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Abstract. In recent years, interest in data-driven methods, such as machine learning and multivariate statistics for multi-hazard 

and multi-risk assessment has surged, due to their ability to integrate vast amounts of data in modelling complex non-linear 

relationships between hazard and risk factors. This review explores data-driven methods in climate multi-hazard and risk 

analysis, focusing on four themes: (i) data processing and collection; (ii) hazard identification, prediction and analysis; (iii) 20 

risk analysis; and (iv) future risk scenarios under climate change. Key findings highlight the extensive use of machine learning 

to combine Earth observations and climate data for downscaling and land use and land cover characterisation; the application 

of deep learning for hazard prediction; the use of ensemble methods for risk analysis; and the growing emphasis on explainable 

AI frameworks. Training of supervised machine learning approaches on past impacts to model future risk through climate 

projections also emerged as a significant area. Future research should prioritize multi-hazard interactions, particularly 25 

triggering and cascading effects, integrate dynamic vulnerability and exposure factors, and address uncertainties associated 

with using machine learning for extrapolation. Advancements in Earth observations and textual data integration, alongside the 

development of open-access disaster catalogues, will be crucial for improving multi-risk analyses and supporting AI-driven 

early warning systems tailored to regional needs. 

 30 

This review explores how Machine Learning (ML) can advance multi-hazard and multi-risk, going through four main themes: 

data processing, hazard prediction, risk assessment, and future climate scenarios. It shows how ML is widely used for Earth 

observations and climate data processing, with Deep Learning applied for hazard prediction and ensemble ML methods for 

risks, with future research moving towards analysis of multi-hazard interactions, dynamic vulnerability and early warning 

systems.  35 
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1 Introduction 

The growing interconnectedness between socio-economic and natural systems, coupled with the escalating challenges 

presented by climate change, has led to increased complexities in climate risk analysis. At the same time, a wider availability 

of data on multiple risk drivers, including weather observations, Earth observations (EO), climate reanalyses and projections, 

socio-economic indicators, and social media, coupled with advances in machine learning (ML) and statistical methods, are 70 

increasing the potential of data-driven methodologies, which promise to revolutionise climate risk assessment (Kashinath et 

al., 2021; Reichstein et al., 2019). To unlock the full potential of this data, it is crucial to develop and apply advanced methods 

for processing, harmonizing, and integrating heterogeneous datasets. These efforts enable the generation of actionable insights 

essential for effective multi-hazard and multi-risk assessments, particularly in leveraging ML and statistical techniques. 

Complex dynamics characterize socio-environmental and climate risk: applications may underestimate impacts if they do not 75 

take into account the compounding, cascading and amplifying interactions of hazards and their effect on vulnerability and 

exposure factors. In fact, (i) compounding hazards (co-occurring in the same location and at the same time) can lead to impacts 

which may be substantially higher than the sum of the single events taken in isolation (Arosio et al., 2020; Zscheischler et al., 

2018), (ii) the occurrence of one hazard itself can modify vulnerability or resilience of the system, exposing assets or 

communities to higher risks, such as in the case of consecutive hazards (de Ruiter & van Loon, 2022), and (iii) impacts and 80 

risks can propagate across multiple scales and sectors, extending far beyond the area initially hit and affecting whole systems 

(Arosio et al., 2021; Pescaroli & Alexander, 2018), such as in the case of high-impact and low-probability events (Linkov et 

al., 2022). For these reasons, the international community (Intergovernmental Panel on Climate Change (IPCC), 2023; 

UNDRR, 2020) has recently pledged for a paradigm shift from single hazard towards a more comprehensive understanding of 

multiple and interconnected climatic risks (AghaKouchak et al., 2020; De Angeli et al., 2022; Gallina et al., 2020; Šakić 85 

Trogrlić et al., 2024; Terzi et al., 2019; Tilloy et al., 2019; Ward et al., 2022). To achieve this shift, it is essential to develop 

data-driven methodologies that can analyse and predict the interactions and dependencies between multiple hazards, enabling 

a more accurate understanding of their compounding and cascading effects. 

To better navigate the many definitions surrounding multi-risk concepts, this papers refers to the terminology used in Zschau 

(2017), where multi-layer single hazards refers to applications focussing on more than one hazards, without considering hazard 90 

interactions; multi-hazard analyses hazard interactions; multi-hazard risk refers to applications considering risks in a multi-

hazard framework, without discussing interactions at vulnerability level, and finally multi-risk refers to the most complex 

analysis comprising interactions at both hazard and vulnerability level.  

The complex nature of multi-hazard events presents significant challenges to existing risk assessment methodologies, which 

treat hazards and risks singularly and often struggle to handle the non-linear interactions and feedback loops between multiple 95 

risk drivers (Tilloy et al., 2019). However, ML techniques have recently gained traction in climate science and risk analysis 

due to their capacity to address process and integrate large volumes of diverse and heterogeneous data (Zennaro et al., 2021). 
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In particular, learning from past historical data, they can identify underlying non-linear risk patterns, detect correlations across 

multiple spatial and temporal scales (Reichstein et al., 2019).  

The increased availability of large and heterogenous datasets, coming from a wide array of sources, including weather 100 

observations, Earth Observations, climate reanalyses and projections, socio-economic indicators, social media and newspapers, 

is driving the increased use of ML for climate risk assessment tools. Integrating these heterogeneous data sources can help in 

capturing multi-hazard interactions and understanding their impacts on social, economic, and natural systems, especially 

thanks to the introduction of new Deep Learning (DL) architectures and models, specialized in capturing both spatial and 

temporal non-linear interactions (S. Park et al., 2023). 105 

As ML models have become more complex, attention has shifted toward making these models more interpretable and 

explainable (Carvalho et al., 2019). This is especially important for applications focussing on risk, where it is crucial to quantify 

the contribution of each input feature to the model's prediction, making it easier to assess how different risk variables impact 

the overall risk. In this context, explainability frameworks improve the robustness of risk assessments and enhance trust in the 

model’s outputs by providing insights into how the model arrives at specific conclusions (S. Jiang et al., 2024; McGovern et 110 

al., 2019).   

In addition to ML, this review briefly addresses the role of copulas as multivariate statistical methods in multi-risk assessment. 

Copulas are functions that allow us to model and analyse the dependence structure between multiple variables, making them 

particularly valuable for assessing compound events where multiple hazards occur simultaneously or sequentially (see, for 

example, Agrawal, 2022; Hochrainer-Stigler et al., 2019). For example, copulas have been applied to model the joint 115 

occurrence of droughts and heatwaves, providing insights into their combined impact on agriculture and water resources (see 

e.g. Ribeiro et al., 2020). While their application is more specialized compared to ML approaches, copulas offer critical insights 

into the dependencies between hazards, enabling a deeper understanding of cascading and interacting risks. Their inclusion in 

this review underscores their importance in scenarios requiring precise statistical modelling of hazard interactions, 

complementing the broader use of ML in climate risk analysis. To advance this field, there is a critical need for predictive 120 

frameworks that can leverage these advanced methods to forecast long-term future multi-hazard and multi-risk scenarios, 

addressing uncertainties and guiding adaptive risk management strategies under changing climatic conditions. 

To support implementation, the development of a wide range of open-source libraries (e.g., scikit-learn, TensorFlow, Keras, 

PyTorch, VineCopulas (Claassen et al., 2024), etc.), allows users to implement, train, validate, and deploy models with 

minimal programming expertise, making it possible for non-experts or domain specialists with limited knowledge to efficiently 125 

apply advanced techniques to risk modelling. This democratization of tools reduces the technical barriers for researchers and 

practitioners, enabling more interdisciplinary collaborations and accelerating the adoption of data-driven methods in climate 

risk management (Rolnick et al., 2019).  

This paper aims to provide a comprehensive review of data-driven methods, with a specific focus on ML approaches, for multi-

hazard and multi-risk assessment, exploring ongoing applications, current limitations and future perspectives, while also 130 

addressing the use of copulas, a non-ML statistical method, to highlight its role in modelling dependencies in compound hazard 
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events. Unlike other recent reviews that have focused on ML (particularly DL) for specific hazards or sectors – such as extreme 

events (Salcedo-Sanz et al., 2022), hydrology (Tripathy & Mishra, 2024), geophysics (S. Yu & Ma, 2021), wildfires (Jain et 

al., 2020), and climate risk (Zennaro et al., 2021) – this review highlights the potential of ML for multi-risk scenarios, 

connecting climate risk and data-driven methods across successive steps of risk analysis.  135 

The paper is structured as follows: Chapter 2 Methodology” outlines the research questions, and the search methodology 

employed for the review. Chapter 3 Results and discussions” summarises the literature review findings and discusses key 

insights related to each of the research questions. Chapter 4 Conclusion” provides a summary of the key insights and outlines 

the next steps for research in this field. The Appendices provide an abbreviation dictionary (Appendix A: Abbreviations), as 

well as the summary tables of main articles collected for each research question (Appendix B: Summary tables of the collected 140 

studies). 

2 Methodology 

This paper follows a systematic review process based on the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) methodology, which ensures a standardized, systematic, and transparent framework for analysing and 

synthesizing existing literature (O’Dea et al., 2021). The method involves several steps, among which the main ones are: 145 

defining of the research questions; developing a protocol detailing the search methodology (including database to search, 

keywords, timeframe and selection criteria); collecting and screening relevant literature; synthesizing and interpreting the 

findings. Such a stepwise process ensures a thorough search for relevant studies, consistent criteria for the selection of papers, 

and clear documentation of the review process, therefore reducing the risk of bias and enhancing the robustness and 

replicability of the analysis (Sarkis-Onofre et al., 2021). 150 

2.1 Research questions 

Each of the four research questions (Figure 1) is focussed on a specific topic and presents several sub-topics, offering a 

structured framework to explore current applications, address challenges, and pinpoint future opportunities. These research 

questions are: 

1. Data: How can data-driven applications improve data collection and processing? 155 
2. Multi-Hazard: How can data-driven applications be used to analyse extreme events, and understand hazard 

interactions? 
3. Multi-Risk: How can data-driven applications integrate vulnerability and exposure in multi-risk analysis? 
4. Future: How can data-driven applications be used to predict long-term future multi-hazard and multi-risk? 

 160 
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Figure 1: Research questions and sub-themes 

The first research question examines how data-driven applications can help process diverse types of data, extracting and 

harmonising the information needed to analyse multi-hazard and multi-risk. In particular, the sub-themes are divided based on 

the type of data analysed:  165 

I. Climate data, which provides input on the hazard characteristics, both in present and future scenarios. In order to 
prepare this data for multi-hazard and multi-risk applications, data-driven methods are required to increase the spatial 
and temporal resolution, extend and harmonise the timeframe of the analysis (often paired with EO) or correct biases 
(Schneider et al., 2023). 

II. EO, such as satellite and drone images, which can be used to characterise exposure and vulnerability layers and extract 170 
information on impacts (Ghaffarian & Emtehani, 2021; Novellino et al., 2024). 

III. Textual data, such as newspapers or social media, which in the last years have been leveraged for extracting 
information on diverse impacts (Sodoge et al., 2023). 

The second research question investigates how data-driven applications improve the identification and understanding of hazard 

dynamics. In particular, the key sub-themes are:  175 

I. Analyse which methods can be used to identify, classify and cluster extreme events, producing spatio-temporal 
footprints of multi-hazard events (H. Yu et al., 2022). 

II. The prediction of (multi-)hazard events, for example through early warning systems or seasonal predictions 
(Bhowmik et al., 2023). 

III. The analysis of hazard interactions, for example characterising joint distributions through copulas (Bevacqua et al., 180 
2021) or developing multi-hazard susceptibility maps (Pourghasemi et al., 2019). 

The third research question concerns the application of data-driven methodologies for the integration of vulnerability and 

exposure into multi-risk analysis. In particular, the key themes are:  

I. Multi-hazard exposure and vulnerability on assessments, integrating susceptibility mapping with information on 
specific exposure layers, such as buildings and population (Rusk et al., 2022). 185 

II. Modelling risk from past impacts data, often through supervised ML approaches that use hazard, vulnerability and 
exposure indicators as predictors (Dal Barco et al., 2024). 
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The fourth research question investigates the possible contribution of data-driven methodologies into the analysis of (long-

term) future multi-hazard and multi-risk, where uncertainty associated with the representation of future extremes in climate 

projections further complicates risk modelling. In particular, the key sub-themes are:  190 

I. Modelling future multi-hazard patterns using statistical methods to understand trends, such as those related with 
compound events (Zscheischler et al., 2018). 

II. Assessing future impacts based on climate change projections, often using methods trained on historical data and 
applied to ensembles of RCP projections (S. J. Park & Lee, 2020). 

2.2 Methodological framework: search methodology, screening, reporting and interpreting 195 

The search was performed on Scopus, focusing on articles published in English. Since the analysis focuses on ML applications 

and multi-risk, the timeframe 2010 – 2024 was chosen because both areas of research are recent and other reviews have 

addressed earlier periods, highlighting that most applications in ML and climate risk have been published only in the last few 

years (Zennaro et al., 2021). For each research question, a dedicated search was performed. Each search string was generated 

by the combination of a set of method-related keywords (e.g. those related to ML or statistical methods), common across all 200 

questions, and a set of thematic keywords, specific to each research question (Figure 2). 

 
Figure 2: Literature review methodology 

After collecting articles for each research question, the papers were first filtered by following typologies:  'journal articles', 

'conference papers', and 'book chapters'. Afterwards, for each research question, the papers were screened by title, then by 205 
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abstract, and finally by full text. The final screening selected 136 key papers to be analysed in the literature review. his 

information was then summarised into tables, identifying the type of applications, the type of data used, the case study and the 

methods used. Finally, for each research questions, the results were discussed to understand the maturity level of the 

applications, their limitations and possible future developments.  

