions and 518 

lower nighttime temperatures, further amplifies baseline O3 concentrations (Nie et al., 2004; Qin et al., 519 

2023; Xu et al., 2020).  520 

The urban clusters of North China (NC) and East China (EC), along with Southwest China (SWC), 521 

also exhibit higher background O3 concentrations, averaging 40.3 ± 14.9 ppb, 39.0 ± 13.4 ppb, and 38.4 522 

± 10.4 ppb, respectively. These concentrations account for 75%, 67%, and 83% of the MDA8 O3 523 

concentration in each respective region. East China (EC) and North China (NC) are heavily influenced 524 

by high industrial and vehicular emissions, which release significant quantities of NOx and VOCs. The 525 

precursors undergo photochemical reactions under intense sunlight and elevated summer temperatures, 526 



 

 

22 

 

resulting in higher O3 levels. Moreover, the East Asian Summer Monsoon (EASM) facilitates the 527 

transport of O3 and its precursors from low-latitude regions, such as South China (SC), to higher latitudes, 528 

exacerbating O3 pollution during the monsoon season (Gao et al., 2005; Liu et al., 2019, 2021; Sun et al., 529 

2016; Xu et al., 2011, 2020). In contrast, in Southwest China (SWC), regional pollutant transport plays 530 

a significant role. During spring, prevailing winds carry pollutants such as NOx and VOCs from Southeast 531 

Asia, intensifying local O3 levels (Ye et al., 2024). Summer conditions – characterized by high humidity, 532 

elevated temperatures, and intense solar radiation – further amplify photochemical O3 formation (Chen, 533 

2020). The region’s complex topography, including mountainous areas and plateaus, also contributes to 534 

localized O3 accumulation. For instance, the Sichuan Basin, with its basin-like terrain, impedes air mass 535 

dispersion, leading to pollutants entrapment and prolonged O3 buildup (Hu et al., 2019).  536 

The background O3 concentrations in South China (SC), Central China (CC), and Northeast China 537 

(NEC) are relatively low compared to other regions of China, with values of 37.0 ± 8.9 ppb, 35.1 ± 12.6 538 

ppb, and 33.1 ± 5.7 ppb, respectively. These concentrations account for 74%, 60%, and 68% of the MDA8 539 

O3 in each corresponding region. In South China (SC), the relatively low background O3 concentrations 540 

can be primarily attributed to the frequent rainfall and high humidity, which facilitate the removal of O3 541 

precursors such as NOx and VOCs, thereby suppressing O3 formation (He et al., 2021). Although BVOCs 542 

emissions are relatively high in this region due to abundant vegetation and elevated temperatures, their 543 

impact on O3 formation is less pronounced compared to regions like North China (NC). This is because 544 

anthropogenic emissions, such as vehicular exhaust and industrial discharges, typically amplify the 545 

contribution of BVOCs to O3 formation. In the absence of significant anthropogenic pollution, the role 546 

of BVOCs in O3 formation remains relatively limited (Ye et al., 2024). 547 

In Central China (CC), the lower background O3 concentrations are linked to the region’s inland 548 

locations, which reduce its exposure to oceanic influences and transboundary pollutant transport. The 549 

absence of strong maritime airflow limits the import of O3 precursors, while frequent rainfall during the 550 

warmer months helps remove these precursors from the atmosphere, further suppressing O3 formation 551 

(Sahu et al., 2021; Ma et al.,2024). Anthropogenic emissions, primarily from vehicular exhaust, industrial 552 

discharges, and solvent usage, constitute the dominant sources of O3 in this region (Zeng et al., 2018). 553 
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Consequently, the relative contribution of background O3 is lower, as anthropogenic emissions play a 554 

more substantial role in O3 formation. In Northeast China (NEC), the lower background O3 concentration 555 

can be attributed to a prolonged period of low temperature, which significantly reduces the rate of 556 

photochemical reaction. Additionally, the region experiences strong summer air convection and 557 

substantial precipitation, both of which further inhibit O3 generation (Chen, 2024; Xu et al., 2020). 558 

 559 

Figure 4: Spatial distribution of background O3 concentrations (1994–2020) across various regions of China. 560 

The locations of 33 background monitoring stations are indicated with red dots. The seven regions include 561 

Northeast China (NEC), North China (NC), East China (EC), Central China (CC), Northwest China (NWC), 562 

