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Abstract. This study evaluates the performance of high-resolution (grid sizes of 9–28 km for the 

atmosphere; 5–13 km for the ocean) global simulations from the EERIE project in representing the 

persistence of the Southern Annular Mode (SAM), a leading mode of Southern Hemisphere climate 15 

variability. Using the decorrelation timescale of the SAM index (τ), we compare EERIE simulations with 

CMIP6 models and ERA5 reanalysis.  

EERIE simulations reduce long-standing biases in SAM persistence, especially in early summer, with τ 

values of 9–20 days compared to CMIP6’s 9–32 days and ERA5’s 11 days. This improvement correlates 

with a more accurate climatological jet latitude (λ0). EERIE atmosphere-only AMIP runs outperform the 20 

coupled simulations in both τ and λ0, showing smaller biases and ranges of variability, underscoring the 

critical role of SST representation in shaping atmospheric circulation. In these AMIP experiments, the 

atmospheric eddy feedback strength, combined with the damping timescale estimated via friction, 

correlates more strongly with τ than λ0. We speculate that the well-captured jet position (biases <1° 

relative to ERA5), due to prescribed SSTs, limits λ0’s explanatory power for τ differences, allowing other 25 

processes to dominate. Using a finer model grid (9 km vs. 28 km) of the same AMIP model results in 

reducedreduces τ, though the mechanism remains unclear. Finally, motivated by the importance of 

oceanic eddies in the Southern Ocean, we conducted sensitivity experiments that filter transient mesoscale 
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features from the SST boundary conditions. The results suggest that oceanic eddies may enhance 

summertime SAM persistence (by ~2 days), though this signal is not statistically significant and is absent 30 

in the single 9-km run, pointing to a subtle role of mesoscale ocean-atmosphere interaction that remains 

to be explored. 

1 Introduction  

Over the extratropical Southern Hemisphere, the daily- to decadal climate variability is dominated by the 

Southern Annular Mode (SAM), a mode of natural variability manifested in the large-scale oscillation of 35 

atmospheric mass between mid- and high-latitudes and hence changes of the eddy-driven jet in the 

midlatitudes (e.g., Fogt and Marshall, 2020). This internal variability both influences and is influenced 

by the atmospheric circulation, affecting regional temperatures and precipitation patterns, sea ice extent, 

and ocean circulation, with consequences for global heat and carbon redistribution (e.g., Doddridge and 

Marshall, 2017; Gillett et al., 2006; Lefebvre and Goosse, 2005; Lenton and Matear, 2007; Lovenduski 40 

and Gruber, 2005). 

As inferredimplied by its name “annular”, the spatial structure of SAM is approximately “ring-shaped” 

when viewed from above the South Pole and is nearly barotropic in the vertical direction (Gerber et al., 

2010). During the positive phase of SAM, lower air pressure anomalies overlay Antarctica while higher 

pressure anomalies spread over the mid-latitudes, and such anomalous pressure distribution indicates a 45 

strengthening and poleward shifting of the westerly jet that climatologically sits at around 50°S (Lim et 

al., 2013). While the SAM can, to a first approximation, be described from a zonal-mean perspective, its 

structure can deviate from the zonal mean and vary across different timescales, affected by factors such 

as the seasonal cycle of midlatitude jet (atmospheric eddy activity), sea surface temperature (SST) 

variability, tropical oscillations such as the El Niño-Southern Oscillation (ENSO), stratosphere-50 

troposphere interactions and so on (e.g., Campitelli et al., 2022; Ding et al., 2012; Fogt and Marshall, 

2020; Karoly, 1989). On the seasonal scale, SAM is overall more zonally symmetric in austral summer 

(DJF) but exhibits asymmetric wavenumber 3 components when entering autumn (MAM) and winter 

(JJA). Readers interested in a comprehensive review of the SAM literature are encouraged to consult Fogt 

and Marshall (2020) and Thompson et al. (2011). 55 



3 

 

A key characteristic of SAM is its temporal persistence, referring to how long a given phase of the SAM 

(positive, negative or neutral) tends to last before transitioning. This long persistence is important as it 

provides a source of predictability at a timescale longer than the one associated with synoptic variability 

