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Abstract. Vertically pointing millimeter-wavelength radars provide a wealth of information about cloud and
precipitation particle properties. Doppler spectral data can inform on how particles of varying vertical velocities
contribute to total backscattered power observed. It is more computationally cost effective to process moment data
instead of spectra data, but doing so leaves valuable information on the cutting room floor. To confidently identify a
multi-modal spectra event, in which two or more modes are present within a layer, Doppler spectral data are essential.5

This means long-term identification of layers featuring multi-modal spectra can be cost prohibitive. To address this,
we explore three multi-modal spectra cases from winter precipitation events to determine characteristic signatures
of these layers in the moment data averaged over short time periods (~145 s) and explore how these layers differ
from the rest of the vertical profiles. We find that the mean spectrum width and the standard deviation of mean
Doppler velocity can be used to determine whether or not a layer is multi-modal. In particular, multi-modal layers10

in mixed-phase and ice clouds feature larger mean spectrum width (exceeding 0.17 m s−1) and smaller standard
deviation of the mean Doppler velocity (below 0.1 m s−1). In Part 1 of this study, the identification criteria and
methods are described. In Part 2, we perform a verification of the method for three years of vertically pointing radar
data, and explore the meteorological conditions associated with identified multi-modal spectral events.

1 Introduction and Background15

Radar sampling volumes typically contain millions of hydrometeors, each of which may move according to the local
wind speed, turbulence, updrafts/downdrafts, etc. Hydrometeor motion, when projected along the radar wave’s
propagation direction, may vary, leading to a dispersion of radial velocities within the sampling volume. Further, waves
backscattered from each hydrometeor in the sampling volume interfere, resulting in a combined received signal whose
amplitude and phase may fluctuate from pulse to pulse. Because the hydrometeors’ locations and sizes within the20

radar sampling volume (which spans many wavelengths in range) are random, these received signals can be considered
random signals (Doviak and Zrnić, 1993). Assuming ergodicity, statistical properties of the sampled hydrometeors can
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be obtained from sufficient time averages (i.e., averaging multiple pulses). The frequency distribution of the random
signals may be obtained by taking the Fourier transform of the signal’s autocorrelation function; this frequency
distribution is known as the power spectrum. When converted from frequency to radial velocity, one obtains the25

Doppler spectrum: the power- (or reflectivity-) weighted distribution of radial velocities within in sampling volume
(Doviak and Zrnić, 1993).

The Doppler spectrum shows the contribution to the overall received signal power from hydrometeors as a function
of their radial velocity. The examples in Fig. 1 are spectrograms (i.e., graphical representations of the Doppler
spectrum) taken from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program’s30

Ka-band ARM Zenith-pointing Radar (KAZR) at the Southern Great Plains (SGP) site. Herein, we make use
of the convention that negative velocities are towards the radar, meaning hydrometeors are descending for these
vertically pointing radars. The black curve shows an approximately Gaussian-shaped peak in co-polar spectral power
centered on velocities between 0 and –2 m s−1; the radar’s noise floor is at approximately –40 dBm (m s−1)−1 in this
example. From such a Doppler spectrum, one can visualize how particles of differing velocities contribute to the total35

backscattered power observed. Two radar moments obtained by integration over the Doppler spectrum are mean
Doppler velocity (MDV) and spectrum width (SW). The bi-modal spectrogram (shown in green) is broader than the
one with a single mode; this translates to a larger SW. When a secondary peak is offset to slower velocities (as shown
in Fig. 1), it may noticeably affect the MDV by shifting it towards smaller velocities. The magnitude of this shift
depends on the total power of the secondary mode relative to the rest of the spectrum. Thus, in situations featuring40

bi-modal spectra, it can be expected that these spectral signals may affect those radar moment variables, as well.
Although hydrometeors in a radar sample volume may exhibit different Doppler velocities when viewed at low

elevation angles, particularly in highly sheared environments (e.g., Wang et al., 2019; Hernandez and Chandrasekar,
2023), most often Doppler spectral analysis is used for high antenna elevation angles, including 45° (e.g., Moisseev et
al., 2004; Spek et al., 2008; Mak and Unal, 2024) and 90° (i.e., vertically pointing radars; e.g., Kollias et al., 2002;45

Moisseev et al., 2006; Li and Moisseev, 2019; Kumjian et al., 2020). For vertically pointing radars, the measured
Doppler velocities are closely related to the hydrometeor fall speeds. Different sizes and types of precipitation tend to
have different fall speeds (e.g., Lamb and Verlinde, 2011). Larger and denser hydrometeors, such as hail, will fall very
fast (e.g., up to 50-60 m s−1; Heymsfield et al., 2018), whereas smaller hydrometeors, such as pristine ice crystals, will
fall much slower. In the snowstorm example shown in Fig. 1, the fall speeds were all < 2 m s−1 (assuming negligible50

vertical air motion).
Given the information about hydrometeors contained in spectrograms constructed from data collected with vertically

pointing radars, analysis of these data can provide important microphysical insights. For example, spectra have been
integral to past research studies on processes including secondary ice generation (e.g., Luke et al., 2021) and drizzle
formation (e.g., Luke and Kollias, 2013). Similar to the polarimetric radar fingerprints of microphysical processes55

(Kumjian, 2012; Kumjian et al., 2022 and references therein), studies on Doppler spectra (e.g., Luke et al., 2010;
Luke and Kollias, 2013; Kalesse et al., 2016; Luke et al., 2021) showed that there are Doppler spectral fingerprints

2



Figure 1. Example of a co-polar power spectrum from the KAZR at the ARM Southern Great Plains (SGP) site near Lamont,
Oklahoma, taken on 13 December 2020 at 1251 UTC during a snow event. The black curve represents a spectrogram taken
at 3 km above radar level; the green at 2.2 km above radar level. Note that negative velocities correspond to descending
hydrometeors.

