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Abstract 18 
Ozone (O3) pollution has recently become the most critical air quality issue in China, 19 
yet its underlying drivers related to climate change remain poorly understood. Here, we 20 
use a regional atmospheric chemistry model, along with 10-year ground-level O3 21 
measurements, and reanalysis data on low cloud cover (LCC) and surface downward 22 
shortwave radiation (SSRD) to investigate the impacts of variations in LCC, SSRD and 23 
cloud-radiation interactions (CRI) on O3 production. We design six numerical 24 
experiments, and specifically modify parameters related to cloud radiation effects in 25 
the chemistry module to find out the underlying cause for O3 increase during the warm 26 
season of 2022 in the Yangtze River Delta (YRD), China. Results show that O3 27 
production is strongly modulated by LCC and SSRD. The CRI plays a significant role 28 
in regulating O3 concentration, i.e., reduced LCC, increased SSRD, and a weakened 29 
CRI are primarily responsible for the sharp increase in warm-season O3 concentration 30 
observed in 2022 in the YRD, China. Moreover, climate warming is likely to exacerbate 31 
future O3 pollution via weakening CRI due to fewer clouds and more SSRD. To 32 
mitigate O3 pollution, we thus propose implementing more stringent emission reduction 33 
measures on O3 precursors, along with proactive strategies to address climate change. 34 
 35 
Short Summary 36 
This study investigated how cloud-radiation interactions influence ozone formation in 37 
a warming climate. Using measurements, reanalysis data and models, we found that 38 
cloud-radiation interactions can worsen O3 pollution and climate warming will amplify 39 
the influence. We highlight that climate change will pose greater challenges for China’s 40 
O3 pollution prevention and control, and actions such as reducing O3 precursors 41 
emissions and mitigating climate change are urgently needed. 42 
 43 
Keywords: Ozone, cloud-radiation interactions, climate change, emission reduction 44 
 45 
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1 Introduction  46 
Over the past decade, high concentrations of ground-level ozone (O3) have increasingly 47 
been a major air pollution issue in China. These O3 pollution events are characterized 48 
by extensive spatial coverage and prolonged duration during the warm season, i.e., from 49 
September 22 to 29, 2019, a severe O3 pollution event in eastern China covered an area 50 
of approximately 3.2 million square kilometers (Zhang and Zheng, 2022). Another 51 
notable aspect is that high O3 concentration often coincides with high-temperature 52 
weather, and their co-occurrence frequency has increased at a faster rate than either 53 
alone in recent years (Xiao et al., 2022), posing serious risks to human health, climate 54 
change, and food security. 55 
 56 
Ground-level observations show that each 1°C increase results in an 8 - 10 µg m-3 rise 57 
in O3 concentrations during heatwaves in eastern China, when air temperature varies 58 
between 28°C and 38°C (Pu et al., 2017; Wang et al., 2023). This is largely attributed 59 
to O3 sensitivity to the precursors. In the VOC-limited regime, an increase in air 60 
temperature can enhance biogenic VOCs emissions, providing more O3 precursors (Liu 61 
and Wang, 2020a). However, the response of O3 concentration to air temperature is 62 
nonlinear. As the temperature further increases and exceeds 38.5°C, chemical and 63 
biophysical feedbacks of vegetation are suppressed, and consequently, biogenic 64 
emissions and related O3 formation are reduced (Meehl et al., 2018; Pu et al., 2017; 65 
Steiner et al., 2010). Thus, extreme high temperature cannot fully explain high O3 66 
concentration. What exactly causes the highest daytime O3 concentration in the hottest 67 
summer?  68 
 69 
Several recent review studies have identified multiple factors to explain ground-level 70 
O3 formation (Fu et al., 2019; Jiang et al., 2022; Lu et al., 2019a; Wang et al., 2022a), 71 
including precursor emissions and their proportion (Mousavinezhad et al., 2021; Wang 72 
et al., 2019b; Xue et al., 2014; Zeng et al., 2018; Zheng et al., 2023), climate patterns 73 
(Creilson et al., 2005; Gao et al., 2023; Hong et al., 2019; Shen and Mickley, 2017; Xu 74 
et al., 2017), synoptic-scale circulation systems (Dong et al., 2020; Ji et al., 2024; Jiang 75 
et al., 2021; Li et al., 2018; Mao et al., 2020; Shu et al., 2016; Yin et al., 2019; Zhao et 76 
al., 2010; Zhao and Wang, 2017; Zheng et al., 2023; Zhou et al., 2013), meteorological 77 
parameters such as temperature (Lu et al., 2019b; Mousavinezhad et al., 2021; Pu et al., 78 
2017; Wang et al., 2023; Zheng et al., 2023), humidity (Mousavinezhad et al., 2021; Pu 79 
et al., 2017; Zhao and Wang, 2017; Zheng et al., 2023), wind (Mao et al., 2020; Pu et 80 
al., 2017; Zhao and Wang, 2017), and boundary layer height (Mousavinezhad et al., 81 
2021; Zheng et al., 2023), as well as stratosphere-troposphere exchange (Lu et al., 82 
2019a; 2019b; Verstraeten et al., 2015).  83 
 84 
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However, ground-level O3 is inherently a photochemical product, and anthropogenic 85 
emissions are source drivers that determine its levels, while incident solar radiation acts 86 
as a trigger for photochemical reactions, dominating photolysis rates of O3 production. 87 
Currently, there are few studies on the influence of changes in solar radiation on O3 88 
formation. Early studies reported that clouds have important impacts on tropospheric 89 
photochemistry, which increases global mean OH concentration by about 20% (Tie et 90 
al., 2003). It was also found that the prediction accuracy of clouds in the model would 91 
significantly affect atmospheric chemical composition near the surface layers, leading 92 
to an overestimation/underestimation of O3 concentration (Pour-Biazar et al., 2007). 93 
During the Texas Air Quality Study II Radical and Aerosol Measurement Project, the 94 
influence of clouds on photolysis rate was evidently greater than that of aerosols (Flynn 95 
et al., 2010), and the total reduction in the photolysis rate caused by clouds and aerosols 96 
was almost linearly correlated with the reduction in the net O3 production. These studies 97 
all indicates that changes in clouds and solar radiation significantly influence the 98 
photolysis conditions, which is of great importance to O3 formation. In China, the 99 
decline in PM2.5 concentration is considered one of the reasons for the increase in O3 100 
levels in recent years due to the weakened aerosol-radiation interactions (Yang et al., 101 
2022). However, there are lack of field campaign evidences similar to those of the USA 102 
(Flynn et al., 2010), and only in recent years, fewer studies have qualitatively described 103 
the influence of solar radiation on O3 concentration. For example, enhanced solar 104 
radiation during hot and dry weather can increase O3 production (Mousavinezhad et al., 105 
2021; Xia et al., 2022; Yin et al., 2019; Zhao and Wang, 2017). Some of these studies 106 
have also mentioned that cloud cover can alter solar radiation, thereby affecting O3 107 
formation (Xia et al., 2022; Zhao and Wang, 2017). Nonetheless, these studies are lack 108 
of quantitative analysis and systematic mechanism explanations of the contributions of 109 
clouds, solar radiation, and their variability to O3 formation, and none of them further 110 
investigate the impact of cloud-radiation interactions (CRI) on O3 formation. Moreover, 111 
with an increasingly persistent impact of climate change, how this factor may affect O3 112 
concentration remains unclear. 113 

