
Improved Simulation of Thunderstorm Characteristics and
Polarimetric Signatures with LIMA 2-Moment Microphysics in
AROME
Cloé David1, Clotilde Augros1, Benoit Vié1, François Bouttier1, and Tony Le Bastard2

1CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
2CNRM, Université de Toulouse, Météo-France, CNRS, Lannion, France

Correspondence: Cloé David (cloe.david@meteo.fr)

Abstract.

Thunderstorm forecasting remains challenging despite advances in numerical weather prediction (NWP) systems. The mi-

crophysics scheme, that represents clouds in the model, partly contributes to the introduction of uncertainties in the simulations.

To better understand the discrepancies, synthetic radar data simulated by a radar forward operator (applied to model outputs)

are usually compared to dual-polarization radar observations, as they provide insight into the microphysical structure of clouds.5

However, the modelling of polarimetric values and radar signatures such as the ZDR column (ZDRC) remains a complex issue,

despite the diversity of microphysics schemes and forward operators, especially above the freezing level where too low values

are often found.

The aim of this work is to assess the ability of the AROME NWP convective model, when coupled with two distinct

microphysics schemes (ICE3 1-moment and LIMA partially 2-moment), to accurately reproduce thunderstorms characteristics.10

A statistical evaluation is conducted on 34 convective days of 2022 using both a global and an object-oriented approach, and a

ZDRC detection algorithm is implemented. Simulations performed with LIMA microphysics showed a good agreement with

observed ZH , ZDR and KDP below the melting layer in convective cores. Moreover, it demonstrated a remarkable capacity to

generate a realistic number of ZDRC, as well as a distribution of (1) the ZDRC area, and (2) the first ZDRC occurrence, very

close to the observations. Enhancements in the forward operator have also been suggested to improve the simulations in the15

mixed phase and cold phase regions.

These findings are highly encouraging in the context of data assimilation, where one could leverage the combination of

advanced microphysics schemes and improved forward operators to improve storm forecasts.

1 Introduction

Thunderstorms are among the most damaging weather phenomena due to their capacity to generate heavy rainfall, strong20

winds, hail, and, to a lesser extent, tornadoes. Despite advances in convective numerical weather prediction (NWP) systems,

storm forecasting remains challenging. Refining the representation of clouds is a possible area for improvement. In NWP, cloud

modelling is done using either a spectral bin or a bulk microphysics scheme. Because of computational costs, single or two-
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moment bulk schemes are most commonly used, where hydrometeors are partitioned into distinct categories. Depending on

the number of moments, the mixing ratio and/or number concentration evolution is predicted, and physical processes between25

each category are parametrized. To evaluate microphysics schemes, fine scale observations pertaining to hydrometeors are

needed. Since direct hydrometeor observations are relatively rare and mostly confined to field experiments, remote sensing

observations, such as radar observations, are generally regarded as a key source of information on hydrometeors as they

provide high temporal and spatial resolution data (Houze Jr., 2014). For radar networks that collect dual-polarized data, not

only are precipitation intensities accessible via the horizontal reflectivity ZH , but also direct information about hydrometeors30

such as their axis ratio via differential reflectivity ZDR, their liquid water content via the specific differential phase KDP or

their heterogeneity inside the radar beam via the cross-correlation coefficient ρHV . Such variables can be used for hydrometeor

classification algorithms (Park et al., 2009; Al-Sakka et al., 2013; Besic et al., 2016). Furthermore, these variables offer new

insights into thunderstorms, where polarimetric signatures can be identified and attributed to key dynamical and microphysical

processes (Höller et al., 1994; Kennedy and Rutledge, 1995; Kennedy et al., 2001; Kumjian and Ryzhkov, 2008).35

In recent years, there has been a growing interest in polarimetric data and especially the ZDR column signature, which

is defined as a columnar enhancement of differential reflectivity above the environmental freezing level. Primarily explored

by Caylor and Illingworth (1987), this signature has attracted the attention of researchers, as it indicates that supercooled

raindrops and wet ice particles are lofted by updrafts (Hall et al., 1984; Ryzhkov et al., 1994; Kumjian and Ryzhkov, 2008;

Kumjian et al., 2014). In particular, links have been established between ZDR column (ZDRC) and hail growth (Picca and40

Ryzhkov, 2012; Kumjian et al., 2021). In their study, Kumjian et al. (2021) found that the quantity of hail produced by a

storm was directly related to the width of the updraft. They also found that the largest hailstones were generated by stronger

and narrower updrafts. The work of Kuster et al. (2019, 2020) has emphasized the usefulness of such a signature in warning

decision processes, showing that ZDRCs develop and evolve prior to upper-level ZH cores, and provide early signals of

changes in updraft strength. Similarly, Lo et al. (2024) and Aregger et al. (2024) came to the same conclusions, but for45

different locations (UK and Switzerland respectively), further supporting the potential of ZDRCs to help forecasters issue

more accurate severe weather warnings, with improved lead times. In the field of radar data assimilation, Carlin et al. (2017)

demonstrated promising outcomes of using ZDRCs to provide moisture and latent heat adjustments, in a modified ZH -based

formulation of the Advanced Regional Prediction System cloud analysis (ARPS; Xue et al., 2020, 2001). Likewise, Reimann

et al. (2023) indirectly assimilated polarimetric data using microphysical retrievals of the liquid and ice water content and50

showed improvements on 9-hour precipitation forecasts.

Before attempting to assimilate polarimetric signatures or use them for nowcasting, it is necessary to ensure that models

accurately reproduce storm structures and associated polarimetric signatures. Several evaluations have been conducted to assess

model ability to forecast thunderstorms. Typically, such evaluations are performed on fields of precipitation or reflectivities, and

they compare different microphysics schemes against each other and against observations over a few cases (Gallus and Pfeifer,55

2008; Rajeevan et al., 2010; Starzec et al., 2018). Now that dual-polarization radar data are becoming more easily available

for the scientific community, evaluations tend to focus on polarimetric variables and signatures. Hence, recent studies have

compared observed to simulated polarimetric signatures with several microphysics schemes, either for an ideal case (Jung et al.,
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2010; Johnson et al., 2016) or a few real cases with different storm types (Putnam et al., 2017). Evaluating microphysics allows

a better understanding of the model ability to reproduce known polarimetric signatures and their associated microphysical60

processes. For instance, one-moment schemes have been shown to be unable to replicate the ZDR arc in supercells because of

the lack of rime-ice (Johnson et al., 2016) and graupel size sorting (Putnam et al., 2017). Sometimes, comparisons are made

with a single microphysics scheme in order to refine the comprehension of model biases. Thus, sensitivity tests are conducted

as exemplified in the two studies of Shrestha et al. (2022a, b) for a 2-moments scheme including a separate hail class, with

respectively a wintertime stratiform precipitation event and three convective summertime storms. The former study highlighted65

that polarimetric signals were underestimated where snow aggregates were dominant in the hydrometeor population between

−3 and −13 °C. The latter study showed that the model likewise underestimated the convective area, high reflectivities and the

width/depth of ZRDCs, all of which led to an underestimation of the frequency distribution of high precipitation values.

Going further than the usual point-based forecast evaluation, Davis et al. (2006) was among the first to define an object-

based evaluation framework. The Method for Object-Based Diagnostic Evaluation (MODE) identifies objects by applying a70

convolution filter and a threshold on the concerned field. This method has the advantage of not emphasizing a precise location,

thereby facilitating the direct comparison of different features between each other. In Davis et al. (2009) MODE is applied on

precipitation quantities to evaluate 1-h rainfall accumulation from 24-h forecasts, while in Cai and Dumais (2015) vertically

integrated liquid water (VIL) fields are used to evaluate storm characteristics over a 3-week period. This object-based verifica-

tion approach can also be leveraged to evaluate the three-dimensional structure of forecasted thunderstorms, as demonstrated75

in Starzec et al. (2018). They used observed and forecasted 3D reflectivity fields to define convective objects where horizon-

tal reflectivities were greater than 45 dBZ. Four months of daily summertime forecasts with either the WRF single-moment

6-class microphysics scheme (Hong and Lim, 2006) or the partially two-moment Thompson scheme (Thompson et al., 2004)

have been evaluated. Forecasted objects were found to be more frequent and larger above the melting layer than the observed

objects for both microphysics schemes, but only the two-moment scheme simulated cores with intensities approaching the ob-80

servations. One of the first statistical evaluations of polarimetric variables within convective objects was carried out by Köcher

et al. (2022, 2023). The total simulated precipitation, cell core height, and cell maximum reflectivity were analyzed over a

30-day period. Of the five microphysical schemes evaluated, only one was found to simulate enough convective cells and none

of them were able to reproduce the strongest reflectivities. Three 3-moment bulk schemes showed increased ZDR values above

the melting layer, which was attributed to the lofting of large raindrops. This last result suggests that ZDRCs may have been85

detected in simulations.

In this context, and preparing for the future use of polarimetric data in the assimilation system of the French operational

convective-scale model AROME (Seity et al., 2011; Brousseau et al., 2016), the present study aims to statistically evaluate

storms structures, not only in terms of accumulated precipitations and polarimetric fields, but also with an object-oriented

approach. Therefore, a ZDRC detection algorithm was developed based on Snyder et al. (2015) and a tracking algorithm90

(Heikenfeld et al., 2019) was applied on different convective objects. To the author’s knowledge, ZDRC objects characteristics

have never been evaluated this way before. Thus, 34 convective days of 2022 in France were objectively selected from the

European Severe Weather Database (ESWD; Dotzek et al., 2009). The corresponding dual-polarization observations from the

3



French radar network were compared with synthetic polarimetric data simulated with the Augros et al. (2016) radar forward

operator applied to the AROME model. Simulated variables were obtained from both the operational one-moment microphysics95

scheme ICE3 (Pinty and Jabouille, 1998) and the partially two-moment scheme LIMA (Vié et al., 2016), which is intended to

replace ICE3 in a future version of AROME.

Further details regarding the data can be found in section 2. The methodology employed to compare observations and

simulations, as well as a description of the ZDR column algorithm and the tracking algorithm, are explained in section 3.

Results (section 4) are organized as follows : first, a classical model evaluation is performed on accumulated precipitations100

fields. Secondly, an object-based evaluation is performed, focusing on convective parts of the storms, where reflectivities, cells

characteristics and polarimetric fields are analyzed. Then, investigations are carried out on ZDR column objects. Finally, results

are discussed in section 5 and the main conclusions of the paper are presented in section 6.

2 Data

The following section describes the data used in this study. Precisions about the selected events are given in subsection 2.1105

while subsection 2.2 and subsection 2.3 provide more information about the radar and model data compared in this evaluation.