Southwest China (SWC), and South China (SC).  563 

5.2 Comparative evaluation of background ozone concentration estimates using diverse methods 564 

Figure 5 presents a comparative assessment of background O3 concentrations estimates in China from 565 

four common approaches: in situ measurement, statistical analysis, numerical modeling, and integrated 566 

methods. Among these, in situ measurement estimation method remains the most widely applied, 567 

supported by extensive datasets from 33 background monitoring sites (n = 678; Fig. 4, Table S3). By 568 

contrast, integrated methods have only recently emerged and have been applied in a limited number of 569 

case (n=8), reflecting their greater methodological complexity and reliance on comprehensive data 570 
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integration.  571 

National mean background O3 concentrations estimated by different methods are broadly 572 

comparable but show notable differences. In situ measurement estimation method (41.7 ± 12.3 ppb) and 573 

statistical analysis estimation method (39.9 ± 11.3 ppb) yield the highest values, followed by numerical 574 

modeling estimation method (37.4 ± 11.9 ppb). Integrated methods yield the lowest values of 34.5 ± 1.6 575 

ppb, approximately 6 ppb lower than those from in situ measurement estimation and statistical analysis 576 

estimation method.  577 

Despite similar mean values, the variability across methods is substantial. In situ measurement 578 

estimation reveals a particularly wide variability, with estimated background O3 concentrations ranging 579 

from approximately 14 ppb to as high as 85 ppb. This broad range reflects the substantial influence of 580 

localized factors, such as topography, climatic conditions, and anthropogenic emissions, on observational 581 

data. In comparison, statistical analysis estimation and numerical modeling estimation methods yield 582 

relatively consistent results, although the difference between the maximum and minimum estimated 583 

background O3 concentration for both methods reaches 60 ppb. Notably, more than 80% of the estimated 584 

background O3 concentrations fall within the range of 25–53 ppb, suggesting a reasonable degree of 585 

agreement between the two methods. The consistency is likely attributable to the reliance on long-term 586 

data trends and calibrated algorithms, which effectively reduce the impact of extreme values while 587 

capturing broader patterns in O3 behavior.  588 

In contrast, the integrated methods – combining in situ observation, statistical analysis, and 589 

numerical results – yield the narrowest range (32–37 ppb), with the value of 34.5 ± 1.6 ppb. This narrow 590 

range reflects their strength in reconciling model consistency with real-world variability, rather than 591 

oversimplification. By harmonizing data sources, integrated methods reduce methodological noise and 592 

yield more robust, policy-relevant estimates. The limited number of applications, however, may also 593 

contribute to the observed low variability. Although studies in China remain scarce, international 594 

applications underscore their potential. For instance, Skipper et al. (2021) showed that incorporating 595 

spatial and temporal bias corrections improved the consistency of model-derived background O3 596 

estimates by 28% relative to unadjusted models. Similarly, Hosseinpour et al. (2024) demonstrated that 597 
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a random forest machine learning (RF-ML) algorithm integrating multiple data sources with nonlinear 598 

feature analysis produced background O3 estimates most consistent with in situ observations for 599 

correcting air quality model simulations and outperformed the original CAMx model, multivariate 600 

regression, and other ML algorithms. Collectively, these studies highlight the value of integrated methods 601 

in producing consistent estimates, particularly for regulatory applications and long-term trend 602 

assessments. Nevertheless, further validation is needed to determine whether the observed low variability 603 

reflects true methodological robustness or limited sampling. Importantly, no single method is definitive. 604 

Each carries inherent assumptions. Integrated methods therefore provide a complementary framework 605 

that balances empirical realism with generalizability.  606 

Method-dependent discrepancies underscore the complexity of estimating background O3. 607 

Variability arises from differences in input data, model assumptions, and the parameterization of physical 608 

and chemical processes (Jaffe et al., 2018; Skipper et al., 2021; Wang et al., 2022a; Yan et al., 2021). For 609 

instance, in situ measurement estimation method is directly influenced by local meteorological and 610 

emission conditions, whereas the numerical modeling estimation method is subject to uncertainties in 611 

simulating processes such as natural emissions, transboundary transport, and photochemical reactions. 612 