(e.g., Robinson 2000; Lorenz and Hartmann 2001, Simpson and Polvani 2016).  SAM persistence is often 

measured as the decorrelation timescale (e-folding timescale) which indicates the average duration over 60 

which the SAM index remains strongly correlated with its past values. A standard explanation attributes 

the extended SAM persistence to the reinforcement of westerly flow anomalies by atmospheric eddy 

momentum fluxes, which are generated by changes in the mean flow and act to counteract dissipation 

from surface friction. Several mechanisms can be at may contribute to the origin of this eddy-–mean flow 

feedback that reinforces the shifted jet, including. These include barotropic processes related to, such as 65 

anomalous wave propagation and breaking, and baroclinic processes associated with related to enhanced 

eddy generation and enhanced increased lower-tropospheric baroclinicity in the lower troposphere in 

response to shifts in the westerly flowwinds (e.g., Robinson 2000, Lorenz and Hartmann 2001, Zurita-

Gotor et al. 2014, Hassanzadeh and Kuang, 2019). The Westerly flow anomalies also induce changes in 

the diabatic heating and cooling due to—through latent heat release and cloud radiative effect that modify 70 

theeffects—which alter temperature gradients, affecting and, in turn, affect SAM persistence (Xia and 

Chang 2014, Smith et al.2024, Vishny et al. 2024). In addition to this eddy-mean flow feedback, SAM 

persistence can have an origin from the stratosphere, which introduces some non-stationary forcing to 

SAM. The main influence is likely in late spring and summer at the time of the seasonal breakdown of 

the stratospheric vortex (Simpson et al. 2011, Byrne et al. 2016, Byrne et al. 2017, Saggioro and Shepherd 75 

2019). Furthermore, interactions between a stationary mode and a propagating mode of the zonal 

variability could also affect SAM persistence (Lubis and Hassanzadeh 2021, Sheshadri and Plumb 2017, 

Smith et al. 2024).  

While global climate models (GCMs) have shown good skills in capturing the spatial structure of SAM 

variability, a long-standing challenge for GCMs is that they tend to overestimate the SAM persistence 80 

during the austral summer. Based on global reanalysis data, the SAM decorrelation timescale is found to 

be approximately 10 days on annual mean and is a couple of days higher in early summer (November–

January; NDJ), during which period GCMs typically show values that are two to three-times larger 
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(Bracegirdle et al., 2020). Many studies have found a strong dependency between theOverly persistent 

SAM persistence bias and the in GCMs is correlated with a common bias in the climatological westerly 85 

jet locationposition, whereby the simulated tropospheric jets are placed too far equatorward (e.g., Kidston 

and Gerber, 2010; Simpson et al., 2013a, b; Simpson and Polvani, 2016; Son et al., 2010), that is, GCMs 

showing too persistent SAM tend to be associated with a too equatorward-placed tropospheric westerly 

jet.). A possible explanation for such a relationship is that the structure of the climatological jet can affect 

the tropospheric eddy-mean flow feedback and is that models with lower latitude jets exert stronger eddy-90 

mean flow feedback to maintain SAM (Codron, 2005; Simpson and Polvani, 2016).  

However, the climatological position of the midlatitude jet is not the only factor for the overly persistent 

SAM variability in GCMs. Simpson et al. (2013a) performed a series of experiments with nudging and 

bias correcting procedures using a stratosphere-resolving GCM, the Canadian Middle Atmosphere Model 

(CMAM). They found that the SAM persistence bias remains even when the representation of the 95 

climatological tropospheric winds is artificially improved. Similar conclusions are obtained when another 

common bias for the overly-persistent summertime SAM —the delayed breakdown of the stratospheric 

vortex— was manually nudged toward the reanalysis-based seasonal climatology. Based on these results, 

they suggested that a substantial proportion of the SAM timescale bias arises from “internal” tropospheric 

dynamics, specifically the atmospheric eddy-mean flow feedback. Simpson et al. (2013b) examined the 100 

Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models, and found that the overly 

persistent SAM is highly correlated (coefficient of 0.83) with the too strong total eddy feedback during 

the summer season.These results suggest that they may not be the only underlying causes of the SAM 

persistence bias.  

As GCMs improve in their representation of physics, resolution, and overall complexity, some 105 

advancements have been made in reducing biases associated with SAM persistence and the climatological 

jet latitude. Compared to earlier versions of Coupled Model Intercomparison Project (CMIP) models (e.g., 

CMIP3, CMIP5),, noticeable reductions in these biases have been reported. Bracegirdle et al. (2020) 

found that the ensemble-mean bias in the westerly jet latitude decreased from 1.9° in CMIP5 to 0.4° in 

CMIP6 on an annual mean basis. Consistently, the early-summertime SAM persistence was reduced from 110 

approximately 30 days in CMIP5 to 20 days in CMIP6. Nevertheless, the SAM decorrelation timescale 
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remains systematically biased. While higher resolution is generally regarded as beneficial, it is worth 

exploring whether additional improvements are achievable by further increasing the resolution or if other 

factors become increasingly significant when the resolution has reached beyond ais sufficiently high level.  