In this study, we establish correlations between daytime O3 concentration and 114 
downward solar radiation as well as low clouds, based on measurements and reanalysis 115 
data during the past decade. Using numerical models, we analyze the causes of high O3 116 
concentration and, in particular, assess the dependence of O3 change on the variabilities 117 
of clouds, solar radiation and CRI. Furthermore, we project the potential impacts of 118 
these factors on high O3 concentration under climate change. 119 

 120 
2 Data and Methods 121 
2.1 Measurements and reanalysis data 122 
We collect in-situ measurements on hourly mass concentrations of gaseous pollutants 123 
in the Yangtze River Delta (YRD), China during the warm season of the past decade 124 
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(2014-2024). The gaseous pollutants include O3, CO and NO2, which are measured by 125 
Model 49i UV Photometric Ozone (O3) Analyzer, Model 48i Gas Filter Correlation 126 
Carbon Monoxide (CO) Analyzer, and Model 42i Chemiluminescence NO-NO2-NOx 127 
Analyzer, respectively. These analyzers are equipped with built-in calibration systems 128 
that accurately linearize the instrument outputs. The missing data have been eliminated. 129 
The flat YRD region, located in eastern China, is one of the largest urban 130 
agglomerations in the world, consisting of three provinces (Jiangsu, Zhejiang, and 131 
Anhui) and one municipality (Shanghai) (Figure 1a). This region is densely populated, 132 
with highly developed economies and transportation networks, and concurrently, 133 
anthropogenic emissions of O3 precursors, including nitrogen oxides (NOx) and volatile 134 
organic compounds (VOCs) are significantly higher than those in other regions of 135 
China (Figures 1b and 1c). Moreover, the region has abundant vegetation, resulting in 136 
a moderate level of biogenic VOCs emission in China (Figure 1d). Thus, this region is 137 
one of China's hotspots for O3 pollution. The warm season in mid-latitude regions of 138 
Northern Hemisphere often refers to the April -September period. In these six 139 
consecutive months within a single calendar year, the highest mean O3 concentration is 140 
observed, defined as the warm-season O3. The YRD belongs to the mid-latitude region 141 
(Figure 1a), and is facing an environment issue of high O3 concentration during the 142 
warm season. 143 
 144 
Meteorological reanalysis data used here consist of surface downward shortwave 145 
radiation (SSRD) and low cloud cover (LCC) from the European Centre for Medium-146 
Range Weather Forecasts ERA5, with an hourly resolution and a 0.25° × 0.25° spatial 147 
resolution. SSRD and LCC data are selected from 07:00 to 18:00 Beijing Time (BJT) 148 
due to O3 photochemical formation occurred during the daytime. Hourly observations 149 
on 2-m temperature (T2m), relative humidity (RH), wind speed (WS) and direction 150 
(WD) observed at four weather stations are from the National Oceanic and Atmospheric 151 
Administration, available on the website of https://www.ncei.noaa.gov/maps/hourly/. 152 
 153 
2.2 Model and experiments 154 
We use a state-of-the-art regional Weather Research and Forecasting Model online 155 
coupled with chemistry (WRF-Chem model) to investigate the causes of high O3 156 
concentration during the warm season of 2022. The WRF-Chem model is a regional 157 
atmospheric chemistry transport model that can assess how the physical and chemical 158 
processes including transport, vertical mixing, aerosol-cloud interactions, cloud-159 
radiation interactions, emissions, and gas-to-particle conversion affects air quality. The 160 
detailed model information refers to Grell et al. (2005), and model configurations used 161 
in this study are as follows. The physical mechanisms include the Goddard longwave 162 
and shortwave radiation schemes (Dudhia, 1989), the WSM 6-class graupel 163 
microphysics scheme (Hong and Lim, 2006), the Mellor-Yamada-Janji (MYJ) 164 
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planetary boundary layer scheme (Janjić, 2002), the unified Noah land-surface model 165 
(Chen and Dudhia, 2001) and Monin-Obukhov surface layer scheme (Janjić, 2002). 166 
The chemical mechanisms include a new flexible gas-phase chemical module and the 167 
Community Multiscale Air Quality (CMAQ, version 4.6) aerosol module developed by 168 
the United States Environmental Protection Agency (U.S. EPA) (Binkowski, 2003), 169 
gas-phase reactions of volatile organic compounds (VOCs) and nitrogen oxide (NOx) 170 
by the SAPRC-99 (Statewide Air Pollution Research Center, version 1999), and a non-171 
traditional volatility basis-set (VBS) approach to calculate secondary organic aerosol 172 
(SOA) formation (Li et al., 2011b). In addition, HONO production by NO2 173 
heterogeneous reaction is added to improve HOx (OH+HO2), NOx, O3, and SOA 174 
simulations (Li et al., 2010). Inorganic aerosols use the ISORROPIA mechanism 175 
(version 1.7) (Nenes et al., 1998), in which a SO2 heterogeneous reaction to sulfate 176 