of drizzle, riming, and secondary ice generation using spectral reflectivity, spectral linear depolarization ratio, and
MDV. In particular, multi-modal radar spectra indicate that multiple particle types and/or sizes with distinct fall
speeds are present, which can be particularly informative when trying to deduce active microphysical processes (e.g.,60

Kalesse et al., 2016; Billault-Roux et al., 2023).
Because signals from clouds and precipitation can be distinguished from noise through their statistical characteristics,

different spectral modes can be distinguished and peaks resulting from different hydrometeor types identified
(Hildebrand and Sekhon, 1974; Wilfong et al., 1999). Many techniques exist for peak detection to identify when
radar spectra are multimodal. Simple options include the identification of noise-floor-separated peaks (Shupe et al.,65

2004), identifying local minima in the spectral reflectivity (Rambukkange et al., 2011), and skewness signatures (Luke
and Kollias, 2013). The MicroARCSL product was developed by Kollias et al. (2007) as a value-added-product for
DOE-ARM datasets and was available for the ARM NSA site from 2007-2014. The modality was derived from the
spectral data by first identifying Doppler spectral points separated by the noise –floor. Further processing of those
spectral points includes identifying local maxima and minima using a 3-dB difference between the relative peaks and70

valleys. Tools rooted in machine-learning are also useful; Peako (Kalesse et al., 2019) is a supervised algorithm that is
first trained on human-identified peaks to then identify peaks in the Doppler spectra. Peaktree (Radenz et al., 2019)
is an algorithm that transforms the Doppler spectrum into a binary tree structure, which represents each mode as a
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node within the tree. These two tools were combined into a single Peako-Peaktree toolset (Vogl et al., 2024) which
facilitates the use of both to identify modes and compute the moments from each mode.75

Analyses of cases featuring multi-modal Doppler spectra are useful in understanding when multiple types of
hydrometeors are present within a layer and how those scatterers differ from each other. Such cases can facilitate
the identification of mixed-phase processes, such as riming indicated by coincident detection of supercooled liquid
droplets and snow/ice crystals (Kalesse et al., 2016). In such cases, the cloud liquid droplets and ice particles typically
feature different vertical velocities, resulting in distinct peaks in the spectrum (separated by local minima) (cf.80

the green curve in Fig. 1). Secondary spectral modes can be indicative of secondary ice generation processes, such
as Hallett-Mossop rime splintering (Hallett and Mossop, 1974), ice-ice collisional fragmentation (Vardiman, 1978;
Takahashi et al., 1995), or droplet shattering upon freezing (Rangno, 2008; Lawson et al., 2017; Korolev and Leisner,
2020). In these cases, the newly generated ice can appear as a slow-falling mode. However, attempts at identification
of potentially active processes requires additional information, including polarimetry, temperature profiles, and/or in85

situ data to understand if there are favorable conditions or necessary ingredients for processes (e.g., riming or rime
splintering). Unfortunately, despite the wealth of information they contain, Doppler spectra data are stored in files
that many would find prohibitively large to process en masse (e.g., Fabry, 2015) because they contain additional data
dimensions compared to the moment data: for example, each gate includes reflectivity, velocity, etc., values in vectors
whose lengths corresponds to the number of FFT points (generally 256 or 512). Because of the larger dimensionality,90

spectra files are much larger than radar moment datasets (approximately 100 MB per hour, ~2.4 GB per day).
Because of this, recording Doppler spectra often was limited to specific cases or field campaigns. However, more
recent computing and storage systems enable recording and storing Doppler spectra together with the integrated
moments for long-term datasets. For example, the DOE/ARM Research Facility (Mather and Voyles, 2013) has
collected Doppler spectra for >10 years at the North Slope Alaska and Southern Great Plains sites. Such long-term95

datasets could allow researchers to better understand detailed microphysical processes like those described above.
However, how does one find the metaphorical “needle in a haystack” – the likely small subset of data that are of
interest? An objective methodology to efficiently identify these needles amongst the haystacks and effectively extract
the microphysical information from the spectra is needed. Further, identifying potential cases of interest using the
much smaller moment data files could be advantageous for efficient processing and storage, removing the needs for100

researchers to download/store enormous amounts of data.
In this study, we propose a methodology for processing vertically pointing radar moment data to identify events with

multi-modal Doppler spectra. Relying on radar moment data is advantageous over case-study approaches (e.g., Oue
et al., 2018) or by first constraining the dataset temporally to be coincident with thermodynamic observations (e.g.,
Luke et al., 2021) because of the efficiency by which large numbers of cases may be found. In addition, the method105

developed here may be applied to multiple sites, whereas most previous studies have only considered single locations.
More numerous cases of multi-modal spectra events from different climatic regions may be useful for improving
microphysical process identification, and, perhaps, quantification. Further, case studies featuring multi-modal spectra
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are more accessible to identify without the need for manual searching of datasets. As such, this novel approach
facilitates the study of processes that often lead to multi-modal spectra.110

2 Data Sources

This study examines data from three cases of cold clouds at three different locations across the United States: (i)
Long Island, New York, (ii) Lamont, Oklahoma, and (iii) Utqiaġvik, Alaska. Each of the sites, outlined below, has a
vertically pointing Ka-band polarimetric Doppler radar and routine proximal upper-air observations. Thermodynamic
information from these soundings is used to supplement our understanding of each case. Choosing cases from a115

variety of locations ensures that any signatures associated with multi-modal spectra are robust and occur in both the
arctic and in midlatitudes.