This potential role of an increase in resolution in reducing the biases in SAM persistence and the 115 

relationship with the mean-state westerly jet is investigated here in new experiments conducted as part 

ofHere we revisit this issue using new high-resolution simulations from the Horizon Europe project 

European Eddy-Rich Earth System Models (EERIE) (M. J. Roberts et al., 2024a). A distinctive feature 

of the atmosphere-ocean coupled Earth System Models (ESMs) built under EERIE is their adoption of 

high oceanic resolutions (grid size of 5–13 km) to explicitly represent ocean mesoscale processes, which 120 

have been increasingly recognized as critical for weather and climate simulation (e.g., Busecke and 

Abernathey, 2019; Chassignet and Xu, 2021; Hewitt et al., 2020). Mesoscale oceanic features can 

influence SAM persistence by strongly affecting surface heat fluxes and surface stress in the Southern 

Ocean—a hotspot of mesoscale activity (Frenger et al., 2013; Bishop et al., 2017). These ocean-

atmosphere interactions can alter atmospheric temperature gradients and boundary layer structure, 125 

modifying diabatic heating and low-level baroclinicity, both of which have been linked to SAM 

persistence (Xia and Chang, 2014; Smith et al., 2024; Robinson, 2000; Zurita-Gotor et al., 2014). 

Furthermore, surface stress also plays a role as it tends to damp the westerly winds but also to enhance 

baroclinicity and the baroclinic feedback (Robinson 2000, Zurita-Gotor 2014, Vishny et al. 2024). 

In addition to the development of new coupled models, EERIE also includes a suite of atmosphere-only 130 

simulations and idealized experiments to facilitate exploration of the atmosphere response to the ocean 

mesoscales by excluding effects attributed to the air-sea coupling and SST biases. Those experiments will 

allow disentangling the role of the explicit resolution of the eddies compared to the one of increasing the 

model resolution. Using those experiments, we specifically analyze the potential role of the mesoscale 

oceanic eddies on SAM persistence, a contribution that has been studied to a minimum to date. The data 135 

sources and diagnostics are detailed in Sections 2 and 3, respectively, followed by the results in Section 

4 and the conclusions in Section 5. 
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2 Data 

2.1 EERIE models & simulations 140 

Running from January 2023 to December 2026, the EERIE project aims to build new generations of ESMs 

run at “eddy-rich resolution” (note that the “eddy” here refers to ocean eddies), which explicitly resolve 

ocean mesoscale processes with scales of 10–100 km. Crucial components at this scale include the 

oceanmesoscale eddies (analogous to cyclones in the atmosphere) and boundary/frontal currents. EERIE 

will deliver simulations over multi-centennial timescales centered on four global coupled ESMs and two 145 

atmosphere-only models, with an overarching objective to reveal and to quantify the role of ocean 

mesoscales in shaping the climate trajectory over seasonal to centennial time scales, regionally and 

globally (European Commission, 2022).  

2.1.1 Coupled simulations 

This study evaluates the preliminary EERIE Phase 1 simulations (Wachsmann et al., 2024). To facilitate 150 

direct comparison across experiments, all outputs were regridded to a uniform 0.25° ×0.25° grid prior to 

analysis, except for the westerly jet location identification (Section 3.2). A detailed description of the 

EERIE models can be found in M. J. Roberts et al., (2024a), and Table 1 briefly summarizes the 

simulations used in the current study. IFS-FESOM2 and ICON model simulations are being conducted 

following a protocol similar to the CMIP6 HighResMIP (High Resolution Model Intercomparison 155 

Project; Haarsma et al., 2016). The HadGEM3-GC5-EERIE model simulation follows protocol similar 

asto CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima; Eyring et al., 2016). 