formation on aerosol surfaces is considered (Li et al., 2017a). A fast Tropospheric 177 
Ultraviolet and Visible (FTUV) radiation transfer model is used to calculate the 178 
photolysis rates (Tie et al., 2003), which can also calculate the impacts of aerosols and 179 
clouds on the photochemistry processes (Li et al., 2011a). The wet deposition uses the 180 
method in CMAQ (Byun and Ching, 1999) and the dry deposition follows Wesely 181 
(1989). Anthropogenic emission inventory uses the Multi-resolution Emission 182 
Inventory for China (MEIC) developed by the Tsinghua University (Li et al., 2017b), 183 
consisting of industrial, power, transportation, agricultural, and residential sources. The 184 
biogenic emissions are calculated by the Model of Emissions of Gases and Aerosol 185 
from Nature (MEGAN) (Guenther et al., 2006). The model horizontal resolution is 6 186 
km, with 200 grids in the longitude and 200 grids in the latitude. There are 35 vertical 187 
sigma levels, with intervals ranging from 50 m near the surface to 500 m at 2.5 km 188 
above the ground level, and more than 1 km above 14 km. Initial and boundary 189 
meteorological fields in the model are driven by 6-hour 1° × 1°Final Analyses data from 190 
National Centers for Environmental Prediction (NCEP FNL). Chemical initial and 191 
boundary fields are from a Community Atmosphere Model with chemistry (CAM-192 
Chem) 6-hour output. The spin-up time of the model is 2 days. A brief introduction on 193 
the schemes used in this study is shown in Table S1. 194 
 195 
We perform four groups of model experiments, with a total of six simulations (Table 196 
1). The baseline experiment (BS_Exp.) reflects the real situation of high O3 197 
concentration. The BS_Exp. uses real emissions and meteorological conditions in July, 198 
2022. The rationality for selecting July as the representative month of the warm season 199 
is as follows. Firstly, July is typically the most representative month for the warm 200 
season in Northern Hemisphere. Moreover, the observed interannual variation in 201 
daytime O3 concentration in July is fully consistent with the interannual variation in 202 
warm-season mean O3 concentration in recent years (Figure S1 and Figure 2a). Most 203 
importantly, daytime O3 concentration in July 2022 is the highest in recent years, 204 
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significantly higher than the lowest in July 2021, and another identical feature is that 205 
daytime O3 concentration in July 2024 is the second highest. The BS_Exp. is also used 206 
to validate the model performance by comparing with the measurements. Another two 207 
groups of control experiments (CTRL_Exp.) are used to assess the impacts of 208 
interannual variability of meteorology and emission change on O3 formation. The first 209 
group of control experiments selects the year of 2021 with the lowest daytime O3 210 
concentration in recent 5 years, using the same emissions as the BS_Exp. but different 211 
meteorological conditions (defined as CTRL_Exp.1). Differences between the 212 
CTRL_Exp.1 and BS_Exp. can illustrate the impacts of interannual variability of 213 
meteorological conditions on O3 concentration. The second group uses the same 214 
meteorological conditions as the BS_Exp. but different emissions (CTRL_Exp.2). 215 
Emission changes in CTRL_Exp.2 are based on the emissions in 2021, and the 216 
difference between CTRL_Exp.2 and the BS_Exp. can explain the impact of emission 217 
changes of precursors on O3 formation. In addition, we perform a background 218 
experiment (BG_Exp.) with zero anthropogenic emissions to calculate the background 219 
O3 concentration.  220 
 221 
Based upon the BS_Exp. and CTRL_Exp.1, we particularly examine the contribution 222 
of CRI intensity to O3 formation via considering and not considering the impact of CRI 223 
on atmospheric photochemistry. The BS_Exp. experiments with CRI considered or not 224 
are designated as BS_Exp._CRI and BS_Exp._noCRI, respectively, while the 225 
CTRL_Exp.1 experiments with and without CRI are designated as CTRL_Exp.1_CRI 226 
and CTRL_Exp.1_noCRI. The setup information for all simulation experiments is 227 
provided in Table 1. The impacts of clouds on solar radiation are calculated by adjusting 228 
three key parameters in the chemical module related to cloud radiative effect: cloud 229 
optical depth, single scattering albedo, and asymmetry factor. This approach confines 230 
the CRI impact within photochemical reactions, only altering the photolysis rates of 231 
photochemical substances directly associated with O3 formation. Additionally, it avoids 232 
the original meteorological fields in the physical module being perturbed by the CRI, 233 
which would otherwise complicate the study. 234 
 235 
To evaluate the model performance, we use three common statistical indices involving 236 
mean bias (MB), root mean square error (RMSE), and index of agreement (IOA) 237 
(Willmott, 1981). The formulas are as follows: 238 