Ideally, direct comparison of background O3 estimates derived from multiple methods at the same 613 

location would clarify their relative strengths and limitations. However, such comparison was not feasible 614 

here due to methodological and data constraints. First, the dataset used in this study is limited to China, 615 

where only a subset of the methods described in Sect. 4.2 has been applied, each requiring specific 616 

datasets and exhibiting region-dependent applicability. Second, background O3 exhibits pronounced 617 

spatial and temporal variability, while existing studies often target different subregions and time periods, 618 

making consistent co-located comparisons impractical. Despite these challenges, several studies have 619 

conducted preliminary intercomparisons within the same region. In Shandong, Wang et al. (2022a) 620 

reported that PCA (using ambient O3 alone) yielded background O3 about 20 ppb higher than the TCEQ 621 

approach, with seasonal patterns more consistent with background-site observations. The TCEQ method 622 

tended to underestimate background O3 because minimum MDA8 O3 values were often influenced by 623 

residual urban emissions. In the inland southeastern U.S., Yan et al. (2021) found the O3-CO-HCHO 624 
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method yielded the lowest estimates (10–15 ppb), the 1-σ O3-NOz method intermediated values (15–25 625 

ppb), and the 5th percentile method the highest (20–30 ppb), likely due to anthropogenic influences in 626 

urban downwind regions. Likewise, Chen et al. (2022) revealed that the nocturnal O3 method 627 

underestimated background O3 by up to 30% compared with the temperature-ozone relationship method 628 

during polluted seasons in China.  629 

Collectively, these studies demonstrate that methodological choices alone can lead to discrepancies 630 

of 10–20 ppb in background O3 estimates within the same region. Careful interpretation therefore 631 

requires explicit attention to methodological assumptions, data representativeness, and sensitivity to 632 

emission influences. Moving forward, the development of harmonized datasets would enable the 633 

consistent application of multiple methods at the same regions and time periods, providing more robust 634 

intercomparisons and clearer insights into the strengths and limitations of each approach. 635 

 636 

Figure 5: Estimated regional average background O3 concentrations in China from 1994 to 2020 based on 637 

multiple methods. All data sources are compiled and summarized in Table S1. The values of “n =” below each 638 

box indicate the number of individual data records used in the analysis for each method category. 639 

5.3 Long-term trends and interannual variability of background ozone in China  640 

Due to the absence of long-term background O3 records for other regions, Figure 6 focuses on the annual 641 
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variation trends of background O3 concentrations in four regions of China – South China (SC), Northwest 642 

China (NWC), North China (NC), and East China (EC) – during the period from 1994 to 2020. Overall, 643 

background O3 concentrations have exhibited an upward trend across these regions, though the 644 

magnitude and significance of the trends vary regionally. 645 

South China (SC) exhibited the most pronounced increase, with an average growth rate of 0.36 ppb 646 

yr-1 (r2=0.38, p<0.01), as shown in Fig. 6(a). Although a modest decline has occurred since 2014, the 647 

long-term trend remains upward. This increase is likely driven by the regional transport of O3 and its 648 

precursors. Previous studies suggest that rising background O3 levels in Hong Kong are largely 649 

attributable to enhanced upwind emissions from mainland China and cross-boundary transport of 650 

precursors from Southeast Asia, particularly the Indochinese Peninsula (Wang et al., 2009b; Lee et al., 651 

2014). Yang et al. (2019) further demonstrated that precursor emissions outside the Pearl River Delta 652 

region significantly contribute to local O3 levels, with this influence intensifying in recent years. 653 

Both Northwest China (NWC) and North China (NC) also exhibit substantial increases, with a 654 

growth rate of 0.32 ppb yr-1 (r2=0.68, p<0.01) and 0.31 ppb yr-1 (r2=0.34, p<0.05), respectively, as shown 655 

in Fig. 6(b) and Fig. 6(c). These trends are likely linked to enhanced stratosphere–troposphere exchange 656 

(STE) and the long-range transport of O3 precursors, as previously reported (Xu et al., 2018; Zhang et 657 

al., 2020). Large-scale circulation shifts and more frequent STE events have further amplified 658 

background O3 levels in these inland regions (Xu et al., 2016, 2020; Xue et al., 2011). Notably, for North 659 

China (NC), two separate trend lines are presented in Figure 6(c), reflecting methodological differences 660 

among studies: Ma et al. (2016) provided a long-term record using MDA8 O3 concentrations filtered 661 

from in situ observations, while most other studies used hourly averages over shorter or discontinuous 662 

periods. Since MDA8 O3-based estimates are inherently higher than hourly means, aggregating them 663 

would bias trend interpretation. Therefore, separate presentation ensures consistency. Furthermore, 664 