HighResMIP differs from CMIP6 DECK primarily in its use of 1950s’ climate conditions instead of 

1850s’ as the initial state and a shorter spin-up (~50 years instead of >= 200 years; which have been 

discarded and not counted in the simulation length shown in Table 1) due to the computational demands 160 

of high-resolution models. Using the IFS-FESOM2 model, we analyze a 65-year control simulation 

conducted under fixed 1950 forcings (referred to as 1950control), along with a historical simulation 

covering the period from 1950 to 2014. For the ICON model, the 22-year 1950control and the historical 

run are analyzed. For the HadGEM3 model, we examine a 30-year pre-industrial control simulation 

(piControl) forced by 1850 conditions.  165 
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As these simulations cover different time periods and some of them include transient forcing, linear and 

low-frequency nonlinear trends are removed as standard procedures in the SAM-related diagnostics. This 

should reduce the impact of the difference in experimental design on the evaluation of the model 

performance. However, this removal does not fully eliminate the non-stationary features that could have 

a clear influence on the evaluation of SAM persistence and of the eddy feedbacks (Byrne et al. 2016). We 170 

therefore adopt a bootstrapping procedure (Section 3.1) to provide partial quantification of the influence 

of non-stationarity and uncertainty due to the short period of some simulations. As will be shown later, 

through bootstrapping resampling, different results can be obtained with the same model even after de-

trending. We also provide results using two different periods of the ERA5 reanalysis (Section 2.2) as 

references for comparisons. Note that the difference can be partly attributed to the larger data coverage 175 

after 1979 in ERA5. 

 

Table 1. EERIE simulations analyzed in the current study.  

Institution 
Alfred Wegener Institute 

(AWI) 

Max Planck Institute 

(MPI-M) 
Met Office (MO) 

European Centre for 

Medium-range Weather 

Forecasting (ECMWF) 

 Coupled atmosphere-ocean models (eddy-rich) Atmospheric model 

System name IFS-FESOM2 ICON 
HadGEM3-GC5-

EERIE 
IFS 

Model 

components 

IFS CY48R1, 

FESOM2, FESIM2 

ICON-A, 

ICON-O 

UM,  

NEMO4.0.4, SI3 
IFS CY48R1 

Atmos. grid (km) Tco1279 (~9 km) R2B8 (~10 km) 
N640 (~20 km  

at 50N) 

Tco1279 (~9 km) 

Tco399 (~28 km)* 

*five ensemble members 

Atmos. vertical 

levels (model top) 
137 (0.01 hPa) 90 (0.01 hPa) 85 (85 km) 137 (0.01 hPa) 

Ocean grid (km) NG5 (~13-5 km) R2B9 (~5 km) eORCA12 (~8 km) - 

Ocean vertical 

levels 
70 72 75 - 

Protocol CMIP6 HighResMIP CMIP6  DECK HighResMIP2 
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Simulations 

(analyzed 

segment lengths) 

1950control (65 yrs) 

Historical (1950–2014) 

1950control (22 years) 

Historical (1950-2014) 

piControl 

(30 yrs) 

Historical 

(1980–2023) 

2.1.2 Atmosphere-only simulations & sensitivity experiments  

The EERIE AMIP simulations were performed for the historical period of 1980–2023 following the 180 

HighResMIP2 highresSST-present experimental design (M. J. Roberts et al., 2024b). We analyze the 

simulations produced with the IFS model in two model grid sizes (~28 km and ~9 km; both with 

convection parameterization), and the higher-resolution configuration is identical to the atmosphere 

component of the coupled IFS-FESOM2 (Table 1). One member has been performed at the 9-km 

resolution, but the 28-km simulations are supplemented with five ensemble members to represent a range 185 

of model uncertainty or noise. These ensembles are generated by perturbing the atmospheric initial 

conditions for January 1, 1980, using the same methodology employed in operational ECMWF ensemble 

forecasts (C. Roberts et al., 2024a). 

The prescribed boundary conditions are taken from the daily-mean SST reanalysis from the European 

Space Agency Sea Surface Temperature Climate Change Initiative (ESA CCI SST v3) and the daily-190 

mean sea-ice concentration from the European Organisation for the Exploitation of Meteorological 

Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSI-SAF), both retrieved on 

a 0.05° ×0.05° grid. External radiative forcings are generally specified following CMIP6/HighResMIP 

protocols, and the specificity can be found in C. Roberts et al. (2024a). 