MB = 1
N
∑ (Pi	- Oi)N

i=1                 (1) 239 

RMSE =	#1
N
∑ (Pi	- Oi)2N

i=1 &
1
2            (2) 240 

IOA = 1 - ∑ (Pi - Oi)2N
i=1

∑ (|Pi	- O&&&|+|Oi - O&&&|)2N
i=1

            (3) 241 
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where Pi and Oi represented the simulated and observed variables, respectively. N is the 242 
total sample number of the simulation, and Ō denotes the average of the observation. 243 
The IOA ranges from 0 to 1. The closer it is to 1, the better the simulation.  244 
 245 
2.3 Climate Scenarios 246 
Using 41-model results from Coupled Model Intercomparison Project Phase 6 (CMIP6) 247 
(Table S2), we analyze the long-term trends of monthly surface downwelling shortwave 248 
radiation (SSRD), total cloud cover percentage (TCC), and daily maximum air 249 
temperature (T_max) in July during 2025-2099 under three Shared Socio-economic 250 
Pathways (SSPs). These three SSPs narrate the Green Road with a sustainable 251 
development paradigm (SSP1-1.9), middle-of-the road along a historical development 252 
pattern (SSP2-4.5), and a highway road with a fossil-fueled development pattern 253 
(SSP5-8.5) that represent high, moderate, and low climate mitigation pathways, 254 
respectively (Riahi et al., 2017). Finally, we project the potential influence of the solar 255 
radiation on the occurrence of high O3 concentration under these climate scenarios. 256 
 257 
3 Results and discussion 258 
3.1 Observed linkage between O3, incident solar radiation, and low clouds 259 
Over the past decade, the warm-season mean daytime O3 concentration (hereafter O3 260 
concentration) in the YRD has shown a distinct rising-falling pattern before 2021, with 261 
a turning point in 2017 (Figure 2a). From 2013 to 2017, O3 concentration increased by 262 
5.9 μg m-3 per year, while decreased by 2.5 μg m-3 per year during 2017-2021. Due to 263 
the Action Plan on Prevention and Control of Air Pollution since 2013, China’s 264 
anthropogenic NOx emissions were substantially reduced (Zhang et al., 2019), whereas 265 
VOCs emissions increased slightly during 2013-2017 (Zheng et al., 2018). The 266 
disproportionate emission reductions largely contributed to the continuous increase in 267 
O3 concentration from 2013 to 2017 (Jiang et al., 2022; Wang et al., 2022a; Liu and 268 
Wang, 2020b; Wang et al., 2019a). Since 2017, as VOCs emissions began to decline 269 
(Jiang et al., 2022; Simayi et al., 2022), along with the ongoing reduction in NOx (Li et 270 
al., 2024; Zhang et al., 2019), O3 concentration began to decline (Lu et al., 2019b). In 271 
addition to precursor emissions, O3 trends during this period were also influenced by 272 
meteorological conditions and PM2.5 reductions. The meteorological conditions play an 273 
important but not dominant role in ozone trends (Liu et al., 2023; Li et al., 2020), and 274 
the continued PM2.5 reduction enhances ozone production due to the weakened aerosol 275 
uptake of hydroperoxyl (HO2) radicals (Li et al., 2019a). Nevertheless, O3 trends was 276 
primarily driven by changes in precursor emissions (Wang et al., 2022a; Liu and Wang, 277 
2020b). Unexpectedly, during the warm season of 2022, O3 concentration suddenly 278 
increased to the highest, even surpassing the turning point of 2017 by 3.4 μg m-3. 279 
Subsequently, O3 concentrations dropped during the warm seasons of 2023-2024 280 