2.1 Stony Brook (Long Island), New York

The Stony Brook University - Brookhaven National Laboratory Radar Observatory (SBRO), located in Stony Brook,
NY (on Long Island), owns and operates the Ka-band Scanning Polarimetric Radar, or KASPR. KASPR is a fully120

polarimetric radar with high sensitivity and high resolution (Kollias et al., 2014; Kumjian et al., 2020; Oue et al.,
2021). The KASPR specifications are available in Table 1. KASPR operations include three scanning strategies:
vertically pointing (VPT), plan position indicator (PPI) or surveillance scans, and range height indicator (RHI)
scans. Vertically pointing moments and spectra are available approximately every 6 minutes due to the radar cycling
between scan types. The vertical resolution of KASPR is 15 m in vertically pointing mode.125

Thermodynamic information for this site is obtained through radiosonde launches. Several special launches were
made at SBRO to coincide with the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening
Snowstorms (IMPACTS; McMurdie et al., 2022) field campaign IOPs. Additionally, the SBRO site is located 21.4 km
away from the National Weather Service in Upton, NY (OKX), which launches operational radiosondes at 11 and 23
UTC daily (valid at 12 and 00 UTC, respectively).130

2.2 North Slope of Alaska (Utqiavik, Alaska)

The North Slope of Alaska (NSA) research observatory in Utqiaġvik, Alaska, is operated by the U.S. Department of
Energy (DOE). This site has been operational for over 20 years, collecting data with a wide range of instruments
ranging from remote-sensing platforms including radars and lidars, to surface meteorological instrumentation and
a multi-angle snowflake camera (MASC) (Mather and Voyles, 2013; Stuefer and Bailey 2016; Kollias et al. 2020;135

Kyrouac and Tuftedal, 2024). In 2011, the DOE Atmospheric Radiation Measurement (ARM) program installed the
Ka-band ARM Zenith-pointing Radar (KAZR), a vertically pointing polarimetric Doppler radar at the NSA site
(Kollias et al. 2007, Widener et al., 2012; Bharadwaj, 2013; Kollias et al. 2021; Feng et al., 2023). KAZR transmits
horizontally polarized waves and receives both horizontal and vertically polarized signals, thereby allowing it to
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Table 1. Specifications for the radars used to observe the cases used in this study. Note that for the event studied (18 January
2020), KASPR only transmitted in the horizontal (in the same manner as the KAZRs).

Specification SBRO KASPR NSA KAZR SGP KAZR

Frequency 35.29 GHz 34.86 GHz 34.86 GHz
Wavelength 8.5 mm 8.6 mm 8.6 mm
Peak transmit power 2.2 kW 0.2 kW 0.2 kW
Pulse repetition frequency 9.92 kHz 2.77 kHz 2.77 kHz
Transit polarization H H H
Receiver polarization Simultaneous H, V H, V H, V
Antenna diameter 1.2 m 2.0 m 3.0 m
Antenna Beamwidth 0.32◦ 0.31◦ 0.19◦

Antenna Gain 53.3 dB 53.4 dB 53.5 dB
Cross-polarization isolation −27 dB −27 dB −27 dB
Gate spacing 15 m 30 m 30 m
Maximum Range 13.5 km 15-20 km 15-20 km
Sensitivity at 1 km −40 dB −44 dB −48 dB
Integration Time 1.0 s 3.7 s 3.7 s
Number of FFT Points 1024 256 256
Nyquist velocity 21.06 m s−1 5.87 m s−1 5.96 m s−1

Velocity Bin Width 0.0412 m s−1 0.0468 m s−1 0.0466 m s−1

record the spectra of both the co- and cross-polar signals. The NSA KAZR specifications are in Table 1. KAZR has140

coarser vertical resolution than KASPR (30 m compared to 15 m; see Table 1). KAZR is collocated with radiosonde
stations capable of upper-air observations at the NSA observatory. These soundings are taken twice daily, at 0530
and 1730 UTC.

2.3 Southern Great Plains (Lamont, Oklahoma)

The Southern Great Plains (SGP) atmospheric observatory is located in central Oklahoma, near Lamont, and also is145

operated by the U.S. DOE ARM program, similar to the NSA site discussed above. Because this site is owned and
operated by the same team as the NSA site, the details of the KAZR radar and upper-air observations are similar to
those outlined above for the NSA site; the specifications are located in Table 1. Soundings are taken twice daily, at
0530 and 1730 UTC.
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3 Signatures of Multi-Modal Spectra150

3.1 Identifying Foundational Multi-Modal Cases

Case selection can affect an algorithm’s success in detecting secondary modes. There is natural variability in secondary
mode events depending on the active microphysical processes, environment, and radar sensitivity. To address this, we
select cases from three different vertically pointing Ka-band radars across the United States described in the previous
section. We focus our preliminary study on cold clouds, but our methods can be extended to warm-cloud regimes, as155

well. For each of these “foundational” snow cases, we incorporate three analysis times separated by >2 minutes. In
total, we incorporate nine analysis times across three regions to determine if the multi-modal layers have consistent,
identifiable signals. The SBRO case comes from the first IOP of the 2020 IMPACTS field campaign on 18 January
2020. A manual analysis of this case indicated there were bi-modal spectra near 5 km ARL from 1855-1908 UTC. The
NSA case comes from 7 December 2013, and was selected because it has been explored in detail by Oue et al. (2015).160

Their study confirmed that bi-modal spectra were present in spectragraphs from 1521 to 1537 UTC. Further, they
analyzed the spectral linear depolarization ratio and determined that the secondary mode was likely attributable to
columnar ice crystals originating from secondary ice processes (i.e., rime splintering). The SGP case was chosen by
manually searching for and evaluating spectra collected during winter months. A case with bi-modal spectra was
identified on 13 December 2020 from 1245-1252 UTC. We evaluated these cases for liquid present to provide context165

into the potential sources of multi-modality (not shown). Using the microwave radiometer at the DOE-ARM sites,
both the NSA and SGP cases were noted to have liquid water present in the observed clouds. The NSA case had a
liquid water path just under 200 g m−2 and the SGP case had a much larger liquid water path of over 2000 g m−2.