To enable exploration ofexplore the atmospheric response of the atmosphere to the extratropical SST 195 

ocean mesoscale features, EERIE project also conducted idealized experiments with modified SST 

boundary conditions. Taking the IFS-AMIP simulations as the control experiments (denoted as ObsSST), 

NoEddies experiments have the transient oceanic eddy features removed from their SST boundary 

conditions with the a spatial low-pass filter applied to the SST anomaly field (difference from the 

climatological mean). Sea ice cover remains unchanged in NoEddies. We emphasize that such a design 200 

only allows us to test the ocean eddies’ direct thermodynamic impact from ocean mesoscales (as reflected 
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in SSTs) but not their mechanical influence (through the so-called wind stress feedback or relative winds-

currents effects (wind stress feedback; or called current feedback).  

The employed filter is a Gaussian filter from the GCM-Filters Python package (Loose et al., 2022). The 

filter length scale is set to be 20𝐿𝑅, where 𝐿𝑅 is the spatially varying, climatological Rossby radius in the 205 

ocean with a lower and higher limit of 30 km and 700 km, respectively. WhileThe filter with a smaller 

𝐿𝑅 at high latitudes can effectively removes the smaller oceanic eddies there. However, it also removes 

the larger-scale tropical instability waves near the equator aswhen 𝐿𝑅 reaches its maximum. The latter 

consequence may obscure the interpretation onThis potentially obscures the impact of the targeted 

extratropical ocean mesoscales due to the tropical-extratropical teleconnections. To avoid this, low-210 

latitude areas are masked out from the filtering with a function ranging from 0 to 1: 𝑀(λ) =

1

2
(tanh (

|h−λ|

𝑠
) + 1), where ℎ= 10 determines the latitude where the 𝑀 value is halved (0.5) and 𝑠=3 

scales the steepness of the masking function. Like the ObsSST, the NoEddies experiment is run with two 

model grid sizes of ~28 km (five ensemble members) and ~9 km (one member). For more details of the 

experimental design, we refer readers to C. Roberts et al. (2024b). 215 

2.2 CMIP6 models & ERA5 reanalysis 

For the diagnostics of SAM persistence and westerly jet characteristics, the CMIP6 models are used to 

compare with EERIE models. We analyze 31 CMIP6 historical simulations from the first ensemble 

member that provide outputs of daily geopotential at 500-hPa level and monthly zonal wind at 850 hPa. 

All CMIP6 outputs are regridded to a uniform 1 ° ×1 °  grid with the bilinear interpolation before 220 

performing the analysis and only the period of 1980-2014 is extracted to ensure a uniform data length. As 

a proxy of observation, we use the global reanalysis dataset ERA5 (Hersbach et al., 2020) for the same 

variables and a total period from 1958 to 2023 to cover the earlier period included in some EERIE 

simulations. Among the reanalysis products that extend backwards in time beyond 1979 (ERA5, 20CRv3, 

JRA-55), ERA5 is found to agree best with station observations and produces good representation of 225 

SAM, both before and after the advent of satellite sounder data (Marshall et al., 2022). While we analyze 
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ERA5 on the commonly distributed 0.25° ×0.25° grid, we have tested the impact with regridding it to the 

1° ×1° grid and found no notable changes in our results.         

3 Diagnostics  

For the overall assessment of model performance, the diagnostics described in subsections 3.1 and 3.2 230 

below are applied to all available CMIP6 historical and EERIE simulations. Due to the limited 

accessibility of the EERIE data at the time of writing, diagnostics in subsections 3.3 and 3.4 are only 

performed on the EERIE atmosphere-only sensitivity experiments to provide deeper investigation on the 

tropospheric mechanisms critical to the SAM persistence. 

3.1 SAM persistence timescale  235 

Some variations exist in the definition of the SAM across the literature (Ho et al., 2012), and its 

persistence estimation may be sensitive to the methods employed. While many studies adopt similar 

methodological concepts, the details are often not fully transparent. To ensure clarity, we provide a step-

by-step explanation of our approach. Note that SAM is a rather barotropic feature, so even though some 

traditional definitions consider the vertical averaged field, we have chosen to follow Bracegirdle et al. 240 

(2020) using a single level for simplicity.  