Finally, synthetic radar data are obtained using the forward operator described in subsection 2.4

2.1 Studied events

The European Severe Weather Database (ESWD; Dotzek et al., 2009) was used to objectively identify severe convective events

in 2022. Reported events undergo quality control procedures concerning the time, location, and the veracity of the report. In110

this work, only reports confirmed by reliable sources or scientific case studies have been selected (classified as QC1 or QC2 in

the ESWD database). To target severe convective events, we restricted the selection to days where hailstones of size equal or

greater to 2 cm were reported in France in 2022, while keeping the number of cases reasonable in terms of computation and

processing time. Thus, we included all convective events from April to July, a period well characterized by severe convective

storms and in particular supercells. In order to incorporate a variety of storm types, three high-stakes days were added to115

the study sample (a major thunderstorm event all across France on August 16, the Corsica bow echo on August 18, and the

Bihucourt tornado on October 23), for a total of 34 convective days analyzed. For each day, several hail events may occur at

different places. In that case, the day is subdivided as necessary by hand. Each selected period has been cropped to cover the

observed event only. In this paper, the term "event" will refer to each individual observed event (and the associated simulated

data). A table listing the studied events, their location, and their duration, can be found in the appendix Table A1.120

2.2 Radar observations

Observational data used here comes from the ARAMIS (Application Radar à la Météorologie Infra-Synoptique) operational

radar network of Météo-France. In 2022, the metropolitan network consisted of 31 dual-polarized Doppler radars (20 C-band, 6

X-band, 5 S-band) covering mainland France. Each dual-polarization radar performs 360° scans at 6 elevations angles ranging
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from a minimum of 0.4° to a maximum of 15°, depending on the radar. There is a supercycle of 15 minutes divided into125

3 cycles of 5 minutes each, where the 3 lowest elevations angles are kept the same within the supercycle. The remaining

3 elevations angles vary within each 5 minutes cycle. Raw polarimetric data are corrected accordingly to their frequencies

through a polarimetric processing chain (Figueras i Ventura et al., 2012). Among the corrections, differential reflectivities are

re-calibrated, non-meteorological echoes are identified (Gourley et al., 2007), and attenuation correction is applied to horizontal

and differential reflectivities. Hydrometeors are then classified using a fuzzy logic algorithm (Al-Sakka et al., 2013, hereafter130

A13). The following variables are obtained at a 240 m x 0.5° polar resolution within a maximum radius of 255 km from each

radar, and at a time resolution of 5 min : the horizontal reflectivity ZH , the differential reflectivity ZDR, the differential phase

ϕDP , and the co-polar correlation coefficient ρHV . From these variables, the specific differential phase KDP and the echo

classification (hereafter ECLASS) are also computed.

In this paper, for the evaluation of precipitation accumulations, ANTILOPE hourly aggregated quantitative precipitation135

estimations (QPE) are used (Champeaux et al., 2011). ANTILOPE is a composite product where a radar-based precipitation

estimation is merged with rain gauges observations from the Météo-France network. The reader is referred to appendix A of

Caumont et al. (2021) for a more detailed description of the ANTILOPE QPE algorithm. For the 3D evaluation, we only used

C- and S-bands radar data, as X-band signal is quickly attenuated during rainy events.

2.3 Model data140

To compare with observational data, reforecasts of the entire French metropolitan domain have been obtained with the convective-

scale NWP model AROME, presented in subsubsection 2.3.1. The two microphysics schemes used in this study are described

in subsubsection 2.3.2 and the radar forward operator used to compute synthetic polarimetric variables from the model output

is presented in subsection 2.4. The outputs are generated at the same temporal resolution as the observations (i.e. 5 min).

2.3.1 The AROME model145

AROME is a non-hydrostatic, deep convection resolving model, running operationally since December 2008 (Seity et al.,

2011). This limited-area model is centered on France, and lateral boundary conditions come from the global model ARPEGE

(Action de Recherche Petite Echelle Grande Echelle; Courtier et al., 1991, 1994). In April 2015, the AROME system was

upgraded, resulting in (1) an increase in both horizontal and vertical resolutions (from 2.5 km with 60 pressure levels to

1.3 km with 90 pressure levels) and (2) a reduction of the data assimilation cycle period from 3 to 1 hour (Brousseau et al.,150

2016). AROME employs a 3D-Var scheme in a continuous assimilation cycle in order to assimilate mesoscale observations.

These include radar radial wind speeds and horizontal reflectivities via a 1D+3D-Var approach (Caumont et al., 2010; Wattrelot

et al., 2014). Since July 2022, 51-hour forecasts are issued at a three-hourly frequency. The AROME model simulates one 2D

prognostic variable (the hydrostatic surface pressure), and twelve 3D prognostic variables: two horizontal wind components,

temperature, specific content of water vapor, rain, cloud droplets, snow, graupel, and ice crystals, turbulent kinetic energy,155

and two nonhydrostatic variables related to pressure and vertical momentum (Bénard et al., 2010). Subgrid processes are

parametrized as follows. The surface is modelled with SURFEX (SURFace EXternalisée; Masson et al., 2013) which associates
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each grid box of the model with a surface tile (nature, town, sea, or lake), using the ISBA scheme (Interaction Soil Biosphere

Atmosphere; Noilhan and Mahfouf, 1996; Noilhan and Planton, 1989) for the natural continental tiles. Local turbulent mixing

is computed by a TKE scheme (Turbulent Kinetic Energy; Cuxart et al., 2000) and non-local vertical mixing is performed by a160

shallow-convection scheme based on a mass-flux scheme (Pergaud et al., 2009). Radiation effects are parametrized by RRTM

(Rapid Radiative Transfer Mode; Mlawer et al., 1997) for the long waves and the Fouquart-Morcrette scheme (Fouquart and

Bonnel, 1980; Morcrette and Fouquart, 1986) for the short wave spectrum. The microphysics schemes available are described

in the next section. A more detailed documentation of the AROME model is available in Termonia et al. (2018).

2.3.2 Microphysics schemes165

An accurate representation of thunderstorms requires a mixed-phase microphysics scheme with riming processes and graupel

(Seity et al., 2011; Shrestha et al., 2022a). In the AROME model, two bulk microphysics schemes satisfying this requirement

are available : a single-moment scheme, ICE3 (Pinty and Jabouille, 1998), which is used in the operational version of AROME

and a two-moments scheme, LIMA (Liquid Ice Multiple Aerosols; Vié et al., 2016; Taufour et al., 2024), currently used for

research purposes (Taufour et al., 2018; Ducongé et al., 2020). A description of both schemes is provided below.170

The single-moment bulk scheme ICE3 is a three-class ice parameterization coupled to a Kessler scheme (Kessler, 1969) that

describes the warm phase. ICE3 manages five prognostic variables of water condensates, in addition to water vapor, to represent

the cloud microphysics. The prognostic equations predict the specific contents (q) of three precipitating species, namely rain

qr, snow aggregates qs and graupel qg (including different types of large-rimed crystals like frozen drops and hail), as well as

two non-precipitating species : ice crystals qi and cloud droplets qc. Furthermore, a generalized gamma distribution is used175

to represent the particle size distribution (PSD) of each hydrometeor. Power-law relationships are used to link the mass and

the terminal speed velocity to the particle diameters. As ICE3 is a one-moment scheme, the total number concentration (N )

of each species is diagnostic. For the precipitating species Nr, Ns, and Ng are deduced from the specific contents, whereas

for ice crystals Ni is diagnosed based on the Meyers et al. (1992) parameterization of the heterogeneous nucleation. The total

number concentration of cloud droplets Nc is a function of surface characteristics and is set to 300 particles/cm3 over land180

and 100 particles/cm3 over sea areas. Finally, ICE3 comes with a subgrid condensation scheme and performs an implicit

adjustment of the cloud droplets and ice contents in clouds with a strict saturation criterion. A more complete description with

the associated formulas can be found in Lac et al. (2018).

LIMA is a two-moment bulk scheme with a prognostic representation of aerosols and their interactions with clouds. Aerosol

modes are defined by their chemical compositions, PSD, and their capacity to act as cloud condensation nuclei (CCN, parametrised185

following Cohard et al., 1998), ice freezing nuclei (IFN, parametrised following Phillips et al., 2008, 2013) or coated IFN.

LIMA handles the competition between aerosol modes in the activation and nucleation parameterizations. In our experiments,

CCN are initialized with a concentration of 300 particles/cm3 and IFN with 1000 particles/L. The scheme inherits the six

water species of ICE3, but in the version of LIMA used here, number concentrations for raindrops Nr, ice crystals Ni and

cloud droplets Nc are prognostic. The PSD still follows a generalized gamma distribution. As in ICE3, a thermodynamic equi-190

librium is assumed between the water vapor and cloud droplets. However, the deposition and sublimation rates for ice crystals
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are computed explicitly based on their mixing ratio and number concentration, allowing the supersaturation over ice to evolve

freely. Some microphysical processes, such as evaporation, melting or homogeneous freezing, have been modified in LIMA to

handle the number concentration while others, like the self collection of cloud droplets or the self collection and breakup of

raindrops, are entirely new processes. A specificity of ICE3 and LIMA is that snow cannot be converted directly into rain when195

it melts, but instead is first converted into graupel. The reader can find a diagram summarizing all the microphysical processes

of ICE3 and LIMA in Fig. 7 of Lac et al. (2018). For both schemes, hail can be considered either as a full sixth category or

included in the graupel species to form an extended class of heavily rimed ice particles. In this study, hail is included in the

graupel species.

2.4 Radar forward operator200

Polarimetric variables are not native variables of the AROME model. Consequently, a radar forward operator is required to

perform direct comparisons of simulations with dual-polarization observations. The main role of such an operator is to simulate

synthetic polarimetric data at a given radar frequency from model outputs. In this paper, an enhanced version of the Augros

et al. (2016) polarimetric forward operator (hereafter A16) is used. This section will first provide a concise overview of the

operator, after which the enhancements will be presented in greater detail.205

The AROME outputs, including temperature, pressure and hydrometeor contents, are used as inputs to simulate electro-

magnetic wave propagation and scattering at all three operational radars wavelengths (S, C and X bands). Back and forward

scattering coefficients are calculated for pristine ice particles (considered spherical), rain, snow aggregates and graupel (mod-

elled as oblate spheroids) with the T-matrix method (Mishchenko and Travis, 1994). The scattering coefficients are computed

in advance, for different particle sizes, as a function of elevation angle, radar wavelength, temperature, liquid water fraction210

and hydrometeor type. For each hydrometeor category, the PSD and mass-diameter relationship is provided by the model mi-

crophysics. Additionally, the dielectric constant and shape were adjusted for each species, as these parameters are necessary in

calculations of the scattering coefficients.

Thanks to the work of Le Bastard (2019), the melting scheme of the A16 radar forward operator was enhanced. In this study,

only the graupel can be wet, as hail is included in the graupel class. Wet snow is not simulated, as the microphysics scheme215

automatically transfers the snow content into the graupel class when it starts melting. To create a (synthetic) wet graupel

species, 100 % of the graupel content (Mg) provided by the AROME microphysics is converted into the wet graupel content

Mwg , when graupel coexists with rain (i.e. Mwg =Mg and Mg = 0). There is no limit of temperature, which means that the

melting scheme is also applicable at negative temperature as long as the graupel coexists with rain. This melting scheme is

based on the evolution of the liquid water fraction Fw, which describes at any time the physical state of the melting particle.220

Thus, within the wet graupel, Fw is estimated as a function of the rain and graupel content from the model, Mr and Mg , by :

Fw =
Mr

Mg +Mr
(1)

The whole melting process is based on a matrix/inclusion approach (see Fig. B1 in Appendix B). At the beginning, the graupel

starts melting, with the melted water first soaking the air cavities (Ryzhkov et al., 2011). Indeed, if the initial density of the dry
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graupel (or hail) is less than the density of a whole solid ice sphere of the same diameter, this suggests that the graupel particle225

(or hailstone) has air cavities. As stated by Rasmussen and Heymsfield (1987), air cavities are filled from the outside to the

inside of the particle. When all air cavities are filled, a saturated water fraction F sat
w is reached (see Eq. (B13) in Appendix B).

Then, the particle starts forming an outer water shell (Rasmussen and Heymsfield, 1987; Ryzhkov et al., 2011), while the

ongoing mixing of ice and melted water in the core continues to melt. At Fw = 1, the graupel is fully melted.

