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Abstract. Background ozone (Os) represents the baseline concentrations in the absence of local
anthropogenic emissions and is critical for understanding and mitigating tropospheric O3 pollution.
Accurate estimation of background Oj; constrains the maximum achievable benefits of precursor
emissions control and informs effective air quality management. This review synthesizes the definition
and estimation methods for background O3, including in situ measurement, statistical analysis, numerical
modeling, and integrated methods. A meta-analysis of background O3 in China from 1994 to 2020 reveals
pronounced spatial variability, with concentrations ranging from 33 ppb in the Northeast China to 48 ppb
in the Northwest China, and a national mean of 41 ppb, accounting for 79% of the tropospheric maximum
daily 8-hour average Os;. Methodological discrepancies are evident for background Os: in situ and
statistical methods yield higher estimates, whereas integrated approaches produce lower yet more
consistent values. Placed in a global context, background O3 levels in China are medium-to-high and
exhibit an increasing trend. This review highlights the need for integrated estimation methods to improve
accuracy, underscores the international collaboration to address long-range pollutant transport, and calls
for further research on the interactions between background O; and climate change. By advancing the
understanding of background Oz dynamics, it provides critical insights for atmospheric chemistry and air

pollution control in China and beyond.

1 Introduction

Since the implementation of the “Air Pollution Prevention and Control Action Plan” in 2013 and the

subsequent “Three-Year Action Plan for Winning the Blue Sky War”, China has achieved remarkable
1



27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

improvement in air quality, particularly in reducing fine particulate matter (PM>s) concentrations.
Nationwide PM, s levels declined by approximately 50% between 2013 and 2020 (Geng et al., 2024).
However, surface ozone (O3) pollution has emerged as a growing concern. From 2015 to 2022, the
number of O3 pollution days increased steadily in major cities such as Beijing, Shanghai, and Guangzhou
(Li et al., 2019; Wang et al., 2023), with exceedance days more than doubling in some regions (Ozone
Pollution Control Committee of Chinese Society of Environmental Sciences, 2024). In response, the
“Opinions on Deepening the Fight Against Pollution”, issued by the Central Committee of the
Communist Party of China and the State Council, incorporated coordinated control of both PM» 5 and O3
into the “l4th Five-Year Plan” (2021-2025), marking a strategic shift toward multi-pollutant
management.

Tropospheric O3 is a secondary pollutant formed through photochemical reactions involving
volatile organic compounds (VOCs) and nitrogen oxides (NOy). It consists of two components: locally
produced O3 from anthropogenic emissions and background O3, both of which impact human health,
ecological ecosystems, and agricultural productivity (McDonald-Buller et al., 2011; Wang et al., 2009b).
Background Os refers to the O3 concentration present in the absence of local anthropogenic precursor
emissions. It originates from a variety of natural and non-local processes, including methane (CHy)
oxidation, stratosphere—troposphere exchange (STE), vegetation, soil, lightning, wildfires and long-
range pollutants transport, as shown in Fig. 1 (Dolwick et al., 2015; Thompson, 2019). Among these
sources, CHy4 is unique due to its long atmospheric lifetime (8-9 years) and globally well-mixed
distribution (Fiore et al., 2002b; Vingarzan, 2004; West and Fiore, 2005; Thompson, 2019). In the pre-
industrial era (~1750), natural CH4 sources (e.g., wetlands, inland waters, geological emissions)
contributed ~95% of global emissions (Lassey et al., 2000; Prather et al., 2012; Valdes et al., 2005),
making CHy4 oxidation a stable background contributor to tropospheric O3 (Skipper et al., 2021; Sun et
al., 2024; Thompson, 2019; Vingarzan, 2004; Wu et al., 2008). However, over the past century,
anthropogenic CHy4 emissions from agriculture, fossil fuels, and waste have increased substantially,
accounting for over 60% of global CH4 by 2012 (Fiore et al., 2002b; Jackson et al., 2024; Kirschke et al.,

2013; Lelieveld et al., 1998; Saunois et al., 2016). This transition challenges the traditional classification
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of CHs-driven O3 as part of the “background,” and calls for a more precise attribution that excludes
anthropogenic CH4 from background Os estimates. Differentiating natural from anthropogenic CHa
contributions is thus crucial for improving the accuracy and policy relevance of background O;
assessments.

Background O3 typically contributes 60—80% of total tropospheric O3 at both global and regional
scales (Akimoto et al., 2015; Chen et al., 2022; Dolwick et al., 2015; Lee and Park, 2022; Lefohn et al.,
2014; Zhang et al., 2011). Unlike PM> s, which can be more directly mitigated through local emission
reductions, O3 management is more complex due to its nonlinearity and the presence of a large,
unmodifiable background component (Chen et al., 2022). Although emission control measures in Europe,
the United States (U.S.), and Japan have reduced O3 exceedances, background O3 levels have continued
to rise (Akimoto et al., 2015; Cooper et al., 2012; Wilson et al., 2012; Yan et al., 2021). For example, in
the U.S., the relative contribution of background Os to total ground-level O3 has risen by approximately
6% over the past two decades (Jaffe et al., 2018), driven by climate change, rising CHs4, and
transboundary pollution (Chen et al., 2022; Vingarzan, 2004). This trend is especially concerning in East
Asia, where background Oj; is further elevated by regional transport from neighboring countries,
exacerbating the problem (Vingarzan, 2004). As anthropogenic NOy and VOCs emissions decline under
stricter regulations, the relative importance of background Os in shaping observed pollution will only
increase (Jaffe et al., 2018; Lam and Cheung, 2022; Skipper et al., 2021), limiting the effectiveness of
local controls and demanding new international and multi-scale mitigation strategies.

Background Os; defines the “baseline” for regional O; pollution and sets the upper bound of
achievable air quality improvements through domestic anthropogenic emission controls (Fiore et al.,
2014; Wang et al., 2009a; Zhang et al., 2011). Persistently high background Oj; levels complicate
compliance with current and future O3 standards, a challenge recognized by major agencies such as the
National Aeronautics and Space Administration (NASA) (Huang et al., 2015; Thompson, 2019;
Vingarzan, 2004) and in China’s “Blue Book on Prevention and Control of Atmospheric Ozone Pollution”
(Ozone Pollution Control Committee of Chinese Society of Environmental Sciences, 2022). Despite its

importance, understanding of background Os; remains constrained by inconsistent definitions, diverse
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estimation methods, and limited regional assessments. While several recent reviews have touched on
background Os in the broader context of O3z pollution (Lu et al., 2019b; Liu et al., 2020; Sahu et al., 2021;
Wang et al., 2022b; Xu, 2021), and a few studies have provided quantitative estimates and source
apportionment of background Os in China (Sahu et al., 2021; Wang et al., 2022b; Chen et al., 2022; Wang
et al., 2011), no dedicated, methodologically focused synthesis is available.

This study addresses that gap by: (i) systematically reviewing the evolution of the background O3
concept; (i) providing a comparative assessment of the methods (i.e., in situ measurement, statistical
analysis, numerical modeling, and integrated methods) employed to estimate background Os; and (iii)
synthesizing the spatiotemporal patterns of background O3 in China within a broader global context,
examining the spatial and temporal variations of background O3 across China using publicly available
data. Finally, we identify key knowledge gaps and propose future research priorities to advance
understanding and inform effective policy responses. As background Os increasingly shapes the O3
landscape, this review provides timely insight into the scientific and regulatory frontiers of O3 pollution

control both in China and globally.
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Figure 1: Conceptual diagram of tropospheric O3 components and sources.
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2 Materials and methods

2.1 Data source and study area

To provide a comprehensive synthesis of advancements in the study of background Os, a systematic
literature search was conducted across major academic databases, including the Web of Science, Google
Scholar, Science Direct (Elsevier), Scopus, Springer, Wiley, and China National Knowledge
Infrastructure (CNKI). The search was centered on the following key thematic terms:
background/baseline/natural ozone/Os, regional background ozone/O3, and policy relevant background
ozone/Os3, ensuring the inclusion of a wide range of relevant studies. This study identified 153 pertinent
documents, comprising 132 peer-reviewed English-language papers, 10 peer-reviewed Chinese-language
papers, 6 English-language reports, 1 English-language books, 2 Chinese-language books, and 2
Chinese-language master’s theses. These documents form the core foundation of this review, which
traces the evolution of the definition and estimation method for background O; over a span of seven
decades (1952-2024), providing a comprehensive historical perspective on the development of the field.

In addition to reviewing the definition and estimation method for background O3, we also analyzed
the spatial and temporal characteristics of regional background O; concentrations in China during the
period 1994-2020. This analysis was based on 44 peer-reviewed papers, including 28 papers in English
and 16 papers in Chinese, which collectively provided over 700 data points on background Oj;
concentration from various regions and time periods within China. To ensure the reliability and
comparability of compiled background O3 estimates, we adopted strict inclusion criteria: (i) reported
values must specify temporal coverage and measurement or estimation methods; (ii) study location must
be clearly identifiable within China; and (iii) data must originate from peer-reviewed publications,
official reports, or other authoritative sources. All values considered in this study had already undergone
rigorous quality control and screening by the original authors; therefore, no further outlier removal was
performed. Where necessary, datasets were harmonized through standardized unit conversions and
consistent temporal categorization to enhance comparability.