 9 

compared to the same period of 2022, but still remained at relatively high levels. This 281 
is seemingly paradoxical to emission reductions in O3 precursors mentioned above. 282 
 283 
According to the principle of O3 formation, it is influenced not only by changes in 284 
precursor emissions but also by the solar radiation intensity. Observational evidence 285 
reveals that interannual variability of warm-season downward solar radiation is highly 286 
consistent with the interannual variation of O3 concentration in the YRD during the past 287 
decade. A significant positive correlation between them (r = 0.85, p < 0.001, Figure 288 
2b) suggests that O3 concentration indeed strongly depends on the SSRD intensity. Low 289 
clouds with small and compact liquid droplets can significantly reflect the solar 290 
radiation by their considerable optical thickness (Kang et al., 2020), thereby 291 
diminishing photolysis rate and the loadings of tropospheric oxidants (Tie et al., 2003; 292 
2019). We examined the relationship between daytime LCC and O3 concentration, and 293 
found that O3 concentration is more significantly negative with LCC (r = -0.90, p < 294 
0.001, Figure 2c). This suggests that low clouds are of great importance to O3 295 
concentration. Liu and Wang (2020a) suggested that the reduction of cloud cover plays 296 
a dominant role in increasing daily maximum 8-hour (MDA8) O3 concentration in 297 
China during 2014-2017 summer. Similarly, daytime LCC in the warm season of 2022 298 
dropped to the lowest (LCC = 0.2) during the past decade, with a 23.6% reduction 299 
relative to the multi-year mean, while SSRD was significantly more than the multi-year 300 
mean by 28.9 W m-2 (Figure S2). Thus, solar radiation is vital to O3 formation, by which 301 
an increase (decrease) in LCC intensifies (weakens) the reflection of solar radiation, 302 
and decreases (increases) SSRD, inconducive (conducive) to O3 formation. The 303 
favorable solar radiation is likely crucial to the sudden increase in O3 concentration 304 
during the warm season of 2022, though O3 precursors from anthropogenic emissions 305 
have been slashed. 306 
 307 
3.2 Model validation 308 
 309 
Observations at weather stations in four provinces and municipality are used to validate 310 
the model performance on meteorological fields. Results show that the model well 311 
captures spatiotemporal variability of meteorological parameters (Figure S3). For 312 
example, the simulated T2m is in good agreement with the observation, with the IOAs 313 
in the range of 0.88-0.92. The MBs are within 0.7°C, and the RMSEs are around 2.0°C. 314 
Followed by the RH, with IOAs of 0.83 to 0.89. Most importantly, the model 315 
successfully captures the WD shift, with the IOAs of 0.79 to 0.89, which is crucial for 316 
accurately simulating atmospheric transport and re-distribution of the spatiotemporal 317 
variations in pollutants. There are also some biases between the simulations and 318 
observations. The model generally overestimates the WS, with the IOAs between 0.60 319 
and 0.73, lower than those of the three parameters mentioned above. These 320 
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discrepancies are partly due to the systematical bias of the WRF-Chem model, which 321 
often overestimates the ground-level WS. Additionally, the observation data on WS are 322 
recorded only as integers, with no decimal fractions. This lack of precision in 323 
observations reduces the temporal variability of the WS, compared to the simulations, 324 
thereby resulting in a lower IOA.  325 
 326 
For pollutants, the model also well reproduces temporal variation of O3, with an MB of 327 
2.4 μg m-3 and an RMSE of 17.7 μg m-3 (Figure S4a). This means the simulation is 328 
approximately 2.8% higher than the observation, with an accuracy of 79.3%. The IOA 329 
between the simulated O3 hourly variation and the observation exceeds 0.90 (IOA = 330 
0.94), implying for a better performance of the model on chemical reactions. The 331 
simulated NO2 concentration is also in a good agreement with the observation (IOA = 332 
0.83), with an MB of 0.9 μg m-3 and an RMSE of 5.3 μg m-3 (Figure S4b). Inevitably 333 
there are also some discrepancies between the simulation and the observation, i.e, the 334 
amplitude of the simulated CO concentration is remarkably greater than the observed 335 
(Figure S4c). This is largely related to the emission inventory that fails to depict an 336 
accurate diurnal cycle of CO emission. The IOA between the simulated and observed 337 
CO concentrations is thus relatively lower (IOA = 0.63). However, the simulated mean 338 
CO concentration is extremely close to the observation (MB = 0.0 μg m-3), suggesting 339 
that the model accurately captures the variability of atmospheric transport. Generally, 340 
the model well reproduces temporal variations in meteorological fields, O3 and related 341 
gaseous pollutants (Figures S3-S4), providing sufficient evidence on the rationality of 342 
the model. 343 
 344 
3.3 Modelling evidence on O3 increase 345 
To verify this hypothesis, we separately distinguished contributions of background 346 
fields, anthropogenic emissions and their changes, as well as changes in meteorological 347 
fields to O3 concentration. Meteorological and chemical lateral boundary inputs, and 348 
biogenic emissions approximately produce 57.7 µg m-3 of O3 concentration in the YRD 349 
in the warm season of 2022, accounting for 55.1% of O3 concentration (Figure 3). 350 
Another study also found that background inputs contributes 39 to 58 µg m-3 to 351 
summertime MDA8 O3 concentration in this region (Li et al., 2019b). These results 352 
reveal a relatively high level of background O3 concentration in the YRD, which 353 
provides a favorable environmental basis for the occurrence of O3 pollution. When 354 
anthropogenic emissions are included, O3 concentration increases by 47.1 µg m-3, 355 
suggesting that human emissions remain a key contributor to O3 formation. 356 
 357 
We further investigated the impact of changes in anthropogenic emissions on O3 358 
concentration. Based upon the interannual variations in anthropogenic emissions, NOx 359 
and VOCs emissions in the summer of 2022 are approximately reduced by 5% and 4%, 360 
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respectively, compared to the summer of 2021 (Jiang et al., 2022; Li et al., 2024). 361 
Consequently, O3 concentration decreased by 1.5 µg m-3 (Figure 3), meaning that 362 
current emission reductions definitely lead to a decline in O3 concentration. As 363 
summertime O3 sensitivity changes from a VOC-limited regime to a transitional regime 364 
in the YRD (Wang et al., 2019a; 2022b; Yin et al., 2019), simultaneous reductions in 365 
VOCs and NOx emissions have become an effective way to reduce O3 concentration. 366 
Nonetheless, the O3 drop through emission cuts is not as significant as expected. 367 
Therefore, the changes in anthropogenic emissions are not responsible for the increase 368 
in O3 concentration in the warm season of 2022, and more stringent measures on 369 
emission reductions are needed to achieve a desired O3 decline. 370 
 371 
Besides the impacts of human emissions, we examined the influence of meteorology 372 
change, because the change is of great significance to the trend of O3 concentration, 373 
even exceeding the impact of changes in anthropogenic emissions (Liu and Wang, 374 
2020a). As a result, differences in meteorological fields alone lead to a 9.2 μg m-³ 375 
increase of O3 concentration in July 2022 relative to the same period of 2021 (Figure 376 
3). This is roughly consistent with Ji et al. (2024), who suggested adjustments of 377 
meteorological fields lead to an increase in O3 concentration by 13.0 µg m-3 in coastal 378 
cities of the YRD in July 2022 compared to 2015-2021. Thus, meteorological 379 
conditions in the warm season of 2022 are more favorable for O3 formation in the YRD. 380 
Noticeably, the negative effects of interannual variability of meteorological conditions 381 