The consequences of the melting process are reflected in both the retrievals of the scattering coefficients, with the compu-230

tation of an equivalent melt diameter, and the calculation of a new dielectric constant for the wet species. Moreover, a new

particle size distribution is determined following the work of Wolfensberger and Berne (2018). Extended explanations about

the graupel/hail melting process presented here, as well as the formulas of the equivalent melt diameter, the dielectric constant,

and the particle size distribution of the wet specie, are described in Appendix B.

3 Methodology235

To investigate the impact of the microphysics schemes on the storm structures and the reproduction of polarimetric signatures,

both observational and model datasets have been first pre-processed (subsection 3.1). A ZDR column computation algorithm

has been applied (subsection 3.2) and an object tracking algorithm was used to track storm cells and ZDR columns (subsec-

tion 3.3).

3.1 Data pre-processing240

As mentioned in subsection 2.2, input radar data contains the ZH , ZDR, ϕDP , KDP , ρHV and the ECLASS polar fields.

The first pre-processing step consists in removing the gates identified as non-meteorological echoes in the ECLASS field.

Secondarily, a median filter is applied on 3 gates and 3 azimuth angles to reduce the remaining noise in the polarimetric fields.

All the polar radar elevations are then interpolated into a three-dimensional (3D) Cartesian grid with the open-source Py-ART

package (Python ARM Radar Toolkit; Helmus and Collis, 2016). The Cartesian 3D grid has a horizontal resolution of 1 km245

and a vertical resolution of 0.5 km. The grid extends from a height of 0 to 15 km above ground level and contains all the

aforementioned fields. The Py-ART interpolation works as follows : first the radar locations (latitude, longitude, and altitude)

are projected onto the Cartesian grid. Then, for each point of the Cartesian grid, a radius of influence (ROI) is estimated based

on the nearest radar. To obtain the value of each Cartesian grid point, all the radar gates values that fall within the sphere

defined by the ROI of the given grid point are summed. Not all radar gates contribute equally : the further the gate is from the250

center of the sphere (i.e. the grid point), the less weight its value has when calculating the value of the Cartesian grid point.

Py-ART algorithm is flexible, with multiple options of ROI and weighting functions. In this study, to generate a 3D Cartesian

grid of polarimetric fields, the Barnes weighting function (Barnes, 1964; Pauley and Wu, 1990) with a ROI based on virtual

beam size options have been preferred. As an additional criterion, a minimum of 3 radars was required to map onto the grid.

Indeed, because of the radar scanning strategy (especially for the 3 highest elevations, see subsection 2.2), it is necessary to255

ensure enough vertical coverage within the studied domain. We have found that combining polar data from at least 3 radars
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provide enough vertical coverage at high altitudes in the grid. Thus, at least one elevation angle among all elevations available

(from all radars) contributes to each grid point.

Forecasts are made on the whole France domain, starting either at 00, 06 or 12 UTC depending on the observed event.

To mitigate the potential spatio-temporal shifts in the model, and because most of this work evaluates storms as objects (so260

in terms of lifetime and characteristics), the forecasts’ outputs encompass the observed domain by ± 0.5 ° in latitude and

longitude, and the observed duration by ± 2 hours. This approach was adopted in an attempt to include mislocated predicted

convection. Simulations outputs are already in a regular horizontal grid configuration. Hence, the horizontal native resolution

of 1.3 km is kept but an interpolation is performed to go from model pressure levels to vertical regularly spaced grid. For easier

comparisons with observations, the same 0.5 km vertical resolution is chosen.265

For both observational and simulation datasets, the freezing level from the forecast is added into the grid. Beforehand,

the field is smoothed with a Gaussian filter to avoid local deformations of the 0°C isotherm due to updrafts. It ensures the

ZDR column computation is made with the environmental freezing level. Finally, the radar forward operator is applied to

model outputs to simulate polarimetric fields, with the frequency band chosen in accordance to the majority radar band in the

corresponding observational dataset.270

3.2 ZDR column detection algorithm

Based on previous work (Snyder et al., 2015; Saunders, 2018; Kuster et al., 2019), a computation of ZDR columns (hereafter

ZDRCs) has been implemented and applied on both models and observations pre-processed Cartesian grids. The first step

is to apply thresholds on reflectivity (ZH ) and differential reflectivity (ZDR) 3D fields. To focus on convective cells, ZH is

required to be greater than 25 dBZ, as done in the study of Krause and Klaus (2024). Usually, convective areas are detected275

for ZH > 35 dBZ (at least). However, the ZDRC is located within the storm’s updraft, whereas highest reflectivities are

observed within heavy precipitation regions (storm’s downdrafts). As a result, the column appears to be slightly offset from

the reflectivity core (see Fig. 8 of Kumjian, 2013) and the ZH threshold needs to be lowered to ensure the columns won’t get

cropped. Regarding ZDR values, multiple thresholds have been tested (1, 1.5 and 2 dB) based on the literature. Because of

possible remaining biases in the ZDR data and the smoothing induced by the interpolation, a good compromise was found at280

2 dB, where no false alarms remain in the observations. Then, all grid points equal to or above the environmental freezing

level are retained, and a 3D boolean mask is created in accordance with all previous requirements. The continuity is verified

from 2 km height (not lower because of the curvature of the radar beam) to the top of the ZDRC. Nevertheless, holes may exist

due to data quality, radar artifacts and/or interpolation method. Thus, a maximum of two missing grid points over the vertical

is allowed. Finally, columns that fail to meet the aforementioned criteria are ignored. Relying on Kuster et al. (2019, Fig. 2c),285

columns whose areal extent were under 4 km2 or above 150 km2 have been excluded. Hence, the two-dimensional ZDRC

depth field can be trusted for object tracking.
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3.3 Object tracking

To track storm cells and ZDR columns, the open-source Python package tobac (Tracking and Object-Based Analysis of Clouds;

Sokolowsky et al., 2023) has been used. tobac consists of a series of functions to apply and customize. A short description290

of the software is given in subsubsection 3.3.1. Then, subsubsection 3.3.2 details the settings used for the cell tracking, while

settings for the ZDR column tracking are detailed in subsubsection 3.3.3. A summary of all the chosen settings is provided in

Appendix D.

3.3.1 The tobac software

First, features are identified on a 2D or a 3D field as regions above or below a sequence of thresholds. A feature is represented by295

its centroid, which is here determined as the center of the region weighted by the distance from the highest detected threshold

value. For example, two thresholds ta and tb have been chosen for the feature detection with ta < tb . If one tb contour is

detected within the ta contour, then the centroid is placed inside the tb contour, otherwise it is placed inside the ta contour. If

two or more tb contours are identified within the ta contour (for instance during a storm splitting), then centroids are positioned

inside each tb contour, thereby creating as many objects as tb contours. For a more visual example, see Fig. 2 of Heikenfeld300

et al. (2019). As a second optional step, a watershed segmentation can be performed (Carpenter et al., 2006; van der Walt et al.,

2014), based on one given fixed threshold and the previous detected features. This results in a mask with the feature identifier

at all pixels identified as part of the object and zeros elsewhere. Again, more details can be found in section 2.3 of Heikenfeld

et al. (2019). In this study, only 2D watershed has been performed. The resulting mask can be conveniently used to select

the area of each object at a specific time step for further analysis. The last step is the trajectory linking between each feature.305

Features to link with are looked for in a given search radius. Here the predict method is used (see Fig. 3 of Heikenfeld et al.,

2019) and relies on the previous time step to predict the next position. The reader is referred to Heikenfeld et al. (2019) and

Sokolowsky et al. (2023) for a more complete description of the software.

3.3.2 Cell tracking

First, tracking of thunderstorms is performed. To detect them in radar observations, two thresholds of 36 and 48 dBZ were310

chosen and applied on a 2D field of maximum reflectivity over the vertical (hereafter Zmax z
H ). The 36 dBZ threshold is helpful

for early detection of the convection, while the 48 dBZ threshold ensure that the convection has installed. As previously

stated, the application of two thresholds allows a better storm centroid placement. Consequently, it is necessary to adapt the

thresholds to the data type. As shown in the results (in section 4), simulated reflectivities are typically lower. For this reason,

the second threshold has been lowered from 48 to 40 dBZ for simulated Zmax z
H . As an additional parameter, a minimum315

number of contiguous grid points is set, depending on the reflectivity threshold. Thus, for the 36 dBZ threshold, a minimum

of 20 contiguous grid points is required in both observation and simulation datasets, and for the second threshold (40 dBZ in

simulations and 48 dBZ in observations), at least 5 grid points are required. If the criterion within the 36 dBZ area is not met,

the subsequent 40− 48 dBZ area cannot be identified. Segmentation is applied twice to obtain, at each time step, a footprint
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Figure 1. Maximum reflectivity over the vertical (Zmax z
H ) for two observed (a, d) and forecasted convective events, at one time instant, with

respectively ICE3 (b, e) and LIMA (c, f) microphysics schemes. For the first event (a, b, c) an example of the tracking algorithm is displayed.

Each black dot represent the past positions of the cells centroids. The label associated with the closest dot correspond to the number of the

identified cell feature at the time step shown. Each detected ZDR column is materialized with a black contour. A demonstration of the

tracking is available in the supplementary materials (GIF).

of the cells envelopes and cores. In both observations and simulations datasets, envelopes are defined as contiguous regions of320

Zmax z
H > 25 dBZ and cores as contiguous regions of Zmax z

H > 40 dBZ. Then the tracking step is carried out to link all the

detected storm cells between each other. To do so, two parameters are adjusted : (1) the radius search range is set to 20 km,

and (2) the minimum cell lifetime is set to 9 time steps, which corresponds here to a period of 45 minutes.

Multiple combinations of thresholds, minimum grid points, and search radius have been tested. The aforementioned param-

eters proved to be the most relevant for our study. An example of the tracking result is presented in Fig. 1 for the 20th of June325

2022. Black accumulated dots represent the identified features (centroids) from the beginning of the event to the showed time

step in the observed Zmax z
H (Fig. 1a) and in the forecasted Zmax z

H with either ICE3 (Fig. 1b) or LIMA (Fig. 1c) microphysics.
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3.3.3 ZDR column tracking

ZDRCs are small and fleeting objects, making them challenging to track. As for the cell tracking, a detection of the columns is

applied on the ZDRC field (in meters) obtained from the algorithm described in subsection 3.2. All ZDRCs greater than 500 m330

are detected, and their respective areal extents are determined through the tobac segmentation process. Then, the linking of the

ZDRCs centroids is performed with a search radius of 15 km and a memory of 4 time steps. In the specific case of ZDRCs,

the memory parameter has proven to be very useful, as features are allowed to vanish for a certain number of time steps (here

4 time steps i.e. 20 min) and still get linked into a trajectory by keeping the same object identifier. Finally, to optimize their

tracking, ZDRCs have been spatially linked to the identified cells by matching the ZDRC centroid with the cell footprint at335

each time step.

4 Results

This section presents the results obtained from the 34 selected convective days of 2022. A standard model evaluation is con-

ducted, based on accumulated precipitation in subsection 4.1. Then, the evaluation is focused on storm core objects, whose

characteristics are investigated in subsection 4.2, and comparisons between observed and simulated polarimetric fields are340

performed in subsection 4.3. Finally, the evaluation is focused on ZDR column objects in subsection 4.4.