3.2 Doppler Spectral Signatures

The key radar presentation of multi-modal spectra is a broadening of the spectrum across a range of velocities with170

secondary modes distinctly separated from the primary mode. As such, spectral power or spectral reflectivity in
velocity bins between the two modes should decrease to a relative minimum by a measurable threshold (i.e., at least
5 dB). Secondary modes are often observed on the slow-fall-speed side of the primary mode. As such, these secondary
modes may result from microphysical processes including primary ice generation, secondary ice production, or the
formation of small liquid droplets (cloud or drizzle). The velocity of the secondary mode may change independently175

from the primary mode; often, the secondary mode’s characteristic velocity becomes more negative towards the ground
as the fall speed of the growing hydrometeors increases. In many situations, the secondary mode eventually merges
with the primary mode. Figure 2 depicts the spectrograms at three times from each of the three multimodal spectra
foundational cases described above. The selected times show the same secondary mode evolving over time periods
ranging from 12-16 minutes. We examine the secondary mode at different times such that we can capture its natural180

variations and evolution. Using multiple examples and stages of secondary modes help develop our understanding of
how to detect such modes. The selected times shown for each case are separated by at least two minutes and contain
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multi-modal spectra in layers at least 0.5-km deep, with the secondary mode remaining distinct from the primary
mode in that layer.

Across the three cases, the spectrograms reveal broad similarities. The makeup of the primary modes in Fig. 2 can185

be inferred from their downward velocities, which are related to the particles’ fall speeds. The primary modes from
the SBRO case in Fig. 2(a i-iii) are suspected to be snow aggregates, given temperatures < 0 ºC for the depth of
the profile (shown in Fig. 3), dendritic growth zone temperatures from 3.8 to 5.5 km, and downward velocities of
about 1.5 m s−1 (e.g., Locatelli and Hobbs, 1973; Dunnavan, 2021). The hydrometeor type(s) responsible secondary
modes, however, are more ambiguous and require further information. However, we do see that, generally, they are190

associated with slower fall speeds (ranging from 0 to 1 m s−1), and thus are inferred to be smaller particles. All
secondary modes shown in Fig. 2 display an increase in downward velocity magnitude as they approach the surface,
suggesting particle growth. Further, most secondary modes reconnect with the primary mode before reaching the
lowest radar sampling altitude. A secondary mode in the NSA case at 1521 UTC at 2.5 km (Fig. 2bi) is disconnected
from both the primary mode, and the lower-altitude secondary mode and the primary mode. At later times (not195

shown), this layer exhibits signs of turbulence, which may contribute to the mode’s formation and/or disappearance.
Although each case features broad similarities, each of the cases reveals some subtle differences when examined in

detail and across multiple scan times. The SBRO case (Fig. 2a i-iii) reveals a secondary mode (centered at about
4.5 – 5 km ARL) evolving from a less distinct state characterized by smaller spectral reflectivity and less separation
between the primary and secondary modes, to a more distinct state with greater spectral reflectivity values and a200

greater gap in reflectivity between the primary and secondary modes. In other words, over the 13 minutes shown,
the spectral reflectivity of the secondary mode increases by ~10 dB as the mode matures. At all analysis times, the
secondary mode connects to the primary mode near 4.5 km.

The NSA case (Fig. 2 b i-iii) reveals the greatest temporal variation in its secondary mode. At 1521 UTC (Fig. 2 b
i), the spectral modes above and below 2.2 km are disconnected, and a small layer of tri-modal spectra occurs near205

2.2 km with otherwise bi-modal spectra above 2.25 km and below 2.1 km. At 1531 UTC (Fig. 2 b ii), the secondary
mode centered on 2.5 km has a much smaller spectral reflectivity, and is less distinct from the primary mode. At this
same time, the primary and secondary modes extending 1.5-2 km experience a greater separation in the velocity bins
of each mode; the slower-falling mode has a velocity near 0 m s−1 at 2 km, which grows to -0.5 m s−1 at 1.5 km ARL.
By 1537 UTC (Fig. 2 b iii), the spectra are affected by turbulence as inferred from the narrow layers of significantly210

enhanced spectral widths at 1.5 km and 2.5 km. This turbulence cuts through the secondary mode present from 1-2
km ARL, though the mode is distinct above and below this turbulent layer.

The secondary mode in the SGP case (Fig. 2 c i-iii) is relatively consistent with time, maintaining a similar spectral
reflectivity values > -10 dB centered on velocity bins ranging from -0.1 to -0.8 m s−1, and retains a similar shape
and height throughout the three scans. The secondary mode shifts towards greater fall speeds as it approaches the215

surface, and merges with the primary mode near 1.5 km. The primary mode sits along the -1.1 to -1.2 m s−1 velocity
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Figure 2. Instantaneous Doppler spectrographs of spectral reflectivity (Z, in dB per velocity bin) for three times for each of
the three cases. Spectra from SBRO on 18 January 2020 (a) at (i) 1855 UTC, (ii) 1902 UTC, and (iii) 1908 UTC. Spectra
from NSA on 7 December 2013 (b) at (i) 1521 UTC, (ii) 1531 UTC, and (iii) 1537 UTC. Spectra from SGP on 13 December
2020 (c) at (i) 1245 UTC, (ii) 1250 UTC, and (iii) 1252 UTC.
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bin at 2 km ARL, becoming -1.5 m s−1 near 0.5 km ARL. The consistency of these features through the time period
shown indicates that their governing physical processes are also persistent throughout this time.

In addition to the similar secondary mode characteristics, all cases presented have another feature in common:
turbulent layers. These layers are visibly marked by approximately symmetric, shallow horizontal spike-like features220

in the spectrograms, extending across a large range of velocities. The turbulent layers in these cases differ in strength,
however. Examples of stronger, more well-defined turbulent layers include the NSA case at 1521 UTC (Fig. 2bi) near
3.5 km and at 1537 UTC (Fig. 2 b iii) near 2.5 km. The SBRO and SGP cases are riddled with frequent turbulence
signatures, including the SBRO case at 1902 UTC (Fig. 2 a-i) at 2.4 km, and in the SGP case ranging from 2.5 – 3
km at all three times shown (Fig. 2 c i-iii).225

Given that both the multi-modal spectra and these turbulent layers feature wider spectra spanning a broad range
of velocity bins, we seek additional information from the integrated moments to help distinguish between these two
types of layers.