on O3 concentration have greatly exceeded the positive effects of precursor emission 382 
reductions.  383 
 384 
Furthermore, we specifically assessed the impacts of shortwave solar radiation, low 385 
clouds, and CRI on O3 concentration, because the solar radiation is the direct 386 
meteorological factor for O3 formation. The model also well reproduces the interannual 387 
variability of LCC and SSRD, i.e., the calculated changes in LCC and SSRD are 0.07 388 
and 83.5 W m-2, respectively, close to the observed 0.09 and 82.7 W m-2 (Figure S5). 389 
These comparisons mean that the calculated interannual variability of LCC is 390 
approximately 22.2% lower than the observations, while SSRD variability is 391 
overestimated by about 1.0%. This may lead to a little underestimation of the impact of 392 
LCC and SSRD variabilities on O3 formation. Generally, the model evidence confirms 393 
the observed linkage that an increase (decrease) in LCC and a decrease (increase) in 394 
SSRD can suppress (enhance) O3 production (Figure S6). As LCC increase, the SSRD 395 
reduces significantly at a rate of more than 40 W m-2 per 0.1 increase in LCC (Figure 396 
S6a). In particular, the SSRD decreases more rapidly in the early stage when low clouds 397 
appear. As a result, the photolysis rate rapidly drops and O3 production significantly 398 
slows down. As LCC further increases, daily mean SSRD falls below 400 W m-2, 399 
resulting in a noticeable slowdown in photolysis rates, falling to less than 4.0 × 10-3 s-1 400 
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(Figure S6b). Consequently, the rate of O3 production slows, and O3 concentrations are 401 
not as high as that occurred in the early stage (Figure S6c). Noticeably, the correlation 402 
between O3 concentration and SSRD is less more significant than the correlations in 403 
Figures S6a and S6b, with a confidence level exceeding 95% (whereas the first two 404 
panels show confidence levels exceeding 99.9%). The data are also distributed more 405 
dispersedly. This is largely due to solar radiation is one key factor influencing O3 406 
production. Precursors emissions and their proportion are the other key factor. In 407 
addition, O3 concentration is also affected by atmospheric transport, deposition, and 408 
stratosphere-troposphere exchange mentioned in Section Introduction. 409 
 410 
Unfortunately, current models are unable to fully isolate the individual contribution of 411 
variability in LCC and SSRD to O3 production. As a compromise, we managed to 412 
examine the response of O3 concentration to the CRI. In July 2022, clear-sky weather 413 
dominates in the YRD, with monthly mean daytime LCC noticeably lower than that in 414 
2021 (Figures 4a and 4b). The regional average daytime LCC and SSRD are 0.04 and 415 
583.20 W m-2, respectively (Figures 4a and 4c). Compared to July 2021 (Figures 4b 416 
and 4d), LCC decreases by 63.6%, while SSRD increases by 16.7%. This clear and 417 
cloudless weather favors O3 formation. Consequently, the magnitude and spatial 418 
coverage of high O3 concentration are significantly larger (Figures 4e and 4f). Less 419 
LCC in July 2022 reflects less incident solar radiation, resulting in less attenuation to 420 
incident solar radiation and more solar radiation reaching the surface. This minimal 421 
impact of clouds on incident solar radiation is defined as a weak CRI. By comparison, 422 
more LCC in July 2021 enhances the reflection of incident solar radiation, and 423 
consequently, less incident solar radiation reaches the surface, leading to a strong CRI. 424 
Whether the CRI is strong or weak, it reduces SSRD and decelerates the photolysis rate, 425 
thereby suppressing ground-level O3 production (Figures 5a, 5b, and S6). The stronger 426 
(weaker) the CRI, the more (less) the O3 reduction. The change in O3 concentration 427 
(∆O3) is highly sensitive to the LCC when low clouds are fewer (Figure S6). A little 428 
increase in LCC can cause a sharp decline in O3 production, resulting in a significant 429 
reduction in O3 concentration. For example, when LCC is less than 0.3, an increase of 430 
0.1 in LCC approximately leads to a reduction of 3.5 µg m-3 in ∆O3. When LCC is more 431 
than 0.3, the photolysis rates decrease to a lower level (Figures S6a and S6b), and ∆O3 432 
drops not as rapidly as that in the initial stage of clouds occurrence, with a decline rate 433 
of 2.4 µg m-3 for an additional 0.1 increase in LCC (Figure S7). Such changes in LCC 434 
and SSRD can lead to variations in the CRI, resulting in significantly different impacts 435 
on O3 production. Compared with the summer of 2021, the weaker CRI in the summer 436 
of 2022 leads to a widespread and substantial increase in O3 change over the YRD, with 437 
the maximum increase exceeding 9 µg m-3 on a local scale (Figure 5c). This implies 438 
that a weakened CRI suppresses O3 formation less effectively, thereby indirectly 439 
enhancing O3 production, with a regional mean O3 increase of 2.9 µg m-3 (Figure S8). 440 
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 441 
Based on the above results, contributions of different factors to O3 increase over the 442 
YRD in the summer of 2022 are shown in Figure S8. Changes in meteorological 443 
conditions including the reduction in LCC and the increase in SSRD lead to an increase 444 
of 9.2 µg m-3 in O3 concentration. Thereinto, the weakened CRI due to the reduced LCC 445 
and increased SSRD contributes to 2.9 µg m-3, accounting for 31.5% of the total O3 446 
increase caused by favorable meteorological conditions. In contrast, anthropogenic 447 
VOCs and NOₓ emission reductions lead to a decrease of 1.5 µg m-3 in O3 concentration, 448 
which is far less than the impact of the changes in photolysis conditions. This indicates 449 
that the reduction in LCC, the increase in SSRD, and the weakened CRI are the major 450 
drivers of the sudden increase in O3 concentration over the YRD during the summer of 451 
2022. 452 
 453 
3.4 O3 pollution potential under global warming 454 
We used CMIP6 products to analyze the long-term trends of Tmax, SSRD, and TCC 455 
under SSP5-8.5, SSP2-4.5 and SSP1-1.9 (Figure 6). The projected climate change 456 
under each SSP deviates significantly from the ERA5 reanalysis data, particularly in 457 
terms of the interannual variability, which is remarkably larger in reality. This indicates 458 
that climate change is highly uncertain. Nevertheless, the projected trend of T_max is 459 
generally consistent with the ERA5. The TCC pattern also align well with the SSP2-460 
4.5 projection in recent years, and the SSRD pattern also closely matches the SSP2-4.5 461 
projection. This consistency roughly corresponds with the development pathway in 462 
China over the past decade. These comparisons suggest that the projections under 463 
different SSPs provide valuable information on understanding future climate change 464 
and its implications for O3 pollution. 465 
 466 
Ensemble mean Tmax will continue to rise during the 21st century under any SSPs, 467 
whether the extreme or mean Tmax (Figures 6a and 6b). Noticeably, until the end of the 468 
21st century, Tmax extreme no longer increases significantly and exhibits a fluctuation 469 
pattern under SSP1-1.9. However, under the two alternative scenarios, the Tmax will 470 
continuously increase more significantly, with an annual mean rate of 0.3°C per decade 471 
(Figures 6a and 6b). While under SSP5-8.5, the temperature will follow a linear 472 
increase trend at a faster rate that is more than twice as that under SSP2-4.5. Although 473 
there are some differences in the warming rates by models and scenarios, the warming 474 
trend is highly consistent. 475 
 476 
Observational evidence shows that climate warming has increased the frequency of 477 
high temperatures and O3 extremes (Wang et al., 2023). Consequently, the frequency 478 
of extreme high-temperature events coinciding with high O3 concentrations, as 479 
observed in 2022, may also increase (Hong et al., 2019; Xiao et al., 2022). Heatwaves 480 