Based on these criteria and harmonization procedures, the final dataset integrates estimates across
diverse temporal resolutions: annual data (31%, 235 data points), seasonal data (26%, 195 data points),

5
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and monthly data (43%, 326 data points). The seasonal and monthly data were classified into spring
(March—May; 24%, 127 data points), summer (June—August; 28%, 145 data points), autumn (September—
November; 24%, 125 data points), and winter (December—February; 24%, 124 data points). A detailed
breakdown of regional and temporal distributions is provided in Table S1. In addition, maximum daily
8-hour average (MDAS) O3 concentrations for the seven regions during 2013 to 2018 were obtained from
He et al. (2023).

To assess the regional differences in background O3z concentrations across China, the country was
categorized into seven geo-administrative regions based on a combination of social, natural, economic,
and human environmental factors (He et al., 2023). These regions include Northeast China (NEC), North
China (NC), East China (EC), Central China (CC), Northwest China (NWC), Southwest China (SWC),
and South China (SC), as shown in Fig. 4. A detailed description of these regional divisions is provided

in Table S2.
2.2 Data process

The background O3 concentrations presented in this study are reported as volume mixing ratios in parts
per billion (ppb). In some studies, however, values are expressed as mass concentration (ug m~3). To
ensure consistency with international standards and comparability with global datasets, unit conversions

were performed using Eq. (1):

24.5 Lmol™1t
48 gmol~1

ppb = ( ) x (igm™), (1)

Where 48 gmol™! is the molar mass of Osand 24.5 L mol™! is the molar volume of an ideal gas
under the reference conditions of 25 °C and 1013.25 hPa, as specified in the 2018 amendment to China’s
Ambient Air Quality Standards (GB 3095-2012) issued by the Ministry of Ecology and Environment
(https://www.mee.gov.cn/gkml/sthjbgw/sthjbgg/201808/t20180815_451398.htm). These reference
conditions are consistent with international practices, such as 25 °C in the U.S. (U.S. EPA, 2011), 20 °C
in the European Union (European Parliament and Council, 2008) and better reflect typical meteorological

conditions across most regions of China.
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2.3 Trend analysis

This study employed linear regression analysis to examine the annual trend in background O3
concentration and assess the statistical significance of these trends over time. Specifically, linear
regression was applied to the mean background Oz concentrations (derived from scatter plot data) across
different years, using the least squares method to determine the relationship between background Os;
concentration and time.

To evaluate the model’s performance, the coefficient of determination (R?) was calculated. R?
represents the proportion of variance in background Oz concentration explained by the linear model,
indicating how well the model fits the observed data. Higher R? values suggest a strong fit, while lower
values indicate a weaker fit. The P-value was also calculated to test the statistical significance of the
linear relationship between background O3 concentration and time. A smaller P-value (typically less than
0.05) indicates a statistically significant linear relationship, suggesting that the observed trend is unlikely
to have occurred by chance. In contrast, larger P-values imply that the trend may not be statistically
significant and could result from random variation.

It is important to note that, for the analysis of interannual variations in background O3 concentration,
only annual data from the compiled dataset were used. To ensure robustness, individual data points that
deviated markedly from the overall regional trend were excluded, whereas consecutive deviations were
retained to preserve temporal continuity. Here, “deviation” refers to values that differ substantially from
most annual data within the aggregated regional dataset — likely reflecting spatial heterogeneity — rather
than statistical outliers at the level of individual studies. In case where background O3 concentrations
were estimated using multiple methods within the same geographical region of a single study, the results

were averaged to provide a more representative value.

3 Background ozone: conceptual evolution and key definitions

Background O3 generally refers to the portion of O3 concentrations that are not influenced by direct local
anthropogenic emissions, though its definition varies across studies globally. In contemporary

atmospheric research, background O; is commonly categorized into two distinct types: natural
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background ozone (NBO) and regional background ozone (RBO). These two categories are crucial for
understanding the sources and variations of background O3z on both local and global scales. Figure 2
presents the historical evolution of background Os concepts, including their definitions and key
characteristics.

Natural background ozone (NBO) is defined as tropospheric Os that exists in the complete absence
of anthropogenic emissions, originating solely from natural processes (McDonald-Buller et al., 2011;
Vingarzan, 2004; Wu et al., 2008). The primary sources of NBO include VOCs and NOy emitted by
natural sources such as vegetation, soil, lightning, wildfires, and the oxidation of CHa, as well as O3
exchange between the stratosphere and troposphere (Thompson, 2019). Historically, research into NBO
originated with studies on atmospheric photochemistry. In the 1950s, investigations into photochemical
smog in Los Angeles identified O3 as a major component of smog, linking vehicular emissions of VOCs
and NOx to its formation (Haagen-Smit, 1952). While these studies primarily focused on anthropogenic
sources, they also observed detectable O3 concentrations in remote regions, far from urban pollution,
suggesting natural processes contributed to O3 production (Galbally et al., 1986; Volz and Kley, 1988).
By the late 1970s, systematic studies in the U.S. identified key natural sources of Os, such as biogenic
VOCs (BVOCs), lightning, and soil-emitted NOy, leading to the formation of the NBO concept (Crutzen,
1974; Jacob et al., 1999; Liu et al., 1987). Although NBO holds significant scientific importance, its
practical application as a regulatory tool remains limited, particularly in the Northern Hemisphere, where
anthropogenic emissions dominate regional O3 production (Berlin et al., 2013). Nonetheless, NBO is a
critical reference for establishing baseline Os levels globally, facilitating the evaluation of human
contribution to atmospheric O3 concentration.

In the 1990s, researchers in the U.S. began to recognize the critical role of long-range transport
from anthropogenic sources in regional Os levels (Fiore et al., 2002a; Jacob et al., 1999; Vingarzan, 2004).
This realization was pivotal in developing the concept of United States Background Ozone (USBO),
which includes O3 contributions from global NBO as well as anthropogenic emissions originating outside
the country, such as from neighboring regions like Canada and Mexico (Skipper et al., 2021; Thompson,

2019). Acknowledging these external sources highlighted that background Os levels could not be fully
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mitigated through domestic emission reductions alone.

By the early 21st century, research on background O3 increasingly intersected with air quality policy
development. A notable milestone was the introduction of Policy Relevant Background Ozone (PRBO)
by the United States Environmental Protection Agency (EPA) in 2006 during revisions to the National
Ambient Air Quality Standards (NAAQS) (U.S. EPA, 2006; Zhang et al., 2011). PRBO refers to ground-
level O3 concentrations that exclude all anthropogenic emissions from North America (the U.S., Canada
and Mexico) while accounting for natural sources and long-range transport from anthropogenic and
natural sources outside North America (Emery et al., 2012; Nopmongcol et al., 2016). This concept aimed
to help policymakers assess the effectiveness of domestic control measures in reducing O3 pollution and
inform the establishment of stricter O3 standards. By differentiating controllable from uncontrollable O3
sources, PRBO enabled a more targeted approach to air quality management, framing policy discussions
around the limitations of local pollution control in addressing O3 levels (Duc et al., 2013; Zhang et al.,
2011). The introduction of PRBO marked a significant transition in background Os research, shifting
from a predominantly scientific focus to one directly informing air quality policy and regulatory
frameworks (Hosseinpour et al., 2024; U.S. EPA, 2006, 2007).

Although USBO and PRBO share some common elements, their definitions differ primarily in
geographic scope. PRBO focuses on transboundary contributions from regions outside North America,
whereas USBO includes emissions from neighboring countries, such as Canada and Mexico, that affect
the U.S. O3 concentration. To address regional variations and better capture the dynamic of background
O3 in specific areas, advancements in atmospheric chemistry models have enabled scientists to
differentiate the contributions of various sources to background Os. This led to the emergence and
widespread adoption of the term Regional Background Ozone (RBO) around the 2010s (Kemball-Cook
et al., 2009; Langford et al., 2009; Ou-Yang et al., 2013). RBO refers to O3 concentrations within a
defined region that are unaffected by direct local anthropogenic emissions. Its main sources include
natural emissions (e.g., BVOCs, soil, wildfires, and lightning), the oxidation of CHs, stratosphere—
troposphere exchange, and long-range transport (McDonald-Buller et al., 2011; Skipper et al., 2021; Sun

et al., 2024; Wang et al., 2022a).
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The distinction between NBO and RBO is crucial for understanding the complexity of background
O3 concentrations, as each reflects different sources and scales of influence. NBO represents a natural
baseline, dominated by non-anthropogenic factors, serving as a reference point for assessing the human
impact on atmospheric composition. In contrast, RBO reflects the interplay of natural and anthropogenic
sources at local and global scales. Advancing our understanding of both NBO and RBO is essential for
improving air quality models, refining emission control strategies, and establishing science-based

standards for O3 pollution reduction.