4.1 Precipitation

In an effort to objectively evaluate forecasts with respect to observations, skill measures are often computed. Such measures

are based on counting observation-forecast "yes-no" pairs to fill in a 2×2 contingency table that records hits, correct negatives,

false positives, and misses. Then, metrics to evaluate the model performance are generated.345

In this section, simulated accumulations of precipitation are compared with ANTILOPE QPE, used as observational refer-

ence (subsection 2.2), on the whole French metropolitan domain and over the same time period. The comparison is performed

on a daily basis, over the 34 convective days, and restricted to time periods encompassing precipitating events. The considered

events are listed in Table A1. For each day, the aggregation period (for both observations and forecasts) runs from the begin-

ning of the first event to the end of the last event, if multiple events occurred on that day. For instance, two significant events350

occurred the 3rd of June 2022 : one from 15:00 to 21:00 UTC, in southwest France, and the other one between 16:00 and

22:00 UTC in eastern France. Thus, the total time period considered for the aggregation of cumulative precipitations, for this

day, over France (hereafter referred to as RRtot), is from 15:00 to 22:00 UTC (7 hours). For days with only one event listed,

the aggregation period corresponds to the duration of the observed event. Four dates are taken into account twice to compute

the statistics, in this section only, as the initialization hours of the forecasts are different between the events. These dates are355

mentioned in bold in Table A1. Indeed, it is not possible to aggregate hourly precipitations issued from different AROME runs.

In this specific case (same day but not same run), the author has ensured that there is no temporal or spatial overlap between

the events. Consequently, the number of days considered in this section is artificially increased to 38 (34 + 4).
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Figure 2. POD (a), FAR (b) and HSS (c) for precipitation accumulation forecasts with AROME using ICE3 (orange curves) or LIMA

microphysics (green curves). The ANTILOPE QPE is the used as precipitation accumulation reference. Scores are computed using the 99th

percentile within 50 km2 boxes of precipitation accumulation. For each rain rate threshold and score, the distribution from the bootstrap of

the scores differences between LIMA and ICE3 (∆) are shown below with box plots. The median is displayed in red. Whiskers indicate the

5th and 95th percentiles of the distribution. For the highest thresholds, the number of days involved in the bootstrap is written in bold.

To fill in the contingency table, the domain has been divided into 50× 50 km boxes. First, the 99th percentile of each box

has been calculated for simulated and observed RRtot. This percentile has been chosen (rather than e.g. the median) in order360

to focus the verification on the ability of the model to accurately forecast the largest total precipitation accumulations. A set

of precipitation thresholds is applied to these RRtot box percentiles, yielding "yes-no" pairs of forecasts and observations that

are used to construct the contingency tables (one per accumulation threshold). The tables are summarized by the following

scores: the probability of detection (POD; Swets, 1986), the false alarm ratio (FAR; Donaldson et al., 1975), and the Heidke

Skill Score (HSS; Heidke, 1926; Murphy and Daan, 1985). These scores are used to compare the forecast performance of the365

ICE3 one-moment microphysics scheme with the partially two-moment LIMA microphysics scheme (Fig. 2). Additionally, a

bootstrap test is performed using the scores’ differences from all 38 cases to determine if the differences between LIMA and

ICE3 are significant.

The HSS, which measures the fractional improvement of the forecast over a randomly selected forecast, is presented in

Fig. 2c. At the lowest thresholds (RRtot < 2 mm), the HSS is greater for LIMA than ICE3, meaning that LIMA produces370

better forecasts. This improvement is significant, despite a lower hit rate which is compensated by a lower false alarm ratio

(Fig. 2a,b). Regardless of the microphysics, the best forecasts are obtained at intermediate thresholds (RRtot = 1− 2 mm),

where the HSS is maximum (Fig. 2c). There is no significant difference between both schemes, since the bootstrap confidence

intervals are centered close to 0. At the highest thresholds (RRtot > 2 mm), the HSS decreases in both schemes, and LIMA’s
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POD becomes significantly better than ICE3 (Fig. 2a). The POD improvement comes at the expense of higher false alarms375

(Fig. 2b), so that there is no significant difference in terms of HSS. On average, AROME tends to slightly underpredict the

frequency of the strongest thunderstorms (not shown). Hence, the ICE3 and LIMA schemes have similar performance in terms

of heavy precipitation forecasts.

4.2 Cell characteristics

Although precipitation scores offer some insight into the forecast performance, they can be difficult to interpret in terms of380

storm behavior. Indeed, this standard approach is influenced by the location and timing of the storms, thereby rendering any

direct comparison of multiple storm objects a challenging undertaking. An object-based approach provides a deeper assessment

of cell characteristics, resulting in a more straightforward comparison between observations and simulations, as illustrated

below. In particular, comparisons remain valid even when the spatiotemporal structure of the objects are not identical. The

object framework is complementary to the standard framework and, together, allows further analysis. Based on the storms385

objects defined in subsubsection 3.3.2, this section will focus on three key features of a cell: its convective core area, its

duration and its maximum intensity.

To analyze the intensity of storms in terms of objects, the size distribution of all detected convective cores is first studied

and presented in Fig. 3. In this figure, the time dimension is ignored, i.e. each core contributes as many times as the number

of time steps during which it exists. Figure 3 shows that the small cores (defined here as being smaller than 50 km2) are too390

rarely simulated. This behavior is expected, as Ricard et al. (2013) diagnosed the effective resolution of AROME to be of the

order of 9− 10∆x, where ∆x= 1.3 km is the grid resolution. This implies that objects of size smaller than 136− 169 km2

cannot be fully resolved by AROME. In the observations, small cores are associated with reflectivity values ranging from 40

to 68 dBZ (not shown), which correspond to emerging/dying cells or weak isolated storms. In the ICE3 and LIMA forecasts,

small cores are linked to values of ZH ≤ 55 dBZ and ZH ≤ 64 dBZ, respectively (not shown). On the other hand, the largest395

convective cores (defined here as being greater than 1000 km2) are overestimated in frequency by both forecast models. The

same statement applies to the envelopes of the detected cells (histogram not shown). It is in agreement with Brousseau et al.

(2016), who showed that AROME model tends to overestimate the objects’ sizes over a sample of 48 convective days of 2012.

Stein et al. (2015) also observed an overestimation of the horizontal size of the cells simulated by the Met Office Unified Model

(of horizontal resolution 1.5 km).400

As a second key characteristic, the temporal evolution of the thunderstorms is studied. Over the 44 studied events listed in

Table A1, a total of 3177 cells were observed and detected, while 1506 cells were simulated with ICE3 microphysics and 1776

with LIMA microphysics. The mean cell lifespan in our observation sample is approximately 75 minutes, while simulated

cells last on average 82 minutes with LIMA and 84 minutes with ICE3. Figure 4 shows that there is an underestimation in the

number of short-lived cells, defined here as cells that last less than 60 min from the birth to the death of the convective core.405

These short-lived cells make up 40 % of the observational dataset, against 33 % and 34 % in the ICE3 and LIMA forecast

datasets, respectively. During the mature stage of these observed short-lived cells, at least 65 % of them had an observed

convective core size that never exceeded 50 km2, whereas in the forecasts, only 55 % of the ICE3 and LIMA cells met this
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Figure 3. Size distribution of detected convective cores (Zmax z
H ≥ 40 dBZ), over all time steps, for observations (gray bars) and simulations

with ICE3 (orange) and LIMA microphysics (green). The total number of detected cores is listed in the legend. The count of each bin is

displayed above the bars.

condition throughout the mature stage (not shown). The number of convective cells, and in particular the weakest ones, were

also underestimated in convective scale simulations with different microphysics schemes in the study of Köcher et al. (2022)410

as well as in Brousseau et al. (2016) with AROME model and ICE3 microphysics. The total rainfall over all cases reached

1.40×105 m3 for LIMA and 1.29×105 m3 for ICE3, while only 0.95×104 m3 of rain has been observed (not shown). This is

consistent with the overestimation of size and lifespan we observed for the detected cells. The difference between the observed

and simulated amount of convective precipitation is a known positive bias of the AROME model (Stein, 2011). These findings

demonstrate that neither of the microphysics schemes considered is clearly superior in terms of the size and lifetime of the415

convective cells, which is in agreement with the precipitation scores.

Another key parameter monitored by forecasters is Zmax z
H , the maximum reflectivity within the storm, which is closely

related to storm intensity. A study of the Zmax z
H distribution within each cell core object is herein proposed, with Fig. 5

showing the distribution of the maximum reflectivity a simulated cell can reach compared to its observed counterpart. Please

note that reflectivities below 36 dBZ cannot exist, due to the tracking thresholds of at least 36 dBZ. Since the microphysics420

schemes considered do not have a distinct hail class, the observation curve (in black, Fig. 5) has been complemented by another

curve (in gray) that only includes observed cores not associated with medium hail (5− 20 mm) or large hail (> 20 mm) as

detected by the A13 radar hydrometeor classification algorithm (see Appendix C of Forcadell et al., 2024). Comparing these

curves shows that the highest reflectivities are associated with hail detection, in particular the gray curve drops to zero above

65 dBZ, while the black curve does not. The distribution peaks of the ICE3 and LIMA forecasts are similarly located at a425

reflectivity of 48.5 dBZ, which is lower than in the observations (around 55 dBZ). The Zmax z
H distribution is narrower in the
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ICE3 forecasts (orange curve) than in the observations, whereas the LIMA distribution (green curve) is broader. Figure 5 also

shows that for cores of Zmax z
H comprised between 58 and 68 dBZ, LIMA differs mainly from ICE3 in its ability to simulate

high reflectivity. Indeed, over this interval, the LIMA distribution is more consistent with the observations, a conclusion that

is even more pronounced when excluding observations associated with radar-detected hail. The underestimation of the highest430

reflectivities in the model (in particular with ICE3 microphysics) had already been demonstrated by Brousseau et al. (2016)

within 31 and 41 dBZ reflectivity contour objects (see their Figure 8, panel e and f). Cores of the weakest intensities (Zmax z
H

between 35 and 45 dBZ in Fig. 5) are less frequent in the forecasts, regardless of the microphysics involved. This suggests that

storms develop and/or die faster in simulations than in observations.

4.3 3D analysis of polarimetric fields435

This section analyses the 3-dimensional distribution of the reflectivity ZH , the differential reflectivity ZDR and the specific dif-

ferential phase KDP inside the storm’s convective cores (previously defined as Zmax z
H ≥ 40 dBZ). Pre-processed polarimetric

observations (see subsection 3.1) of these variables are obtained from dual-polarization radars of the Météo-France network.

The same variables are simulated by applying the radar forward operator (described in subsection 2.4) on AROME forecasts

coupled with either ICE3 or LIMA microphysics. Contoured frequency by altitude diagrams (CFADs; Yuter and Houze, 1995)440

have been generated for observed and simulated polarimetric fields, inside all detected cores and over all time steps (Fig. 6a,

b, and c). In order to gain insight into the processes occurring over the vertical, CFADs are also generated for ICE3 (Fig. 6d)
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Figure 5. Distribution of the cell maximum reflectivity inside the convective core for simulations with ICE3 (orange curve) and LIMA
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and LIMA (Fig. 6e) hydrometeor contents. The analysis of these results revealed three distinctive regions, which are analyzed

separately below.

4.3.1 Low-levels445

The first region of interest is located under the melting layer, below 3 km height, where most of the observed reflectivities

ranged from 40 to 50 dBZ. In this area, ZH (Fig. 6a), ZDR (Fig. 6b), and KDP (Fig. 6c) decrease with altitude in the LIMA

simulations (in green), as observed (in gray), but the distributions are slightly underestimated. In contrast, ICE3 simulations (in

orange) show increasing values with height, resulting in strong underestimations at ground level, where the differences between

observed and simulated medians are 18 dBZ, 1.2 dB, and 0.5 °/km, respectively. However, in both simulations with ICE3 and450

LIMA, the rain content increases with height (dark blue curves in Fig. 6d and e) with a steeper slope for ICE3. Figure 6b shows

that raindrops are smaller with ICE3, as indicated by the ZDR values which are decreasing towards the ground. Indeed, ZDR

is an indicator of the raindrop mean volume diameter (Seliga and Bringi, 1976) and is independent of the drop concentration.