MDA8 O3 records are scarce elsewhere (typically fewer than four data points), precluding dual-trend 665 

comparison. The results of Ma et al. (2016) also support the intensification of background O3 pollution 666 

in North China (NC), reporting a much steeper growth rate of 1.35 ppb yr-1 (r2 = 0.80, p < 0.01) based 667 

on observations at the Shangdianzi regional background station. This suggests that both regional 668 
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emissions and conducive meteorological conditions have played synergistic roles in driving the 669 

escalation of background O3 levels in North China (NC). 670 

In contrast, East China (EC) exhibited the slowest increase in background O3 concentration, with 671 

an average growth rate of 0.27 ppb yr-1 that is not statistically significant (p > 0.05) (Fig. 6(d)). Several 672 

factors likely explain this muted growth (Liu et al., 2021; Xu et al., 2020; Zhang et al., 2020). First, East 673 

China (EC) was among the earliest regions in China to adopt coordinated NOx and VOCs controls, 674 

notably under the “Atmospheric Ten Measures” (2013) and the “Blue Sky Protection Campaign” (2018), 675 

which likely curbed precursors increases. Second, the region’s dense urbanization and heavy 676 

industrialization complicates separation of background O3 from local anthropogenic signals, potentially 677 

leading to underestimation of long-term growth. Third, meteorological conditions – higher relative 678 

humidity, more frequent precipitation, and weaker solar radiation – tend to suppress photochemical O3 679 

formation relative to drier, high-insolation regions such as North China (NC) and Northwest China 680 

(NWC). Taken together, these factors may explain why East China (EC) appears to be approaching a 681 

plateau phase in background O3 levels, in contrast to the stronger upward trends observed in other regions. 682 

 683 
Figure 6: Annual trend of background O3 concentrations in the SC regions (1995–2020), NWC (1994–2019), 684 

NC (2004–2020) and EC (2004–2020), estimated using multiple independent studies (detailed in Table S1). 685 

Dashed lines indicate linear regression based on available annual data points. 686 
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5.4 Seasonal variation of background ozone in China 687 

Figure 7 illustrates the seasonal variations in mean background O3 concentrations across China and its 688 

seven subregions during 1994–2020. Nationally, background O3 exhibits pronounced seasonality, with 689 

comparable peaks in spring (47.2 ± 10.6 ppb) and summer (47.3 ± 15.4 ppb), and a pronounced minimum 690 

in winter (33.2 ± 9.8 ppb). 691 

Regional patterns reveal clear differences in seasonal maxima. In Southwest China (SWC) and 692 

Northeast China (NEC), peaks occurred in spring (52.1 ± 9.9 ppb and 38.8 ± 4.4 ppb, respectively), 693 

largely driven by stratosphere–troposphere exchange (STE) and enhanced downward transport over 694 

elevated terrain, and also influenced by prevailing winds that transport NOx and VOCs from Southeast 695 

Asia and other regions into these areas (Liu et al., 2019; Lu et al., 2019a; Xu et al., 2018; Wang et al. 696 

2011; Ye et al., 2024). In contrast, North China (NC), Northwest China (NWC), and East China (EC) 697 

recorded summer maxima (56.8 ± 10.8, 55.0 ± 8.5, and 48.3 ± 16.9 ppb, respectively), consistent with 698 

the influence of the East Asian Summer Monsoon (EASM), which enhances precursor inflow and 699 

stimulates photochemical O3 formation under high temperatures and intense solar radiation (Gao et al., 700 

2005; Liu et al., 2019, 2021; He et al., 2021). South China (SC) and Central China (CC) reached their 701 

highest levels in autumn (46.9 ± 10.4 and 43.0 ± 14.2 ppb, respectively), likely reflecting inland pollutant 702 

transport by northeasterly winds combined with favorable sunlight conditions (Xie et al., 2022; Shen et 703 

al., 2019; Luo et al., 2019). 704 

Seasonal minima also varied by region. Winter lows were observed in Northeast China (NEC, 24.5 705 

± 3.6 ppb), North China (NC, 24.9 ± 5.2 ppb), and East China (EC, 25.2 ± 8.1 ppb), reflecting weak 706 

photochemistry under low temperatures and reduced solar radiation. In contrast, South China (SC, 24.8 707 

± 5.0 ppb) and Central China (CC, 28.7 ± 10.0 ppb) exhibited summer minima, attributable to frequent 708 

precipitation and high humidity suppressing O3 production. Southwest China (SWC) maintained 709 

persistently low levels in both summer (31.0 ± 8.2 ppb) and autumn (31.0 ± 4.6 ppb), whereas Northwest 710 