We define the SAM as the first empirical orthogonal function (EOF) of daily zonal-mean geopotential 

anomalies on the 500-hPa level for the region south of 20°S (Bracegirdle et al., 2020). The anomalies are 

calculated based on Gerber et al. (2010). First, a time series of 500-hPa zonally mean 𝛷̅(λ,t) is taken, 

where λ and t refer to latitude and time at daily intervals, respectively, and the bar indicates zonal average. 245 

Then, for each day, we subtract the global mean of 500-hPa geopotential from 𝛷̅(λ,t) at each latitude, and 

the resulting data is linearly detrended. Lastly, a slowly varying climatology 𝛷̃(λ,t) is subtracted to 

remove the seasonal cycle and the low-frequency nonlinear trends associated with known external 

forcings such as the ozone hole formation/recovery and global warming signal. TheSuch 𝛷̃(λ,t) field is 

derived in two steps. First following Gerber et al. (2010). To avoid overfitting high-frequency noise, a 250 

60-day low-pass filter is first applied to the detrended 𝛷̅(λ,t) along the t axis to retain only seasonal-scale 
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variations. Second,variability. Specifically, we apply the discrete Fourier transform to the time axis 

(t)series and filter out components with frequencies higher than 1/60 days⁻¹. The resulting smoothed time 

series is then reindexed intoby calendar day (d) and year (y). For each calendar day (e.g., Jan 1st, Jan 2nd, 

etc.), a 30-year low-pass filter is subsequently applied along the y axis to captureextract long-term 255 

variations. If the data span fewer than 30 years, the average across all available years for that calendar 

day is used, resulting in a fixed, repeating annual cycle. 

The resultant anomalies 𝛷′̅̅ ̅(λ,t) reflect the internal/natural variability. We can then obtain SAM as the 

first EOF of 𝛷′̅̅ ̅(λ,t) over 20–90°S. For the computation of EOFs, 𝛷′̅̅ ̅(λ,t) is weighted by √cos⁡(λ) to 

account for the decreasing distance between meridians toward the pole. The resultant leading EOF 𝐞(λ) 260 

represents the spatial patterns of SAM, and its corresponding principal component time series PC(t) is 

referred to “SAM index”, expressed in normalized form with zero mean and unit variance (Fig. 1a-b).  

To quantify the SAM persistence, the decorrelation time scale is computed based on the autocorrelation 

function of the SAM index following Simpson et al. (2013a):   

                          ⁡ACF(𝑑, 𝑙) =
∑ PC(𝑑,𝑦)PC(𝑑+𝑙,𝑦)𝑁−1
𝑦=1

√∑ PC(𝑑,𝑦)2𝑁−1
𝑦=1 ∑ PC(𝑑+𝑙,𝑦)2𝑁−1

𝑦=1

.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 265 

Here, the daily time series PC(t) is reindexed as a function of calendar day d (e.g., Jan 1st to Dec 31st) 

and year y, and N denotes the total number of years. Equation (1) computes the autocorrelation of PC 

between a given day d and a lagged day d+l, averaged over all available years. The ACF(𝑑, 𝑙) is then 

smoothed over a 181-day window along the d axis (to smoothen daily fluctuations) using a Gaussian filter 

with a full width at half maximum of 42 days (standard deviation of 8 days). Finally, for each d, an 270 

exponential curve is fitted to the smoothed ACF(𝑙) up to a lag of 50 days using the least squares method, 

and the e-folding time scale (τ) is then derived at which the exponential fit decreases to 𝑒−1 (Fig. 1c). 

To provide a measure of sampling uncertainty of τ, we perform 1,000 times of bootstrap resampling, each 

time redrawing all yearly PC(𝑑, 𝑦)⁡with replacement to form a new sample as large as the original sample 

size (N). Repeating the above ACF calculation for all bootstrap samples leads us to 1,000 values of τ for 275 

a given day (Fig. 1c), showing its possible range.  
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Note that the above EOF analysis is performed separately for all datasets to identify SAM as the leading 

mode within each simulation, allowing for potential differences in its spatial structure across models. 

 

Figure 1. Example of the SAM decorrelation timescale and eddy feedback strength calculation based on ERA5: (a) The first EOF 280 

pattern based on 500-hPa geopotential; (b) The associated first PC1 time series (only a partial segment is shown here); (c) 

Autocorrelation function (ACF) of the SAM index (smoothed with a Gaussian filter) shown for a given day of the year (black dashed), 

and an exponential fit (yellow). The e-folding timescale is denoted as τ. The calculation of ACF is repeated 1,000 times for the 

bootstrap samples (gray). (d) Same as (a) but based on vertically averaged zonal wind. (e) Lagged regression of the budget terms in 

Eqn. (3) onto the SAM index. (f) Eddy feedback strength b for lags 7–14 days. 285 