3 Results and discussions 210 

3.1 Data 

3.1.1 Climate datasets 

The application of ML methods to produce new, complete, or high-resolution hazard datasets (either from meteorological 

observations, climate reanalyses or future projection) is quite established, and mainly focuses on data with sparse and irregular 

measurements. A typical indicator which is derived with ML methodologies is soil moisture: in-situ measurements are usually 215 

scarce and not uniformly distributed, satellite images (which will be discussed later) often presents temporal gaps and can only 

provide information on the first layer and struggles in complex topographies and it presents a complex dynamic that is 

influenced by many different drivers (similarly to multi-risk prediction ) such as precipitation, temperature, evaporation, 

topography and land use. For example, Kang et al. (2018) and Orth (2021) investigate the complex interactions at different 

soil levels and temporal scales with a Long-Short Term Memory (LSTM) model that takes as inputs the topography, vegetation 220 

and atmospheric conditions and predicts each soil moisture layer in succession, using ERA-5 reanalysis as assessment 

endpoint. The same LSTM architecture (Entity-Aware LSTM) used in their research is modified by Kratzert et al. (2018) and 

by Kratzert, Klotz, Shalev, et al. (2019) to include both static and dynamic inputs allowing the algorithm to explicitly 

differentiate the two different types. This approach was widely applied to model the behaviour of other hydrological variables, 

such as snow, run-off and river catchments.  Ghiggi et al. (2019) applies Random Forest (RF) regression to predict monthly 225 

runoff rates in the timeframe 1902-2020, based on antecedent precipitation and temperature from an atmospheric reanalysis, 

validating the results with in-situ streamflow observations. Other research focuses on different variables and in particular 

investigate the irregular distribution of sensors: Andersson et al. (2023), for example, applies Convolutional Neural Processes 

(ConvNPs), a probabilistic ML model, to suggest informative sensor placements by finding sites that maximally reduce 

prediction uncertainty, testing it for air temperature anomalies measurements in Antarctica. Typical ML and DL models, such 230 

as Convolutional Neural Networks (CNN) often struggle at this task because they require regularly distributed data, while 

Gaussian Processes (GP) or Bayesian probabilistic models present many challenges when modelling non-stationary multi-

dimensional datasets and do not scale well to large datasets. ConvNP use neural networks to parameterise a joint Gaussian 

distribution at target locations, allowing them to scale linearly with dataset size while learning mean and covariance functions 

directly from the data and have been applied to the modelling of other environmental variables, such as the downscaling of 235 
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precipitation. DeepSensor1, a specific GitHub python package, was developed to facilitate the application of Neural Processes 

in environmental sciences, especially for downscaling, interpolation, sensor placement and data imputation. Amato et al. 

(2020) introduces a multi-step methodology to interpolate irregularly distributed spatio-temporal timeseries, first decomposing 

the signal and then learning stochastic spatial coefficients which can be spatially modelled and mapped on a regular grid with 

Artificial Neural Networks (ANN), allowing the reconstruction of the complete spatio-temporal signal. 240 

ML methods have been applied also to climate reanalyses and models. Early applications, such as He et al. (2016), tested RF 

regression to statistically downscale spatially precipitation data, using few covariates and demonstrating how this approach is 

able to catch the non-linear relations between variables, minimising overfitting and collinearity issues between predictors. 

However, the algorithm struggled with skewed datasets and even the final model, which is the combination of two different 

RF models, trained respectively on high-precipitation and low-precipitation values, fails to detect the complex spatial and 245 

temporal complexity of precipitation data, overestimating the intensity and spatial distribution of low precipitation and 

underestimating high precipitation. Other applications are focussing on Deep Learning models: CNNs are used to downscale 

many variables from future climate models (among which, air temperature, precipitation, 10-m wind speed, 2-m relative 

humidity, downward shortwave radiation) (Lin et al., 2023). Generative models particularly Generative Adversarial Networks 

(GAN) and diffusion models, are widely used for this task. GANs consist of two neural networks – a generator and a 250 

discriminator - that are trained simultaneously in a competitive process.  The generator attempts to create realistic fake data 

that can fool the discriminator, while the discriminator works to distinguish between real and fake data. For example, specific 

GANs based on Convolutional Neural Networks (CNNs) have been applied to post-process weather forecast outputs. These 

models can enhance the resolution of precipitation data by a factor of ten, producing more realistic and spatially coherent 

forecasts compared to the original input data (Harris et al., 2022). Diffusion models, on the other hand, learn to reverse a noise 255 

process: first the model adds sequentially noise to input data, then the model learns how to predict the noise at each step, and 

once trained, it can start with noisy data and work backwards, progressively removing the noise to generate a new, realistic 

dataset. Diffusion models are related to variational inference, where the forward process defines a probabilistic trajectory from 

data to noise, and the reverse process defines a generative path from noise back to data. Unlike other generative models like 

GANs, which learn through a "discriminative" process (trying to fool a discriminator network), diffusion models learn through 260 

this smooth diffusion and denoising process (Yeğin & Amasyalı, 2024). For example, diffusion models are applied to 

downscale multiple climate models, also providing information on the uncertainty downscaling, by generating a large number 

of ensemble members based on probability distribution sampling (Ling et al., 2024). Probabilistic ML methods, such as GP 

methods (Multi-fidelity Gaussian Processes with a 5/2 Matern kernel) are also used to downscale precipitation data from ERA-

5 over high mountain terrain (Tazi et al., 2024). DL approaches are often used to downscale low-resolution future models to 265 

Convection Permitting (CP) climate models, where the main advantage of these techniques is their reduced computational 

costs compared to the development of a CP climate models (Bretherton et al., 2022; Clark et al., 2022). The role of Artificial 

 
1 https://github.com/alan-turing-institute/deepsensor 
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Intelligence (AI) in climate predictions is discussed in Schneider et al. (2023). This study advocates for the development of 

global models at 10–50 km resolution, harnessing AI and EO for the calibration and development of higher-resolution regional 

simulations. 270 

3.1.2 Earth observations 

EO combined with ML have revolutionized the characterization of multi-hazard and multi-risk events, enhancing our ability 

to assess and respond to climate-related threats. The interest in leveraging remote sensing for this purpose has grown 

significantly, as evidenced by new initiatives from ESA and NOOA’s Centre for AI, where particular attention is devoted to 

the use of EO to discovery of impacts in remote areas (such as in the Arctic region or over oceans) and the development of 275 

early warning systems.  

Remote sensing images are used to improve climate datasets, for example increasing the spatial coverage in areas with sparse 

measurements or providing real data to bias-correct/downscale modelled data, with multiple AI methods, ranging from Support 

Vector Machine (SVM) (Ahmad et al., 2010; Jing et al., 2016a), Ridge Regression (Kang et al., 2018), RF (Han et al., 2023; 

Jing et al., 2016b) and LSTM (Fang et al., 2017) applied for developing soil moisture datasets. Remote sensing plays a crucial 280 

role in hazard dataset development by helping mitigate bias that may be inherited by ML-based risk models. These models are 

often trained on datasets calibrated with data from resource-rich regions, where the majority of weather stations are located. 

As a result, they may struggle to generalize effectively to underdeveloped areas, which are frequently the most vulnerable to 

extreme events (McGovern et al., 2019, 2022). 

ML techniques are instrumental in assessing exposure, with many consolidated applications focussing on land use and land 285 

cover, with classical ML algorithms such as K-Nearest Neighbour (KNN), SVM, ANN and RF (Adam et al., 2014; Yuh et al., 

2023; Zerrouki et al., 2019). The analysis of images follows typically three steps: first a pre-processing step, in which the 

different satellite images are merged and orthorectified; a segmentation step, in which common pixels are grouped together; 

and a classification or clustering step, to classify the elements of the image. Specific applications focus on vegetation, such as 

for identifying and mapping tree species (Miyoshi et al., 2020; Schiefer et al., 2020; Veras et al., 2022). Others focus on urban 290 

areas, analysing on socio-economic indicators, such as deprivation pockets, which are identified via UNET-based CNNs from 

RGB images and tracked during the recovery process (J. Wang et al., 2019), to derive proxy indicators for poverty from satellite 

night lights, in combination with transfer learning (S. J. Pan & Yang, 2010), to overcome scarcity of labelled data (Jean et al., 

2016), or to track disaster recovery in urban deprived areas (Ghaffarian & Emtehani, 2021).  

Another important aspect of the use EO in multi-risk is the detection of impacts on socio-economic assets, similarly to the 295 

methods also applied on longer timeframes to detect land use changes (Q. Wang et al., 2018). The general methodology consists 

in comparing images of the same location before and after the hazard, to identify changes that can convey information on 

damages following the occurrence of disaster (T. Bai et al., 2023). Many applications focus on identifying and estimating 

damages, mainly on buildings and infrastructures: Sublime & Kalinicheva (2019) applies Autoencoders and K-means 

algorithms to detect image changes after Tohoku earthquake and tsunami. In the same area, an SVM classifier is tested by Ji 300 
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et al. (2018) and a CNN architecture is applied by  Y. Bai et al. (2018). CNNs are particular popular, with many applications 

focussing on the identification of landslides events (Lei et al., 2019), wildfire footprints (Bo et al., 2022; Tran et al., 2020) or 

flooded areas (Munawar et al., 2021). The main challenges encountered in these applications are due to the return periods of 

satellites, which may limit their ability to detect fast changing impacts, the presence of clouds, which can hamper visibility 

especially during the occurrence of extreme events likely to cause damages, and to changes in luminosity or season, which 305 

may cause false positives (Faiza et al., 2012). 

The application of ML methods in conjunction with EO is also playing a major role in the retrieval of impacts on indicators 

for environmental quality, with many literature reviews available on the topic, highlighting the potential of DL approaches 

(Sagan et al., 2020; Sit et al., 2020). Applications aimed at retrieving environmental and water quality parameters mainly 

showcase simpler models, such as short neural networks and SVM (Nazeer et al., 2017), Decision Trees (DT), RF, Cubist 310 

Regression and Extreme Gradient Boosting (XGBoost), due to their ease of implementation and the scarcity of ground 

measurement data (J. Liu et al., 2023). They usually focus on optically parameters, such as chlorophyll-a, turbidity and 

suspended solids, even if other applications, such as S. Chen et al. (2022) tested the application of RF, ANN and SVM for the 

estimation of nutrients and other non-optical parameters, for which other meteorological and hydrological variables (such as 

pH, and water temperature) are often included as input parameters of the models. 315 

3.1.3 Textual data 

In addition to remote sensing, textual data from sources such as social media and newspapers offer valuable information for 

impact assessment. Natural Language Processing (NLP) algorithms can harness this textual data, facilitating applications 

across various hazard types, including landslides, volcanoes, drought, earthquakes, floods, and wildfires. In general, the 

procedure typically consists in several steps, in which the textual sources are first screened based on metadata (such as location 320 

or the presence of disaster-related words in titles); then NLP or semantic algorithms (Angelov, 2020) are used to extract 

keywords from the main text and convert the textual data into tabular/numeric; then a classification algorithm is applied to 

choose between impact/no impact data or link the impacts to a specific sector or hazard. Additional steps may also involve the 

retrieval of spatial information from textual data. Many different algorithms can be employed, with logistic/lasso regression 

(Genkin et al., 2007), Naïve Bayes Classifiers (L. Jiang et al., 2016), KNNs (Shah et al., 2020) and ANNs (Nam et al., 2014), 325 

being the most common. In the field of disaster mapping, SVM are tested by Asinthara et al. (2022), while Powers et al. (2023) 

compares CNN and specific pre-trained language models; Koshy & Elango (2023) tests a multi-modal method leveraging text 

and images form social media, employing the language models BERT; Mehrotra et al., (2022) test SVM, DT, RF, Adaboost, 

Gradient Boosting, XGBoost, LSTM in combination with language models. Twitter (now X) was the main social media that 

has been used to detect impacts, while newspaper articles have also been used, in particular for slow onset hazards, such as 330 

droughts. For example, Sodoge et al. (2023) apply several NLP and ML methods to automatize the detection of drought impacts 

from newspaper articles; the procedure classifies impacts into 25 classes, based on the sector (e.g., forestry, livestock, forestry, 
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transport etc.) by using different Supervised ML models (Naïve Bayes, Lasso Regression, RF, ANN). In general, rule-based 

methods are preferred to ML models when the number of samples is limited (X. Liu et al., 2018). 

3.1 Multi-hazard 335 

3.2.1 Identify, classify and cluster 

The initial step in conducting a comprehensive multi-risk assessment involves a thorough analysis of hazard factors, which is 

critical for effective climate risk evaluation and enhancing disaster preparedness. In this context, identifying various hazards, 

classifying them into distinct categories, and extracting their spatio-temporal footprints through clustering techniques are 

fundamental processes. 340 

The identification of impacts from satellite images to discover hazard footprints, such as for landslides, earthquakes, floods 

was discussed in the previous section because it is mainly an image processing task, where the goal is to identify differences 

between two images. This section focuses on the identification of extreme events from climate datasets, which require specific 

considerations on the typology of hazards and risk considered and is subject to different definitions and multiple interpretations. 