China (NWC) showed relatively lower concentrations in autumn (41.8 ± 8.9 ppb) and winter (41.9 ± 5.1 711 

ppb). 712 

In summary, the seasonal cycle of background O3 in China is shaped by the interplay of regional 713 



 

 

30 

 

meteorology and precursor emissions, while vertical exchange and interregional transport further 714 

modulate seasonal peaks and troughs across regions. 715 

 716 

Figure 7: Seasonal variations in mean background O3 concentrations across seven regions of China during 717 

1994–2020. All data sources are compiled and summarized in Table S1. The values of “n =” indicate the 718 

number of individual data records or assembly estimates used in the analysis for each region and season. 719 

5.5 Source attribution and analysis of background ozone in China 720 

The analysis above reveals that the spatiotemporal variations of background O3 are influenced by the 721 

synergistic effects of multiple factors, including regional natural source emissions, cross-regional 722 

transport, stratosphere–troposphere exchange, and local atmospheric pollutant reduction measures. 723 

These factors interact in complex and dynamic ways, resulting in significant regional and seasonal 724 

variations in background O3 levels.  725 

Natural source emissions are a key driver of background O3 levels in China, with studies 726 

consistently highlighting their substantial contribution. For example, Wang et al. (2011) and Lu et al. 727 

(2019a), using the numerical model GEOS-Chem, estimated that over 70% of regional background O3 728 

concentrations in China originate from natural emissions, including BVOCs, soil NOx, and CH4 729 

emissions and others. Among these, BVOCs exert a particularly significant impact on O3 formation. Lu 730 
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et al. (2019a) demonstrated that during the peak summer months of July and August in 2016–2017, 731 

BVOCs emissions contributed over 15 ppb to the background O3 in central and eastern China. Similarly, 732 

Chen et al. (2022) emphasized that during O3 pollution seasons, BVOCs emissions dominate the increase 733 

in background O3, contributing 8–16 ppb compared to non-pollution seasons. These findings underscore 734 

the importance of incorporating the variability of natural emissions into modeling and policy frameworks, 735 

particularly in light of future climate change that may exacerbate BVOCs emissions. 736 

Long-range transport plays an equally significant role in shaping background O3 concentration 737 

across China. Several studies have shown that the influx of O3 and its precursors from other regions, 738 

including Southeast Asia, Europe, North America, India, and the Middle East, can elevate background 739 

O3 concentration in China by 2–15 ppb (Han et al., 2019; Wang et al., 2011; Wang et al., 2022b; Li et al., 740 

2014; Ni et al., 2018). This influence is particularly pronounced during specific seasons when 741 

atmospheric circulation facilitates the transboundary transport of atmospheric pollutants (Colombi et al., 742 

2023; Ma et al., 2025; Ni et al., 2018; Sahu et al., 2021; Ye et al., 2024). Regional transport also 743 

significantly influences the background O3 levels in urbanized and densely populated areas. For instance, 744 

Su et al. (2013) showed that air masses originating from high altitudes, the Yangtze River Delta region, 745 

and the Pearl River Delta regions could cause spikes at the Mount Wuyi background station, with 746 

concentration reaching 62–73 ppb, far exceeding the station’s annual average of 41 ± 15.9 ppb. Wang et 747 

al. (2022b) also found that emissions outside the Yangtze River Delta regions contributed as much as 63% 748 

to O3 pollution within the region. Similarly, Wang et al. (2009b) measured that air masses from eastern 749 

China had an average O3 concentration of 48 ppb at a background station in Hong Kong, highlighting 750 

the significant impact of inter-regional transport on coastal regions. 751 

Stratosphere–troposphere exchange (STE) is a critical vertical transport process contributing to 752 

background O3 levels, particularly in high-altitude and northern regions of China. This process is most 753 

active during spring, when stratospheric O3 is transported downward into the troposphere (Ding and 754 

Wang, 2006; Lu et al., 2019a; Ma et al., 2025; Xu et al., 2018). Wang et al. (2011) estimated that STE 755 

contributes approximately 7 ppb to background O3 concentrations in northern China during the spring 756 

season. Luo et al. (2024) further revealed that STE contributed an average of 9.6 ppb to surface O3 over 757 



 

 

32 

 

the North China Plain during 19–20 May 2019. Observations at the Mt. Waliguan Station on the Tibetan 758 