3.2 Tropospheric westerly jet position 

The westerly jet position is diagnosed following Menzel et al. (2019) and Barnes and Polvani (2015) 

using the output on the native model grid. We apply a quadratic fit onfirst identify the latitude (𝜆𝑚𝑎𝑥) of 

the maximum monthly mean zonally averaged 850-hPa zonal wind at the latitude where the maximum 

value is found between 75°S and 10°S. Then, we apply a quadratic fit to the zonally averaged zonal wind 290 
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at 𝜆𝑚𝑎𝑥  and at the fourtwo adjacent latitudes ofto the modelnorth and south . The latitude 

wherecorresponding to the maximum value of theis quadratic fit is found defines the position of the 

tropospheric westerly jet. 

3.3 Contribution of atmospheric eddy feedback strength to SAM persistence  

Various methods have been proposed to assessquantify the strength of tropospheric eddy-mean flow 295 

feedback. We adopt the approach of Simpson et al. (2013b), as it has been applied to CMIP5 model 

evaluation and showed a high correlation is highly correlated with the summertime SAM persistence bias. 

(coefficient of 0.83). This approach estimates the contribution of eddy momentum flux convergence to 

the tendency of SAM-associated westerly wind anomalies. Therefore, within this framework, SAM is 

alternatively described by the first EOF of vertically averaged (pressure weighted) zonal-mean zonal wind 300 

anomalies, deseasonalized and detrended, over 20-90°S. The resultant EOF latitudinal pattern (𝐞) and 

associated PC time series are defined such that the former has units of m s-1 (Fig. 1d), the latter has unit 

variance, and their multiplication reconstructs the SAM-associated zonal wind anomaly fields in latitude 

and time space. This shift from a definition of the SAM persistence timescale using geopotential height 

to the zonal wind for the estimation of the eddy-mean flow feedback is based on the standard assumption 305 

that geostrophic equilibrium provides a good approximation of the relevant variables. However, 

ageostrophic terms can also contribute to SAM persistence, introducing limitations to this hypothesis 

(Vishny et al. 2024; Smith et al. 2024). For simplicity and consistency with Simpson et al. (2013b) in 

their CMIP5 assessment, only three pressure levels of 850, 500, 250 hPa are utilized for this analysis.  

A quantity or a forcing term (denoted as 𝑋  as an example) associated with the SAM is derived by 310 

projecting it onto the EOF pattern (𝐞) with the operator:  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[𝑋̅]𝑠 =
[𝐗̅]𝐖𝐞

√𝐞Ｔ𝐖𝐞
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

where the overbars denote the zonal mean, brackets indicate the vertical average, [𝐗̅] is a vector form of 

[𝑋̅](λ, 𝑡), where λ and 𝑡 are latitude and time, and 𝐖 is a matrix with diagonal elements equal to the 

cos(λ) weighting when defining the EOF in (Simpson et al. (2013b). The resultant [𝑋̅]𝑠 is a time series. 315 
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How strongly the eddy forcing sustains the SAM wind anomalies is then estimated by projecting the 

vertically and zonally averaged zonal momentum tendency equation onto 𝐞:  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝜕[𝑢̅]𝑠
𝜕𝑡

= ⁡⁡ [𝑚̅]𝑠 + [𝐹̅]𝑠,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[𝑚̅]𝑠 = −[
1

𝑎𝑐𝑜𝑠2λ

𝜕(𝑢′𝑣′̅̅ ̅̅ ̅̅ 𝑐𝑜𝑠2λ)

𝜕λ
]
𝑠

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

where [𝑚̅]𝑠 is the eddy momentum flux convergence attributed to SAM, 𝑢′ and 𝑣′ are the deviation of 320 

the zonal and meridional velocities from their zonal means, respectively, and are calculated based on the 

instantaneous fields at 6-hourly intervals before being converted to daily means, 𝑎 is the Earth radius, and 

[𝐹̅]𝑠 represents all the residual momentum forcing associated with SAM. Note that Equation (3) assumes 

that the sum of individual projected forcing terms on the right-hand side is in balance with the tendency 

of the SAM anomalies. While this assumption may not be strictly valid, Simpson et al. (2013b) 325 

demonstrated that it holds in their simulationsdemonstrate the validity of this assumption. 