The most common approach to identify multiple hazards from climate datasets is to use thresholds to identify univariate 345 

extreme events and then combine them at a later stage into a multi-hazard database. In order to identify the thresholds, two 

methods are applied: empirical thresholds (e.g., defining a max temperature over which an event is considered extreme) or 

statistical thresholds (e.g., calculating a pixel-wise and/or day-wise percentile to identify events that exceeds a threshold that 

can vary spatially and temporally). Empirical thresholds are usually fine-tuned to link extreme events to impacts on specific 

sectors or local applications, and many applications focus on temperature extremes and health (Ray et al., 2021; X. Sun et al., 350 

2014). Statistical thresholds are preferred when analysing global trends and merging multi-hazard extremes because they allow 

a more consistent and probabilistic robust comparison between different hazards. Percentiles can be easily adapted to model 

spatial and temporal variations in data and are ideal for global application that cover multiple landscapes where a unique 

empirical threshold cannot be univocally determined. For example, in Ionita et al. (2021), specific percentiles are used to 

identify heatwaves and drought from temperature and SPI indicators respectively, before applying Empirical Orthogonal 355 

Functions to investigate their drivers and their centre of actions over Europe; Similarly, Sutanto et al. (2020) is using  

percentiles to identify heatwaves, droughts and wildfires from temperature, soil moisture and Fire Weather Index (FWI), 

analysing spatial overlaps of the daily binary hazard maps to identify simultaneously occurrences of dry hazards and then 

investigating cascading events by looking at different combinations of hazard sequences. Claassen et al. (2023), proposes a 

methodology to identify multi-hazard events combining static footprints derived from the processing of satellite images (e.g. 360 

for landslides, floods, tsunamis) with dynamic footprints (based on statistical percentiles) of climate hazards (e.g., heatwaves, 

droughts, extreme precipitation, extreme wind, etc.), proposing a methodology to identify consecutive events using a specific 

time lag and analysing the global distribution of the various multi-hazard events. 
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Return periods are another statistical technique used to identify extreme events, studying the likelihood of an event of a certain 

magnitude occurring in a chosen timeframe (Liao et al., 2021). Return periods are most often applied in hydrology, when 365 

dealing with flooding and storm surge events (G. Liu et al., 2020, 2023; Mattei et al., 2021; Zanini et al., 2020). These 

applications fit a probability distribution (typically a Generalised Extreme Value Distribution, calculated over the number 

exceeding of a threshold or over maxima) which allow for an estimation of the uncertainty of the threshold. Percentile 

thresholds, returns periods and Generalised Extreme Value (GEV) distributions are also used conjunctly, such as in Orth et al. 

(2022), where different hydrological hazards (floods, frost, heat waves, droughts, and storms) and their contrasting impacts 370 

are analysed against multiple sectoral assessment endpoints (Gross Primary Productivity for vegetation, crop yields, human 

mortality, damages to properties and public attention). 

It is important to note that these approaches focus initially on univariate extremes, and only at a second stage, the identified 

events are merged to produce multi-hazard events, checking for overlapping in time and space. This can lead to the 

underestimation of compound joint-extreme events which arise as a combination of multiple indicators not individually 375 

extreme. 

Other approaches focus on identifying and classifying extreme events from climate reanalyses using DL, especially in case of 

cyclones or other hazards that are characterised by the interaction of multiple atmospheric drivers. Y. Liu et al. (2016) was one 

of the first to apply CNN based on AlexNet to detect and classify tropical cyclones, atmospheric rivers and weather fronts 

from climate datasets, such as ERA-5, CAM5.1. One of the main challenges in this domain is the scarcity of labelled data for 380 

training supervised ML models. This is discussed by Racah et al. (2016), who expanded the previous approach, developing a 

semi-supervised CNN model to overcome the lack of labelled data and created an extreme weather dataset as benchmark. In 

general, the skewness of datasets is another common challenge for identifying climate anomalies with supervised approaches: 

often data on which the ML models are trained on present very few samples of conditions leading to impacts (Dal Barco et al., 

2024). 385 

Other studies focus on the identification of the spatio-temporal footprints of the climate hazards, in particular with algorithms 

such as Density Based Spatial Clustering Applications with Noise (DBSCAN, Ester et al., 1996), grouping single point 

anomalies into clusters in time and space. These approaches are applied in single hazards, such as droughts (Cammalleri & 

Toreti, 2023), heatwaves (J. Wang & Yan, 2021) or earthquakes (Di Martino et al., 2018). With regards to multi-hazards 

applications, DBSCAN is used by Tilloy et al. (2022) to cluster compound precipitation and wind compound extreme events 390 

in Great Britain and by (H. Yu et al., 2022) to investigate droughts, heatwaves, cold-waves, extreme wind and extreme 

precipitation in Eurasian Drylands, studying how the coordinates of the centroid of the clusters are shifting hot and dry events 

to northern latitudes due to climate change. 

3.2.2 Hazard forecasting and prediction 

Before delving into more risk-based applications, it is worth noting that in the last few years, the application of DL models 395 

such as Transformers (Vaswani et al., 2017), Graph Neural Networks (GNN) (Veličković et al., 2017) and Physics Informed 
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Neural Networks (Kashinath et al., 2021; Lütjens et al., 2021) has prompted a revolution in weather forecasting. Early 

applications of AI models, primarily using RF and SVM, were largely aimed at replacing specific steps within numerical 

weather forecasts. More recently, DL tools have gained prominence due to their ability to capture long-range dependencies, 

handle complex and irregular data structures and integrate the solutions of equations of physical systems into a unified 400 

framework, enabling DL to be successfully employed for modelling the whole medium range weather forecasting process (Bi 

et al., 2022; Chen et al., 2023; Keisler, 2022).  

Applications that focus on predicting or forecasting hazards are still mainly focussed on single hazard approaches. However, 

some single hazard approaches were included in this review because their multi-variate approach includes the combination of 

different static (as land use, topography, socio-economic data) and dynamic (e.g., atmospheric and marine data) parameters 405 

and implicitly deal with multi-hazard interactions (e.g., a wildfire may be more probable when dry and hot conditions are 

present, a drought can be influenced by temperature and soil moisture, etc.). For example, Haggag et al. (2021) propose an 

ANN prediction model in a multi-hazard perspective, but then test it on past disaster records to predict floods in Ontario using 

indices for climate extremes inputs. 

One of the main algorithms applied to forecast hazards is LSTM: Kratzert, Klotz, Brandstetter, et al. (2019) apply adapted 410 

LSTM to disentangle static and dynamic inputs and analyse both high and low extremes in river flows, considering climate 

susceptibility and integrating static and dynamic inputs. Tiggeloven et al. (2021) propose a LSTM/CNN architecture to predict 

global storm surge residuals based on atmospheric conditions, investigating how the model’s performance varied based on 

changes of the spatial area input into the convolutional model. With regards to vegetation, long-range temporal dependencies 

from several climate variables are investigated with a LSTM model (Kraft et al., 2019). Many applications focus on forecasting 415 

of air quality hazards, especially in urban areas: compared to other types of environmental impacts, such as water quality, the 

network of air quality monitoring stations offers hourly data at a high spatial resolution, enabling the training of AI models to 

dynamically forecast at short lead times. Applications include the short-term prediction of ozone levels in Kuwait (Freeman et 

al., 2018), the development of a daily air quality index in Beijing and Guilin (Q. Wu & Lin, 2019), or the prediction of 

concentration of micro particular matter in the air of Seoul (Chang-Hoi et al., 2021).  420 

Another popular DL architecture is GNN, showing popular results for weather forecasting (Keisler, 2022; Lam et al., 2022) 

and river networks/flooding predictions (Bentivoglio et al., 2023; Kazadi et al., 2024; A. Y. Sun et al., 2021). The key 

advantage of GNNs over CNNs is their ability to capture complex relationships in non-Euclidean data. While CNNs are limited 

by fixed sliding windows and may miss correlations between adjacent pixels or non-adjacent zones, GNNs excel in modelling 

graph-structured data, allowing for more accurate representations (Kipf & Welling, 2016). In particular, Kazadi et al. (2024) 425 

apply a combination of GNN and Gated Recurrent Unit (GRU, a type of recurrent neural network), for spatio-temporal flood 

prediction, accounting for spatially distributed precipitation data, as well as static features such as bathymetry and topography, 

comparing its performances against a LISFLOOD-FP simulation of Hurricane Harvey (2017) in Houston, Texas and showing 

improvements in terms of accuracy and faster training (100x) and testing (1000x) times. Similarly, Transformers are applied 
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for river flood prediction, outperforming other RNNs in terms of computational costs and performances, also increasing the 430 

interpretability of the model (Castangia et al., 2023).  

CNN, ANN, LSTM are still popular for drought and heat events, which are characterised by longer scale spatio-temporal 

dynamics. For example, Bonino et al. (2024) compare the performances of CNN, LSTM and RF for the prediction of marine 

heatwaves; Patil et al. (2023) employ CNN to predict drought in East Africa 3 or 4 season ahead, analysing the contribution 

of different climate drivers at multiple spatial and temporal scales; ANN are used for forecasting drought risk at near real time 435 

in India, using Artificial Neural Network models (Singh et al., 2021). Other algorithms (SVM, Random Forest, XGBoost, 

Extra Trees) are still often applied to analyse low probability extreme events in specific locations, where the lack of data 

constrains the training of Deep Neural Networks, such as the storm surge height caused by tropical cyclones in New York 

(Ayyad et al., 2022). 

3.2.2 Modelling hazard interactions 440 

Some applications are using interpretable ML frameworks to analyse the role played by each factor in hazard prediction. For 

example, S. Jiang, Bevacqua, et al. (2022) and S. Jiang, Zheng, et al. (2022) train a LSTM to study river flooding in Europe 

and combined Expected Gradients (EG) (Erion et al., 2021) to calculate feature importance scores and additive decomposition 

(AD) (Du et al., 2019) to evaluate the behaviour of internal nodes in the LSTM to characterise flooding drivers such as snow 

melting and precipitation. By running the model for different decades, they are able to identify flooding drivers changes in the 445 

last 70 years in Europe, with an increase of precipitation-cause flooding. Several applications mentioned in the previous chapter 

are also using methods to increase the interpretability of the DL models, even if the main focus is the prediction of the hazard; 

examples are gradient-based methods such as Integrated Gradients (IG), applied to a GNN (A. Y. Sun et al., 2021), visualising 

CNN heatmaps (Patil et al., 2023) or attention maps (Castangia et al., 2023), sensitivity analysis (Bentivoglio et al., 2023; 

Bonino et al., 2024; Kratzert, Klotz, Shalev, et al., 2019) and permutation/tree based feature importance (Freeman et al., 2018). 450 

Copulas 

Most of the previous analyses are focused mainly on univariate methods to identify single hazard anomalies. Extending such 

analyses to cover joint extremes in multi-dimensional datasets can be a challenging task but offers more insights in compound 

events dynamics (for example, when multiple rivers high discharges are combined with precipitation and high sea levels on 

the coast). Copulas are methods intended for investigating joint probabilities of extreme events (Joe, 2014), considering the 455 

interdependence of the tails of the distributions of relevant variables. Copulas are the preferred statistical framework when 

dealing with joint extremes: mathematically, copulas are multivariate probability distributions with uniform marginal 

distributions designed to model the dependence between multiple variables (Hao & Singh, 2016; Nelsen, 2006). Compared to 

other multivariate models, copulas describe the joint distribution of variables separately from their marginal distributions, 

allowing for a more flexible and comprehensive approach (Tilloy et al., 2019).  460 

These applications usually follow five steps (Ming et al., 2022): (i) fitting the marginal distribution of each variable; (ii) testing 

multivariate independency, to understand whether a Copula function is needed to generate the joint distribution; (iii) 
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constructing the copulas, identifying the type and family of distributions; (iv) performing goodness-of-fit tests for copulas; (v) 

selecting the best copula to generate the joint distribution function. 

Once the copula is defined, its parameters need to be estimated from data. Using a copula which does not capture adequately 465 

the dependence between two variables can lead to either underestimation or overestimation of the joint probability of these 

two variables (Mazas & Hamm, 2017). Usually, without prior knowledge on the studied hazards, several copulas are fitted to 

the data and compared (Sadegh et al., 2017). Different types of copulas exist, depending on their generator functions or the 

type of distributions associated to the marginal distributions. The simplest type of copulas are normal or Gaussian copulas, 

which assume that all the marginal distributions of the variables are standard normal. Their simplicity and ease of 470 

implementation make them popular, but they are not very flexible since they do not allow to model differently tail distributions 

from multiple variables. Student’s t copulas, mixture copulas and Archimedean copulas, in particular Clayton, Gumbel, Frank 

and Joe copulas (Alhadlaq & Alzaid, 2020) are often used to model positive and negative dependencies and heavy-tail 

dependencies commonly associated to multi-risk (Bevacqua et al., 2021). Challenges may arise when building higher 

dimensional copulas (Aas et al., 2009): while the number of bivariate copulas is very large, the set of copulas in more than 3 475 

dimensions is rather limited and lack the required flexibility to model multivariate distributions with different tail dependencies 

and distributions (Joe, 2014). Pair copulas allow to decompose an n-dimensional copula into the products of pair copulas, 

giving the opportunity to independently select distributions from the larger set of bivariate copulas, providing a higher 

flexibility (Bevacqua et al., 2017). Thus, complexities linked to the extension of copulas to large number of hazards limit their 

applicability to compound events. 480 

Multiple concurrent or consecutive compound river and coastal hazards are analysed with Joe copulas (Joe, 2014), studying 

water level and river discharge extremes (Sadegh et al., 2018).  Copula-based Bayesian Networks are applied to model flood 

and river hazards in a coastal location in Texas (Couasnon et al., 2018) and drought/floods combinations (Sadegh et al., 2017). 