2010s é Adoption of Regional Background Ozone (RBO)

Ozone in a given region that is not influenced by direct It reflects the interplay of matural and anthropogenic

local anthropogenic emissions sources at local and global scales

2000s @ Introduction of Policy-Relevant Background Ozone (PRBO)

Ozone excluding anthropogenic emissions from North American It aimed to help policymakers assess the effectiveness of

(i.e., U.S., Canada, and Mexico), but including natural tic control in reducing ozone pollution and
guide the establishment of stricter ozone standard

and long-range transport from outside these regions

1990s Introduction of U.S. Background Ozone (USBO)
Ozone contributions arising from global NBO and It emphasized that background ozone levels could not be
transb dary anth = A originating fully mitigated through d i i ducti alone

outside the U.S. (e.g., Canada and Mexico)

1970s @ ormation of Natural Background Ozone (NBO) concept

Ozone that exists in the comy of anthropog ts a natural baseline, serving as a reference
emissions worldwide, originating solely from natural polnt for ing the h i t on heric
processes composition

1950s Recognition of potential natural sources contribution

Ozone was detected at measurable levels in remote regions,

indicating a significant contribution from natural processes to ozone production

Figure 2: Historical evolution of background Os concepts: definitions (left box) and characteristics (right box).

4 Methods for estimating background ozone concentrations

The estimation of regional background Os is typically conducted using four primary methods: (1) in situ
measurement estimation, (2) statistical analysis estimation, (3) numerical modeling estimation, and (4)
integrated methods estimation. Figure 3 summarizes the advantages, limitations, and applicability of each

method, providing a comparative overview of their respective strengths and weaknesses.
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4.1 In situ measurement estimation

The in situ measurement estimation method involves the deployment of monitoring stations in remote or
elevated areas, typically located far from direct pollution sources, to measure O3 concentrations directly
(Lam and Cheung, 2022; Wang et al., 2009b). This approach is widely recognized as one of the most
direct and commonly used methods for estimating regional background Os. It is relatively straightforward
to implement, requires minimal post-measurement processing, and provides continuous, high frequency
data on O3 variations across spatial and temporal scales. These attributes render it an invaluable tool for
tracking long-term trends in background O3 concentrations.

However, this method has limitations, particularly concerning the spatial representativeness of the
data. The limited number of monitoring stations, especially in regions with complex terrain or vast
geographic areas, can result in insufficient coverage of the region’s environmental conditions.
Furthermore, measurements from background stations are subject to local meteorological conditions,
such as temperature, humidity, and wind patterns, which can introduce uncertainties into background O;
concentrations estimates (Skipper et al., 2021; Wu et al., 2017). This challenge is particularly pronounced
in the Northern Hemisphere, where widespread anthropogenic emissions complicate the identification of
truly “background” stations that are unaffected by human activities (Cooper et al., 2012; McDonald-
Buller et al., 2011; Skipper et al., 2021; Vingarzan, 2004).

Despite its limitations, the in situ measurement estimation method remains an indispensable tool
for estimating background Os concentrations. For instance, Vingarzan (2004) reported that background
Os concentration in the Northern Hemisphere rose from approximately 10 ppb before the Industrial
Revolution to 2540 ppb by the 2000s, corresponding to an annual growth rate of 0.5-2%. Similarly,
Akimoto et al. (2015) found background O3 concentrations ranging from 60 to 70 ppb in Japan’s Tokyo
and Fukuoka metropolitan areas between 1990 and 2008. In southern China, Wang et al. (2009b) recorded
background O; levels of 30—40 ppb at the Hok Tsui station in Hong Kong from 1994 to 2018, with an
average annual increment of 0.58 ppb. These studies demonstrate that, despite challenges in achieving
complete representativeness, the in situ measurement estimation method provides valuable insights into

regional background Oj; trends and advances our understanding of the long-term impacts of both natural
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and anthropogenic processes on atmospheric chemistry.

4.2 Statistical analysis estimation

The statistical analysis estimation method uses observed O3 concentration data and applies statistical
techniques to estimate regional background O3 levels (Altshuller and Lefohn, 1996; Berlin et al., 2013;
Steiner et al., 2010; Wang et al., 2022a). Historically, such estimations primarily relied on real-time
measurements from monitoring stations. However, limitations in the spatial and temporal coverage of
monitoring networks, along with their susceptibility to local environmental factors, have constrained
their ability to capture the broader regional Os levels accurately. For example, monitoring stations
situated in areas with complex terrain may yield skewed data due to topographical effects on air
circulation patterns, which in turn significantly influence the distribution of O3 concentration (Wang et
al., 2022a). To overcome these challenges, researchers have increasingly adopted advanced statistical
models that incorporate diverse observational data sources, enhancing the accuracy and reliability of
background O3 estimates (Riley et al., 2023; Rizos et al., 2022).

A notable advantage of statistical analysis estimation methods is their capability to process
extensive datasets over long temporal scales, providing a cost-effective approach to estimating regional
background Oj; levels. These methods can leverage large-scale data networks, such as satellite
observations or regional monitoring systems (Langford et al., 2009). However, the reliability of statistical
models is heavily dependent on the quality and spatial representativeness of the input observational data.
High quality data are essential to minimize biases, and the monitoring stations must be strategically
distributed to represent the target region adequately. Additionally, rigorous data preprocessing is critical
to mitigate the influence of external factors, such as extreme weather events, that may distort the
background O3 concentrations estimates (Berlin et al., 2013; Langford et al., 2009).

The commonly used statistical analysis methods include the following:

4.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used multivariate statistical technique designed to
extract key patterns from datasets containing multiple interrelated variables (Jolliffe, 2005). By
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transforming correlated variables into a smaller set of uncorrelated principal components, PCA
effectively reduces data complexity while preserving the most significant information. In the context of
atmospheric pollution, PCA has proven to be particularly useful for isolating background Oz by
minimizing the influences from meteorological factors, such as temperature, humidity, and wind, as well
as local airflows from urban and industrial sources. This makes PCA an invaluable tool for understanding
regional air quality and estimating background Os levels, particularly in cases where direct measurements

are confounded by local pollution or short-term meteorological variability.

4.2.2 K-means clustering

K-means clustering is an unsupervised, iterative machine-learning algorithm widely employed for
grouping data, such as Oz concentrations, meteorological parameters, and other environmental factors,
based on shared characteristics (Riley et al., 2023). Clusters with minimal anthropogenic influence are
often interpreted as representative of background Os concentrations. These clusters, typically defined by
low pollutant levels or specific meteorological conditions, facilitate the identification of periods or
locations where regional background O3 can be reliably assessed (Riley et al., 2023; Zohdirad et al.,

2022).

4.2.3 TCEQ method

The Texas Commission on Environmental Quality (TCEQ) method, based on O3 monitoring data from
background regions, has been widely adopted in Texas, as a reliable approach for estimating regional
background O; levels (Nielsen-Gammon et al., 2005). This approach defines regional background O3 as
the minimum value within maximum daily 8-hour average (MDAS) O3 across all monitoring stations in
a given area, effectively representing the lowest O3 levels unaffected by local emissions (Wu et al., 2017).
By focusing on these minimum values over an extended period, the TCEQ method isolates background
concentrations, which are crucial for understanding regional air quality and evaluating long-term trends

in O3 pollution.

4.2.4 O3-NO; intercept method
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The O3-NO, intercept method is an approach for estimating background Os; concentrations by
establishing the linear relationship between O3 concentrations and its precursors (Altshuller and Lefohn,
1996; Hirsch et al., 1996; Yan et al., 2021). In this approach, NO, is defined as the difference between
NOy (the total reactive nitrogen species, including nitric acid and peroxy nitrates) and NOyx (which
comprises NO and NO). NO, serves as an indirect indicator of background O3 level, based on the
assumption that it reflects the presence of Os-producing precursors in the atmosphere. Through
regression analysis, O3 levels are extrapolated to the intercept where NO, equals zero, representing an
approximation of background O3z concentrations unaffected by local emissions and photochemical
influences.

However, Yan et al. (2021) noted that the method’s accuracy could be compromised in areas with
high rates of nitric acid (HNO3) deposition. Elevated HNO3 deposition sequesters reactive nitrogen
compounds at the surface, potentially masking near-surface O3 levels and leading to overestimations of
background O3 concentrations. To address these limitations, Yan et al. (2021) proposed a modified
version of the O3-NO, method, referred to as the 1-6 O3-NO, method. This refinement involved excluding
regions with high HNO; deposition rates and minimizing the influence of regional emissions through

improved data selection criteria.

4.2.5 03-CO-HCHO response method

Cheng et al. (2018) introduced an innovative approach for estimating background O; concentrations by
using carbon monoxide (CO) and formaldehyde (HCHO) as chemical indicators to trace the production
and consumption of Os. This method integrates the chemical reaction dynamics between O3, CO, and
HCHO, resulting in a rapid-response O3 estimator. This approach was specifically designed to enhance
the efficiency and accuracy of O3 estimation by leveraging the dynamic chemical processes that influence
O3 levels. Building upon this foundation, Yan et al. (2021) proposed the O3-CO-HCHO approach, which
refines the original concept by eliminating the influence of both anthropogenic and natural emissions of
O; precursors, enabling a more accurate estimation of background O3z concentrations.