3.3 Moment Signatures

How do these multi-modal spectra appear in the integrated radar moments? For each of the cases, we examine the230

moments, of spectrum width (SW) and mean Doppler velocity (MDV). In principle, these two variables should be
helpful in classifying and identifying these layers. As mentioned above, SW increases when the Doppler spectrum
broadens, either through turbulence or by having multiple, separated modes. The appearance (or disappearance) of
a secondary spectral mode could also cause a shift in the MDV. For example, the sudden appearance of smaller,
slower-falling particles amongst a background of larger, faster-falling particles could lead to a decrease in the magnitude235

of the observed MDV (e.g., Schrom and Kumjian, 2016), or that the faster-falling particles have been advected
out of the radar sampling volume, etc. Thus, we hypothesize that use of both measurements could prove helpful in
identifying multi-modal spectra.

Figure 3 a i-iv shows the temperature profile and radar moments from the SBRO case. The secondary mode
layer from 4-5 km ARL has temperatures ranging from -11 to -14 ºC, within the dendritic growth zone (e.g., Bailey240

and Hallett, 2009). The increase in equivalent radar reflectivity factor (hereafter Z; Fig. 3b) towards the ground is
consistent with snow particle aggregation, and the MDV (Fig. 3c) near -1.5 m s−1 is consistent with snow aggregates
(e.g., Locatelli and Hobbs, 1973; Dunnavan, 2021). In Fig. 3 a iv, there are three layers of SW greater than the
background values (> 0.2 m s−1) that coincide with the secondary mode layer and turbulent layers (Fig. 2 a-c)
discussed above.245

Similar to the SBRO case, the NSA case (Fig. 3 b i-iv) includes numerous layers of SW > 0.2 m s−1, some of
which can clearly be attributed to turbulence (cf. Fig. 2 b i-ii: at 1521 UTC near 3.5 km and at 1537 UTC near
2.5 km). The SGP case is the warmest of the three, with temperatures near -3 to -5 ºC (Fig. 3 i). Again, there are
numerous regions of SW up to 0.4 m s−1, consistent with layers of turbulence identified in the spectrograms, in
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Figure 3. Upper-air soundings and vertically pointing radar moment data for each of the three cases. One hour of data for
each case is shown. For each case, panel (i) is sounding data with temperature in black and dewpoint in blue; panel (ii) is
reflectivity; panel (iii) is mean Doppler velocity; panel (iv) is spectrum width. Note that in (a) the radar plots have data gaps
because KASPR switches between scanning strategies and vertically pointing scans are not continuous across the analysis
period.
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addition to a broader swath of enhanced SW (~0.25 m s−1) at 1230-1310 UTC at the same height (2 km) as the250

observed secondary mode (Fig. 3c ii-iv).
Complementary data are valuable in elucidating the underlying processes explaining e features observed on radar.

The NSA case has been previously well examined in Oue et al. (2015). That study indicated multiple embedded
liquid layers within the cloud at the time immediately prior to our analysis. Both ARM sites (NSA and SGP) have
a microwave radiometer (MWR) collocated with the KAZR radars (Cadeddu et al., 2013). From the MWR, the255

total liquid water and water vapor in the column can be observed (Fig. 4). Both cases have signals indicative of the
presence of liquid water within the system that may contribute to either multi-modal signals.

Knowing the times and heights of the multi-modal layers identified from the spectra (Fig. 2), the impacts on the
moments in Fig. 3 are apparent. To determine and quantify the relevant signatures that may be used to identify
multi-modal layers through radar moments, we manually classify layers in the spectrograms (Fig. 2) as containing260

multi-modal spectra, turbulence-induced broadening, and neither (“control”). By categorizing the layers, we can
quantitatively examine the differences between them as observed in the moment data.

3.4 Layer Classification

The three layer classifications (multi-modal, turbulent, and control) serve to provide a sample of how these features
appear in the SW and MDV parameter space and to determine if there is a region in the parameter space specific to265

one type of layer. Each layer must have a minimum depth of 0.2 km to ensure a sufficient number of data points.
When possible, the bounds of the layers are chosen to remain constant across a test case to capture the continuity of
the potential processes in that layer, though in some instances they may vary slightly between scans.

3.4.1 Multi-Modal Classification

To identify multi-modal layers, we utilize a Bayesian Gaussian Mixture model (GMM) to first detect the number270

of peaks at every height in the three foundational cases at the nine specified times, using SciKit-learn (Pedregosa
et al., 2011). This is done to temporally averaged spectra over ~12 seconds (11.08 s or 3 time steps for both cases
using KAZR and 12.39 s or 12 time steps for KASPR) because of the noisy nature of the instantaneous spectra.
Additionally, these results are smoothed across a 300-m window (20 gates for SBRO, 10 gates for NSA and SGP)
to select the most frequently occurring value for the number of modes within that window. This is done because275

some gates were outliers in the number of modes detected. This averaging reduces superfluous peaks detected by the
automatic peak detection algorithm and mitigates noise caused by rapid switching between two, three, or more peaks
when examining the detected peak count with height. The results are shown in Figure 5.
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Figure 4. Liquid water and water vapor contents of the two cases located at DOE-ARM sites with a microwave radiometer
(MWR) that measures both the liquid water and water vapor along the line of sight path. (a) 7 December 2013 at the NSA
site, (b) 13 December 2020 at the SGP site.
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Figure 5. (a) Bayesian GMM fit mode count for the foundational cases. Plotted is the average mode count over a 300-m
window in height to reduce noise. (b) As in (a), but with the manual layer classification overlaid. Multi-modal layers are
designated with purple and uni-modal layers with green. Additionally, turbulent layers are indicated with yellow.
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3.4.2 Manual Layer Classification