Plateau further support the importance of STE; Xu et al. (2018) reported that STE contributes 8–12 ppb 759 

to background O3 concentrations during spring. Lu et al. (2019a) found that STE processes contribute as 760 

much as 20 ppb to background O3 concentration in western China during March and April, with an 761 

average contribution of 1.8–8.7 ppb across China from March to October. In lower-latitude regions such 762 

as the Pearl River Delta, Shen et al. (2019) demonstrated that vertical transport processes, including STE, 763 

predominantly influence background O3 levels during spring and autumn. These findings underscore the 764 

critical role of altitude and latitude in modulating the magnitude of STE contributions. 765 

5.6 Comparative analysis of background ozone levels: insights from China and global perspectives 766 

Figure 8 presents a comparative analysis of background O3 concentrations in China and several other 767 

global regions, with a particular focus on the U.S., Canada, Europe, Japan, and South Korea. On average, 768 

background O3 concentrations in China (41.4 ± 12.2 ppb) are slightly higher than those observed in the 769 

U.S. (35.7 ± 14.0 ppb) (Chan and Vet, 2010; Dolwick et al., 2015; Emery et al., 2012; Fiore et al., 2003, 770 

2002a; Hirsch et al., 1996; Parrish et al., 2009; Parrish and Ennis, 2019; Steiner et al., 2010; Vingarzan, 771 

2004; Yan et al., 2021; Zhang et al., 2011) and Europe (34.2 ± 10.3 ppb) (Auvray and Bey, 2005; 772 

Brönnimann et al., 2000; Kalabokas et al., 2000; Naja et al., 2003; Parrish et al., 2009; Scheel et al., 1997; 773 

Vecchi and Valli, 1998; Vingarzan, 2004; Wilson et al., 2012). This suggests that although developed 774 

regions have made significant progress in controlling anthropogenic O3 precursors, background O3 775 

remains a major concern due to various regional factors such as higher emissions, industrial activity, and 776 

specific atmospheric conditions (Huang et al., 2015). In contrast, background O3 levels in China are 777 

significantly higher than those observed in Canada (26.9 ± 7.4 ppb) (Chan and Vet, 2010; Vingarzan, 778 

2004), which is likely due to Canada’s lower industrial activity, less dense population, and colder climate 779 

that limits the photochemical processes necessary for O3 formation. 780 

When comparing China to other East Asian regions, the background O3 concentration is slightly 781 

higher than in South Korea (38.8 ± 11.74 ppb) (Ghim and Chang, 2000; Kim et al., 2023; Lam and 782 

Cheung, 2022; Lee and Park, 2022; Yeo and Kim, 2021), but marginally lower than in Japan (45.4 ± 23.2 783 

ppb) (Akimoto et al., 2015; Lam and Cheung, 2022; Sunwoo et al., 1994; Tsutsumi et al., 1994). Detailed 784 
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information on the data, including a breakdown of regional and temporal distributions, is provided Table 785 

S4. Notably, East Asian regions, including China, South Korea, and Japan, typically exhibit background 786 

O3 levels that are 3–20 ppb higher than those observed in Europe, the U.S., and Canada. This regional 787 

disparity is attributable to a combination of factors, including the region’s warm climate, high solar 788 

radiation, and the presence of industrialized areas that emit large quantities of O3 precursors. These 789 

factors collectively enhance photochemical O3 (Lee et al., 2021; Li et al., 2016; Nagashima et al., 2010; 790 

Yamaji et al., 2006). Furthermore, complex regional airflow patterns, including transboundary transport 791 

and local atmospheric dynamics, promote the accumulation of background O3, especially in densely 792 

populated urban centers. These findings underscore the critical need for regional cooperation in 793 

addressing O3 pollution in East Asia, where transboundary influences and shared atmospheric conditions 794 

complicate the management of background O3 levels.  795 

A more granular regional comparison reveals notable differences in background O3 concentrations 796 

among various regions of both China and the U.S. Specifically, the difference in background O3 797 

concentrations between central and western China (including NWC and SWC) reaches 10 ppb, while the 798 

discrepancy between the Eastern and Western U.S. is as high as 13 ppb. Western China and the Western 799 

U.S. exhibit higher background O3 levels. In particular, the Los Angeles area in the Western U.S. reports 800 

background O3 levels as high as 62 ppb (Parrish and Ennis, 2019), a phenomenon attributed to the 801 

region’s combination of intense ultraviolet radiation, low humidity, and favorable atmospheric conditions 802 

for O3 formation. Similarly, the higher altitudes of western China enhance its susceptibility to 803 

stratospheric transport, which contributes to elevated O3 concentrations. The Western U.S. is similarly 804 

influenced by trans-Pacific atmospheric transport, further exacerbating O3 levels.  805 