The 0O3-CO-HCHO method is particularly advantageous due to its applicability to both

observational data and model outputs, offering robust results for regions with high isoprene emissions.
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The method is governed by the following key equations:

03 = kl (Cototal - Coback) - (k1k2 - k3)(HCHOtotal - HCHOback) + OSbacks (2)
O3pack = 03 — K;(COtoral — COpaek) + (Kik; — K3) (HCHO a1 — HCHOp,ex), 3)
Here, k; = 495 = 2C0%io =—29%  The terms “anthro”, “bio”, “total”, and

ACOanthro’ 2 AHCHOpj,” 3~ AHCHOpj
“back” refer to anthropogenic sources, biogenic sources, total sources, and background sources,

respectively.

4.2.6 Percentile method

The percentile method is a widely adopted statistical approach for estimating regional background O3
concentrations, offering a straightforward and practical alternative to complex modeling techniques
(Berlin et al., 2013; Jenkin, 2008). This method involves analyzing O3z concentration data over a specific
time period and selecting a particular percentile to represent the background Os levels. The selected
percentile is assumed to reflect minimal O3 concentrations that are largely unaffected by local pollution

sources, thereby serving as a proxy for regional background O3 concentrations.

4.2.7 Temperature-ozone relationship method

The temperature-ozone relationship method estimates background O; contributions by analyzing the
correlation between Oz concentrations and temperature (Mahmud et al., 2008). Generally, O3
concentrations increase with rising temperatures, as elevated temperatures enhance the photochemical
reactions that produce Os;. However, within a specific temperature range, O3 concentrations tend to
stabilize due to the equilibrium between O3z production and destruction processes. These stabilized O3
levels, typically observed during periods of relatively stable meteorological conditions, are often
regarded as indicative of regional background O3z concentrations, reflecting natural influence rather than

anthropogenic emissions (Mahmud et al., 2008; Sillman and Samson, 1995; Steiner et al., 2010).

4.2.8 Nocturnal ozone concentration method

The nocturnal Oz concentration method leverages the relatively stable Oz levels observed during
nighttime, when photochemical reactions driven by sunlight are absent, making it a valuable approach
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for estimating regional background O3 levels (Chan et al., 2003). At night, O3 levels generally remain
constant or exhibit minimal fluctuations, as they are primarily governed by the equilibrium between O3
production and destruction through reactions with NOy and other atmospheric components. However,
this method is not without its challenges. A key limitation arises from the titration reaction between O3
and NO, which produces NO» and depletes ambient O3 levels. This phenomenon, known as Oj titration,
can result in underestimation of true background O3 concentrations, particularly in areas with elevated
NO emissions (Akimoto et al., 2015; Itano et al., 2007; Shin et al., 2012).

To mitigate the impact of Oj titration, researchers have introduced adjustments to nocturnal O3
estimates by incorporating a “total Os” concentration, denoted as Oz ..., which serves as a proxy for
background Os levels. The “total O3” is calculated using the following equations:

[03t0ta1] = [03] + [NOz] — a x [NO,], 4)

Here, [03], [NO,],and [NO,](= [NO] + [NO,]) represent the mixing ratios of O3, NO», and NOx,
respectively. The parameter a accounts for the fraction of NO, in NOy from primary emissions, with a
typical value of @ = 0.1 used in most studies (Akimoto et al., 2015; Itano et al., 2007; Shin et al., 2012).
However, Wang et al. (2009b) suggested a lower value of a = 0.041, introducing variability in the
estimated [03 tot al]. This adjustment helps to compensate for the effects of NO titration, yielding a more
accurate representation of regional background O3 levels.

Statistical analysis methods have been widely used to estimate regional background Oj
concentrations. For example, Langford et al. (2009) applied PCA to analyze regional background O;
concentrations in Texas from August to October 2006. Their analysis revealed that the first principal
component accounted for approximately 84% of the variance in the Os data, strongly indicating its
relevance as a proxy for background Os levels. Riley et al. (2023) applied K-means clustering to estimate
background O3 concentrations in eastern Australia from 2017 to 2022. Their analysis revealed an average
background O3 concentration of 28.5 ppb, with a decadal increase of 1.8 ppb, reflecting the global trend
of rising background O3 levels. Berlin et al. (2013) and Langford et al. (2009) used TCEQ method to
estimate background O3 concentrations during high-O; periods (May—October) in Texas between 2000

and 2012. Their estimates ranged from 25 to 45 ppb and 40 to 80 ppb, respectively. Akimoto et al. (2015)
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proposed using the 2™ percentile of MDAS8 O3 concentrations as a suitable measure of background O
levels in Japan, capturing low concentrations unaffected by local anthropogenic emissions during high-
O; episodes. Chen et al. (2022) used temperature-ozone relationship method to assess background O;
levels of the region-specific in China from 2013 to 2019, reporting concentrations of 3540 ppb during

clean seasons and 50-55 ppb during Os-polluted seasons.

4.3 Numerical modeling estimation

The numerical modeling estimation method, which uses atmospheric chemistry and transport models
such as GEOS-Chem, WRF-Chem, and CMAQ, is widely employed to simulate the formation,
transportation, and variability of regional background Os concentrations. These models offer several
distinct advantages by incorporating a comprehensive array of atmospheric processes, including
photochemical reactions, vertical mixing, advection, and the transport of pollutants across various spatial
and temporal scales. By accounting for the intricate interactions among emissions, meteorological
conditions, and atmospheric chemistry, numerical models provide a more robust and accurate
representation of regional background Os levels compared to in situ measurement estimation or statistical
analysis estimation methods alone. Additionally, numerical models can be customized to align with
specific research objectives through adjustments to chemical mechanisms and parameterization schemes,
rendering them adaptable to diverse regions and temporal scales.

A notable strength of numerical models lies in their ability to differentiate the contributions of
various emission sources to regional O3 concentrations (Jaffe et al., 2018; Thompson, 2019; Zhang et al.,
2011). This capability sets them apart from in situ measurement estimation and statistical analysis
estimation approaches, which typically lack the granularity to isolate the relative contributions of natural
versus anthropogenic emissions. However, numerical modeling estimation also presents significant
challenges. These models are computationally intensive, requiring substantial resources, especially when
simulating extensive domains or prolonged time periods. Moreover, their accuracy depends heavily on
the quality of input data, such as emission inventories, meteorological conditions, and assumptions
regarding physical and chemical processes, which can introduce uncertainties in estimated O3

concentrations (Dolwick et al., 2015; Guo et al., 2018; Hogrefe et al., 2018; Jaffe et al., 2018).
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Numerical models typically estimate regional background O3 concentrations using two primary
approaches: the emission scenario method and the tracer method (Fiore et al., 2002a). The emission
scenario method employs three-dimensional air quality models, such as GEOS-Chem, MOZART, WRF-
Chem, and CMAQ, to simulate background O3 levels by conducting perturbation experiments where
local anthropogenic emissions are reduced or set to predefined values. This approach enables the isolation
of local emissions’ contributions to regional background Os levels (Zhang et al., 2011; Li et al., 2018; Lu
etal., 2019a; Pfister et al., 2013). In contrast, the tracer method uses chemical tracers to track the transport
and transformation of emissions, offering an alternative approach to estimating background O;
concentrations. Models such as CMAQ-ISAM and CAMx-OSAT, developed by the U.S. Environmental
Protection Agency (EPA), incorporate tracer methods to estimate regional background Oz concentrations
(Lefohn et al., 2014; Li et al., 2012; Reid et al., 2008).

Although both methods have their strengths, studies have highlighted discrepancies in O3 estimates
depending on the approach employed (Jaffe et al., 2018; Skipper et al., 2021). For example, Emery et al.
(2012) found that the CAMx model generally produced higher background O3 concentrations in the U.S.
compared to GEOS-Chem, with CAMx showing a higher correlation with observational data, especially
at remote stations and during high-Os episodes. Conversely, GEOS-Chem demonstrated greater accuracy
in capturing seasonal mean O3 concentrations in rural areas. Similarly, Dolwick et al. (2015) compared
the tracer and emission scenario methods using CAMx and CMAQ models. Their analysis revealed
consistent estimates of background O3z concentrations in suburban U.S. areas across both methods.
However, in urban areas, the tracer method yielded lower background O; estimates than the emission
scenario method, indicating a substantial influence of local emissions on O3 concentrations in densely
populated regions. Equally, Fiore et al. (2014) reported differences in background Os concentrations
between GEOS-Chem and GFDL-AM3 models, with variations ranging from 1 to 10 ppb depending on
region, season, and altitude.

Numerical modeling estimation has been extensively applied to estimate global and regional
background O3 concentrations. For example, using the global model GEOS-Chem, Emery et al. (2012)

and Zhang et al. (2011) estimated average background O concentration in the U.S. from March to August
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2006, ranging from 20 to 45 ppb, with 27 £+ 8 ppb in low-altitude areas and 40 £+ 7 ppb in high-altitude
areas. Guo et al. (2018) reported annual variation of up to 15 ppb in regional background O3 concentration
in the U.S. between June and August from 2004 to 2012. Meanwhile, regional models such as CAMx
and CMAQ yielded background O3 estimates of 25 to 50 ppb in the U.S. between March and August
2006 (Emery et al., 2012). In China, Sahu et al. (2021) found background O3 concentrations exceeded

22 ppb in 2015.