Informed by the results above, we consider manually classified layers in each of the foundational cases to compare the280

signals that are associated with multi-modal layers and those that are associated with turbulence-induced broadening
and control layers. Multi-modal layers are defined to align with the points detected through the Bayesian GMM
fitting in section 3.4.1 as well as being confirmed to contain more than one mode by visually examining the spectra.
A turbulent layer is defined as encompassing the heights that contain turbulence, visible in the spectra as horizontal
spikes in the spectra spanning a large range of velocities (Fig. 2), as well as in the moment MDV as oscillations in285

relative minimum and maximum MDV values and local maxima of SW (Fig. 3). A control layer is defined as an
unambiguously simple layer, containing only a single mode and not containing turbulence. The control layers coincide
with unimodal layers from the Bayesian GMM analysis.

As a caveat to these classifications, nature is not always going to cleanly fit into strictly defined boxes, and there
are transitions between layer types that are less clearly defined (evident from the Bayesian GMM analysis which290

often showed individual heights with different amounts of modes than the surrounding layer). Turbulent and control
layers are defined by visual inspection of spectragraphs and moment data rather than automatically with pre-defined
explicit thresholds because of the large variability for what may be turbulent or “simple” at each date, time, and
location. Those quantities are examined after layer definition to determine what patterns exist and how those may
aid in the classification and detection of these layers. Across the three times of each case, we can identify a total of 9295

layers of turbulence, 16 layers of secondary modes, and 7 control layers (Fig. 6). To examine the differences between
these classified layers, we consider vertical profiles averaged across a 145-s period from each of the cases, centered on
the times listed. This length of time is chosen because it is the duration of KASPR VPT scans before RHI and PPI
scans in the employed scanning sequence. Thus, the data from the NSA and SGP KAZRs is partitioned into 145-s
periods to yield a fair comparison.300

Layers highlighted in purple in Fig. 6 represent multi-modal spectra. One of the common characteristics of such a
multi-modal layer is spectral broadening. Spectrum width alone cannot identify a secondary mode, because turbulent
layers see a similar, sharper spike in spectrum width. However, as seen by the cyan error bars in Fig. 6, the standard
deviation of mean Doppler velocity, hereafter σ(MDV ), in a turbulent layer is quite different from that in a secondary
mode. Turbulent layers feature large σ(MDV ) associated with the variable vertical fall speeds induced by turbulence,305

whereas the secondary modes have low σ(MDV ). A large variance in mean Doppler velocity over the 145-s period
can be used to detect highly turbulent layers and eliminate them from being marked as potential secondary modes.

4 Establishing the Criteria and Detection Methodology

In aggregate, we use 781 data points to determine the typical values associated with each layer. The contributions
from each site to each layer type are shown in Table 2. The SBRO case has disproportionally more points due to310

KASPR’s finer vertical resolution. We examine the average value for each layer type by case in addition to an overall
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Figure 6. Radar moment MDV and SW for three times for each of the three cases: (a) SBRO at (i-ii) 1855 UTC, (iii-iv)
1902 UTC, and (v-vi) 1908 UTC; (b) NSA at (i-ii) 1521 UTC, (iii-iv) 1531 UTC, and (v-vi) 1537 UTC; (c) SGP at (i-ii) 1245
UTC, (iii-iv) 1248 UTC, and (v-vi) 1252 UTC. Purple shading indicates multi-modal layers, yellow is turbulence, and cool
green are control layers, unaffected by spectrum-broadening processes. Pink and cyan error bars along each black line is the
standard deviation of each moment variable, taken in time over 145-s periods.
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average (Table 3) to ensure that the uneven number of samples from each radar/site does not bias the statistics.
The results of this analysis reveal that individual variables are not distinct between the three categories: both the
multi-modal and turbulent layers have a near identical SW , whereas both the multi-modal and control layers have
a near identical average σ(MDV ). The joint distribution of these variables, however, makes clear the distinctions315

between these three types of layers and allow us to separate the three categories into distinct portions of the parameter
space (Fig. 7). Layers containing a secondary mode (purple) occupy the bottom right of the parameter space in Fig.
7, marked by large SW (> 0.17 m s−1) but small σ(MDV ) (< 0.1 m s−1). Although some overlap exists with the
control (green) and turbulence (yellow) points, these make up a small portion of the total points. Otherwise, there is
little overlap with the other layer classifications. Turbulence-containing layers (yellow) only present in the upper320

region of the parameter space, where σ(MDV )> 0.1 m s−1. Control layers (purple) are confined to the bottom left
portion of the parameter space, with σ(MDV )<0.1 m s−1 and SW < 0.17 m s−1. Given this observed separation
in the SW - σ(MDV ) parameter space from known cases in different regions observed with different radars, we
hypothesize that these variables generally can be used to determine the presence of a secondary spectral mode in the
moment data. To proceed with testing our hypothesis, we will use SW > 0.17 m s−1 and σ(MDV )< 0.1 m s−1 as325

the criteria to detect multi-modal layers observed in snow cases with vertically pointing Ka-band Doppler radar.

Table 2. Total number of data points contained in each layer type and each case.