Pair copulas are used to estimate the risk of compound flooding in Italy, with a 5-dimensional conditional model, considering 

the dependencies between meteorological predictors (precipitation on land and at sea) and water levels measured at two rivers 485 

gauges and one in the sea (Bevacqua et al., 2017). The role of meteorological predictors also allow to extend the analysis to 

past periods, where the water levels measurements were not directly available, and could in principle be extended to future 

risk analysis using climate projections, even if in this context the uncertainties of future climate projections may steer the 

adoption of other approaches, such as combining hydrodynamic models with storylines, to explore low-likelihood, high-impact 

future events, with a shift from probability to plausibility of the events (Bevacqua et al., 2021). 490 

Susceptibility mapping 

Susceptibility in the context of natural hazards refers to the predisposition of an area to experience a specific hazard and 

considers different factors (usually categorised into hazard or vulnerability in risk assessment), such as topography, geology, 

hydrology, land use and vegetation and highlights “territorial characteristics”, disregarding the more dynamic and time-

dependent component of risks (Wubalem, 2022). The methodology for creating multi-hazard susceptibility maps using ML 495 

usually consists in three steps: first, for each hazard, the susceptibility factors are identified; then, supervised ML techniques 
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are employed to create single hazards susceptibility maps, considering the different conditioning factors as predictors and the 

areas impacted by the analysed hazards in the past as assessment endpoints; finally, the single hazard maps are combined to 

produce the final multi-hazard susceptibility map. Eventually, feature importance techniques are applied as a fourth step to 

extract the most susceptible factors for each hazard or multi-hazard combination. 500 

ML has been applied extensively to derive multi-hazard susceptibility maps, which can identify areas prone to multiple disaster 

and help disaster management planning. However, these applications are typically trained on average, static climatic conditions 

and do not consider temporal interactions between risk factors (such as the cumulative impacts of a series of successive extreme 

rain events, the duration of a heatwave or changes in vulnerability caused by wildfires). Moreover, the type of multi-hazard 

events for which they are applied is often limited to wildfires, landslides, floods, and earthquakes (Abu El-Magd et al., 2021; 505 

Ahmadlou et al., 2021; Cao et al., 2020): in fact, these methods rely on the presence of catalogues of past clearly defined 

hazard spatial footprint: for other climate hazards, such as extreme winds, hails, or heatwaves susceptibility is not investigated. 

Furthermore, input data for susceptibility mapping are aggregated over long time frames, in order to ensure robustness of the 

analysis. However, changes in vulnerability and exposure parameters occurring in the analysed periods, for example due to 

newly implemented adaptation measures, are overlooked, potentially leading to overestimation (or underestimation) of areas 510 

at risks. 

The most common approach for integrating susceptibility parameters into multi-risk assessment is by producing multi-hazard 

susceptibility mapping, where susceptibility to multiple hazard (including factors for hazard, such as yearly precipitation, but 

also vulnerability parameters, such as slope) can provide a valuable point of reference for decision makers in sustainable land-

use planning or infrastructure development. A number of studies are focusing on mountainous regions, using a range of ML 515 

models, including Logistic Regression, ANN, DT, SVM, RF, Boosted Regression Trees (BRT), or Generalised Linear Models 

(GLM) (Javidan et al., 2021; Karakas et al., 2023; Kariminejad et al., 2022; Nguyen et al., 2023; Pourghasemi et al., 2019, 

2020; Pouyan et al., 2021; Yousefi et al., 2020) The multi-hazard combination usually covers floods, landslides, avalanches 

and forest fires, which have clear footprints that can be used to train single hazard susceptibility, and integrate other risks 

which can be assessed through already available risk maps, such as seismic risk maps at a later stage (Bordbar et al., 2022). 520 

Different hazards are included by Piao et al. (2022), who test BRT, RF and Classification And Regression Trees (CART) in 

the Gangwon-do region in South Korea (an area rich in forests and ecological diversity) to establish a multi-hazard probability 

map for forest fires and droughts; in this study the multi-hazard interactions are investigated, considering drought as an 

amplifying hazard for forest fires. Mandal et al. (2022) focus instead on coastal areas, in particular in West Bengal (India), 

considering tropical cyclones, embankment breaching, storm and tidal surge, inundations, extreme rainfall, salinization and 525 

erosion; RF and ANN are applied to produce multi-hazard susceptibility maps. Ullah et al. (2022) test a CNN to produce flash 

floods, landslides and debris flow multi-hazard susceptibility mapping, comparing its performances with Logistic Regression 

and KNN methods in terms of accuracy, coefficient of determination, Mean Absolute Error and Root Mean Squared Error. 

The input data consist of field surveys, topography, hydrology, and environmental data, while the locations of historical flash 

flood, debris flow and landslide locations are extracted from Google Earth images. The feature importance scores are derived 530 
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using a Random Forest model and are used to enhance the analysis of the multi-hazard maps. It is interesting to note that in 

this case, the CNN layer is 1-dimensional and is not used to analyse the spatial context of the pixels, but it runs across the 14 

layers of predicting variables, producing an independent output pixel by pixel.   

While the literature on this topic is quite established, most of these applications propose a multi-layer single hazard risk, rather 

than a full multi-hazard or multi-risk approach: in fact, the single hazard maps are often combined linearly or via a matrix 535 

considering combined risk categories, without elaborating further on the hazard interactions. Another common challenge in 

the development of susceptibility maps is the skewness of the training dataset, which are characterized by a predominance of 

areas with no damage. These greatly affects the training and testing of the models, and specific sampling procedures are often 

applied, rather than relying on balancing weights when training the ML model. Most often, all the positive samples (e.g., where 

some impact was recorded) are included; a buffer area is applied to the positive samples and subtracted from the whole dataset 540 

to exclude areas near recorded impacts; a number of points of comparable magnitude to the positive ones is sampled from the 

difference dataset to ensure that the final training dataset includes a balanced representation of impacted and non-impacted 

areas. This is a key step of the susceptibility mapping and can potentially add biases to the model, if the selected samples are 

not representative of the whole dataset or if there is a high autocorrelation. Spatial or temporal autocorrelation needs to be 

considered when splitting between training, validation and test data: random splitting methods assume data is independent and 545 

identically distributed. Specific techniques, such as spatio-temporal block cross validation (Zanetti et al., 2022) need to be 

considered to account for this. For example, a recent paper by Sweet et al. (2023) shows the impact of different validation 

techniques in a RF model for the prediction of agricultural yield, and their implications on performances and robustness of the 

interpretation of the model. 

3.3 Multi-risk 550 

3.3.1 Modelling risk combining susceptibility, exposure and vulnerability  

Many studies are found to focus on modelling risk by combining hazard maps produced via susceptibility mapping with ML 

and vulnerability and exposure layers. Single hazards such as wildfires, floods and landslides are the often considered, and 

buildings, population and infrastructures are the most common assets. For example, Kotaridis & Lazaridou (2022) consider 

flooding risk in Tuscany and applied a 2D CNN to produce an urban flooding susceptibility map. Differently from Ullah et al. 555 

(2022) the CNN applied here makes use of the spatial context of each pixel, considering a 5x5 patch centred on a specific pixel 

(an area of 50 x 50 m2 since the pixel size is 10m), creating 20000 different samples from the initial map, each one with a 

5x5x9 size, where the last number corresponds to the different predictors of the susceptibility mapping that are considered as 

channels in the CNN architecture. Thus, not only the selection of the initial samples, but also the selection of the size of the 

patch is a key hyperparameter to be considered: in this case, a cross validation is used to choose the best patch size. The 560 

vulnerability maps are created dividing the land use into 5 classes, which are then multiplied with the hazard layer to calculate 

the final risk map. Convolutional Neural Networks (CNNs) offer significant advantages over traditional algorithms in spatial 

https://doi.org/10.5194/egusphere-2025-670
Preprint. Discussion started: 3 March 2025
c© Author(s) 2025. CC BY 4.0 License.



21 
 

analysis due to their ability to process areas as 2D maps. This enables the model to leverage Max Pooling layers to capture and 

simplify the spatial context of events. Unlike models that focus on individual point characteristics, CNNs can better understand 

and integrate the broader spatial relationships. For example, Zhao et al. (2020) test CNN for urban flood susceptibility too but 565 

instead of producing separate maps for hazard and vulnerability, anthropogenic factors were used as predictors for the 

susceptibility map. The study compares the performances of different ML models: a simple (with 1 convolutional layer) CNN 

architecture, LeNet5 (Lecun et al., 1998), a slightly deeper CNN (with 2 convolutional layers), SVM and RF models. Different 

input strategies are tested: a point based strategy that only considers input at a given site; a partial spatial strategy that considers 

the surrounding pixels, flattening the 2D image to a 1D vector, thus loosing partially the spatial context, but allowing the 570 

neighbouring pixels to be fed to SVM and RF models as additional predictors; a patch strategy, similar to the one described 

before for the CNN models, which granted the best performances. This study also discusses the use of Deep CNNs, which is 

discouraged since the typical sample size and model is too small to tune the high number of parameters required by Deep 

CNNs. 

Rusk et al. (2022) analyse population risk in the Hindu-Kush and Himalaya region, producing a multi-hazard map for 575 

landslides, floods and wildfire with the MaxEnt (Maximum Entropy) algorithm, which is then overlayed with population 

distribution. The paper also produces a matrix of multi-hazard interactions, dividing them into three types: when hazards are 

directly linked (e.g., flooding causing a landslide), when their linkage is mediated by an environmental condition (e.g., land 

use changes caused by wildfires increasing the probability of a landslide), or when their linkage is mediated by infrastructure 

or urban processes (e.g., a landslide damaging a dam, triggering a flood). However, a quantitative assessment of these multi-580 

hazard interactions is not provided and only the records of these events are used to complement the multi-risk map. A similar 

approach is used in Austria, (Fuchs et al., 2015)  considering river flooding, torrential flooding and snow avalanches as hazards 

and buildings as assets. In this case, buildings vulnerability is investigated, categorising them based on location, size, building 

category and the construction period. The different urbanisation patterns, very high in mountainous terrain of the Hindu-Kush-

Himalaya (HKH) and quite low for Austria, influenced the final risk score assessment, with the HKH showing more areas at 585 

higher risk (Rusk et al., 2022). Sammonds et al. (2023) analyse hurricane, flood and landslide risk on population, producing 

single hazard susceptibility maps with statistical methods and discussing the vulnerability of population, considering gender, 

age, and population density; the final multi-hazard hurricane risk is obtained as a product of the single hazard susceptibility 

scores, overlayed with weights determined with Analytic Hierarchy Process (AHP), and the vulnerability score. Other 

applications focus on Vietnam, where RF is applied to derive risk for buildings and population against multi-hazard 590 

susceptibility maps for floods and wildfires (Luu et al., 2024). RF is applied to calculate single and multi-hazard susceptibility 

maps for China for flooding, landslides, and debris flows and the railway infrastructure was overlayed to analyse present and 

future risk, considering newly planned railway links (K. Liu et al., 2018). In general, a number of studies are found to apply 

non-ML approaches, including multi-criteria decision-making and expert judgements methods to calculate susceptibility and 

vulnerability layers, such as in Arvin et al. (2023), that focuses on infrastructure resilience in Iran, considering flooding, 595 
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landslides and earthquake as hazards, and 25 indicators at the county level and Khatakho et al. (2021), focussing on population 

exposed to flooding, earthquakes and wildfires near Kathmandu (Nepal). 

Compared to the publications focussing only on the multi-hazard aspect, the applications that also consider exposure and 

vulnerability do not test multiple ML algorithms, often rely on expert-based judgments or simple frequency analysis. 

Moreover, while these applications focus on multiple hazards, the analysis of vulnerability factors is often overlooked: in most 600 

cases, only exposure layers are used to produce risk maps. Even when vulnerability is explicitly considered, it is calculated 

only for single hazards and as a static parameter. Recent publications, such as de Ruiter & van Loon, (2022) highlight the 

importance of considering dynamic vulnerability factors, especially in multi-hazard and multi-risk contexts, where 

vulnerability can vary because of the changes cause on the system caused by the occurrence of the hazards of extreme events, 

or because of specific adaptation and responses. Even if the use of EO can help to inform the models of changes in the system 605 

(such as land cover changes due to wildfires and landslides, or new urbanisation patterns after reconstructions), these indicators 

are not yet integrated in multi-risk mappings. 