 14 

are often accompanied by adiabatic subsidence, fewer clouds, and stronger solar 481 
radiation. Cloud cover shows no significant trend under SSP1-1.9, whereas it decreases 482 
significantly under SSP2-4.5 and SSP5-8.5, with a faster decline rate under SSP5-8.5 483 
(Figure 6c). Concurrently, SSRD exhibits a significantly increasing trend under three 484 
SSPs (Figure 6d). Though in the second half of the 21st century, SSRD fluctuates within 485 
a smaller magnitude under SSP1-1.9, it is still higher than that in the first half of the 486 
21st century. Under SSP2-4.5 and SSP5-8.5, SSRD increases more rapidly at almost the 487 
same rate (Figure 6d). 488 
 489 
There are some differences in the trends of radiation factors related to O3 formation 490 
under different scenarios inevitably. For example, the phases of SSRD and clouds under 491 
SSP1-1.9 significantly differ from those under the other two scenarios. However, all 492 
scenarios are highly favorable for an increase in SSRD, suggesting that the potential 493 
risk of high O3 concentrations may be increasing in the forthcoming decades, even 494 
taking the Green Road. Fortunately, based on recent emission inventories, pollutants in 495 
China have shown a decreasing trend. In our study, by comparison with emissions in 496 
the summer of 2021, VOCs and NOx emissions in the summer of 2022 decreased by 4% 497 
and 5%, respectively (Jiang et al., 2022; Li et al., 2024), leading to a reduction in O3 498 
concentration by 1.5 µg m-3. According to these emission reduction rates, we use a 499 
simple linear extrapolation method, also in conjunction with China’s carbon neutrality 500 
goal, to estimate VOCs and NOx emissions in the future. By the 2030 carbon peak, 501 
VOCs and NOx emissions will have been reduced by approximately 31% and 37%, 502 
respectively, relative to 2021 levels. By the 2060 carbon neutrality goal, the reductions 503 
are projected to reach 80% and 87%, respectively. Actually, emission reductions may 504 
face challenges and unlikely to follow such a perfect pathway, and the response of O3 505 
concentration to precursor reductions is also nonlinear. We thus assume that, if such an 506 
idealized scenario is followed, O3 concentrations by 2030 and 2060 are estimated to be 507 
reduced by 13.5 µg m-3 and 58.5 µg m-3, respectively, relative to the levels in 2021. 508 
Therefore, in the long term, on the decadal scale, the continued emission reductions are 509 
expected to significantly reduce O3 concentration. 510 
 511 
However, on an interannual scale, the projected SSRD variability can reach several tens 512 
of W m-2, which is consistent with this study. Our study shows that interannual 513 
difference in SSRD between the summers of 2022 and 2021 is more than 80 W m-2. 514 
Based on the linear relationship between O3 and SSRD shown in Figure 2, such 515 
differences in SSRD corresponds to a change of 28 µg m-3 in daytime O3 concentration. 516 
According to the spatial distribution in Figure 4, the regional mean daytime O3 change 517 
due to meteorological changes (including clouds and SSRD) is 9.2 µg m-3. Thus, a 518 
sudden increase in SSRD may partially offset the benefits of emission reductions. Given 519 
that coordinated VOCs and NOx emission reductions are in the early stage, the 520 
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increasing possibility of highly favorable photochemical conditions under climate 521 
change could not only counteract the effects of emission reductions, but may even lead 522 
to a rebound in O3 concentrations in the short term. Moreover, less clouds and more 523 
SSRD under SSPs will also weaken CRI and consequently aggravate O3 pollution in 524 
the future. Based on SSPs projections, the interannual differences of summer SSRD 525 
and cloud cover could reach or even exceed those observed between the summers of 526 
2022 and 2021 (the interannual differences in SSRD and LCC is 82.7 W m-2 and 0.09, 527 
respectively). It is reasonable to expect that the CRI interannual variability will likely 528 
exert an influence on O3 changes that is no less significant than the calculation 529 
presented in this study. Though these factors related to climate change are highly 530 
variable, based upon the past and present impacts on O3 concentration, their impacts on 531 
future O3 pollution control are widely believable. Thus, we suggest that, if 532 
anthropogenic emission reductions are insufficient, these changes in clouds and SSRD 533 
linked to climate change will increase O3 concentration during the warm season.  534 
 535 
4 Conclusions and implications 536 
High O3 concentration during the warm season have been increasingly becoming a 537 
major air pollution issue in China, however, whether it is closely connected to climate 538 
change has not yet received sufficient attention. Our findings indicate that the sudden 539 
increase in O3 concentration in the YRD during the warm season of 2022 is closely 540 
linked to the weak CRI characterized by lower LCC and higher SSRD. Less LCC favors 541 
more solar shortwave radiation reaching the surface, which significantly accelerates 542 
photochemistry, thereby leading to a pronounced increase in O3 concentration.  543 
 544 
The notable increase in O3 concentration caused by weakened CRI has significantly 545 
exceeded the O3 reduction caused by the interannual decrease in precursor emissions 546 
during the warm season of 2022, attenuating the benefits of precursor emission 547 
reductions. We emphasize that the focus on LCC and SSRD is with significant 548 
implications for operational forecast on O3 pollution, i.e., more stringent measures on 549 
precursor emission reductions are imperative under weaker CRI. 550 
 551 
Our results suggest that climate warming will make O3 pollution control more 552 
challengeable via altering clouds and SSRD and weakening the CRI. The high-level O3 553 
is not only influenced by changes in clouds and solar radiation related with short-term 554 
synoptic-scale circulation adjustments, but also modulated by long-term climate change. 555 
The occurrence likelihood of heatwaves (Chen et al., 2019; Ma et al., 2023), 556 
accompanied by fewer clouds and more SSRD, will increase under climate warming. 557 
Furthermore, if anthropogenic emissions are not greatly reduced, human-induced 558 
forcing will further amplify the probability (Faranda et al., 2023; King et al., 2016; 559 
Lopez et al., 2018; Sun et al., 2017; Zhang et al., 2024). Inevitably, the co-occurrence 560 
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of extreme high temperature and O3 concentration is likely to occur frequently, posing 561 
a greater threat to human health, crops, and vegetation. Therefore, we would like to 562 
propose that more proactive human actions are vital to offset the penalty of climate 563 
change to these issues. 564 
 565 
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Figures and Tables 883 