Condition Total Data Points SBRO Layer NSA Layer SGP Layer

Control 101 62 21 18
Mode 542 407 84 51
Turbulence 138 94 21 23

Total Points 781 563 126 92

The method for applying these criteria is shown schematically in Fig. 8. The first step is to create time-averaged
vertical profiles of MDV and SW in the same manner described in section 3.4 (i.e., 145-s segments). Next, specific
height levels with time-averaged SW > 0.17 m s−1 and σ(MDV ) <0.1 m s−1 are flagged, herein considered “flagged
points.”330

Two additional filters are needed to avoid detecting non-events: a noise filter and a rain filter. If there is low
signal-to-noise ratio (SNR), data may be unreliable. Any flagged points with SNR < -5 dB are excluded. Liquid
precipitation such as rain causes the Doppler spectra to broaden, as the wide variety of sizes of droplets will have
a wide range of associated fall speeds. To maintain a focus on drizzle and ice processes, we use the rate of change
of LDR with height to identify the melting layer and exclude data between the melting layer and the surface at335

that time. Points with a rate of change of LDR exceeding -0.02 dB/m are identified as the top of the melting layer
and determined to be coincident with a SNR > 1 dB and downward velocity of at least 1 m s−1 to avoid detecting
cloud ice, which was a potential concern. This filter reduces the impact of spectral broadening due to rain (the
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Figure 7. (a) Comparison of uni-modal and multi-modal layers by two methods - uni- and multimodal parameters by case
plotted with error bars, with their aggregate average plotted by stars. The markers at the center of the cross-hairs represent
the average SW and σ(MDV ) for the set of points in each category. The extent of the cross-hairs in each direction represents
the standard 7 deviation SW and σ(MDV ) of for the set of points in each category. Similarly (b) contains the same results
with values restricted to σ(MDV ) < 0.1 m s−1, below the turbulence threshold. The site the datapoints are from is denoted by
symbol, and modality and method are denoted by color, as described in the key. The averages for all multi and uni-modal
points by each method are denoted with stars. Two-dimensional histogram of the data points within control, turbulent, and
secondary mode cases. Green shading represents control, purple shading represents multi-modal layers, and yellow shading
represents turbulence. Darker colors indicate a larger number of points fall in that area. The dots at the center of the cross-hairs
represent the average SW and σ(MDV ) for the set of points in each category. The extent of the cross-hairs in each direction
represents the standard deviation SW and σ(MDV ) of for the set of points in each category.
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Figure 8. Flow chart explaining the procedures followed when applying the multi-modal detection algorithm. Input VPT
moment data are averaged into vertical profiles and points meeting the specified thresholds are identified and flagged. Points
with too low of signal or suspected to be associated with rain are then eliminated. Flagged points are then further processed to
determine the number occurring per hour, and the LDR associated with each flagged point is saved in association with the
event. Finally, if the hourly flag total exceeds the threshold of 100 flags per hour, a case is identified.
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Table 3. Average values of mean spectrum width ((SW )) and the standard deviation of mean Doppler velocity (σ(MDV )) for
control, mode, and turbulence layer types. Averages are taken across each case and across all cases combined. All values shown
are in units of m s−1. Note that the individual case values represent that there is variability associated with the unique aspects
of individual cases in different environments, and that the total values that average the cases together are more representative
of the general values associated with each layer type.

Parameter
Total
Avg

Total Std.
Dev.

SBRO NSA SGP

Control
SW 0.164 0.027 0.180 0.124 0.165
σMDV 0.112 0.042 0.131 0.105 0.058

Mode
SW 0.198 0.049 0.191 0.244 0.184
σMDV 0.061 0.025 0.063 0.061 0.049

Turbulence
SW 0.207 0.049 0.198 0.242 0.205
σMDV 0.178 0.077 0.205 0.150 0.086

wider distribution of droplet sizes leads to an enhancement of spectrum width that impairs the ability to detect a
secondary mode) and is advantageous over using larger fall speeds alone to detect rain because that may also exclude340

situations where large (>2-mm diameter) graupel (e.g., Lamb and Verlinde, 2011; Heymsfield et al., 2018) dominates
the backscattering.

To mitigate noise associated with false detections and to focus on spatiotemporally consistent features that are
likely of more microphysical relevance, we examine how many points are flagged in specified time periods (e.g., 1
hour). Periods with large counts of flagged points (“flag counts”) can then be considered for further analysis, such345

as microphysical process determination. Because the flag count is determined by the number of points meeting the
multi-modal spectral detection criteria in a one-hour period, large flag counts could arise from thick layers and/or
persistent signals. When examining the foundational cases at the SBRO, NSA, and SGP sites, there are 33-143
flags per 145-s segment during segments with known multi-modal layers1 excluding the 1855 UTC SBRO scan. To
get an idea of the expected flag counts in one-hour periods, we applied the flagging algorithm to a full hour of350

continuous VPT data from the KAZR cases (containing the known multi-modal spectra), and found 1201 flags from
12-13 UTC in the SGP case, and 1541 flags from 15-16 UTC in the NSA case. Based on these counts, we set the
threshold for a large hourly flag count at 100 flags per hour. A 100-flag hr-1 criterion should be sufficient to capture
thinner, sustained layers in addition to deeper layers. Note that, depending on one’s application (i.e., studying drizzle

1This choice is made due to the specific manner KASPR is run, the VPT scans run for only 145s. The standard deviation values are
dependent on the durations used. Generally, if one wishes to repeat this on other datasets, we recommend using time segments close to
2-2.5 minutes.
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formation, secondary ice production, etc.), the period over which flagged data points are counted and/or the flag355

count threshold may be adjusted, as needed, to address the timescale on which those processes are observed.
As an example of how this detection algorithm can be used, it was run on the cases used to build it. While this

clearly is not an independent test, it serves to demonstrate the results of the algorithm and explore how well the
test cases meet their own criteria. For the times and heights that were identified as containing multi-modal spectra,
all three cases display gates that are flagged for meeting the criteria (Fig. 9). However, there are times for which360

the criteria are not met. For example, the 1855 scan at the SBRO site (Fig. 9a) features no points that meet the
multi-modal layer criteria, despite the appearance of the spectra (see Fig. 2 a i) and the Bayesian GMM mode
detection. The 1855 UTC scan is the first to appear multi-modal; Bayesian GMM is sensitive enough to detect
this multimodality, whereas our methodology using radar moment data does not because the spectra did not have
σ(MDV ) <0.1 m s−1 and is excluded. The two later times both have many flags coincident with the multi-modal365

layer, while having some flags outside of that identified region, as well. At 1902 UTC, of the 124 vertical points
considered, 63 were flagged (50.8%). The detected mode continues at heights lower than those used to build the
criteria. At 1908 UTC, 93 of 124 (75.0%) points used to build the criteria were flagged as a detected secondary mode.
The modes detected at these times both speaks to the difficulty in manually determining the bounds of a multi-modal
layer and the inherent variability with multi-modal features that may be near the limits of the criteria defined above.370