3.3.2 Modelling risk predicting impacts 

Another popular approach to model multi-risk with ML is to use impacts as a proxy and training supervised ML models on 

past impacts. Examples of possible impacts are excess mortality for health risks, economic damages and monetary losses, 610 

number of emergency signals or specific environmental indicators, such as ecological status. With regards to ML methodology, 

approaches are similar to the ones applied for predicting hazard values, considering multiple predictors covering climate, 

topography, land use and anthropogenic factors, but the final assessment endpoint, impact data, is very different from typically 

hazard data, having a coarser resolution in time and space and resulting in much smaller datasets. Thus, most of the studies 

focus on simpler and more interpretable ML methods like ensemble methods, rather than the DL approaches which are popular 615 

for hazard prediction. Moreover, more attention is dedicated to the interpretation of the factors and the explainability of 

methods (Ghaffarian et al., 2023), with most applications presenting some form of feature importance analysis, either as a 

built-in feature of the model, such as for RF, or as a a-posteriori analysis with SHAP values. In this section, studies are grouped 

based on the sectors and type of impact considered, considering health, food security and crops, environmental quality & 

biodiversity, physical damages and economic losses. 620 

Health 

Studies focussing on environmental-health risks often analyse the combination of heat and air quality stressors and use excess 

mortality as predicant variable. These applications aim at disentangling complex temporal patterns, consisting of a long-term 

trend, driven by multiple (and often unknown) factors, and short-term peaks, mainly driven by summer heatwaves; moreover, 

time-lags needs to be considered. Thus, statistical methods, such as Distributed Lag non-linear models have been widely 625 

applied (Gasparrini, 2014) to model exposure lag-response of mortality to environmental stressors. More recently, RF has been 

applied, analysing the role of humidity in urban mortality during heatwaves at the global scale (Guo et al., 2024) or predicting 

heat-stroke occurrence in China (Y. Wang et al., 2019), while SVM is applied for analysing previous diseases, population 
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density and urbanisation (X. Wang et al., 2021). One of the most interesting papers, Boudreault et al., (2023) test 9 different 

ML, DL and statistical methods (such as Generalised Additive Models – GAMs) in the Metropolitan City of Montreal, 630 

considering weekly all-cause mortality as predictand and air temperature, humidity, wind, Particle Matter (PM) 2.5, Ozone 

(O3), Nitrogen Dioxide (NO2), Sulphur Dioxide (SO2), Carbon Monoxide (CO) as predictors. Among the methods tested, 

Tree based methods (RF, XGBoost) usually perform better overall, while statistical methods (and GAM in particular) are more 

accurate in predicting the mortality peaks; Deep Learning approaches, such as MLP and LSTM have instead the worst 

performances. This is partially explained by the limited size of the dataset and the inclusion of non-climate causes in the 635 

predictand, likely to cause overfitting in the DL models. Another study also focussing on Canada proposes an AI-based 

framework to extrapolate vulnerability from health-heat relationship: Côté et al. (2024) test this approach considering two 

steps: first, a model to predict daily mortality from mean temperature for 3 days, age, income and period of the year as 

predictors and then a second model predicting annual mortality over aggregated areas with specific socio-economic and 

environmental (air quality, vegetation, …) characteristics.  The model tested are AutoGluon (an automatic ML framework 640 

allowing to train and test ML models without expert knowledge2), GP and Deep Gaussian Process (Deep GP). The results 

shows that GP are able to model better the daily mortality trends, especially during extreme temperature, while AutoGluon is 

slightly better for the annual analysis. GP with non-linear (e.g., 5/2 Matern Kernel (Y. Pan et al., 2021)) are in fact able to 

better handle noise and small data samples (J. Wang, 2023), and their limit is their computational costs (M. Jiang et al., 2022); 

on the other hand, the more complex Deep GP handed the worst outcomes, highlighting the challenges in tuning more complex 645 

Deep GPs (Tazi et al., 2023). Other studies focus on predicting the influence of water quality parameters, such as turbidity, on 

the risk of cholera disease outbreaks in Indian Coastal municipalities using a RF predictor (Campbell et al., 2020). 

Food security and crops 

The second group of reviewed studies focus on the nexus between food production, food security and migrations. For instance, 

Busker et al., (2024) apply XGBoost to predict food insecurity in the Horn of Africa. This model, takes as input several factors, 650 

integrating climatological variables, biological hazards, food and fuel prices, macroeconomic indicators, conflicts and 

humanitarian assistance, aggregating data on the administrative units for which the assessment endpoint variable (food 

security) was available. The model is tested for its ability to predict the onset of crises up to 12 months in advance, 

demonstrating superior performance in agro-pastoral areas compared to croplands. SHAP values are employed to analyse the 

key risk drivers. The findings of this study highlight its potential application in operational early warning systems, such as 655 

FEWS NET.  

Tárraga et al. (2024) also investigate the dynamic relationships between droughts, conflicts and food security, focussing on 

their impact on population displacement. In this case, ML is not used to predict displacement, but causal discovery methods 

are tested to retrieve its drivers within Somalia from 2016 to 2023. In particular, Granger Causality and Peter and Clark 

Momentary Conditional Independence (PCMCI) are tested to generate plausible causal graphs of drought displacement, 660 

 
2 https://auto.gluon.ai/stable/index.html 
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showing limitations for Granger causality due to the high dimensionality and autocorrelation of the time series, while the 

PCMCI method is able to disentangle the intertwined vulnerabilities and different leading times connecting drought impacts, 

water and food security systems along with episodes of violent conflict. The reliability of the causal model depends on the 

quality of training data and several assumptions are required, such as causal sufficiency (i.e., all possible driving variables of 

drought displacement need to be considered in the analysis), no contemporaneous causal effects and causal stationarity. Note 665 

that even if causal sufficiency is valid, the associations between the other variables (e.g., SPEI, market prices, fatalities) may 

be influenced by confounding factors rather than direct causality. 

Different types of copulas (Normal, Student’s t, Archimedean with different distributions) are tested to understand risk by 

linking bivariate return periods of temperature and precipitation to crop yields, analysing the impact of dry and hot, dry and 

cold, wet and hot, wet and cold conditions (Zscheischler et al., 2017). Nested Archimedean copulas were used to model the 670 

tri-variate dependence between maximum temperature and spring precipitation on crop yields, estimating the impact 

differences between single and compound hazards, using combinations of heat and precipitation stress (Ribeiro et al., 2020).  

Environmental quality and biodiversity 

Numerous studies focus directly on environmental impacts, such as the influence of land use and urban planning on water 

quality. For example, R. Wang et al., (2021) apply RF with SHAP values to model stream water quality and specific pollutants 675 

based on four different urban planning scenarios in Texas. The model allows to correlate urban sprawl to water quality 

degradation and was used to forecast environmental impacts under different urban development pattern scenarios. In Li et al. 

(2022) the ensemble model XGBoost is used to predict water quality in beach locations in lake Eyre, paired with SHAP for 

increased explainability. Other studies focus on ecosystem and biodiversity: for example, RF and Logistic regressions are 

tested to predict forest loss in Borneo from topographical and anthropogenic variables (distance to urban areas, population, 680 

etc,), highlighting the advantages of RF for modelling multi-scale spatial relationships between risk drivers (Cushman et al., 

2017). Similarly, in Islam et al. (2021), the spatio-temporal dynamics of wetlands in Bangladesh and their negative effects on 

biodiversity are analysed using Decision trees, RF and SVM. RF and SVM are the best performing algorithms and in general, 

the papers highlighted the role of remote sensing, for mapping wetlands variations in time. Species distributions is also 

investigated, with many applications discussing the different spatial approaches for river network modelling. For example, 685 

Schmidt et al. (2020) test the MaxEnt algorithm with two representations of rivers, highlighting how a high-resolution model 

based on river reaches is better at discovering individual local habitat features, whereas lower resolution sub-catchment scale 

models better account for more general drivers in fish distribution. Teichert et al. (2016) apply a RF model to identify the 

dominant stressors for fish presence in estuaries, investigating the interactions among stressors evaluating ecological benefits 

expected from reducing pressure. In particular, an RF model is trained to predict ecological status in 90 locations using 17 690 

predictors describing the different stressors (urbanisation, flow changes, water pollution, oxygen depletion, etc.). Then, 

simulations are run to analyse the benefit of restorations comparing the difference between the baseline model and a model 

where the intensity of stressors was varied. The difference between single and multiple restoration action is analysed, 

highlighting the importance of combined restoration schemes and the non-linearity of their effects. 
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Economic losses and physical damages 695 

This final category focus on studies modelling economic losses or physical impacts: Dal Barco et al. (2024) model the 

occurrence of impacts due to extreme weather events in the Veneto coastal municipalities, with a combination of two ML 

models: first a classifier (RF, SVM, ANN) is trained to predict the probability of daily impacts in coastal municipalities using 

meteorological data as predictors and a Boolean variable based on impact reports from the Regional Authorities as predictand; 

then a Linear Regression is used to predict the yearly occurrences of damages based on the outcome of the first model. 700 

However, the coarse resolution of the impact data, the biases in human collected impact catalogues, and the skewedness of the 

dataset can pose significant challenges to the training of a ML-model predicting direct physical impacts. Other studies focus 

on modelling tropical cyclones along the East Coast of the US with ANN: Pilkington & Mahmoud (2017) investigate the 

complex connections between all meteorological factors (wind, pressure, storm surge, and precipitation resulting in inland 

flooding) of a tropical cyclone and how those interact with the location of landfalls to produce a certain level of economic 705 

damage. The vulnerability and resilience of the different coastal locations are investigated essentially using the model to predict 

losses with varying meteorological factors taken from past historical events but switching their landfall location. Other 

approaches, such as Mukherjee et al. (2018)  test SVM and RF to analyse impacts on the energy sector in the US caused by 

extreme weather events, leveraging the records of disruptions from outage data of the Department of Energy in the US and 

using as predictors a set of climatic and socio-economic variables aggregated at state level. In this study, two different models 710 

are trained, in order to account for the differences in the risk drivers between the more frequent energy disruptions and the 

extreme events, which are separated based on their quantile. Finally, other studies focus on the impacts on specific economic 

sectors, such as finance and tourism: Carannante et al. (2024) propose a pricing model for climate change risk, particularly 

physical risk, developing a type of climate risk-insured loan, based on a bioclimatic composite indicator developed with ML. 

In particular, a temporal dynamic RF (considering variables at different lag-times) is used to produce a monthly risk index, 715 

based on atmospheric variables (wind, precipitation, temperature) obtained mainly from remote sensing datasets, which is used 

to model impacts on beach resorts in Italy and inform the subsequent climate-risk loan mechanism. 

3.4 Future 

3.4.1 Predicting future hazards 

Several studies focus on data-driven applications to predict long-term future multi-hazard and multi-risk scenarios. 720 

Zscheischler et al. (2018) discuss the importance of compound events for future risk assessment and presents several 

approaches and discusses the main challenges related to the use of future climate projections and weather simulations to analyse 

future compound events. The role of bias correction and its connection to multi-hazard events and impact models is analysed: 

future projections are often bias corrected to align the distribution of the modelled variables to the distribution of the observed 

ones, in the reference timeframe. However, some issues can arise: the simplest approaches focus on adjusting the averages of 725 

the variables and do not correct the tails of the distributions, thus modifying the behaviour of extreme events. Methods such 
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as quantile mapping, are needed to align the historical and future datasets before the application of any statistical or ML 

methods. Sensitivity analysis can be performed to understand how the model reacts to changes in inputs, to understand the 

robustness of future scenarios (Kim et al., 2023). Moreover, bias corrections are often univariate, and do not consider the 

effects on joint tail distributions and consequently impact models based on these inputs are affected; multivariate bias 730 

correction models are then encouraged (Sippel et al., 2016).  

When dealing with the future of multi-hazard events, statistical methods are most often applied to identify hotspots and test 

trends, similarly to the applications focussing on historical data. For example, Ridder et al. (2022) consider hot, dry, wet and 

windy compound events by selecting cells which exceed the 99th percentile for wind and precipitation in the same day. Then 

results are presented in changes in return period and annual event density, where the latter is a measure for how often an event 735 

affects a region and how much of the region is affected, calculated from the number of grid cells affected. Similarly, Zhu et al. 

(2023) investigate future compound wind and precipitation extreme at the global scale, analysing 14 CMIP6 models, 

identifying compound events through the 95th percentile and discussing the sources of uncertainties via the HS09 statistical 

method (Hawkins & Sutton, 2009) splitting between internal variability, model uncertainty and scenario uncertainty. Further 

analyses discuss the spatial and temporal performances of future projections: Ridder et al., (2021) find good performances in 740 

CMIP6 simulation for precipitation and wind compound extremes over North America, Europe and Asia, but poor 

performances over Australia, probably linked to the limits in the modelling of tropical and extratropical cyclones and local 

convection systems. Also, copulas are used to analyse spatial complementary patterns of compound events, such as in Ghanbari 

et al. (2021), which analyse the joint return period of compound floods along the US coast, incorporating sea level rise and 

peak river flows for future climate change risk scenarios with copulas. H. Wu et al., (2023, 2024), employ Vine copulas to 745 

analyse hot & dry and pluvial & hot events in future scenarios, using the Single Model Initial Conditions Large Ensemble 

(SMILE) approach.  

Bevacqua et al., (2023) stress the importance of SMILE for a robust analysis of future compound climate events. In fact, a 

SMILE consists of many simulations from a single climate model, each starting from slightly different initial states (differently 

from classical model ensembles, like CMIP6, which consists of many different runs from different models). Each realization 750 

differs solely due to internal climate variability and ensures a better quantification of future uncertainties, and at the same time 

it provides a much larger dataset to analyse statistically compound events. Multiple SMILEs can then be combined to identify 

model differences and distinguish between internal climate variability and structural model differences. Sometimes, especially 

when dealing with unprecedented, High-Impact, Low-Probability events, climate projections or even SMILE or statistical 

weather generation are not sufficient: in these cases, storyline approaches are often used as alternative to explore future multi-755 

risk patterns (Moezzi et al., 2017; Shepherd et al., 2018). These approaches fit well within common practices in disaster risk 

management, which consider event-based scenarios for emergency preparedness, allowing for interaction with local 

stakeholders to evaluate the effectiveness of selected measures (Sillmann et al., 2021) and to explore low-likelihood and high 

impact plausibility events (Bevacqua et al., 2021). 
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3.4.2 Modelling future impacts 760 

A common approach to estimate future risks involves using future climate projections as input data for ML models that have 

been trained on historical data of past impacts, similar to applications that focus on assessing current risks by leveraging past 

impacts. For example, the study of future cyclone impacts in New York and New Jersey, is feeding four General Circulation 

models as input for a SVM / AdaBoost risk model (Ayyad et al., 2023). Park & Lee (2020) test the performances of three 

algorithms, K-NN, RF and SVM to analyse coastal risks in South Korea, considering rainfall, tides, topography and land use, 765 

training the model on past floodings and then predicting future risks using monthly averages of rainfall and tidal values from 

RCP 4.5 and 8.5 ensembles. Future risk scenarios are calculated aggregating the risk model outcomes for each decade from 

2030s to 2080s. In a successive publication, Park et al. (2023) apply a similar ML methodology to investigate adaptation 

strategies for coastal flooding: in this case, the ML model is trained on historical data with two different adaptation strategies, 

seawalls or green spaces, and then the future adaptation models are implemented, either maintaining current adaptation 770 

infrastructures or increasing one specific strategy. To ensure comparability between the adaptation scenarios, infrastructure 

construction costs are standardized, guaranteeing that the two distinct adaptation pathways incurred equal expenses. 