Similarly, the KDP values in ICE3 simulations decrease towards the ground (Fig. 6c), as this variable is sensitive to the amount

of liquid water. More specifically, Jameson (1985) demonstrated that KDP can be linked to the product of liquid water content455

and the mass-weighted mean raindrop axis ratio, which explains the different behavior of LIMA in Fig. 6c. Indeed, when

temperatures are above 0 C°, raindrops evaporate as they fall to the surface. The evaporation process seems to be more efficient
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in the ICE3 microphysics than in the LIMA microphysics. An explanation for this apparent discrepancy is that LIMA allows

the simulation of bigger and more oblate raindrops under the melting layer, because its rain content and number concentration

are prognostic. Thus, in similar conditions of humidity, the smaller raindrops in ICE3 will evaporate faster than those in LIMA,460

leading to a rapid decrease of the rain content in ICE3.

In summary, the rain characteristics are better simulated with the 2-moment representation in LIMA, and vertical profiles of

ZH , ZDR, and KDP are in stronger agreement with the observations below the melting layer. Moreover, the Q25-Q75 interval

shows that the ICE3 ZDR and KDP values have less spread than the observations and the LIMA simulations, the latter having

an interval width closer to that observed.465

4.3.2 Bright-band region

The bright band region (hereafter BB) is a radar signature which highlights the layer where frozen hydrometeors melt to form

rain. In our simulations the BB is visible at altitudes between approximately 3 and 3.5 km within convective core objects

(according to the median curves in Fig. 6a, b and c), but not in the observations. Although the BB is not always visible in

observed convective areas, other effects such as smoothing due to the beam-broadening (see Meischner et al., 2004, section470

2.4.3 and Fig. 10.25 of Ryzhkov and Zrnic (2019)), or the interpolations used to map the radar data onto a 3D Cartesian

grid, can explain the absence of observed BB. The microphysics schemes used in this study do not have prognostic melting

species, but a wet graupel species is artificially diagnosed using the enhanced melting scheme implemented in the radar forward

operator (subsection 2.4). Figure 6f shows the liquid water fraction Fw within the wet graupel in the detected convective areas.

The depth of the layer where its 95th percentile is non-zero shows that wet graupel is present in a broader layer in ICE3 than475

in LIMA. It can also be seen that the peak of the Fw median reaches higher values in ICE3: at 3 km height, 50 % of the ICE3

wet graupel content is at least 75 % melted, whereas at 3.5 km height, 50 % of the LIMA wet graupel content is at most 15 %

melted. These results explain why a more pronounced BB can be seen in ICE3 simulations, especially in terms of ZDR and

KDP CFADs (Fig. 6b and c), because these variables are sensitive to the oblateness and liquid water content of the particles.

The differences found between ICE3 and LIMA (in Fw and the BB intensity) may be associated with the broader distribution480

in both rain and graupel contents, as well as the bigger cloud droplet content in LIMA, in the BB region. However, to better

asses the representation of the BB by both microphysics schemes, an evaluation of stratiform events, where the BB is clearly

visible in observations, is required (as in Shrestha et al., 2022a).

4.3.3 Above the melting layer

Just above the bright band region (around 4 km), the graupel particles are mostly dry since their liquid water fraction is close to485

zero (Fig. 6f). Despite significant snow and graupel contents, Fig. 6 shows that simulated ZDR and KDP drop to zero at levels

with low to no rain content, whereas the median of observations remains positive until 8 km for ZDR and 11 km for KDP .

This is consistent with Köcher et al. (2022) and Shrestha et al. (2022b). A weak positive ZDR value can be associated with

dry snow or graupel (which can potentially start to melt), and aggregated ice crystals, while a negative KDP may be the sign

of vertically oriented ice crystals within a strong electric field (Ryzhkov and Zrnić, 2007; Hubbert et al., 2014). In simulations,490
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only pristine ice, snow and dry graupel are available at higher altitudes (Fig. 6d and e). However, approximations made in the

forward operator results in null values of ZDR and KDP in pristine ice crystals, which are modelled as spheres because of

their random orientation (as in Caumont et al., 2006). Very low values of simulated ZDR and KDP could be due to a too low

density and/or dielectric constant for dry snow and dry graupel. A more exhaustive discussion of these aspects can be found in

subsection 5.2.495

On the other hand, observed reflectivities decrease more smoothly with altitude (Fig. 6a). This phenomenon indicates that ice

growth processes are underway. Independently of the microphysics, all forecasts showed a sudden decrease of the reflectivity

between 3.5 and 4 km height. Then, at higher altitudes, both microphysics schemes underestimated the reflectivities (LIMA

more than ICE3). Compared with the work of Köcher et al. (2022), most of the analyzed microphysics schemes overestimated

ZH values above the melting layer. According to the author, this could be explained either by an overestimation of graupel500

content or the particle size, or the density set in the forward operator. However, it can be seen with Fig. 6d and e that the

main difference between ICE3 and LIMA above the melting layer is the distribution of the ice and snow contents, whereas

the median graupel content is relatively similar. This may be linked with the limitations of the version of LIMA used in this

study. Indeed, ice production is limited by the availability of ice nuclei, and the conversion to snow occurs as soon as pristine

ice crystals grow larger than 125 µm in diameter. Thus, ice tends to disappear rapidly, resulting in lower snow contents than in505

ICE3 and consequently lower reflectivity values. The reader can find in Appendix C an illustration of the A16 forward operator

sensitivity to different hydrometeor contents for one-moment species (e.g. snow and ice, see Fig. C1) or for a 2-moment ice

class (Fig. C3). Recent improvements in LIMA (Taufour et al., 2024), such as the implementation of secondary ice production

mechanisms, may improve the representation of the upper part of the convective clouds. Although simulations with ICE3

microphysics give better ZH values, overall a negative bias still persists when the snow and ice contents are insufficiently510

represented in the microphysics.

4.4 ZDR columns

The use of dual-polarization observations coupled to an object-based detection allows the identification of specific signatures

in thunderstorms. This section is focused on the ZDR column (ZDRC), which highlights the location of storms updrafts and

indicates the presence of supercooled liquid water being lofted above the environmental freezing level. This signature has515

raised interest in the scientific community, notably for nowcasting or assimilation purposes (Kuster et al., 2019, 2020; Carlin

et al., 2017). Nevertheless, using ZDRCs in such contexts requires them to be correctly simulated by forecast models. This

section will concentrate on the main characteristics of a ZDRC : its depth and horizontal extension. As a ZDRC is inherently

linked to a convective cell, its temporal evolution will also be examined, as well as its 3D structure.

The first interesting feature about the ZDRC is its maximum height, counted from the 0°C isotherm level, and hereafter520

referred to as column depth. A deep column can be the sign of a very intense updraft, with an increased risk of producing large

hailstones, due to a longer residency time above the melting layer, in a zone with enhanced supercooled liquid water content

(Kumjian et al., 2021). Figure 7 shows that 69 % of the observed columns had a depth of 0 to 2 km above the 0°C isotherm,

whereas 31 % of the columns simulated with ICE3 are included in this interval, versus 89 % for LIMA. Columns with a depth
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Figure 6. CFADs of measured and simulated reflectivity (a), differential reflectivity (b) and specific differential phase (c) inside all detected

cell cores (Zmax z
H ≥ 40 dBZ). CFADs of the corresponding hydrometeor contents (expressed in g/m−3) for simulations with AROME

coupled to ICE3 (d) or LIMA (e) microphysics scheme. CFAD of the liquid water fraction of the wet graupel within convective cores (f) for

simulations with ICE3 (orange) or LIMA (green). For all panels, plain lines correspond to the median, and the interval of the 25th and 75th

percentiles of the distributions is displayed in lighter colors behind each curve. For panel (f), the 95th percentile is shown with dotted lines.

Altitudes are given in km AGL.

20



0 1 1.5 2 2.5 3 3.5 4 4.5 5 6+
Column depth (in km from the iso-0°C)

0

1000

2000

3000

4000

5000

6000

7000
Ab

so
lu

te
 fr

eq
ue

nc
y

3360

3879

2600

1704

1096

654
392

214 108 78 5029 89
309 448

253 130 58 32 4 0 0

1620

6608

4336

1147

251
69 22 2 0 0 0

OBS : 14135 columns
ICE3 : 1352 columns
LIMA : 14055 columns

Figure 7. Distribution of ZDR columns maximum depth, over all time steps, for observations (gray bars), simulations with ICE3 (orange)

and LIMA microphysics (green). The total number of detected columns is listed in the legend. The count of each bin is displayed above the

bars.

greater than 4 km account for 3.1 % of the observed sample and for 2.6 % of the ICE3 sample, which is similar. On the525

other hand, LIMA only simulated 2 columns with a maximum depth of 4 km. Although the LIMA simulations approximately

generated the same total number of columns as the observations (see the legend in Fig. 7), the shape of the observed column

depth distribution is not accurately simulated by the two microphysics schemes.

An analysis of the 3D distribution of the differential reflectivity and the hydrometeors contents over the vertical, illustrated

by the CFADs within ZDRC objects in Fig. 8, shows one similarity with the results found for the storm core objects : simulated530

ZDR values (Fig. 8a) rapidly decrease above the freezing level as well as the rain content (dark blue curves in Fig. 8b and c).

While dry graupel contents (brown curves) are still significant at this level for both microphysics schemes, the distribution of the

liquid water fraction within the wet graupel (Fig. 8d) shows discrepancies between the two schemes. Indeed, within the ZDRCs,

rain reached higher altitudes with ICE3 (median at 6 km in Fig. 8b) than with LIMA (median at 5 km in Fig. 8c), although more

cloud water (light blue) is available for LIMA (with the 75th percentile going up to 6 km).The distribution of ZDR in Fig. 8a535

provides additional evidence of the ability of ICE3 to produce deep ZDRCs. However, it can be seen that ZDR values are only

slightly larger than 2 dB, the threshold chosen in this study for the ZDRC algorithm. This strict thresholding may penalize

the detection of ZDRCs in ICE3 simulations and encourage the selection of only the most intense updrafts, resulting in a low

number of detected columns but of a greater depth. In light of the available cloud water in the LIMA simulations, it may be
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Figure 8. CFAD of differential reflectivity (a), and CFAD of hydrometeor contents (expressed in g/m−3 ) in simulations with AROME

coupled to ICE3 (b) and LIMA microphysics scheme (c) inside all detected ZDR columns. Similar to (a), (d) show the liquid water fraction

within the wet graupel of ICE3 and LIMA. Plain lines correspond to the median, and the interval of the 25th and 75th percentiles of the

distributions is displayed in lighter colors behind each curve. Altitudes are given in km AGL.

beneficial to consider incorporating this content into the forward operator melting scheme (e.g. taking into account this content540

in the computation of Fw), with the aim of producing slightly higher ZDRCs with LIMA microphysics. Another discrepancy

between ICE3 and LIMA is the ZDR signal under 4 km. While ZDR values are underestimated in ICE3 compared to the

observation (Fig. 8a), ZDR is overestimated with LIMA whereas the rain content is clearly lower than with ICE3 (Fig. 8b and

c). Compared to the observations, such high values of ZDR could be the consequence of a too strong size sorting process within

the ZDRCs simulated by LIMA, producing too large (and oblate) raindrops. Similarly, Putnam et al. (2017) and Köcher et al.545

(2022) found overestimated ZDR values in rain with a 2-moment microphysics, in particular with the Morrison and Thompson

schemes using WRF simulations (Skamarock et al., 2008). It should be noted, however, that the overestimation of simulated

ZDR in this study is confined to the ZDRC objects and not seen in the convective cores where the ZDR values are very close

to the observation and slightly underestimated as discussed in subsection 4.3 and shown in Fig. 6b. A likely explanation is that

detected convective core objects also include some of the downdraft regions, where raindrops are no longer lifted by an updraft550

and subsequently fall, unlike updraft regions targeted by the ZDRC objects. Moreover, the size sorting usually occurs at low

levels, whereas the overestimated ZDR values are here mainly located around 3 km high, further supporting the hypothesis of

an updraft-related process. In the microphysics schemes, the size of the raindrops produced by the melting of the graupel is

arbitrarily set. Adjusting this parameter could also be a way to reduce the ZDR overestimation just below the melting level.
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Figure 9. Area distribution of ZDR columns, over all time steps, for observations (gray bars), and simulations with ICE3 (orange) and LIMA

microphysics (green). The total number of detected columns is listed in the legend. The count of each bin is displayed above the bars.