4.4 Integrated methods estimation

The three methods discussed above each possess distinct advantages and limitations, contributing to
uncertainties in estimating regional background O3z concentration. Given these challenges, researchers
have increasingly turned to integrated methods to improve the accuracy and reliability of these
estimations.

For instance, Dolwick et al. (2015) improved model-based estimates of background O; by
comparing observed and simulated O3 concentrations. Their analysis of rural areas in the western U.S.
during April to October 2007 reported background O3 concentrations ranging from 40 to 45 ppb, with
the lowest concentrations observed along the Pacific coast, ranging from 25 to 35 ppb.

Similarly, Sun et al. (2024) refined estimates by treating model biases as spatial functions,
optimizing regional background O3 estimations. Based on this methodology, Skipper et al. (2021)
extended the methodology by incorporating both spatial and temporal functions to account for variations
driven by regional background O; and anthropogenic emissions. This revised approach estimated an
average background O3 concentration of approximately 33 ppb for the U.S. in 2017, with peak values
around 38 ppb. Notably, this adjustment improved the consistency of estimates by 28% compared to the
unadjusted model, demonstrating the utility of integrated methods in refining atmospheric models.

The rapid advancement of machine learning (ML) techniques has further facilitated the integration
of these technologies with traditional methods for estimating regional background Os concentrations. For
example, Hosseinpour et al. (2024) developed a multivariate linear regression (MVLR) model and a
random forest (RF) based ML algorithm to adjust model-derived background O3 concentrations. While

the MVLR model follows an adjustment method akin to that of Skipper et al. (2021), the RF-ML
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algorithm employs the Shapley Additive Explanations (SHAP) method to evaluate the relative
importance of each input variable. The RF-ML model, trained using k-fold cross-validation,
demonstrated superior predictive accuracy. Hosseinpour et al. (2024) showed that the RF-ML algorithm
produced results most consistent with those from the in situ measurement estimation method,
outperforming those from the original CAMx model, MVLR adjustments, and two other ML algorithms.
Utilizing this methodology, they estimated background O3 concentrations in 13 urban areas of the U.S.
during April-June and July—September 2016 to range from 31-46 ppb and 27—45 ppb, respectively. This
finding underscores the potential of ML algorithms to enhance model-based background Os estimates by
capturing nonlinear relationships and complex variable interactions (Breiman, 2001; Kashinath et al.,
2021).

Overall, integrated methods, particularly those integrated with machine learning techniques,
represent a significant advancement in estimating regional background O; concentrations. These
approaches not only improve the accuracy and robustness of estimates but also provide valuable insights
into the complex dynamics of O3 formation and transport. By combining observational data, statistical
adjustments, and advanced modeling techniques, researchers can achieve a more comprehensive

understanding of regional O; levels and their temporal variations.
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Figure 3: Summary of the advantages, limitations, and applicability of different estimation methods for

background Os.
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5 Comprehensive assessments of background ozone in China: patterns, trends, sources, and global

comparisons

5.1 Regional patterns of background ozone in China

Figure 4 presents the average background Os; concentrations across various regions in China. On a
national scale, the average background O3z concentration is 41.4 & 12.2 ppb, accounting for 79% of the
MDAS8 O3 concentration. Notable regional variability in background O; concentrations is observed,
highlighting the differential impacts of local meteorological conditions, pollutant emissions, and
geographic characteristics.

Among the regions, Northwest China (NWC) stands out with the highest background O;
concentrations, reaching 48.2 + 8.3 ppb, which accounts for 96% of the MDAS Oj; concentration. This
elevated concentration is attributed to several interrelated factors. First, strong solar radiation and arid
atmospheric conditions enhance photochemical reactions, accelerating O3 formation. He et al. (2021)
demonstrated that abundant sunshine and dry conditions significantly increase O3 production due to the
intensified photolysis of precursor compounds. Furthermore, the high altitude and unique surface
characteristics of Northwest China (NWC) promote strong daytime atmospheric convection, facilitating
the downward transport of O3 from the upper atmosphere to the surface levels (Ding and Wang, 2006;
Liu et al., 2019; Ma et al., 2005; Nie et al., 2004). Additionally, the relatively low anthropogenic
emissions result in fewer precursors like NOy and VOCs, thereby minimizing rapid fluctuations in O3
levels. The weaker nocturnal O3 depletion, caused by limited O3 scavenging from sparse emissions and
lower nighttime temperatures, further amplifies baseline O3 concentrations (Nie et al., 2004; Qin et al.,
2023; Xu et al., 2020).

The urban clusters of North China (NC) and East China (EC), along with Southwest China (SWC),
also exhibit higher background O3 concentrations, averaging 40.3 + 14.9 ppb, 39.0 & 13.4 ppb, and 38.4
+ 10.4 ppb, respectively. These concentrations account for 75%, 67%, and 83% of the MDAS O3
concentration in each respective region. East China (EC) and North China (NC) are heavily influenced
by high industrial and vehicular emissions, which release significant quantities of NOx and VOCs. The

precursors undergo photochemical reactions under intense sunlight and elevated summer temperatures,
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resulting in higher O3 levels. Moreover, the East Asian Summer Monsoon (EASM) facilitates the
transport of O3 and its precursors from low-latitude regions, such as South China (SC), to higher latitudes,
exacerbating Os pollution during the monsoon season (Gao et al., 2005; Liu et al., 2019, 2021; Sun et al.,
2016; Xu et al., 2011, 2020). In contrast, in Southwest China (SWC), regional pollutant transport plays
a significant role. During spring, prevailing winds carry pollutants such as NO, and VOCs from Southeast
Asia, intensifying local O3 levels (Ye et al., 2024). Summer conditions — characterized by high humidity,
elevated temperatures, and intense solar radiation — further amplify photochemical O3 formation (Chen,
2020). The region’s complex topography, including mountainous areas and plateaus, also contributes to
localized O3 accumulation. For instance, the Sichuan Basin, with its basin-like terrain, impedes air mass
dispersion, leading to pollutants entrapment and prolonged O3 buildup (Hu et al., 2019).

The background O; concentrations in South China (SC), Central China (CC), and Northeast China
(NEC) are relatively low compared to other regions of China, with values of 37.0 + 8.9 ppb, 35.1 £12.6
ppb, and 33.1 + 5.7 ppb, respectively. These concentrations account for 74%, 60%, and 68% of the MDAS
O;s in each corresponding region. In South China (SC), the relatively low background O3 concentrations
can be primarily attributed to the frequent rainfall and high humidity, which facilitate the removal of O3
precursors such as NOy and VOC:s, thereby suppressing Oz formation (He et al., 2021). Although BVOCs
emissions are relatively high in this region due to abundant vegetation and elevated temperatures, their
impact on O3 formation is less pronounced compared to regions like North China (NC). This is because
anthropogenic emissions, such as vehicular exhaust and industrial discharges, typically amplify the
contribution of BVOCs to O3 formation. In the absence of significant anthropogenic pollution, the role
of BVOCs in O3 formation remains relatively limited (Ye et al., 2024).

In Central China (CC), the lower background Oz concentrations are linked to the region’s inland
locations, which reduce its exposure to oceanic influences and transboundary pollutant transport. The
absence of strong maritime airflow limits the import of O3 precursors, while frequent rainfall during the
warmer months helps remove these precursors from the atmosphere, further suppressing Oz formation
(Sahuetal.,2021; Ma et al.,2024). Anthropogenic emissions, primarily from vehicular exhaust, industrial

discharges, and solvent usage, constitute the dominant sources of O3 in this region (Zeng et al., 2018).

22



554
555
556
557
558

559
560
561
562
563

564

565
566
567
568
569
570

Consequently, the relative contribution of background Oj is lower, as anthropogenic emissions play a
more substantial role in O3 formation. In Northeast China (NEC), the lower background O3 concentration
can be attributed to a prolonged period of low temperature, which significantly reduces the rate of
photochemical reaction. Additionally, the region experiences strong summer air convection and

substantial precipitation, both of which further inhibit O3 generation (Chen, 2024; Xu et al., 2020).
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Figure 4: Spatial distribution of background O3 concentrations (1994-2020) across various regions of China.
The locations of 33 background monitoring stations are indicated with red dots. The seven regions include
Northeast China (NEC), North China (NC), East China (EC), Central China (CC), Northwest China (NWC),
Southwest China (SWC), and South China (SC).

5.2 Comparative evaluation of background ozone concentration estimates using diverse methods

Figure 5 presents a comparative assessment of background O3 concentrations estimates in China from
four common approaches: in situ measurement, statistical analysis, numerical modeling, and integrated
methods. Among these, in situ measurement estimation method remains the most widely applied,
supported by extensive datasets from 33 background monitoring sites (n = 678; Fig. 4, Table S3). By
contrast, integrated methods have only recently emerged and have been applied in a limited number of
case (n=8), reflecting their greater methodological complexity and reliance on comprehensive data
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integration.