In general, it is considered good practice to use ensemble projections and values calculated over multiple years, in order to 

increase the robustness of the future scenarios; however, some risk analyses focus on just a few selected years: Lim & Kim 

(2022) test RF for future rainfall induced landslides, also analysing different adaptation pathways and considering an increase 775 

in forested or urban areas. Instead of using monthly or daily values for the ML model, yearly values are used in the model, for 

specific years (2050, 2092), which are considered significative for representing future scenarios. This approach is valuable for 

analysing specific extreme events that may be overlooked when averaging across multiple models or years, and it reduces 

computational demands. However, it carries the risk of biasing the analysis, as the selection of specific years may result in 

outcomes that are not fully representative of the broader range of future scenarios. Bayesian Networks were tested by Pham et 780 

al., (2023) in a multi-model chain approach combining ocean hydrodynamics models, wind-wave models, and shoreline 

extraction models to analyse sea water quality impacts and shoreline erosion under different RCP projections (4.5 and 8.5). 

Bayesian Networks are applied due to their ability to integrate heterogeneous data sources, including quantitative and 

qualitative inputs and several data fusion steps to harmonise different spatial coverage, temporal resolutions and data formats, 

with a final risk assessment conducted at municipality level and yearly/ decadal scale.  785 

With regards to the water-food nexus, ML is being progressively employed as an alternative to process or statistical methods 

for future crop yield estimation, showing increased performances and higher computational efficiency: Leng & Hall (2020) 

test a RF model for annual yield prediction in the US for a 2º C global warming scenario; while Khan et al. (2024) select 

Gradient Boosting to model the relationships between daily climate variables, hazard indicators, such as Consecutive dry days 

(CDD) and crop production with CMIP6 data. Tabari & Willems (2023) carry out a global risk assessment from hot and dry 790 

events, employing Copulas and integrating data from Shared Socio-economic Pathways (SSP) scenarios, future land use 

patterns population and governance. ML methods are used also to predict the risk of increased conflicts due to climate stressors: 

https://doi.org/10.5194/egusphere-2025-670
Preprint. Discussion started: 3 March 2025
c© Author(s) 2025. CC BY 4.0 License.



28 
 

a RF classifier is applied by Hoch et al., (2021) to predict water-related conflicts in Africa using different SSP future 

projections, integrating socio-economic predictors (population, education, GDP, governance) and climate predictors 

(precipitation, evaporation, flood volume, soil water). The model is trained on historical data up to 2015 and tested with 795 

projections from 2016 to 2050. Future temperature-related mortality in different European regions is analysed by García-León 

et al., (2024) considering 4 scenarios of global warming (1.5 ºC, 2ºC, 3ºC, 4ºC) with an ensemble of CMIP5 models, analysing 

disparities between cold-related deaths and heat-related deaths and analysing the role of age, health infrastructure and climate 

change with a Distributed Lag Non-Linear model. In particular, different scenarios are discussed: present climate and present 

population, present climate with future population from EUROPOP 2019; future climate under different warming level with 800 

future population exposure. 

Future risk patterns are also calculated implementing future multi-hazard susceptibility maps: for example, Rahman et al., 

(2024) analyse future coastal multi-hazard risks in Bangladesh, implementing an LSTM algorithm, in combination with RF 

feature selection and a Genetic Algorithm (GA) optimiser. In particular, GA is used to identify optimal or near-optimal 

solutions, searching the space of LSTM parameters through a process of selection, crossover and mutation. The combination 805 

of the LSTM's ability to capture sequential patterns and long-term dependencies and GA's efficiency in navigating complex 

search spaces, is proved to achieve better convergence, avoid local minima, and optimise both the architecture and parameters 

of the LSTM model (Zamani et al., 2022). Other future multi-hazard susceptibility approaches include Ya et al., (2023), who 

analysed future risks in the Tibetan plateau considering climate and land use changes. Logistic Regression is used to produce 

susceptibility maps, while future climate scenarios were taken from CMIP6 future projections. In order to create future land 810 

use, this paper focus on PLUS, a RF-based model analysing the relationship between influencing factors and land use changes 

(Liang et al., 2021). Another approach for future land use is applied by Saha et al., (2021), which focus on modelling cultural 

heritage site future multi-hazard susceptibility in the Sikkim state in India, considering different climate scenarios from CMIP5 

and land use from an empirical model (Dyna-CLUE) incorporating spatial logistic regression (W. Jiang et al., 2015). Bayesian 

Additive Regression Trees and Bayesian Generalised Linear models are applied to produce multi-hazard susceptibility maps, 815 

considering extreme rainfall, landslides and earthquakes. Another dynamical model, a Cellular Automata- Markov model 

(Clarke et al., 1997) is used to predict future land use changes in Iran to investigate flood risks, testing RF, XGBoost and 

Gradient Boosting as algorithms for producing susceptibility maps (Janizadeh et al., 2021).  

4 Conclusion 

This paper presents a comprehensive review of data-driven applications aimed at modelling and enhancing our understanding 820 

of climate-related multi-hazard and multi-risk events. Based on the selection of over 1,400 studies and an in-depth analysis of 

136 key papers, the review addresses four research areas: (i) data processing and collection, (ii) hazard analysis, (iii) risk 

analysis, and (iv) future risk scenarios, each divided in several sub-topics. Figure 3 summarises the main methods used in each 

research question, illustrating the different approaches for each sub-topic. In particular, the figure highlights the strong 
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connections between Earth observations processing and ML techniques like CNN; on the other hand, RF, other ensemble 825 

methods and GAM are mostly applied for risk impacts and future risk assessment, while LSTM, ANN and other DL approaches 

are most common for hazard prediction, reflecting a growing trend toward leveraging sophisticated AI architectures for climate 

and hazards applications, and a focus on simpler, more interpretable models for risk applications. 

Despite the current prevalence of single-hazard applications in ML research, there is growing recognition of the importance of 

multi-risk strategies. Notable advancements include copula-based compound event analyses and ML-driven multi-hazard 830 

susceptibility maps. Future research should prioritize a more comprehensive understanding of multi-risk interactions – such as 

triggering, cascading, or amplifying effects – by considering the interplay between hazard factors, vulnerability, and exposure 

dynamics. DL methods, with their capacity to capture complex, non-linear interactions across spatio-temporal dimensions, 

offer promising avenues for progress. However, these methods require high-resolution impact data, which remains a significant 

challenge. While EO and textual data can aid in generating new multi-risk disaster catalogues, traditional sensor-based and 835 

human-curated disaster catalogues remain essential for validation, representing a major bottleneck for advancing this research. 

 
Figure 3: Main methods used for each research topic 
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Finally, this review highlights the importance of adopting a multidisciplinary approach that combines expertise in multivariate 

statistics, machine learning, big data, climate science, and risk assessment. Such collaboration is essential for leveraging new 840 

climate projections tailored to extreme events and their societal and ecological impacts. Advancements in AI and ML will 

further facilitate synthetic data generation, advanced pattern analysis, and AI-driven early warning systems. Stakeholder 

engagement – including policymakers, communities, and industries – is essential to ensure actionable and regionally tailored 

strategies for risk reduction and climate adaptation. 

 845 

Appendix A: Abbreviations 

Table A1: Acronyms of methods (in alphabetical order) 

Acronym Full Name 

AI Artificial Intelligence 

ANN Artificial Neural Network 

BRT Boosted Regression Trees 

CART Classification and Regression Trees 

CNN Convolutional Neural Network 

ConvNP Convolutional Neural Process 

DBSCAN Density Based Spatial Clustering Application with Noise 

DeepGP Deep Gaussian Process 

DL Deep Learning 

DT Decision Tree 

EG Expected Gradient 

GA Genetic Algorithm 

GAM Generalised Additive Models 

GAN Generative Adversarial Network 

GLM Generalised Linear Models 

GNN Graph Neural Network 

GP Gaussian Process 

GRU Gated Recurrent Unit 

IG Integrated Gradient 

KNN K Nearest Neighbour 

LSTM Long Short Term Memory 

MaxEnt Maximum Entropy  
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ML Machine Learning  

NLP Natural Language Processing  

PCMCI Peter and Clark Momentary Conditional Independence 

RF Random Forest 

SHAP Shapley Values 

SVM Support Vector Machine 

XGBoost Extreme Gradient Boosting 

 
Table A2: Other acronyms (in alphabetical order) 

Acronym Full Name 

AHP Analytical Hierarchy Processes 

CO Carbon Monoxide 

CDD Consecutive Dry Days 

CMIP Coupled Model Intercomparison Project 

DynaCLUE Dynamic Conversion of Land Use and its Effect 

EO Earth observations 

FWI Fire Weather Index 

GEV Generalised Extreme Value (distributions) 

HKH Hindu-Kush and Himalaya (Region) 

NO2 Nitrogen Dioxide 

O3 Ozone 

RCP Representative Concentration Pathways 

PLUS Patch-generating Land Use Simulation 

PM Particle Matter 

SO2 Sulphur dioxide 

SMILE Single Model Initial-condition Large Ensemble 

SPEI Standardised Precipitation and Evapotranspiration Index 

SPI Standardised Precipitation Index 

 850 

Appendix B: Summary tables of the collected studies 

 

https://doi.org/10.5194/egusphere-2025-670
Preprint. Discussion started: 3 March 2025
c© Author(s) 2025. CC BY 4.0 License.



32 
 

Table B1: Summary of the research questions and their keywords 

Topic Research question Thematic keywords Method-keywords 

Data 

How can data-driven 

applications improve data 

collection and processing? 

Climate, model, observations, 

 reanalysis, remote sensing,  

earth observations, social media, 

newspapers, downscaling, bias,  

impacts 
ML (ML), 
 AI (Artificial Intelligence), 

DL (Deep Learning),  

NN (neural networks),  

multivariate statistics,  

regression, prediction, forecast, 

classification,  

anomaly detection,  

copulas,  

interpretability,  

explainability 

Hazard 

How can data-driven 

applications be used to 

identify, classify, and cluster 

extreme events, and 

understand hazard 

interactions? 

Multi-hazard, drought, flood,  

heatwave, wildfire, landslide, 

storm,  

hurricane, volcanic, earthquake, 

wind,  

compound, consecutive, extremes 

Risk 

How can data-driven 

applications integrate 

vulnerability and exposure in 

multi-risk analysis? 

Multi-risk, climate-risk, multi-

sector,  

environment(al), energy, health, 

infrastructure, susceptibility, 

vulnerability, exposure 

Future 

How can data-driven 

applications be used to predict 

long-term future multi-hazard 

and multi-risk? 

Climate change, tipping points, 

uncertainty, projections, future 

risk, RCP, storylines 

 

 855 
Table B2: Final selection of studies for RQ1: Data 

Reference Year Title 
Hazards/ Main 

variable 
ML methods 
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Topic 1: Data - Climate 

(Orth et al., 2022) 2022 
Global soil moisture data derived through 

machine learning trained with in-situ 

measurements 
Soil moisture LSTM 

(Ghiggi et al., 

2019) 
2019 

GRUN: an observation-based global gridded 

runoff dataset from 1902 to 2014 
run-off RF 

(Anderson et al., 

2019) 
2023 

Environmental sensor placement with 

convolutional Gaussian neural processes 
air temperature CONVNP 

(Tazi et al., 2024) 2024 
Downscaling precipitation over High-mountain 

Asia using multi-fidelity Gaussian processes: 

improved estimates from ERA5 
precipitation GP 

(He et al., 2016) 2016 
Spatial downscaling of precipitation using 

adaptable random forests 
precipitation RF 

(Lin et al., 2023) 2023 
Deep learning downscaled high-resolution daily 

near surface meteorological datasets over East 

Asia 

temperature, 

humidity, wind, 

radiation 
CNN 

(Harris et al., 2022) 2022 
A Generative Deep Learning Approach to 

Stochastic Downscaling of Precipitation 

Forecasts 
precipitation GAN 
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(Ling et al., 2024) 2024 
Diffusion model-based probabilistic 

downscaling for 180-year East Asian climate 

reconstruction 

atmospheric 

variables 
Diffusion 

probabilistic models 

(Bretherton et al., 

2022) 
2022 

Correcting Coarse‐Grid Weather and Climate 

Models by Machine Learning From Global 

Storm‐Resolving Simulations 

atmospheric 

variables 
RF, ANN 

(Clark et al., 2022) 2022 
Correcting a 200 km Resolution Climate Model 

in Multiple Climates by Machine Learning 

From 25 km Resolution Simulations 

atmospheric 

variables 
RF, ANN 

Topic 2: Data - Earth observations 

(Ahmad et al., 

2010) 
2010 

Estimating soil moisture using remote sensing 

data: A machine learning approach 
soil moisture 

SVM, ANN, Linear 

regression 

(Kang et al., 2018) 2018 
Spatial Upscaling of Sparse Soil Moisture 

Observations Based on Ridge Regression 
soil moisture Ridge Regression 

(Han et al., 2023) 2023 
Global long term daily 1 km surface soil 

moisture dataset with physics informed machine 

learning 
soil moisture RF 

(Jing et al., 2016a) 2016 
A Comparison of Different Regression 

Algorithms for Downscaling Monthly Satellite-

Based Precipitation over North China 
precipitation 

CART, KNN, RF, 

SVM 
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(Jing et al., 2016b) 2016 