The NSA case exhibits the most flags across both the shown time-space domain and the within the tested
multi-modal domain (Fig. 9b). Across the boxed domains, 53.8% of the points were flagged by the detection criteria.
The mode also notably extends beyond the defined upper and lower limits of the multi-modal layers when testing.
The GMM analysis indicated a 0.2-0.6 km deep uni-modal layer (extending at its largest from 1.6 to 2.4) that varied
across the three analysis times, which is why the layer between the two multi-modal layers was not used and is375

not indicated on Figure 9 in the red boxes. However, when examining Figure 2 and the spectragrams for this case,
there is a visually distinct secondary mode that the Bayesian GMM technique missed. Both the NSA and SGP cases
exhibit flags beyond the times examined in this study. In particular, the NSA case exhibits 1474 flags occurring in
a deep layer between 1500 to 1600 UTC. The SGP case has fewer flags observed, but those are concentrated into
streak-like features that decreases in height over time. Across the boxed domains in the SGP case, 44.0% of the points380

were flagged by the detection criteria. The 1200 to 1300 UTC period contains a total of 935 flagged points. Within
this analysis, the regions detected as multi-modal extend (in height and time) outside of the small domains used to
determine the detection criteria. These detected modes, while not truly independent evidence, demonstrate that the
criteria can track these features beyond the initial foundational case studies. A more comprehensive evaluation with
an independent dataset will be presented in Part 2.385

Observing the flags in a time-height space can facilitate interpretation of potential processes that may be associated
with these events. In the NSA case, there is a process above 2-2.5 km AGL that is initiating the mode, whereas in
the SGP case it may be a shorter-lived mechanism causing the mode as it forms, evolves, and potentially mixes into
the primary mode at lower heights. There are two large clusters of flags shown in Fig. 9 c: one starting near 1.75
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Figure 9. Results of the detection algorithm applied onto the foundational cases for (a) SBRO (b) NSA (c) SGP. In (a)
the flags are indicated by thin horizontal lines because the VPT data is only available in the short time periods used to
compute the flags. (b) and (c) are shaded and continuous in time because KAZR operates continuously in VPT mode. Pink
indicates presence of only the flag with SW > m s−1 and σ(MDV ) > 0.1 m s−1), blue indicates presence of only the flag with
σ(MDV ) < 0.1 m s−1 and SW < 0.17 m s−1, and black indicates all necessary criteria for a flag being met. Red dotted lines
indicate the maximum bounds in time and height used to define the multi-modal layers used to obtain the criteria.

km at 1225 UTC and descending over time until 1300 UTC, and a second starting near 2.4 km at 1250 UTC and390

descending over time beyond 1325 UTC.

5 Conclusions

Outcomes and Conclusions Through examining three case studies, consistent features in radar moment data were
found to be characteristic of multi-modal spectra. When examining vertically pointing data for 145-s periods, we find
that multi-modal layers have a relatively large mean spectrum width SW (> 0.17 m s−1) and relatively low standard395

deviation of mean Doppler velocity σ(MDV ) (< 0.1 m s−1), occupying a distinct section of the SW - σ(MDV )
parameter space different than that of turbulent and control layers. These features were quantified such that they
can be used in an event detection algorithm. By identifying similar layers consistent with the multi-modal signals, we
can identify likely multi-modal spectra through moment data alone, without having to process the complete radar
spectra files.400

For this reason, we hypothesize that SW and σ(MDV ) can be used to determine the presence of a secondary mode
in radar moment data. Although the preliminary testing done here is encouraging, to robustly test this hypothesis
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requires evaluating these criteria for a much larger, independent dataset. This requires a long-term radar dataset,
such as that available from the NSA site. The success of the criteria in detecting multi-modal layers using the moment
data exclusively will be evaluated, with verification by manual analysis of the Doppler spectra, in Part 2.405

Development of these criteria into an algorithm for event detection will also allow for efficient processing of
long-term radar datasets, which opens the possibilities of creating a climatology of multi-modal spectra events.
Additional analysis on detected cases may open the doors to process identification and determining if modes are
composed of ice or liquid droplets, using additional observations.

The design of the criteria and methodology is targeted at reducing false positives; it is likely that the use of these410

criteria may miss the detection of some multi-modal spectra (cf. Fig. 7). This may be due to modes having weak
power returns or little separation in velocity bins from the primary mode. The criteria we determined herein can
be adjusted by those applying this detection algorithm to other datasets. However, relaxing the criteria will have
trade-offs. By decreasing the SW threshold, one will identify more secondary modes that may be less separated
from the primary mode, but may also begin to falsely identify single-mode layers that would need to be manually415

identified from spectra files and removed from the results. Similarly, relaxing the criteria to include larger values of
σ(MDV ) may result in turbulence being mistaken for a secondary mode. Applying these criteria to datasets with
significantly different radar systems may require additional adjustments. Nonetheless, the classification technique
using objective criteria can help to analyze characteristics of turbulent layers and their role in microphysics and snow
intensification using more than case studies (e.g., Oue et al., 2024). We propose that this approach can be applied for420

efficient detection of multi-modal Doppler spectra in large datasets, as we show in Part 2.
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