National mean background O3z concentrations estimated by different methods are broadly
comparable but show notable differences. In situ measurement estimation method (41.7 + 12.3 ppb) and
statistical analysis estimation method (39.9 & 11.3 ppb) yield the highest values, followed by numerical
modeling estimation method (37.4 + 11.9 ppb). Integrated methods yield the lowest values of 34.5 + 1.6
ppb, approximately 6 ppb lower than those from in situ measurement estimation and statistical analysis
estimation method.

Despite similar mean values, the variability across methods is substantial. In situ measurement
estimation reveals a particularly wide variability, with estimated background Oz concentrations ranging
from approximately 14 ppb to as high as 85 ppb. This broad range reflects the substantial influence of
localized factors, such as topography, climatic conditions, and anthropogenic emissions, on observational
data. In comparison, statistical analysis estimation and numerical modeling estimation methods yield
relatively consistent results, although the difference between the maximum and minimum estimated
background O3 concentration for both methods reaches 60 ppb. Notably, more than 80% of the estimated
background O3 concentrations fall within the range of 25-53 ppb, suggesting a reasonable degree of
agreement between the two methods. The consistency is likely attributable to the reliance on long-term
data trends and calibrated algorithms, which effectively reduce the impact of extreme values while
capturing broader patterns in O3 behavior.

In contrast, the integrated methods — combining in situ observation, statistical analysis, and
numerical results — yield the narrowest range (32-37 ppb), with the value of 34.5 £ 1.6 ppb. This narrow
range reflects their strength in reconciling model consistency with real-world variability, rather than
oversimplification. By harmonizing data sources, integrated methods reduce methodological noise and
yield more robust, policy-relevant estimates. The limited number of applications, however, may also
contribute to the observed low variability. Although studies in China remain scarce, international
applications underscore their potential. For instance, Skipper et al. (2021) showed that incorporating
spatial and temporal bias corrections improved the consistency of model-derived background Oj;

estimates by 28% relative to unadjusted models. Similarly, Hosseinpour et al. (2024) demonstrated that
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a random forest machine learning (RF-ML) algorithm integrating multiple data sources with nonlinear
feature analysis produced background Os estimates most consistent with in situ observations for
correcting air quality model simulations and outperformed the original CAMx model, multivariate
regression, and other ML algorithms. Collectively, these studies highlight the value of integrated methods
in producing consistent estimates, particularly for regulatory applications and long-term trend
assessments. Nevertheless, further validation is needed to determine whether the observed low variability
reflects true methodological robustness or limited sampling. Importantly, no single method is definitive.
Each carries inherent assumptions. Integrated methods therefore provide a complementary framework
that balances empirical realism with generalizability.

Method-dependent discrepancies underscore the complexity of estimating background Os.
Variability arises from differences in input data, model assumptions, and the parameterization of physical
and chemical processes (Jaffe et al., 2018; Skipper et al., 2021; Wang et al., 2022a; Yan et al., 2021). For
instance, in situ measurement estimation method is directly influenced by local meteorological and
emission conditions, whereas the numerical modeling estimation method is subject to uncertainties in
simulating processes such as natural emissions, transboundary transport, and photochemical reactions.
Ideally, direct comparison of background O; estimates derived from multiple methods at the same
location would clarify their relative strengths and limitations. However, such comparison was not feasible
here due to methodological and data constraints. First, the dataset used in this study is limited to China,
where only a subset of the methods described in Sect. 4.2 has been applied, each requiring specific
datasets and exhibiting region-dependent applicability. Second, background O3 exhibits pronounced
spatial and temporal variability, while existing studies often target different subregions and time periods,
making consistent co-located comparisons impractical. Despite these challenges, several studies have
conducted preliminary intercomparisons within the same region. In Shandong, Wang et al. (2022a)
reported that PCA (using ambient O3 alone) yielded background O3 about 20 ppb higher than the TCEQ
approach, with seasonal patterns more consistent with background-site observations. The TCEQ method
tended to underestimate background O3 because minimum MDAS O; values were often influenced by

residual urban emissions. In the inland southeastern U.S., Yan et al. (2021) found the O3;-CO-HCHO
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method yielded the lowest estimates (10—15 ppb), the 1-c O3-NO, method intermediated values (15-25
ppb), and the 5" percentile method the highest (2030 ppb), likely due to anthropogenic influences in
urban downwind regions. Likewise, Chen et al. (2022) revealed that the nocturnal O3 method
underestimated background O3 by up to 30% compared with the temperature-ozone relationship method
during polluted seasons in China.

Collectively, these studies demonstrate that methodological choices alone can lead to discrepancies
of 10-20 ppb in background O3 estimates within the same region. Careful interpretation therefore
requires explicit attention to methodological assumptions, data representativeness, and sensitivity to
emission influences. Moving forward, the development of harmonized datasets would enable the
consistent application of multiple methods at the same regions and time periods, providing more robust

intercomparisons and clearer insights into the strengths and limitations of each approach.
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Figure 5: Estimated regional average background O3 concentrations in China from 1994 to 2020 based on
multiple methods. All data sources are compiled and summarized in Table S1. The values of “n =" below each

box indicate the number of individual data records used in the analysis for each method category.

5.3 Long-term trends and interannual variability of background ozone in China

Due to the absence of long-term background O3 records for other regions, Figure 6 focuses on the annual
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variation trends of background O3 concentrations in four regions of China — South China (SC), Northwest
China (NWC), North China (NC), and East China (EC) — during the period from 1994 to 2020. Overall,
background Os; concentrations have exhibited an upward trend across these regions, though the
magnitude and significance of the trends vary regionally.

South China (SC) exhibited the most pronounced increase, with an average growth rate of 0.36 ppb
yr'! (r’=0.38, p<0.01), as shown in Fig. 6(a). Although a modest decline has occurred since 2014, the
long-term trend remains upward. This increase is likely driven by the regional transport of O3z and its
precursors. Previous studies suggest that rising background Os levels in Hong Kong are largely
attributable to enhanced upwind emissions from mainland China and cross-boundary transport of
precursors from Southeast Asia, particularly the Indochinese Peninsula (Wang et al., 2009b; Lee et al.,
2014). Yang et al. (2019) further demonstrated that precursor emissions outside the Pearl River Delta
region significantly contribute to local O3 levels, with this influence intensifying in recent years.

Both Northwest China (NWC) and North China (NC) also exhibit substantial increases, with a
growth rate of 0.32 ppb yr'! (1?=0.68, p<0.01) and 0.31 ppb yr'! (1>=0.34, p<0.05), respectively, as shown
in Fig. 6(b) and Fig. 6(c). These trends are likely linked to enhanced stratosphere—troposphere exchange
(STE) and the long-range transport of O3 precursors, as previously reported (Xu et al., 2018; Zhang et
al., 2020). Large-scale circulation shifts and more frequent STE events have further amplified
background Ojs levels in these inland regions (Xu et al., 2016, 2020; Xue et al., 2011). Notably, for North
China (NC), two separate trend lines are presented in Figure 6(c), reflecting methodological differences
among studies: Ma et al. (2016) provided a long-term record using MDAS O3 concentrations filtered
from in situ observations, while most other studies used hourly averages over shorter or discontinuous
periods. Since MDAS8 Os-based estimates are inherently higher than hourly means, aggregating them
would bias trend interpretation. Therefore, separate presentation ensures consistency. Furthermore,
MDAS O3 records are scarce elsewhere (typically fewer than four data points), precluding dual-trend
comparison. The results of Ma et al. (2016) also support the intensification of background O3 pollution
in North China (NC), reporting a much steeper growth rate of 1.35 ppb yr™! (r> = 0.80, p < 0.01) based

on observations at the Shangdianzi regional background station. This suggests that both regional
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emissions and conducive meteorological conditions have played synergistic roles in driving the
escalation of background O; levels in North China (NC).

In contrast, East China (EC) exhibited the slowest increase in background O3 concentration, with
an average growth rate of 0.27 ppb yr! that is not statistically significant (p > 0.05) (Fig. 6(d)). Several
factors likely explain this muted growth (Liu et al., 2021; Xu et al., 2020; Zhang et al., 2020). First, East
China (EC) was among the earliest regions in China to adopt coordinated NOx and VOCs controls,
notably under the “Atmospheric Ten Measures” (2013) and the “Blue Sky Protection Campaign” (2018),
which likely curbed precursors increases. Second, the region’s dense urbanization and heavy
industrialization complicates separation of background O3 from local anthropogenic signals, potentially
leading to underestimation of long-term growth. Third, meteorological conditions — higher relative
humidity, more frequent precipitation, and weaker solar radiation — tend to suppress photochemical O3
formation relative to drier, high-insolation regions such as North China (NC) and Northwest China
(NWC). Taken together, these factors may explain why East China (EC) appears to be approaching a

plateau phase in background Os levels, in contrast to the stronger upward trends observed in other regions.
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Figure 6: Annual trend of background O3 concentrations in the SC regions (1995-2020), NWC (1994-2019),
NC (2004—2020) and EC (2004—2020), estimated using multiple independent studies (detailed in Table S1).