In contrast to the significant regional differences observed in China and the U.S., background O3 806 

concentrations in Canada and Europe exhibit relatively small variations, typically ranging from 4 to 7 807 

ppb. The limited variation in Canada can be attributed to factors such as its low population density, 808 

minimal industrial activity, and expansive natural vegetation, all of which, coupled with its cold climate, 809 

limit O3 production. In Europe, the relatively smaller regional differences are likely as a result of effective 810 

transnational air quality management and stringent pollution control policies, which have successfully 811 
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minimized disparities in O3 concentrations across the continent. The relatively uniform air quality 812 

management frameworks in these regions have helped mitigate large-scale emissions and reduce regional 813 

discrepancies in background O3 levels (Miranda et al., 2015; Næss, 2004; Rodrigues et al., 2021; Xu et 814 

al., 2019). 815 

 816 

Figure 8: Average background O3 concentrations in the U.S., Canada, Europe, South Korea, Japan, and China.  817 

6 Conclusions and perspectives 818 

Background O3 concentrations are critical for understanding O3 pollution, as they represent the baseline 819 

level of O3 even in the absence of local anthropogenic emissions. These concentrations determine the 820 

maximum achievable reduction in O3 through the mitigation of anthropogenic precursor emissions, 821 

making accurate estimates crucial for effective air quality management and setting realistic pollution 822 

control targets. This study provides a comprehensive review of the definition and estimation methods for 823 

background O3 concentrations, with a focus on recent advances in regional research in China. Our 824 

findings reveal an average background O3 concentration of 41.4 ± 12.2 ppb in China, which accounts for 825 

79% of the tropospheric MDA8 O3. Notable spatial variations are observed, with the highest levels in 826 

Northwest China (NWC, 48.2 ± 8.3 ppb) and the lowest in Northeast China (NEC, 33.1 ± 5.7 ppb), 827 

alongside an upward national trend reflecting growing O3 pollution. Despite progress in estimation 828 

methods, discrepancies persist across the four estimation methods, with the in situ measurement 829 
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estimation method and statistical analysis estimation method yielding higher values, while the integrated 830 

methods offers lower but more consistent estimates. Compared to other regions, East Asia, including 831 

China, South Korea, and Japan, experiences background O3 levels 3–20 ppb higher than the U.S., Canada, 832 

and Europe. This highlights the region-specific atmospheric conditions and pollution characteristics, and 833 

the imperative of addressing background O3 pollution within a global framework. 834 

Although substantial progress has been made in estimating background O3 over recent decades, 835 

considerable challenges remain due to the complexity of its sources and the multitude of influencing 836 

factors, particularly in the context of global climate changes and transboundary pollution. Future research 837 

should prioritize several key areas to advance the understanding and management of background O3: 838 

6.1 Accurate quantification of background ozone sources and processes 839 

Natural emissions, long-range transport, and stratosphere–troposphere exchange (STE) are key drivers 840 

of background O3 concentrations; however, significant uncertainties remain in quantifying their 841 

individual contributions. To improve our understanding and predictive capabilities, future research must 842 

prioritize the refinement of quantification methods for these sources and processes. For instance, the 843 

variability of natural emissions, particularly from BVOCs and lightning, remains inadequately 844 

characterized across different climatic conditions. In addition, STE represents another critical but poorly 845 

understood source of background O3, with studies indicating significant seasonal and regional variations 846 

in its contribution (Lu et al., 2019a; Xie et al., 2017). Despite the critical importance of these processes, 847 

existing models often encounter difficulties in accurately simulating natural emissions and STE, 848 

primarily due to limitations in model structures and parameterization (Auvray and Bey, 2005; Griffiths 849 

et al., 2021; Huang et al., 2024; Koo et al., 2010). As a result, the accuracy of model predictions for 850 

background O3 concentrations is compromised, resulting in increased uncertainties that hinder effective 851 

policy planning and air quality management. 852 

6.2 Development of integrated methods techniques 853 

Single method approaches for estimating background O3 concentrations have inherent limitations, as 854 

they often fail to capture the full spectrum of factors influencing O3 levels. For example, while numerical 855 
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models provide valuable insights, they frequently underestimate actual O3 concentrations due to 856 