The study of Kumjian et al. (2021) further highlighted the relevance of the column area as a parameter linked to storm555

intensification. Indeed, a large column may be indicative of a substantial quantity of supercooled lifted raindrops, which could

result in an elevated production of hailstones of small to moderate size. Figure 9 shows the distribution of the column area.

Approximately 64 % of the observed columns are small features (less than 15 km2), which is a known characteristic of ZDRC.

Simulations with ICE3 demonstrate satisfactory results in terms of proportion, with 69 % of the ZDRC being small features

against 67 % with LIMA. In Shrestha et al. (2022b), the TSMP model (Gasper et al., 2014; Shrestha and Simmer, 2020) coupled560

with a 2-moment bulk microphysics scheme (Seifert and Beheng, 2006) was found to underestimate the area of ZDRCs. While

in the present study the area of the ZDRCs is not underestimated in terms of proportion, regardless of the microphysics, ICE3

simulations nevertheless produced an insufficient number of ZRDCs in comparison to LIMA simulations. The accuracy of

LIMA regarding the ZDRC is noteworthy, both in terms of area distribution and absolute number.

As the ZDRC is a proxy of the updraft, it is often observed as soon as the storm core develops. Thus, the first occurrence565

of a ZDRC is an important marker of the life cycle of the associated storm cell. In this study, 43.8 % of the observed cells

were associated with a ZDRC, against 26.8 % for ICE3 and 44.5 % for LIMA. The box plot presented in Fig. 10 shows the

distribution of the first ZDRC occurrence time, relative to the lifetime of the cell to which it belongs. It is expressed as a

percentage, where 0 % correspond to the emergence of the convective core and 100 % to its death. First, it can be noticed that

the 5th and the 25th percentiles are coincident, and equal to 0 %, both in simulations with LIMA and in the observations. This570
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means that in 25 % of the analyzed events, the ZDRC is formed and detected at the same time as the convective core. The

relative lifetime of the cell can be approximately divided as follows: [0− 20 %] developing stage, [20− 80 %] mature stage,

[80− 100 %] dissipating stage. At least half of the first ZDRC detections occur during the early cell development stage. The

same behavior is observed in forecasts coupled with LIMA microphysics, but not with ICE3, whose median is around 32 %

of the relative cell lifetime, meaning that more than 50 % of the columns are detected during the mature and dissipating stage.575

Although it is uncommon for the initial ZDRC to be observed during the dissipating stage of the cell (gray box plot, Fig. 10), it

occurred much more frequently with ICE3, as shown by the broader spread and the absence of outliers in its time distribution

(orange box plot, Fig. 10). Some delay in the ICE3 ZDRC identification may be attributed to the strict thresholding of the

detection algorithm (subsection 3.2). One can assume that, in the case where ICE3 detected updrafts are only the strongest,

it should counterbalance this effect, since the deepest columns can be expected to occur before the dissipating stage or at the580

beginning of the mature stage. However, it should be noted that, as seen with Fig. 8b, ICE3 requires very high rain contents to

simulate significant ZDR values, because in a 1-moment scheme, the number concentration is unable to vary independently of

the content.

To conclude, the lack of rain above the freezing level within LIMA simulations has a direct impact on the liquid water

fraction in the melting scheme (wet graupel), despite the presence of liquid water at these altitudes (cloud water). Moreover,585

the depth of the ZDRC is not accurately reproduced by neither microphysics scheme, but the ZDRC area, which is a more

significant feature, is well reproduced by both schemes in terms of relative distribution. Only LIMA was able to reproduce the

correct amount of ZDRC with a precise area distribution. Finally, the temporal evolution of the ZDRC appears to be accurately

forecasted by AROME in conjunction with the LIMA scheme, lending further credibility to this scheme. These findings are

highly encouraging with regard to the potential use of LIMA, in particular for the column area feature used with a strict590

detection threshold.

5 Discussion

Although the simulations performed with LIMA showed a remarkable agreement with the observations for rain in the convec-

tive cores, and a very realistic area distribution and number of ZDRC columns, the present work also revealed discrepancies

between observed and synthetic radar data simulated with the A16 forward operator. These discrepancies may be introduced by595

the radar forward operator, the microphysics schemes, the ZDR column detection method, or a combination of the three. This

section is intended as an open discussion about the realistic expectations, the constraints, and possible areas for improvement.

5.1 Mixed phase parameterization

The results of this study have emphasized the challenges parameterizing the mixed phase. These issues are characterized by an

overestimation of the bright band (BB) in the simulations within convective regions, as well as a notably low amount of rain at600

negative temperatures in both convective cores and ZDRC objects, which is particularly pronounced with LIMA microphysics.
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To improve the melting layer simulated by the forward operator, it may be beneficial to consider modifying the estimation

of the mixed phase, as various parameterization exist in the literature. For example, Jung et al. (2008) assumed the existence of

a mixed phase when dry snow and rain coexist, thus converting a certain proportion of rain and snow to wet snow. On the other

hand, in the A16 operator used here, the wet species is computed from the graupel and rain content, when they coexist, and a605

wet graupel class is created by consuming the entire graupel content only. Wolfensberger and Berne (2018) used an alternative

parameterization in which wet aggregates and wet graupel exist within the melting layer. Liu et al. (2024) recently proposed a

melting model, independent of ambient temperature, that relies on the mixing ratio and number concentration of rain and ice

species. Such parameterizations will be tested and compared in a future work.

It is worth remembering that, initially, in the A16 forward operator, a wet graupel class was chosen to stay consistent with610

the microphysics : in the model, the melting snow content is transferred into the graupel class. Because of this, melting graupel

output from the forward operator can be either actual melting graupel or melting snow. If the microphysics scheme cannot be

modified, an alternative strategy would be to address the issue directly within the radar forward operator. Therefore, it may be

worthwhile to try to differentiate a posteriori melting snow and graupel. In the hydrometeor classification algorithm of Park

et al. (2009), a vertical continuity check is performed to distinguish between the convective and stratiform parts of the storm,615

and has proven to improve the level of discrimination between graupel and snow (dry or wet). Given that the ZDRC detection

algorithm developed in this paper includes a vertical continuity check, there is the potential to conduct straightforward tests

to adapt such a continuity check so that a basic discrimination is applied to both the model and observations. Then, this

discrimination could be used by the forward operator to separate wet snow and wet graupel.

As a second area for improvement, the computation of the water fraction within wet species could be modified. In the A16620

operator, the liquid water fraction is a function of the graupel and rain content, and is equally distributed among the whole

particle size distribution. In Dawson et al. (2014) the water fraction is diagnosed with an iterative method. Based on a first

guess, up to 90 % of the rain content available is added and distributed into the melting species contents (graupel and/or hail).

A critical mass of water that can exist on a melting particle is estimated, and integrated over the corresponding PSDs, to

determine a critical water fraction which is a function of the particle diameter (according to Fig. 2 in Dawson et al., 2014).625

If the available rain content exceeds this critical water mass value, then this value is used as the next guess of rain content

to be added into the melting species contents. In other words, the liquid water fraction varies across the melting particle size

distribution.

In pursuit of greater realism, a two-layer spheroid T-matrix code following Ryzhkov et al. (2011) could also be implemented,

as ice, air, and water in a mixed phase particle are currently treated either as a matrix or an inclusion, which is known to affect630

the computation of the dielectric constant. Nevertheless, Ryzhkov et al. (2013) demonstrated that the T-matrix computation for

two-layer and uniformly filled spheroids (assuming water as the matrix) yield similar results in terms of radar variables after an

integration over all particle sizes. Moreover, this study was focused on the ability of the model to correctly simulate the radar

variables within convective cores, which is not adequate to evaluate the melting scheme parameterization. Thus, improvements

in the radar forward operator regarding the bright band signature should be conducted on stratiform events or, at least, focused635

on improving the stratiform parts of the convective storms. Therefore, the A16 forward operator is currently tested in stratiform
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environments. While, under the freezing level, realistic polarimetric values were obtained with LIMA, and, with a view to more

realistic modelling, it would be valuable to conduct a comparative analysis of the microphysics schemes presented in this work

by including a separate hail class, as in this work, hail was included in the graupel class and hence, unable to reach the warmer

levels of the atmosphere.640

5.2 Cold phase modelling

Other challenges have emerged in the cold phase, as simulated ZDR and KDP dropped to almost zero at levels with low to no

rain content, despite significant snow and graupel contents. Köcher et al. (2022) and Shrestha et al. (2022b) (hereafter referred

to as K22 and S22b) found similar results with different microphysics schemes and radar forward operator parameterizations.

Directly above the melting layer, graupel was found to be dominant in both studies. Nevertheless, the aspect ratio of the graupel645

is assumed to be 1 in K22, while in this study, the aspect ratio is set to 0.8 if the graupel is dry, or is determined using the

formulas described in Ryzhkov et al. (2011) if the graupel is wet. In S22b the graupel axis ratio follows the same equations as

in this study, but parameterizations of snow and ice are different. Especially, the axis ratio of cloud ice is set to 0.2, against an

axis ratio of 1 here. However, even with a 0.2 axis ratio, near-zero ZDR and KDP values have been found within simulations

all along the vertical above the melting layer. According to S22b, deficiencies in the forward operator may play a significant650

role. Shrestha et al. (2022a) showed, for a stratiform event, that snow was found to dominate above the melting layer. In their

study, a variety of snow shapes and orientations were tested, but they were still unable to reproduce the observed polarimetric

values at these heights. In K22 an enhanced but not realistic ZDR signal has been produced between 8 and 12 km height, with

two of the five microphysics schemes analyzed. These high values were caused by the cloud ice, whose assumed aspect ratio

by the forward operator is 0.2.655

Part of the underestimation of dual-polarization variables in snow could be due to the (too) simple representation of aggre-

gates by homogeneous spheroids with the T-matrix method, as suggested by Trömel et al. (2023), based on the study of Schrom

and Kumjian (2018). Another method, known as the discrete dipole approximation (or DDA; Purcell and Pennypacker, 1973;

Draine, 1988), allows the simulation of more complex geometries. This method decomposes the particles into a collection of

sub-regions, each being small enough to be considered as a dipole. With this technique, each single dipole can be arranged to660

form different and complex shapes of crystals or aggregates. However, the DDA method is computationally expensive due to

the necessity of solving a large system of linear equations with a dense matrix. It is not implemented in our current forward op-

erator. Hence, in order to increase the ZDR and KDP values in snow, a modification of the snow density-diameter relationship

would be more accessible and could be investigated. Moreover, a riming factor could be included in the snow parameterization,

following the formulation of Brandes et al. (2007), as it proved to simulate acceptable values in snow in the study of Carlin665

and Ryzhkov (2019).