Dashed lines indicate linear regression based on available annual data points.
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5.4 Seasonal variation of background ozone in China

Figure 7 illustrates the seasonal variations in mean background O3 concentrations across China and its
seven subregions during 1994-2020. Nationally, background O3 exhibits pronounced seasonality, with
comparable peaks in spring (47.2 = 10.6 ppb) and summer (47.3 £ 15.4 ppb), and a pronounced minimum
in winter (33.2 + 9.8 ppb).

Regional patterns reveal clear differences in seasonal maxima. In Southwest China (SWC) and
Northeast China (NEC), peaks occurred in spring (52.1 £ 9.9 ppb and 38.8 + 4.4 ppb, respectively),
largely driven by stratosphere—troposphere exchange (STE) and enhanced downward transport over
elevated terrain, and also influenced by prevailing winds that transport NOy and VOCs from Southeast
Asia and other regions into these areas (Liu et al., 2019; Lu et al., 2019a; Xu et al., 2018; Wang et al.
2011; Ye et al., 2024). In contrast, North China (NC), Northwest China (NWC), and East China (EC)
recorded summer maxima (56.8 £+ 10.8, 55.0 £+ 8.5, and 48.3 + 16.9 ppb, respectively), consistent with
the influence of the East Asian Summer Monsoon (EASM), which enhances precursor inflow and
stimulates photochemical Oz formation under high temperatures and intense solar radiation (Gao et al.,
2005; Liu et al., 2019, 2021; He et al., 2021). South China (SC) and Central China (CC) reached their
highest levels in autumn (46.9 + 10.4 and 43.0 £ 14.2 ppb, respectively), likely reflecting inland pollutant
transport by northeasterly winds combined with favorable sunlight conditions (Xie et al., 2022; Shen et
al., 2019; Luo et al., 2019).

Seasonal minima also varied by region. Winter lows were observed in Northeast China (NEC, 24.5
+ 3.6 ppb), North China (NC, 24.9 + 5.2 ppb), and East China (EC, 25.2 + 8.1 ppb), reflecting weak
photochemistry under low temperatures and reduced solar radiation. In contrast, South China (SC, 24.8
+ 5.0 ppb) and Central China (CC, 28.7 + 10.0 ppb) exhibited summer minima, attributable to frequent
precipitation and high humidity suppressing Oz production. Southwest China (SWC) maintained
persistently low levels in both summer (31.0 + 8.2 ppb) and autumn (31.0 + 4.6 ppb), whereas Northwest
China (NWC) showed relatively lower concentrations in autumn (41.8 + 8.9 ppb) and winter (41.9 £ 5.1
ppb).

In summary, the seasonal cycle of background O3 in China is shaped by the interplay of regional
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meteorology and precursor emissions, while vertical exchange and interregional transport further

modulate seasonal peaks and troughs across regions.
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Figure 7: Seasonal variations in mean background Os concentrations across seven regions of China during
1994-2020. All data sources are compiled and summarized in Table S1. The values of “n =" indicate the

number of individual data records or assembly estimates used in the analysis for each region and season.

5.5 Source attribution and analysis of background ozone in China

The analysis above reveals that the spatiotemporal variations of background O; are influenced by the
synergistic effects of multiple factors, including regional natural source emissions, cross-regional
transport, stratosphere—troposphere exchange, and local atmospheric pollutant reduction measures.
These factors interact in complex and dynamic ways, resulting in significant regional and seasonal
variations in background O3 levels.

Natural source emissions are a key driver of background Os; levels in China, with studies
consistently highlighting their substantial contribution. For example, Wang et al. (2011) and Lu et al.
(2019a), using the numerical model GEOS-Chem, estimated that over 70% of regional background O3
concentrations in China originate from natural emissions, including BVOCs, soil NOy, and CHs

emissions and others. Among these, BVOCs exert a particularly significant impact on O3 formation. Lu
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et al. (2019a) demonstrated that during the peak summer months of July and August in 2016-2017,
BVOCs emissions contributed over 15 ppb to the background O3 in central and eastern China. Similarly,
Chen et al. (2022) emphasized that during O3 pollution seasons, BVOCs emissions dominate the increase
in background O3, contributing 8—16 ppb compared to non-pollution seasons. These findings underscore
the importance of incorporating the variability of natural emissions into modeling and policy frameworks,
particularly in light of future climate change that may exacerbate BVOCs emissions.

Long-range transport plays an equally significant role in shaping background O3 concentration
across China. Several studies have shown that the influx of Oz and its precursors from other regions,
including Southeast Asia, Europe, North America, India, and the Middle East, can elevate background
Os concentration in China by 2—15 ppb (Han et al., 2019; Wang et al., 2011; Wang et al., 2022b; Li et al.,
2014; Ni et al.,, 2018). This influence is particularly pronounced during specific seasons when
atmospheric circulation facilitates the transboundary transport of atmospheric pollutants (Colombi et al.,
2023; Ma et al., 2025; Ni et al., 2018; Sahu et al., 2021; Ye et al., 2024). Regional transport also
significantly influences the background O3 levels in urbanized and densely populated areas. For instance,
Su et al. (2013) showed that air masses originating from high altitudes, the Yangtze River Delta region,
and the Pearl River Delta regions could cause spikes at the Mount Wuyi background station, with
concentration reaching 62—73 ppb, far exceeding the station’s annual average of 41 = 15.9 ppb. Wang et
al. (2022b) also found that emissions outside the Yangtze River Delta regions contributed as much as 63%
to O3 pollution within the region. Similarly, Wang et al. (2009b) measured that air masses from eastern
China had an average O3 concentration of 48 ppb at a background station in Hong Kong, highlighting
the significant impact of inter-regional transport on coastal regions.

Stratosphere—troposphere exchange (STE) is a critical vertical transport process contributing to
background O3 levels, particularly in high-altitude and northern regions of China. This process is most
active during spring, when stratospheric O3 is transported downward into the troposphere (Ding and
Wang, 2006; Lu et al., 2019a; Ma et al., 2025; Xu et al., 2018). Wang et al. (2011) estimated that STE
contributes approximately 7 ppb to background O3 concentrations in northern China during the spring

season. Luo et al. (2024) further revealed that STE contributed an average of 9.6 ppb to surface O3 over
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the North China Plain during 19-20 May 2019. Observations at the Mt. Waliguan Station on the Tibetan
Plateau further support the importance of STE; Xu et al. (2018) reported that STE contributes 8—12 ppb
to background O3 concentrations during spring. Lu et al. (2019a) found that STE processes contribute as
much as 20 ppb to background O3 concentration in western China during March and April, with an
average contribution of 1.8—8.7 ppb across China from March to October. In lower-latitude regions such
as the Pearl River Delta, Shen et al. (2019) demonstrated that vertical transport processes, including STE,
predominantly influence background Os levels during spring and autumn. These findings underscore the

critical role of altitude and latitude in modulating the magnitude of STE contributions.

5.6 Comparative analysis of background ozone levels: insights from China and global perspectives

Figure 8 presents a comparative analysis of background O3 concentrations in China and several other
global regions, with a particular focus on the U.S., Canada, Europe, Japan, and South Korea. On average,
background Os concentrations in China (41.4 + 12.2 ppb) are slightly higher than those observed in the
U.S. (35.7 £ 14.0 ppb) (Chan and Vet, 2010; Dolwick et al., 2015; Emery et al., 2012; Fiore et al., 2003,
2002a; Hirsch et al., 1996; Parrish et al., 2009; Parrish and Ennis, 2019; Steiner et al., 2010; Vingarzan,
2004; Yan et al., 2021; Zhang et al., 2011) and Europe (34.2 + 10.3 ppb) (Auvray and Bey, 2005;
Bronnimann et al., 2000; Kalabokas et al., 2000; Naja et al., 2003; Parrish et al., 2009; Scheel et al., 1997;
Vecchi and Valli, 1998; Vingarzan, 2004; Wilson et al., 2012). This suggests that although developed
regions have made significant progress in controlling anthropogenic Oz precursors, background O3
remains a major concern due to various regional factors such as higher emissions, industrial activity, and
specific atmospheric conditions (Huang et al., 2015). In contrast, background O3 levels in China are
significantly higher than those observed in Canada (26.9 + 7.4 ppb) (Chan and Vet, 2010; Vingarzan,
2004), which is likely due to Canada’s lower industrial activity, less dense population, and colder climate
that limits the photochemical processes necessary for O3 formation.

When comparing China to other East Asian regions, the background O; concentration is slightly
higher than in South Korea (38.8 + 11.74 ppb) (Ghim and Chang, 2000; Kim et al., 2023; Lam and
Cheung, 2022; Lee and Park, 2022; Yeo and Kim, 2021), but marginally lower than in Japan (45.4 £23.2

ppb) (Akimoto et al., 2015; Lam and Cheung, 2022; Sunwoo et al., 1994; Tsutsumi et al., 1994). Detailed
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information on the data, including a breakdown of regional and temporal distributions, is provided Table
S4. Notably, East Asian regions, including China, South Korea, and Japan, typically exhibit background
O3 levels that are 3—20 ppb higher than those observed in Europe, the U.S., and Canada. This regional
disparity is attributable to a combination of factors, including the region’s warm climate, high solar
radiation, and the presence of industrialized areas that emit large quantities of O3 precursors. These
factors collectively enhance photochemical O3 (Lee et al., 2021; Li et al., 2016; Nagashima et al., 2010;
Yamaji et al., 2006). Furthermore, complex regional airflow patterns, including transboundary transport
and local atmospheric dynamics, promote the accumulation of background O3, especially in densely
populated urban centers. These findings underscore the critical need for regional cooperation in
addressing Os pollution in East Asia, where transboundary influences and shared atmospheric conditions
complicate the management of background Os levels.