Table 1 Setup of model experiments. 884 

 885 

Experiment 
Anthropogenic 

emission 
Meteorology 

Cloud-radiation 

interactions (CRI) 

BS Exp._CRI Emission 2022 Meteorology 2022 Yes 

BS Exp._noCRI Emission 2022 Meteorology 2022 No 

CTRL Exp.1_CRI Emission 2022 Meteorology 2021 Yes 

CTRL Exp.1_noCRI Emission 2022 Meteorology 2021 No 

CTRL Exp.2 Emission 2021 Meteorology 2022 Yes 

BG Exp. No Meteorology 2022 Yes 
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 886 

 887 
Figure 1 Location of the YRD, China and spatial distributions of emissions. (a) The 888 
flat YRD is located in the eastern China, marked by the blue line. (b) Anthropogenic 889 
NOx emission rate in July 2022 based on the MEIC emission inventory. (c) Same as (b), 890 
but for anthropogenic non-methane VOCs. (b) and (c) represent human-induced 891 
emissions of precursors for O3. (d) Biogenic isoprene emission rate is calculated by 892 
MAGAN, representing biogenic VOCs emissions. 893 
 894 
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 895 

 896 
Figure 2 Observed relationships between O3, SSRD, and LCC. (a) Annual variation in 897 
mean daytime O3 concentration (black), SSRD (orange), and LCC (green) during the 898 
warm season of the past decade (2014-2024) in the YRD, China. (b) Correlation 899 
between O3 concentration and SSRD. (c) Correlation between O3 concentration and 900 
LCC. The colored lines in (b) and (c) represent the linear fits through the data in (a), 901 
i.e., [O3] = -32.20 + 0.35 × [SSRD] with r = 0.85 and [O3] = 142.49 -173.87 × [LCC] 902 
with r =- 0.90. O3 concentration is significantly positively (negatively) correlated with 903 
SSRD (LCC), with confidence levels exceeding 99.9%. Sample sizes N, correlation 904 
coefficients r, and confidence levels p by the Student’s t-test are shown in (b) and (c). 905 
 906 
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 907 
Figure 3 Simulated O3 concentrations under different model experiments. 908 
Contributions of background input (blue) and anthropogenic emissions (orange minus 909 
blue) to summer O3 concentrations in the YRD. Contributions of emission change 910 
(orange minus red) and meteorology change (orange minus green) to O3 change. 911 
 912 
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 913 

 914 
Figure 4 Comparison of spatial distribution of monthly mean daytime O3 915 
concentrations under different CRI intensities. (a-b) LCC in July 2022 and July 2021, 916 
respectively. (c-d) SSRD. (e-f) Daytime O3 concentrations. (a) and (c) represent a weak 917 
CRI mechanism due to less LCC and more SSRD, corresponding to higher O3 918 
concentrations, with a larger spatial coverage. (b) and (d) represent a strong CRI 919 
mechanism due to more LCC and less SSRD, corresponding to lower O3 concentrations, 920 
with a smaller spatial coverage. The YRD is enclosed by the red line in (a). The regional 921 
average of each variable is shown at the top-right corner of each panel. 922 
 923 
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 924 

 925 
Figure 5 Influence of CRI on O3 change. (a) Difference in O3 concentrations including 926 
and excluding CRI in July 2022, indicating O3 change caused by a weak CRI. (b) Same 927 
as (a) but in July 2021, indicating O3 change caused by a strong CRI. (c) A result of (a) 928 
minus (b), representing ∆O3 change caused by the CRI intensity change. 929 
 930 
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 931 

 932 
Figure 6 Trends of multi-model ensemble mean radiation conditions projected by the 933 
CMIP6 under three SSPs during 2015-2099. (a) The maximum daily T_max, and (b) 934 
The mean daily T_max in July, represent the extreme and mean status of high 935 
temperature, respectively. (c) TCC and (d) SSRD together reflect the solar radiation 936 
conditions for O3 formation. The shading shows ±1.0 standard error, and the dash lines 937 
represent the linear trends of each variable under different SSPs. The black curve in 938 
each panel shows the real variation of each variable from the ERA5 reanalysis data 939 
during 2014-2024. 940 