Overall, this work, in conjunction with all previous related studies, show how hard it is to simulate accurate polarimetric

values within and above the melting layer, with the diversity of microphysics and forward operator available. Indeed, the ICE3

and LIMA schemes used here simulate very different cloud compositions above the melting layer. ICE3 produced significant

amounts of ice crystals, snow and graupel. LIMA, on the other hand, resulted in almost zero ice crystal contents, much less670
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snow and a little less graupel than ICE3. These differences were found both within convective objects and ZDRCs, and suggest

that this lies in the treatment of ice particles in the microphysics. In ICE3, ice crystals can be continuously formed in favorable

thermodynamic conditions, whereas in LIMA, ice crystals are formed only when IFN are available. Thus, once IFN are depleted

(used to form ice crystals, scavenged by precipitation, etc.), LIMA cannot create new ice crystals. Because of these differences,

the pristine ice to snow conversion is based on the ice particle size in LIMA. This process is more efficient than the simple675

autoconversion process (which is only active for high ice contents) in ICE3. Consequently, pristine ice is quickly consumed in

LIMA to form snow that rapidly falls out.

To address this issue, a hybrid configuration of LIMA, using a 1-moment representation of pristine ice crystals as in ICE3,

coupled to improvements in the snow representation (Wurtz et al., 2021, 2023), was found to have very good results for tropical

convection, retaining most of the advantages resulting from the 2-moment cloud droplets and raindrops. Another solution would680

be to use a secondary ice production processes (Shrestha et al., 2022a). Such mechanisms (collisional ice break-up and raindrop

shattering when freezing) are available in LIMA and have been implemented since the beginning of our study. They proved

very efficient at maintaining significant ice and snow contents in convective clouds. However, as long as the ice crystals are

modelled as spheres by the forward operator, the ice content will have little or no effect on the simulated ZDR and KDP values,

as illustrated by Fig. C1 and Fig. C3 of Appendix C. To improve the accuracy of the polarimetric outputs and provide a more685

realistic representation, ice crystals must be modelled as oblate spheroids (Matrosov et al., 1996). More general improvements

of the radar forward operator are underway to better represent the ice phase.

5.3 ZDR columns

Finally, our ZDRC detection methodology has shown its limitations, especially with regard to the 2 dB threshold, which

contributed to difficulties in the detection of ZDRCs in ICE3. As previously stated, the choice of a high threshold was a690

commitment made to avoid false alarms in the observations, and hence, to establish a trustworthy reference dataset. Thus, this

high ZDR threshold combined with a vertical continuity check partly hindered the detection of ZDRCs in simulations with

ICE3 microphysics. Recently, Krause and Klaus (2024) published a novel technique to detect ZDRCs on radar data that only

rely on a single horizontal level (constant altitude plan projection indicators or CAPPI) at the −10 °C altitude. Their technique

consists in identifying the column base rather than the entire column depth. After filtering the data, the median values of two695

boxes (a 7x7 "outer box" and a 3x3 "inner box") centered on each grid point are compared, yielding the "hotspot" value. Then,

any points that exceed the mean hotspot value by more than one standard deviation are retained. Not only did this method

demonstrate enhanced performance in regions where there is a bias in differential reflectivities, but this approach is entirely

adaptable to the model world. Thus, the detection of ZDRCs in the model would rely on a comparison of each grid point versus

the environment, potentially improving the detection in our simulations with ICE3.700

As the last point of this discussion, we highlighted the inability of the AROME model, when combined with the ICE3 mi-

crophysics, to produce elevated ZDR values in the ZDRCs. Indeed, the detected ZDRCs in the model are essentially due to

wet graupel, thanks to the mixed phase parametrization in our forward operator (i.e. the "wet graupel specie" is artificially cre-

ated to replace the model "dry graupel" if rain water coexists with graupel, even at negative temperatures). The term "melting
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scheme" may not be appropriated to describe the physical state of the graupel at negative temperatures. In fact, in our repre-705

sentation at such temperatures, the graupel is not melting but is probably surrounded by a coat of supercooled liquid water. An

alternative method to simulate ZDRCs could be the implementation of a raindrops freezing process in the forward operator,

based on Kumjian et al. (2012). As explained in Chapter 7, section 2.5.1 of Ryzhkov and Zrnic (2019), a raindrop freezes from

the outside to the inside, and can be represented as an ice shell forming around the droplet, with the core being either purely

liquid or a mix of water and ice (embedded ice germ). Thus, the use of a matrix/inclusion approach to represent this process710

is absolutely relevant, and could be easily implemented as it is already available in the A16 operator. Nevertheless, given the

insufficient amount of supercooled rain water available in our current microphysics schemes, this method may not be able to

produce the expected results.

6 Conclusion

In this paper, an evaluation of the microphysics of the AROME NWP model was carried out with two different, but comple-715

mentary, frameworks. Numerical forecasts were compared with observations using a global and an object-based approach. The

main objective was to statistically assess the ability of the AROME model to reproduce thunderstorms in terms of intensity,

structure, characteristics, and dual-polarization signatures. A related goal was to compare two microphysics schemes against

dual-polarization radar observation : the currently operational ICE3 scheme, and the LIMA scheme currently under consider-

ation for future implementation. Given the growing interest of ZDR column in the scientific community due to its potential720

applications in the fields of nowcasting and data assimilation, this dual-polarization signature was subjected to a careful inves-

tigation. To do so, various features were analyzed over a sample of 34 convective days of 2022, and a ZDR column detection

and tracking algorithm was implemented. Dual-polarization radar data were extracted from the French metropolitan network.

Forecasts were performed with the AROME model coupled to either the ICE3 (1-moment) or LIMA (partially 2-moment)

microphysics schemes. An enhanced version of the radar forward operator of Augros et al. (2016) was applied to the forecasts725

to obtain synthetic polarimetric fields.

First, a global approach was used to evaluate accumulated precipitation fields. Statistical measures (POD, FAR, and HSS)

were computed for different rain rate thresholds and compared between simulations with ICE3 and LIMA. The only significant

improvement occurred for the smallest rain rates, with a slight decrease of the POD and the FAR, but a small increase of the

HSS score for forecasts with LIMA. For the highest rain rate thresholds, LIMA’s overall contribution was fairly neutral as the730

POD and the FAR both increased, and the HSS remained similar to that of ICE3.

An object-based framework was defined to study polarimetric fields and hydrometeor contents within convective areas of

the storms. As a first step, the characteristics of convective cores were compared. Our results show that the model, regardless of

the microphysics, have difficulties simulating small and short-lived cells, which is a known issue due to the AROME effective

resolution of 9 to 10∆x (∆x= 1.3 km). In contrast, larger storms are often overestimated. Secondly, the 3D structure of735

polarimetric fields was analyzed with contoured frequency by altitude diagrams (CFADs). The use of LIMA microphysics

allowed the simulation of high ZH , ZDR and KDP below the melting layer. This points to a more realistic raindrop sizes
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representation thanks to the 2-moment component of rain in LIMA. On the other hand, ICE3 (1-moment) raindrops were

smaller and, as a consequence, evaporated faster. This caused a reduction of the rain content, which led to a decrease of

the ZH , ZDR, and KDP variables near the ground. For both microphysics schemes, the bright band was visible, but more740

pronounced with ICE3. This is mainly due to the creation of a wet graupel species in the radar forward operator, whose

liquid water fraction was found to be greater with ICE3 than with LIMA. In the region above the melting layer, both schemes

underestimated reflectivities, but ICE3 was more consistent with the observations thanks to a greater amount of snow and

pristine ice in the simulations. Nevertheless, simulated ZDR and KDP were found to be null at these altitudes, regardless

of the microphysics used. This suggests radar forward operator issues, as (1) pristine ice crystals are currently modelled as745

spheres, and (2) the snow density and dielectric constant is probably too low, so that the non-spheroidal axis ratio of snow has

a minimal influence on the resulting signals.

Finally, the main features of the ZDR column objects were also evaluated. The highest ZDR columns were generated

exclusively with ICE3. The analysis of the vertical distribution of ZDR within the columns revealed that ICE3 ZDR values

barely exceed 2 dB under the melting layer, but such a value is reached for altitudes up to 5 km versus 4.5 km for LIMA.750

The lack of raindrops above the melting layer in LIMA’s ZDR columns can explain part of this discrepancy. An analysis of

the temporal occurrence of the first detected ZDR column, with respect to the cell it belongs to, revealed that most of the

columns were detected during the mature and dissipating stage of the cell in ICE3. In contrast, two-thirds of the ZDR columns

simulated by LIMA have been detected during the developing stage, as within the observations. Although a strict detection

threshold seemed necessary to the author when comparing with observations, as it mitigates the occurrence of false alarms in755

the observed dataset (so it can be trusted as a reference for the evaluation), the downside is that it only permitted the strongest

updrafts in ICE3 simulations to be detected, prompting the selection of regions where a great quantity of rain is lifted above

the freezing level. However, this threshold did not hinder the detection of a correct number of columns in LIMA.

As a conclusion, the AROME model, coupled with the partially 2-moment microphysics LIMA, was able to reproduce,

on 34 convective days, not only storms characteristics of the convective cells, but also characteristics of much more smaller760

objects, the ZDR columns. In particular, the simulations with LIMA demonstrated an impressive ability to generate a realistic

number of columns, as well as an accurate lifetime and areal extent, which is promising for their future use in both model

evaluation and data assimilation. Previous studies (Li et al., 2017; Carlin et al., 2017; Augros et al., 2018; Putnam et al., 2019;

Thomas, 2021; Reimann et al., 2023) have shown possible ways towards assimilation of dual-polarization observations, with

different microphysics (1 or 2 moments), different techniques (direct or indirect), and different assimilation schemes (3D-Var,765

1D + 3D-Var, EnFK, 1D-EnVar). Notably, these studies have demonstrated the importance of the microphysics scheme and

shown limits of the forward operator, mostly in the snow. Likewise, the present study highlighted the need to further improve

the Augros et al. (2016) enhanced forward operator and of the two microphysics schemes, especially at and above the melting

layer. Thus, in the first place, only the warm phase should be trusted for assimilation purpose, since a lot of work remains

on the cold phase, as discussed in this paper. Indeed, to produce more realistic analysis, it is essential to have a model and a770

forward operator with the least possible bias. Improving the consistency between observations and the model will contribute to

the improvement of background corrections used to compute the analysis.
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Date Model run Period (UTC) Location

2022-04-08 12 13 to 18 NE

2022-04-22 06 17 to 21 SW

2022-04-23 00 08 to 16 S-SW

2022-05-03 06 10 to 21 S

2022-05-04 00 12 to 19 E

2022-05-15 06
13 to 22 SW

15 to 00 N

2022-05-18 06 18 to 23 NW

2022-05-20
00 04 to 11 NE

06 11 to 19 NW-N

2022-05-22 00 16 to 00 NE

2022-05-23 00 09 to 13 E

2022-06-01 12 20 to 10 (+1) SW

2022-06-02 12 15 to 00 center-E

2022-06-03 12
15 to 21 SW

16 to 22 E

2022-06-04
06 08 to 14 NW

12 14 to 22 center

2022-06-05 00 06 to 11 SE

2022-06-06 12 14 to 20 S

2022-06-15 06 15 to 00 E

2022-06-18 12 17 to 02 (+1) SW

Date Model run Period (UTC) Location

2022-06-19 12

16 to 00 center-N

17 to 21 SW

18 to 22 SW

2022-06-20 12 17 to 23 SW

2022-06-21 00 12 to 23 center

2022-06-22
00 14 to 01 (+1) SW

06 09 to 22 E

2022-06-23

06 07 to 15 SW-S

12

12 to 20 NE-SE

14 to 20 SW

16 to 04 (+1) S-SE

2022-06-24 00 05 to 11 S

2022-06-25 06 13 to 20 NE

2022-06-26 12 13 to 00 NE

2022-06-28 06 09 to 19 S-SW

2022-06-30 12 12 to 19 NE

2022-07-03 00 13 to 20 SE

2022-07-04 12 14 to 20 center-E

2022-07-20 12 12 to 20 NE

2022-08-16 00 14 to 23 S-SE

2022-08-18 00 01 to 08 SE

2022-10-23 12 13 to 18 NW-N
Table A1. List of the studied events, with the associated date, model run (UTC), period of time, and location for each. These 44 events

represent 34 convective days. Dates in bold font indicate that multiple events occurred on the same date, and that the forecasts initializations

for each date in bold is different from one event to another. Dates are displayed in YYYY-MM-DD format.