A more granular regional comparison reveals notable differences in background O3 concentrations
among various regions of both China and the U.S. Specifically, the difference in background O;
concentrations between central and western China (including NWC and SWC) reaches 10 ppb, while the
discrepancy between the Eastern and Western U.S. is as high as 13 ppb. Western China and the Western
U.S. exhibit higher background Os levels. In particular, the Los Angeles area in the Western U.S. reports
background Oj; levels as high as 62 ppb (Parrish and Ennis, 2019), a phenomenon attributed to the
region’s combination of intense ultraviolet radiation, low humidity, and favorable atmospheric conditions
for O; formation. Similarly, the higher altitudes of western China enhance its susceptibility to
stratospheric transport, which contributes to elevated O; concentrations. The Western U.S. is similarly
influenced by trans-Pacific atmospheric transport, further exacerbating O3 levels.

In contrast to the significant regional differences observed in China and the U.S., background O3
concentrations in Canada and Europe exhibit relatively small variations, typically ranging from 4 to 7
ppb. The limited variation in Canada can be attributed to factors such as its low population density,
minimal industrial activity, and expansive natural vegetation, all of which, coupled with its cold climate,
limit O3 production. In Europe, the relatively smaller regional differences are likely as a result of effective

transnational air quality management and stringent pollution control policies, which have successfully
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minimized disparities in O3 concentrations across the continent. The relatively uniform air quality
management frameworks in these regions have helped mitigate large-scale emissions and reduce regional

discrepancies in background O3 levels (Miranda et al., 2015; Naess, 2004; Rodrigues et al., 2021; Xu et

al., 2019).
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Figure 8: Average background O3 concentrations in the U.S., Canada, Europe, South Korea, Japan, and China.

6 Conclusions and perspectives

Background Oj; concentrations are critical for understanding Os pollution, as they represent the baseline
level of O3z even in the absence of local anthropogenic emissions. These concentrations determine the
maximum achievable reduction in Oz through the mitigation of anthropogenic precursor emissions,
making accurate estimates crucial for effective air quality management and setting realistic pollution
control targets. This study provides a comprehensive review of the definition and estimation methods for
background O3 concentrations, with a focus on recent advances in regional research in China. Our
findings reveal an average background Os concentration of 41.4 + 12.2 ppb in China, which accounts for
79% of the tropospheric MDAS Os. Notable spatial variations are observed, with the highest levels in
Northwest China (NWC, 48.2 + 8.3 ppb) and the lowest in Northeast China (NEC, 33.1 + 5.7 ppb),
alongside an upward national trend reflecting growing O3 pollution. Despite progress in estimation

methods, discrepancies persist across the four estimation methods, with the in situ measurement
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estimation method and statistical analysis estimation method yielding higher values, while the integrated
methods offers lower but more consistent estimates. Compared to other regions, East Asia, including
China, South Korea, and Japan, experiences background O3 levels 3—20 ppb higher than the U.S., Canada,
and Europe. This highlights the region-specific atmospheric conditions and pollution characteristics, and
the imperative of addressing background O3 pollution within a global framework.

Although substantial progress has been made in estimating background O; over recent decades,
considerable challenges remain due to the complexity of its sources and the multitude of influencing
factors, particularly in the context of global climate changes and transboundary pollution. Future research

should prioritize several key areas to advance the understanding and management of background Os:

6.1 Accurate quantification of background ozone sources and processes

Natural emissions, long-range transport, and stratosphere—troposphere exchange (STE) are key drivers
of background Os concentrations; however, significant uncertainties remain in quantifying their
individual contributions. To improve our understanding and predictive capabilities, future research must
prioritize the refinement of quantification methods for these sources and processes. For instance, the
variability of natural emissions, particularly from BVOCs and lightning, remains inadequately
characterized across different climatic conditions. In addition, STE represents another critical but poorly
understood source of background O3, with studies indicating significant seasonal and regional variations
in its contribution (Lu et al., 2019a; Xie et al., 2017). Despite the critical importance of these processes,
existing models often encounter difficulties in accurately simulating natural emissions and STE,
primarily due to limitations in model structures and parameterization (Auvray and Bey, 2005; Griffiths
et al., 2021; Huang et al., 2024; Koo et al., 2010). As a result, the accuracy of model predictions for
background O3 concentrations is compromised, resulting in increased uncertainties that hinder effective

policy planning and air quality management.

6.2 Development of integrated methods techniques

Single method approaches for estimating background O3 concentrations have inherent limitations, as
they often fail to capture the full spectrum of factors influencing O; levels. For example, while numerical
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models provide valuable insights, they frequently underestimate actual Os concentrations due to
simplifications in chemical processes and uncertainties in input data. In contrast, statistical analysis
estimation methods are heavily dependent on the availability and representativeness of observational
data, which can be sparse or biased, particularly in regions with limited monitoring networks. These
limitations highlight the necessity for more integrated approaches that combine the strengths of different
methods.

In this context, the development of integrated methods techniques presents a promising approach
to improve background O; estimation. By integrating observational data, statistical analysis, and
numerical results, integrated methods estimation can mitigate the inherent limitations of each individual
method. For example, data assimilation techniques, which combine model outputs with real-time
observational data, have been shown to improve both spatial and temporal resolution, yielding more
accurate and robust O3 estimates (Skipper et al., 2021; Sun et al., 2024). Additionally, the integration of
high-resolution regional models with long-term observational datasets can significantly enhance
spatiotemporal coverage of background O3 estimates, enabling precise characterization of O3 variability
across diverse geographic scales, from urban centers to remote rural areas. Recent advancements in
machine learning-based fusion methods further extend the potential of data integration by uncovering
nonlinear relationships among multiple data sources, thereby improving estimation accuracy. These
approaches can also account for complex interactions between meteorological conditions, emission
sources, and atmospheric chemistry, which are often challenging to capture using traditional methods.
Given the potential of integrated methods techniques to provide more accurate and comprehensive
background Oj; estimates, future research should prioritize their continued development and validation.
Such efforts will improve the precision and reliability of background Os estimates, thereby enhancing
our understanding of regional O3 pollution dynamics and supporting the development of more effective

air quality management strategies.

6.3 Fostering international collaboration on long-range pollution transport

As air quality standards for O3 become increasingly stringent, background O; concentrations have

emerged as a critical challenge for many countries in achieving regulatory targets. This issue is
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particularly pronounced in regions impacted by both local and transboundary pollution, where efforts to
reduce domestic emissions may not fully address the underlying drivers of elevated background Os levels.
For instance, studies conducted in the U.S. have demonstrated that despite substantial reductions in local
emissions of O3z precursors, background O3 concentrations in some areas remain persistently high
(Cooper et al., 2012; Huang et al., 2015). This phenomenon is partly attributed to long-range transport
of pollutants, including O3 precursors, from distant regions, often spanning international borders and
even continents (Cynthia Lin et al., 2000; Dentener et al., 2010). Such transboundary pollution
underscores the need for comprehensive international cooperation to effectively mitigate the challenges
posed by background Os.

International collaboration is therefore essential for tackling the elevated background Os. To this
end, fostering transboundary emission reduction agreements between countries and regions can play a
pivotal role in curbing the long-range transport of O3 and its precursors. Moreover, strengthening the
global background O3 monitoring network, particularly in remote regions and marine stations, would

significantly enhance the capacity for real-time monitoring of background O3 levels on a global scale.

6.4 Strengthening research on the interaction between background ozone and climate change

The impact of climate change on background O; concentrations represents a critical area for future
research, with profound implications for air quality management and public health. Climate change is
expected to affect background O; levels through multiple interconnected mechanisms. For example,
rising temperatures and altered precipitation patterns are expected to affect natural emissions, such as
BVOCs emissions from forests and NOx emissions from soil, both of which are particularly sensitive to
climatic factors like temperature and humidity. These changes would, in turn, influence regional
background O; levels. Beyond these direct emission impacts, climate change is likely to modify
atmospheric circulation patterns, thereby affecting the long-range transport of atmospheric pollutants and
the spatial distribution of background Os. Alterations in wind patterns and monsoon systems, for example,
could significantly alter the transport of Oz and its precursors over large distances, thereby exacerbating
regional background O; levels, especially in areas downwind of major pollution sources (Collins et al.,

2003; Sonwani et al., 2016; Sudo et al., 2003; Wu et al., 2008). Consequently, future research should
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prioritize understanding the dynamic interplay between climate change and background O3

concentrations to improve predictive models and inform effective air quality management strategies.
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