A Spatial Downscaling Algorithm for Satellite-

Based Precipitation over the Tibetan Plateau 

Based on NDVI, DEM, and Land Surface 

Temperature 

precipitation RF, SVM 

(Fang et al., 2017) 2017 
Prolongation of SMAP to Spatiotemporally 

Seamless Coverage of Continental U.S. Using a 

Deep Learning Neural Network 
Soil Moisture LSTM 

(Adam et al., 2014) 2014 

Land-use/cover classification in a heterogeneous 

coastal landscape using RapidEye imagery: 

evaluating the performance of random forest 

and support vector machines classifiers 

LULC classification 

(coastal) 
RF, SVM 

(Yuh et al., 2023) 2023 
Application of machine learning approaches for 

land cover monitoring in northern Cameroon 
LULC monitoring 

RF, SVM, KNN, 

ANN 

(Zerrouki et al., 

2019) 
2019 

A Machine Learning-Based Approach for Land 

Cover Change Detection Using Remote Sensing 

and Radiometric Measurements 

LULC change 

detection 
RF, SVM, KNN, 

ANN 

(Miyoshi et al., 

2020) 
2020 

A Novel Deep Learning Method to Identify 

Single Tree Species in UAV-Based 

Hyperspectral Images 

Tree species 

mapping 
CNN 

(Schiefer et al., 

2020) 
2020 

Mapping forest tree species in high resolution 

UAV-based RGB-imagery by means of 

convolutional neural networks 

Tree species 

mapping 
CNN 
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(Veras et al., 2022) 2020 
Fusing multi-season UAS images with 

convolutional neural networks to map tree 

species in Amazonian forests 

Tree species 

mapping 
CNN 

(J. Wang et al., 

2019) 
2019 

Deprivation pockets through the lens of 

convolutional neural networks 
Identify deprived 

urban areas 
CNN 

(Jean et al., 2016) 2016 
Combining satellite imagery and machine 

learning to predict poverty 

Track households' 

consumption and 

assets via 

nightlights 

CNN 

(Ghaffarian & 

Emtehani, 2021) 
2021 

Monitoring Urban Deprived Areas with Remote 

Sensing and Machine Learning in Case of 

Disaster Recovery 

Track disaster 

recovery in urban 

deprived areas 
SVM 

(Nazeer et al., 

2017) 
2017 

Evaluation of Empirical and Machine Learning 

Algorithms for Estimation of Coastal Water 

Quality Parameters 
Water quality ANN 

(J. Liu et al., 2023) 2023 

Monitoring Total Suspended Solids and 

Chlorophyll-a Concentrations in Turbid Waters: 

A Case Study of the Pearl River Estuary and 

Coast Using Machine Learning 

Water quality 

(Turbidity) 
ANN, RF, XGBoost, 

SVM 

(S. Chen et al., 

2022) 
2022 

Machine learning-based estimation of riverine 

nutrient concentrations and associated 

uncertainties caused by sampling frequencies 

Water Quality 

(River Nutrients) 
SVM, RF, ANN 

(Q. Wang et al., 

2018) 
2018 

Change detection based on Faster R-CNN for 

high-resolution remote sensing images 
Change detection CNN 
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(Sublime & 

Kalinicheva, 2019) 
2019 

Automatic Post-Disaster Damage Mapping 

Using Deep-Learning Techniques for Change 

Detection: Case Study of the Tohoku Tsunami 

Change detection 

after disaster 

(earthquake/ 

tsunami) 

CNN based 

autoencoder 

(Ji et al., 2018) 2018 
Earthquake/Tsunami Damage Assessment for 

Urban Areas Using Post-Event PolSAR Data 

Change detection 

after disaster 

(earthquake/ 

tsunami) 

SVM 

(Y. Bai et al., 2018) 2018 

Towards Operational Satellite-Based Damage-

Mapping Using U-Net Convolutional Network: 

A Case Study of 2011 Tohoku Earthquake-

Tsunami 

Change detection 

after disaster 

(earthquake/ 

tsunami) 

CNN 

(Lei et al., 2019) 2019 
End-to-end Change Detection Using a 

Symmetric Fully Convolutional Network for 

Landslide Mapping 

Change detection 

(landslide mapping) 
CNN 

(Bo et al., 2022) 2022 
BASNet: Burned Area Segmentation Network 

for Real-Time Detection of Damage Maps in 

Remote Sensing Images 

Change detection 

(wildfire mapping) 
CNN 

(Tran et al., 2020) 2020 
Damage-Map Estimation Using UAV Images 

and Deep Learning Algorithms for Disaster 

Management System 

Change detection 

(wildfire mapping) 
CNN 

(Munawar et al., 

2021) 
2021 

UAVs in Disaster Management: Application of 

Integrated Aerial Imagery and Convolutional 

Neural Network for Flood Detection 

Change detection 

(flood mapping) 
CNN 

https://doi.org/10.5194/egusphere-2025-670
Preprint. Discussion started: 3 March 2025
c© Author(s) 2025. CC BY 4.0 License.



38 
 

Topic 3: Data - Texts 

(Asinthara et al., 

2022) 
2022 

Classification of Disaster Tweets using Machine 

Learning and Deep Learning Techniques 
Classifying disaster 

tweets 
SVM, Naïve Bayes 

(Powers et al., 

2023) 
2023 

Using artificial intelligence to identify 

emergency messages on social media during a 

natural disaster: A deep learning approach 

Classifying disaster 

tweets 
BERT, XLNet, SVM 

(Koshy & Elango, 

2023) 
2023 

Multimodal tweet classification in disaster 

response systems using transformer-based 

bidirectional attention model 

Classifying disaster 

tweets and images 

BERT, 

Transformers, 

LSTM 

(Mehrotra et al., 

2022) 
2021 

A Multi-stage Classification Framework for 

Disaster-Specific Tweets 
Classifying disaster 

tweets 

SVM, DT, RF, 

ADABoost, GBM, 

XGB, LSTM, BERT, 

XLNET 

(Sodoge et al., 

2023) 
2023 

Automatized spatio-temporal detection of 

drought impacts from newspaper articles using 

natural language processing and machine 

learning 

Classifying drought 

impacts from 

newspapers 

Naïve Bayes, Lasso 

Regression, RF, 

ANN 

 

 
Table B3: Final selection of studies for RQ2: Hazard 

Reference Year Title 
Hazards/ Main 

variable 
ML methods 
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Topic 1: Hazard – identify, classify, cluster 

(Ionita et al., 

2021) 
2021 

Compound Hot and Dry Events in Europe: 

Variability and Large-Scale Drivers 
Hot and Dry compound 

events 

Percentile based 

thresholds, 

Empirical 

Orthogonal 

Functions 

(Sutanto et al., 

2020) 
2020 

Heatwaves, droughts, and fires: Exploring 

compound and cascading dry hazards at the 

pan-European scale 

Heatwave, drought, 

wildfire 
Percentile based 

thresholds 

(Claassen et al., 

2023) 
2023 

A new method to compile global multi-hazard 

event sets 

Heatwave, coldwave, 

drought, wildfire, 

floods, earthquakes, 

wind, tsunami, tropical 

cyclone, volcano, 

landslide 

Percentile based 

thresholds 

(Liao et al., 2021) 2021 
Growing Threats From Unprecedented 

Sequential Flood‐Hot Extremes Across China 
consecutive flood - 

heatwave 
Return periods 

(Sfetsos et al., 

2023) 
2021 

Multi-Hazard Extreme Scenario 

Quantification Using Intensity, Duration, and 

Return Period Characteristics 

Heatwave, coldwave, 

precipitation, snowfall, 

wind extremes 
Return periods 

(Orth et al., 2022) 2022 
Contrasting biophysical and societal impacts 

of hydro-meteorological extremes 
Heatwave, Drought, 

Floods, Wildfire 
Return periods, 

percentiles 

(Y. Liu et al., 

2016) 
2016 

Application of Deep Convolutional Neural 

Networks for Detecting Extreme Weather in 

Climate Datasets 

Extreme weather 

(Tropical cyclones, 

atmospheric rivers, 

weather fronts) 

CNN 
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(Racah et al., 

2016) 
2016 

ExtremeWeather: A large-scale climate 

dataset for semi-supervised detection, 

localization, and understanding of extreme 

weather events 

Extreme weather 

(Tropical cyclones, 

atmospheric rivers, 

weather fronts) 

CNN (semi-

supervised) 

(Cammalleri & 

Toreti, 2023) 
2023 

A Generalized Density-Based Algorithm for 

the Spatiotemporal Tracking of Drought 

Events 
Drought 

DBSCAN, 

Percentile based 

thresholds 

(J. Wang & Yan, 

2021) 
2021 

Rapid rises in the magnitude and risk of 

extreme regional heat wave events in China 
heatwaves 

DBSCAN, 

Percentile based 

thresholds 

(Di Martino et al., 

2018b) 
2018 

Spatiotemporal extended fuzzy C-means 

clustering algorithm for hotspots detection 

and prediction 
earthquakes DBSCAN 

(Tilloy et al., 

2022) 
2022 

A methodology for the spatiotemporal 

identification of compound hazards: wind and 

precipitation extremes in Great Britain (1979–

2019) 

Wind and precipitation 
DBSCAN, 

Percentile based 

thresholds 

(H. Yu et al., 

2022) 
2022 

Hotspots, co-occurrence, and shifts of 

compound and cascading extreme climate 

events in Eurasian drylands 

Drought, heatwave, 

coldwave, 

precipitation, wind 

DBSCAN, 

Percentile based 

thresholds 

Topic 2: Hazard - Predict 

(Haggag et al., 

2021) 
2021 

A deep learning model for predicting climate-

induced disasters 
Multi-Hazard (flood 

tested) 
ANN 
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(Kratzert, Klotz, 

Shalev, et al., 

2019) 
2019 

Towards learning universal, regional, and 

local hydrological behaviors via machine 

learning applied to large-sample datasets 
Floods LSTM 

(Kratzert, Klotz, 

Brandstetter, et 

al., 2019) 
2019 

Using LSTMs for climate change assessment 

studies on droughts and floods 
Floods, droughts LSTM 

(Tiggeloven et al., 

2021) 
2021 

Exploring deep learning capabilities for surge 

predictions in coastal areas 
Storm Surge LSTM, CNN, ANN 

(S. Jiang, 

Bevacqua, et al., 

2022) 
2022 

River flooding mechanisms and their changes 

in Europe revealed by explainable machine 

learning 

River floods, pluvial 

floods, snowmelt 

floods 
LSTM  

(Kraft et al., 2019) 2019 
Identifying Dynamic Memory Effects on 

Vegetation State Using Recurrent Neural 

Networks 

Hot and dry events 

(impacts on vegetation) 
LSTM 

(Freeman et al., 

2018) 
2018 

Forecasting air quality time series using deep 

learning 
Air quality (ozone) LSTM 

(Q. Wu & Lin, 

2019) 
2019 

A novel optimal-hybrid model for daily air 

quality index prediction considering air 

pollutant factors 

Air quality (various 

pollutants) 
LSTM 

(Chang-Hoi et al., 

2021) 
2021 

Development of a PM2.5 prediction model 

using a recurrent neural network algorithm for 

the Seoul metropolitan area, Republic of 

Korea 

Air quality (PM 2.5) RNN 
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(Bentivoglio et 

al., 2023) 
2023 

Rapid spatio-temporal flood modelling via 

hydraulics-based graph neural networks 
Floods GNN 

(Kazadi et al., 

2024) 
2024 

FloodGNN-GRU: a spatio-temporal graph 

neural network for flood prediction 
Floods GNN-GRU 

(A. Y. Sun et al., 

2021) 
2021 

Explore Spatio‐Temporal Learning of Large 

Sample Hydrology Using Graph Neural 

Networks 
Floods GNN 

(Castangia et al., 

2023) 
2023 

Transformer neural networks for interpretable 

flood forecasting 
Floods Transformers 

(Bonino et al., 

2024) 
2024 

Machine learning methods to predict sea 

surface temperature and marine heatwave 

occurrence: a case study of the Mediterranean 

Sea 

marine heatwaves CNN, LSTM, RF 

(Patil et al., 2023) 2023 
Predicting extreme floods and droughts in 

East Africa using a deep learning approach 
drought CNN  

(Singh et al., 

2021) 
2021 

Drought risk assessment and prediction using 

artificial intelligence over the southern 

Maharashtra state of India 
drought ANN 

(Ayyad et al., 

2022) 
2022 

Machine learning-based assessment of storm 

surge in the New York metropolitan area 
storm surge 

RF, XGBoost, Extra 

Trees, SVM 

Topic 3: Hazard - Interactions 
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(Couasnon et al., 

2018) 
2018 

A Copula-Based Bayesian Network for 

Modeling Compound Flood Hazard from 

Riverine and Coastal Interactions at the 

Catchment Scale: An Application to the 

Houston Ship Channel, Texas 

Compound river and 

coastal flood 
Copulas, Bayesian 

Networks 

(Sadegh et al., 

2017) 
2017 

Multivariate Copula Analysis Toolbox 

(MvCAT): Describing dependence and 

underlying uncertainty using a Bayesian 

framework 

droughts, floods Copulas  

(Bevacqua et al., 

2017b) 
2017 

Multivariate statistical modelling of 

compound events via pair-copula 

constructions: analysis of floods in Ravenna 

(Italy) 