Appendix A: List of the studied events
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Appendix B: Description of the enhanced melting scheme of the forward operator

As previously described in subsection 2.4, non-homogeneous hydrometeors are assimilated to matrices in which inclusions are775

inserted. The melting process can be divided into five steps (as shown by Fig. B1), based on the estimated liquid water fraction

Fw of the particle :

– Initial state : Fw = 0, the dry graupel is considered as an ice particle with inclusions of air

– Step 1 : 0< Fw < F sat
w , the graupel starts melting, with the melted water first soaking the air cavities from the outside

to the inside. This outer layer plays the role of matrix for the whole particle, while the core (still an air matrix with ice780

inclusions) plays the role of an inclusion. The melting outer layer is considered as a matrix of ice with inclusions of

water.

– Step 2 : Fw = F sat
w , all air cavities are filled by melted water.

– Step 3 : F sat
w < Fw < 1, the particle starts forming an outer water shell, while the core is composed of pure ice and water

only. The particle is considered as a matrix of water with inclusions of ice.785

– Final state : Fw = 1, the whole graupel is melted

Therefore, the estimation of the equivalent diameter Deq that is needed to retrieve the scattering coefficients, as well as the

dielectric constant, are tailored to the two stages of the melting process.

Figure B1. Illustration of the graupel melting process as a function of the liquid water fraction Fw, with a matrix/inclusion approach. Air (A),

ice (I) and liquid water (W) are shown respectively in gray, white, and blue. The various combinations [matrix, inclusions] used to calculate

the dielectric constant according to the Maxwell-Garnett approximation (see 2.4) are also shown. Taken with permission from Fig. 4.1 of Le

Bastard (2019).
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B1 Equivalent diameter of melting graupel

We want to remind the reader that the only information accessible by the forward operator are the variables related to the dry790

species. Thus, ρ(i)g will refer to the initial graupel density, which is the density of the dry graupel provided by the model. ρ(i)g

includes implicitly the contribution of air, which means that ρ(i)g < ρi (with ρi being the density of pure ice) if there are air

cavities inside the particle.

B1.1 0 ≤ Fw < F sat
w

To compute the scattering coefficients of the melting graupel, a spherical melted equivalent diameter is first estimated. The wet795

graupel volume Vwg is equal to the volume of a sphere of equivalent diameter Deq :

Vwg =
π

6
D3

eq (B1)

As the graupel melts, Vwg can be expressed as a function of the initial volume of the dry graupel V (i)
g (of equivalent spherical

diameter D) and the volume of melted graupel Vmg :

Vwg = V (i)
g −Vmg , with V (i)

g =
π

6
D3 (B2)800

By conservation of mass, the mass of melted graupel mmg is equal to the mass of water created mw :

mmg =mw ⇔ Vmg × ρg =mw (B3)

Also, the water fraction can be defined as the mass of water out of the total mass of the wet graupel. In this operator, mwg =

m
(i)
g , thus, the mass of water created is :

mw = Fw ×m(i)
g (B4)805

By combining equations B1, B2, B3, and B4, the equivalent diameter Deq for Fw ∈ [0,F sat
w ] can finally be expressed as :

Deq =D× (1−Fw)
1/3 (B5)

B1.2 Estimation of F sat
w

The saturation is reached when the air cavities are fully soaked by water. The volume of the cavities Vc depends on the liquid

water fraction Fw. In other words, Fw = F sat
w when Vc = 0.810

First, we need to determine the initial volume of the cavities V (i)
c , when the particle is dry (at Fw = 0) i.e. only made of air

and ice.V
(i)
c = V

(i)
g −Vi

m
(i)
g =mi

⇒ V (i)
c = V (i)

g

(
1− ρ

(i)
g

ρi

)
(B6)
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Then, when the graupel starts melting, the new volume of air cavities V (∗)
c can be expressed as

∀Fw ∈]0;F sat
w ], V (∗)

c = Vwg −Vi −Vw (B7)815

Vi can be deduced by the conservation of the mass :

mwg =m(i)
g =mi +mw ⇒ Vi = V (i)

g

ρ
(i)
g

ρi
−Vw

ρw
ρi

(B8)

The expression of Vw comes directly from Eq. (B4) :

Vw = FwV
(i)
g

ρ
(i)
g

ρw
(B9)

By replacing Vi and Vw in Eq. (B7) :820

V (∗)
c = V (i)

g

(
1− ρ

(i)
g

ρi

)
+

ρ
(i)
g

ρi
FwV

(i)
g − ρ

(i)
g

ρw
FwV

(i)
g (B10)

Finally, the volume of the air cavities for a liquid water fraction comprised between 0 and F sat
w , is the initially available

volume from which the new volume occupied is subtracted.

Vc = V (i)
c −V (∗)

c (B11)

= V (i)
g (1−Fw)

(
1− ρ

(i)
g

ρi

)
−V (i)

g Fw
ρ
(i)
g

ρw
(B12)825

As previously stated, saturation (Fw = F sat
w ) is reached for Vc = 0. Thus, with Eq. (B12) it finally comes that :

F sat
w =

1
ρi

− 1

ρ
(i)
g

1
ρi

− 1

ρ
(i)
g

− 1
ρw

(B13)

B1.3 F sat
w ≤ Fw ≤ 1

Once fully soaked, the particle starts building a water shell. At this stage, the graupel is composed of pure ice and water only.

The volume of the wet graupel is thus :830

Vwg = Vi +Vw (B14)

Its mass mwg can be expressed as a function of the mass of ice and the mass of water, including the water within the core and

in the shell, by conservation of mass :

mwg =mg =mi +mw ⇒mg =mi +Fwmg using Eq. (B4) (B15)

By expressing mi as a function of mg , Eq. (B14) can be written :835

Vwg =
π

6
D3ρg

(
1−Fw

ρi
+

Fw

ρw

)
(B16)

Finally, with Eq. (B1) and Eq. (B16), the equivalent diameter for Fw > F sat
w is :

Deq =D×
[
ρg

(
1−Fw

ρi
+

Fw

ρw

)]1/3
(B17)
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B2 Dielectric constant computation

The Maxwell Garnett (1904) formulation can be used to define the permittivity of the mixed phased particles, as long as840

the inclusions are spherical and remain small compared with the wavelength. Let ϵmat be the matrix permittivity and ϵinc

the permittivity of inclusions. Following Maxwell Garnett (1904) and Wolfensberger and Berne (2018), the permittivity of

non-homogeneous hydrometeors can be expressed as :

ϵ(ϵmat, ϵinc,f) = ϵmat

(
1+2fα

1− fα

)
, with α=

ϵinc − ϵmat

ϵinc +2ϵmat
and f = 1− ρ

ρmat
the inclusions volume fraction (B18)

Based on Fig. B1, the effective permittivity can be expressed as :845

ϵwg =

ϵ(ϵ(ϵi, ϵw,fiw), ϵ(ϵa, ϵi,fai),fiw/ai) if Fw ≤ F sat
w

ϵ(ϵw, ϵ(ϵi, ϵw,fiw),fw/iw) if Fw > F sat
w

(B19)

With the volume fractions involved in the calculation being respectively :

fiw = 1− ρg
ρi

fai =
ρg
ρi

fiw/ai = 1− Fw

1−Fw

ρiρg
ρiρw − ρgρw

fw/iw =
(1−Fw)

ρg

(
1−Fw

ρi
+ Fw

ρw

)
(B20)

B3 PSD for melting hydrometeors

As the liquid water fraction increases, the particle size distribution gradually changes from that of iced particles to that of rain.850

The flux-based approach used here comes from Szyrmer and Zawadzki (1999). Given the hypothesis of no aggregation of the

snowflakes and no breakup of the raindrops, at a stationary state, one iced particle leads to one raindrop as the particle melts.

Thus, it can be stated that the flow of particles is conserved (subscripts wp and p stand for "wet particle" and "dry particle",

respectively) :

Nr(Deq)vr(Deq) =Nwp(Deq)vwp(Deq) =Np(Deq)vp(Deq) (B21)855

with N being the number concentration and v the terminal velocity of the corresponding hydrometeors. The terminal veloc-

ities of wet particles are computed from a combination of the terminal velocities of rain vr and dry particles vp, following

Wolfensberger and Berne (2018) :

vwp =Φvr +(1−Φ)vp , with Φ= 0.246Fw +(1− 0.246)(Fw)
7 (B22)

Then, knowing Fw for each Deq , the total wet particle number concentration Nwp can be expressed :860

Nwp(Deq) = (1−Fw)
vp
vwp

Np(Deq)+Fw
vr
vwp

Nr(Deq) (B23)
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Appendix C: Theoretical polarimetric values of the A16 forward operator

This section is only intended to provide a general overview of the theoretical polarimetric values that the A16 forward operator

can reach for the range of contents and concentrations observed in this study. Values of ZH , ZDR and KDP are herein presented

as a function of the content for different hydrometeor class and for a one- (Fig. C1) or two-moment PSD (Fig. C2, Fig. C3).865

Please note that we have compared ICE3 1-moment microphysics to LIMA microphysics, the latter being 2-moment only for

rain and ice.

Figure C1. Theoretical polarimetric outputs of the A16 forward operator, for 1-moment hydrometeor species. From left to right : reflectivity,

differential reflectivity, and specific differential phase as a function of the content. Values for different liquid water fractions of the wet

graupel have been added to emphasize the impact of graupel wetness on polarimetric values in the A16 operator.
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Figure C2. Theoretical polarimetric outputs of the A16 forward operator, for a 2-moment rain hydrometeor class and for different number

concentrations. From left to right : reflectivity, differential reflectivity, and specific differential phase as a function of the content.
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Figure C3. Theoretical polarimetric outputs of the A16 forward operator, for a 2-moment ice hydrometeor class and for different number

concentrations. From left to right : reflectivity, differential reflectivity, and specific differential phase as a function of the content.
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Appendix D: Summary of tobac settings

cell envelope cell core ZDR column

Features detection obs model

Threshold(s) / 36 and 48 dBZ 36 and 40 dBZ 500 m

Minimum object(s) size / 20 and 5 km2 23 and 6.5 km2 4 km2

Segmentation

Contour threshold 25 dBZ 40 dBZ 2 dB

Tracking

Search radius / 20 km 15 km

Memory / 5 min 20 min

Minimum lifetime / 45 min 5 min

Table D1. Settings of the open-source Python package tobac, used in the tracking step, for cell envelope, cell core and ZDR columns objects
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