simplifications in chemical processes and uncertainties in input data. In contrast, statistical analysis 857 

estimation methods are heavily dependent on the availability and representativeness of observational 858 

data, which can be sparse or biased, particularly in regions with limited monitoring networks. These 859 

limitations highlight the necessity for more integrated approaches that combine the strengths of different 860 

methods.  861 

In this context, the development of integrated methods techniques presents a promising approach 862 

to improve background O3 estimation. By integrating observational data, statistical analysis, and 863 

numerical results, integrated methods estimation can mitigate the inherent limitations of each individual 864 

method. For example, data assimilation techniques, which combine model outputs with real-time 865 

observational data, have been shown to improve both spatial and temporal resolution, yielding more 866 

accurate and robust O3 estimates (Skipper et al., 2021; Sun et al., 2024). Additionally, the integration of 867 

high-resolution regional models with long-term observational datasets can significantly enhance 868 

spatiotemporal coverage of background O3 estimates, enabling precise characterization of O3 variability 869 

across diverse geographic scales, from urban centers to remote rural areas. Recent advancements in 870 

machine learning-based fusion methods further extend the potential of data integration by uncovering 871 

nonlinear relationships among multiple data sources, thereby improving estimation accuracy. These 872 

approaches can also account for complex interactions between meteorological conditions, emission 873 

sources, and atmospheric chemistry, which are often challenging to capture using traditional methods. 874 

Given the potential of integrated methods techniques to provide more accurate and comprehensive 875 

background O3 estimates, future research should prioritize their continued development and validation. 876 

Such efforts will improve the precision and reliability of background O3 estimates, thereby enhancing 877 

our understanding of regional O3 pollution dynamics and supporting the development of more effective 878 

air quality management strategies.  879 

6.3 Fostering international collaboration on long-range pollution transport 880 

As air quality standards for O3 become increasingly stringent, background O3 concentrations have 881 

emerged as a critical challenge for many countries in achieving regulatory targets. This issue is 882 
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particularly pronounced in regions impacted by both local and transboundary pollution, where efforts to 883 

reduce domestic emissions may not fully address the underlying drivers of elevated background O3 levels. 884 

For instance, studies conducted in the U.S. have demonstrated that despite substantial reductions in local 885 

emissions of O3 precursors, background O3 concentrations in some areas remain persistently high 886 

(Cooper et al., 2012; Huang et al., 2015). This phenomenon is partly attributed to long-range transport 887 

of pollutants, including O3 precursors, from distant regions, often spanning international borders and 888 

even continents (Cynthia Lin et al., 2000; Dentener et al., 2010). Such transboundary pollution 889 

underscores the need for comprehensive international cooperation to effectively mitigate the challenges 890 

posed by background O3. 891 

International collaboration is therefore essential for tackling the elevated background O3. To this 892 

end, fostering transboundary emission reduction agreements between countries and regions can play a 893 

pivotal role in curbing the long-range transport of O3 and its precursors. Moreover, strengthening the 894 

global background O3 monitoring network, particularly in remote regions and marine stations, would 895 

significantly enhance the capacity for real-time monitoring of background O3 levels on a global scale. 896 

6.4 Strengthening research on the interaction between background ozone and climate change 897 

The impact of climate change on background O3 concentrations represents a critical area for future 898 

research, with profound implications for air quality management and public health. Climate change is 899 

expected to affect background O3 levels through multiple interconnected mechanisms. For example, 900 

rising temperatures and altered precipitation patterns are expected to affect natural emissions, such as 901 

BVOCs emissions from forests and NOx emissions from soil, both of which are particularly sensitive to 902 

climatic factors like temperature and humidity. These changes would, in turn, influence regional 903 

background O3 levels. Beyond these direct emission impacts, climate change is likely to modify 904 

atmospheric circulation patterns, thereby affecting the long-range transport of atmospheric pollutants and 905 

the spatial distribution of background O3. Alterations in wind patterns and monsoon systems, for example, 906 

could significantly alter the transport of O3 and its precursors over large distances, thereby exacerbating 907 

regional background O3 levels, especially in areas downwind of major pollution sources (Collins et al., 908 

2003; Sonwani et al., 2016; Sudo et al., 2003; Wu et al., 2008). Consequently, future research should 909 
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prioritize understanding the dynamic interplay between climate change and background O3 910 

concentrations to improve predictive models and inform effective air quality management strategies.  911 
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