River floods, 

precipitation, coastal 

floods 
Copulas 

(Bevacqua et al., 

2021) 
2021 

Guidelines for Studying Diverse Types of 

Compound Weather and Climate Events 
compound flooding, 

precipitation/landslide 

Copulas, 

regressions, 

percentile 

thresholds, 

clustering 

(Cao et al., 2020) 2020 
Multi-geohazards susceptibility mapping 

based on machine learning—a case study in 

Jiuzhaigou, China 

rockfall, landslide, 

debris flow 
RF, SVM, XGBoost 

(Javidan et al., 

2021) 
2021 

Evaluation of multi-hazard map produced 

using MaxEnt machine learning technique 
flood, landslide, gully 

erosion 
MaxEnt 

(Karakas et al., 

2023) 
2023 

A Hybrid Multi-Hazard Susceptibility 

Assessment Model for a Basin in Elazig 

Province, Türkiye 

Landslide, Flood, 

Earthquake 
RF 
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(Kariminejad et 

al., 2022) 
2022 

Analytical techniques for mapping multi-

hazard with geo-environmental modeling 

approaches and UAV images 

collapsed pipe, gully 

erosion, landslide 

BRT, Flexible 

discriminant 

analysis, 

Multivariate 

adaptive regression 

spline, Mixture 

discriminant 

analysis, RF, GLM 

and SVM 

(Nguyen et al., 

2023) 
2023 

Multi‐hazard assessment using machine 

learning and remote sensing in the North 

Central region of Vietnam 
Flood, landslide 

SVM, RF, 

AdaBoost 

(Pourghasemi et 

al., 2020) 
2020 

Assessing and mapping multi-hazard risk 

susceptibility using a machine learning 

technique 

Flood, landslide, 

wildfire 
RF 

(Pouyan et al., 

2021) 
2021 

A multi-hazard map-based flooding, gully 

erosion, forest fires, and earthquakes in Iran 
gully erosion, wildfire, 

earthquake 
RF, SVM, BRT 

(Yousefi et al., 

2020) 
2020 

A machine learning framework for multi-

hazards modeling and mapping in a 

mountainous area 

avalanche, landslide, 

wldfire, subsidence, 

flood 

SVM, BRT, GLM, 

FDA 

(Piao et al., 2022) 2022 
Multi-hazard mapping of droughts and forest 

fires using a multi-layer hazards approach 

with machine learning algorithms 
drought, wildfire CART, RF, BRT 

(Ullah et al., 

2022) 
2022 

Multi-hazard susceptibility mapping based on 

Convolutional Neural Networks 
flash flood, debris flow, 

landslide 
CNN, RF 
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(Mandal et al., 

2022) 
2022 

Mapping the multi-hazards risk index for 

coastal block of Sundarban, India using AHP 

and machine learning algorithms 

cyclones, storm surge, 

coastal erosion 
ANN, RF 

 860 

 

 

 
Table B4: Final selection of studies for RQ3: Risk 

Reference Year Title Hazards/ Main variable ML methods 

Topic 1: Risk - Combining hazard, exposure and vulnerability 

(Kotaridis & 

Lazaridou, 2022) 
2022 

Integration of convolutional neural networks 

for flood risk mapping in Tuscany, Italy 
flood CNN 

(Zhao et al., 2020) 2020 
Urban flood susceptibility assessment based 

on convolutional neural networks 
flood CNN 

(Rusk et al., 2022) 2022 
Multi-hazard susceptibility and exposure 

assessment of the Hindu Kush Himalaya 
flood, landslide, wildfire MaxEnt 

(Fuchs et al., 

2015) 
2015 

A spatiotemporal multi-hazard exposure 

assessment based on property data 

river flood, snow 

avalanche, torrential 

flood 
Frequency ratio 

(Sammonds et al., 

2023) 
2023 

Hurricane risk assessment in a multi-hazard 

context for Dominica in the Caribbean 
hurricane, landslides, 

floods 

Frequency ratio, 

analytical 

hierarchy process 
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(Luu et al., 2024) 2024 
Integrating multi-hazard susceptibility and 

building exposure: A case study for Quang 

Nam province, Vietnam 
flood, wildfire RF, CART 

(K. Liu et al., 

2018) 
2018 

Susceptibility of existing and planned 

Chinese railway system subjected to rainfall-

induced multi-hazards 

flood, landslide, debris 

flow 
RF 

(Arvin et al., 

2023) 
2023 

Assessment of infrastructure resilience in 

multi-hazard regions: A case study of 

Khuzestan Province 

flood, landslide, 

earthquake 
analytical 

hierarchy process 

(Khatakho et al., 

2021) 
2021 

Multi-Hazard Risk Assessment of 

Kathmandu Valley, Nepal 
flood, earthquake, 

wildfire 
analytical 

hierarchy process 

Topic 2: Risk – Predicting impacts 

(Gasparrini, 2014) 2014 
Modeling exposure–lag–response 

associations with distributed lag non‐linear 

models 
heatwave, air pollution 

Distributed Lag 

Non-Linear 

Models 

(Guo et al., 2024) 2024 
Regional variation in the role of humidity on 

city-level heat-related mortality 
heatwave, humidity RF 

(Y. Wang et al., 

2019) 
2019 

A random forest model to predict heatstroke 

occurrence for heatwave in China 
heatwave, humidity RF 

(X. Wang et al., 

2021) 
2021 

Quantitative Impact Analysis of Climate 

Change on Residents’ Health Conditions 

with Improving Eco-Efficiency in China: A 

Machine Learning Perspective 

heatwave, humidity, 

previous diseases 
SVM 

(Boudreault et al., 

2023) 
2023 

Machine and deep learning for modelling 

heat-health relationships 
heatwave, air pollution 

DT, RF, GBM, 

SLP, MLP, LSTM, 
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GLM, GAM, 

DLNM 

(Côté et al., 2024) 2024 
Vulnerability assessment of heat waves 

within a risk framework using artificial 

intelligence 
heatwave, air pollution 

Auto-Gluon, GP, 

Deep GP 

(Busker et al., 

2024) 
2024 

Predicting Food‐Security Crises in the Horn 

of Africa Using Machine Learning 
Heatwaves, droughts, 

precipitation, conflict 
XGB 

(Tárraga et al., 

2024) 
2024 

Causal discovery reveals complex patterns of 

drought-induced displacement 
drought, precipitation, 

conflict 
Granger Causality, 

PCMCI 

(Zscheischler et 

al., 2017) 
2017 

Bivariate return periods of temperature and 

precipitation explain a large fraction of 

European crop yields 

drought, heatwave, 

precipitation 
Copulas 

(Ribeiro et al., 

2020) 
2020 

Risk of crop failure due to compound dry and 

hot extremes estimated with nested copulas 
drought, heatwave  Copulas 

(R. Wang et al., 

2021) 
2021 

Predicting stream water quality under 

different urban development pattern 

scenarios with an interpretable machine 

learning approach 

water quality, land use 

planning 
RF 

(Li et al., 2022) 2022 
Interpretable tree-based ensemble model for 

predicting beach water quality 
water quality 

DT, RF, CatBoost, 

GBM, XGBoost 

(Cushman et al., 

2017) 
2017 

Multiple-scale prediction of forest loss risk 

across Borneo 
forest loss 

RF, logistic 

regression 
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(Islam et al., 

2021) 
2021 

Machine learning algorithm-based risk 

assessment of riparian wetlands in Padma 

River Basin of Northwest Bangladesh 

drought, topography, 

environmental and 

antropogenic stressors 

RF, SVM, DT, 

ANN 

(Schmidt et al., 

2020) 
2020 

The role of spatial units in modelling 

freshwater fish distributions: Comparing a 

subcatchment and river network approach 

using MaxEnt 

topography, 

environmental and 

antropogenic stressors 
MaxEnt 

(Teichert et al., 

2016) 
2016 

Restoring fish ecological quality in estuaries: 

Implication of interactive and cumulative 

effects among anthropogenic stressors 

topography, 

environmental and 

antropogenic stressors 
RF 

(Dal Barco et al., 

2024) 
2024 

A machine learning approach to evaluate 

coastal risks related to extreme weather 

events in the Veneto region (Italy) 

precipitation, wind, sea 

level rise, storm surges 
ANN, SVM, RF, 

linear regression 

(Pilkington & 

Mahmoud, 2017) 
2017 

Spatial and temporal variations in resilience 

to tropical cyclones along the United States 

coastline as determined by the multi-hazard 

hurricane impact level model 

wind, storm surge, 

precipitation, flooding 
ANN  

(Mukherjee et al., 

2018) 
2018 

A multi-hazard approach to assess severe 

weather-induced major power outage risks in 

the U.S. 

heatwave, wildfire, 

hurricane, coldwave, 

wind, precipitation 
SVM, RF 
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(Carannante et al., 

2024) 
2024 

Machine learning-based climate risk sharing 

for an insured loan in the tourism industry 
wind, precipitation, 

heatwave 
RF 

 865 

 

 
Table B5: Final selection of studies for RQ4: future 

Reference Year Title Hazards/ Main variable ML methods 

Topic 1: Future: hazard  

(Zscheischler et 

al., 2018) 
2018 Future climate risk from compound events compound events copulas, storylines 

(Ridder et al., 

2022) 
2022 

Increased occurrence of high impact 

compound events under climate change 
drought, heatwaves, 

precipitation, wind 

percentile 

threshold, return 

period 

(Zhu et al., 2023) 2023 
Compound wind and precipitation extremes 

at a global scale based on CMIP6 models: 

Evaluation, projection and uncertainty 
wind, precipitation 

percentile 

threshold, return 

period 

(Ridder et al., 

2021) 
2021 

Do CMIP6 Climate Models Simulate Global 

or Regional Compound Events Skillfully? 
wind, precipitation 

percentile 

threshold, return 

period 

(Ghanbari et al., 

2021) 
2021 

Climate Change and Changes in Compound 

Coastal‐Riverine Flooding Hazard Along the 

U.S. Coasts 

coastal flood, river flood, 

sea level rise 
copulas  

(H. Wu et al., 

2023) 
2023 

Increasing Risks of Future Compound 

Climate Extremes with Warming Over 

Global Land Masses 

drought, heatwave, 

precipitation 
copulas  

https://doi.org/10.5194/egusphere-2025-670
Preprint. Discussion started: 3 March 2025
c© Author(s) 2025. CC BY 4.0 License.



50 
 

(H. Wu et al., 

2024) 
2024 

Predicting compound agricultural drought 

and hot events using a Cascade Modeling 

framework combining Bayesian Model 

Averaging ensemble with Vine Copula 

(CaMBMAViC) 

drought, heatwave copulas 

(Bevacqua et al., 

2021) 
2021 

Guidelines for Studying Diverse Types of 

Compound Weather and Climate Events 
High-Impact Low-

Probability Events 
storylines 

Topic 2: Future – Risk  

(Ayyad et al., 

2023) 
2023 

Climate change impact on hurricane storm 

surge hazards in New York/New Jersey 

Coastlines using machine-learning 
hurricane, storm surge SVM, AdaBoost 

(S. J. Park & Lee, 

2020) 
2020 

Prediction of coastal flooding risk under 

climate change impacts in South Korea using 

machine learning algorithms 

precipitation, storm 

surge, sea level rise 
KNN, RF, SVM 

(S. Park et al., 

2023) 
2023 

Adaptation strategies for future coastal 

flooding: Performance evaluation of green 

and grey infrastructure in South Korea 

precipitation, storm 

surge, sea level rise 
KNN, RF, SVM 

(Lim & Kim, 

2022) 
2022 

Can Forest-Related Adaptive Capacity 

Reduce Landslide Risk Attributable to 

Climate Change? -Case of Republic of Korea 
precipitation, landslide RF 
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(Pham et al., 

2023) 
2023 

Multi-model chain for climate change 

scenario analysis to support coastal erosion 

and water quality risk management for the 

Metropolitan city of Venice 

coastal erosion, water 

quality, storm surge 
Bayesian Network 

(García-León et 

al., 2024) 
2024 

Temperature-related mortality burden and 

projected change in 1368 European regions: 

a modelling study 

heatwave, future 

population, economic 

factors 
weighted averages 

(Rahman et al., 

2024) 
2024 

Multi-hazard could exacerbate in coastal 

Bangladesh in the context of climate change 
flash floods, river floods, 

coastal floods, landslide 
LSTM 

(Ya et al., 2023) 2023 
Increased flood susceptibility in the Tibetan 

Plateau with climate and land use changes 
flood logistic regression 

(Liang et al., 

2021) 
2021 

Understanding the drivers of sustainable land 

expansion using a patch-generating land use 

simulation (PLUS) model: A case study in 

Wuhan, China 

Future land use RF 

(Saha et al., 2021) 2021 

Modelling multi-hazard threats to cultural 

heritage sites and environmental 

sustainability: The present and future 

scenarios 

earthquake, landslide, 

precipitation 
BRT, BART, 

BGLM 

(Janizadeh et al., 

2021) 
2021 

Mapping the spatial and temporal variability 

of flood hazard affected by climate and land-

use changes in the future 
flood GBM, XGB 
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(Leng & Hall, 

2020) 
2020 

Predicting spatial and temporal variability in 

crop yields: an inter-comparison of machine 

learning, regression and process-based 

models 

precipitation, drought, 

heatwave 
RF 

(Khan et al., 2024) 2024 

Association of precipitation extremes and 

crops production and projecting future 

extremes using machine learning approaches 

with CMIP6 data 

precipitation, drought, 

heatwave 
GBM, XGB 

(Tabari & 

Willems, 2023) 
2023 

Global risk assessment of compound hot-dry 

events in the context of future climate change 

and socioeconomic factors 
drought, heatwaves Copulas 
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