Lorenz and Hartmann (2001) hypothesized that the eddy forcing of the SAM consists of a random 

component and a feedback component that depends linearly on the pre-existing state of SAM, [𝑚̅]𝑠 =

𝑚̃ + 𝑏[𝑢̅]𝑠, where 𝑏 denotes the eddy feedback strength. To obtain 𝑏, Simpson et al. (2013b) performed 

the lagged linear regressions of [𝑚̅]𝑠  and [𝑢̅]𝑠  onto the SAM index PC(t), such that for a lag day l, 330 

[𝑚̅]𝑠(𝑡 + 𝑙) ≈ 𝛽𝑚(𝑙)𝑃𝐶(𝑡)  and [𝑢̅]𝑠(𝑡 + 𝑙) ≈ 𝛽𝑢(𝑙)𝑃𝐶(𝑡) , where 𝛽𝑚  and 𝛽𝑢  are the regression 

coefficients (Fig. 1e). Accordingly, the eddy forcing of SAM at lag l, [𝑚̅]𝑠(𝑡 + 𝑙), can be expressed as 

𝛽𝑚(𝑙)𝑃𝐶(𝑡) = 𝛽𝑚̃(𝑙)𝑃𝐶(𝑡) + 𝑏𝛽𝑢(𝑙)𝑃𝐶(𝑡).  Assuming that the random component of the eddy forcing 

is uncorrelated at sufficiently large positive lags, the feedback component dominates the eddy forcing, 

i.e.,  𝛽𝑚̃ ≈ 0, we can estimate the eddy feedback strength as a function of lag days (𝑙) by 335 

𝑏(𝑙) =
𝛽𝑚(𝑙)

𝛽𝑢(𝑙)
⁡. 

InFollowing Simpson et al. (2013b), the b is averaged over lags from 7 to 14 days is used to denote the 

eddy feedback strength contributing to the SAM for the intercomparison of the models (Fig. 1f). The 

approach followed here assumes that analyzing only the first PC is a good approximation to study SAM 

persistence. However, althoughWhile the PCs are uncorrelated on short timescales (by construction on 340 
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short timescale,), this is not the case at longer lags and the coupling between the first two components 

influences SAM persistence (Sheshadri and Plumb 2017, Lubis and Hassanzadeh 2021, and Lubis and 

Hassanzadeh 2023). Analyzing only the first PC brings thus clear limitations in our analysis of the model 

spread in simulated SAM persistence.. Furthermore, positive regression coefficients could be caused by 

non-stationarity of the series and in particular by interaction with the stratosphere and not just by eddy 345 

mean flow interactions. This introduces biases in the estimate of eddy feedback, particularly in late spring 

and summer (Byrne et al. 2016, Byrne et al. 2017), although this does not necessarily prevent using the 

regression method (Ma et al. 2017). The methodology is thus imperfect, but it provides an interpretative 

framework for the difference between the simulations and allows a comparison with earlier studies.  

3.4 Contribution of surface friction to SAM persistence  350 

While the eddy momentum flux convergence primarily contributes positively tosupports the persistence 

of SAM, it is counteracted by the negative impacts, predominantly by the surface friction, which   

predominantly acts to dissipate the SAM anomalies. Since the friction forcing is not a standard output of 

EERIE simulations, we estimate it from the available variable: the turbulent wind stress in the eastward 

direction (in units of N m-2). By assuming the turbulent wind stress is zero at the model top, we can 355 

estimate the friction as 
0−𝜌0

−1𝑊𝑆0

𝐻0
, where 𝑊𝑆0indicates the daily-mean eastward turbulent stress near the 

surface, resulting from turbulent atmospheric eddies (due to the roughness of the surface) and turbulent 

orographic form drag. For simplicity, we assume fixed values of the air density 𝜌0 =1.204 kg/m³ and the 

atmosphere column depth 𝐻0=8,464 meters here. Following a similar approach for calculating [𝑚̅]𝑠, we 

projected the result onto the EOF pattern (𝐞) to obtain the frictional forcing for the SAM zonal wind 360 

anomalies, denoted as [𝑓]̅
𝑠
. To provide an alternative measure of friction forcing and verify the estimation, 

the residual term of Eq. (3), [𝐹̅]𝑠, is also computed based on the estimates of the acceleration and eddy 

momentum flux convergence, given the dominance of friction in this residual as shown in Simpson et al. 

(2013b).  
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It is important to note that the projection values of all budget terms are resolution (number of data points)-365 

dependent, as defined by Eq. (2). Therefore, their magnitudes are not directly comparable across datasets 

with differing resolutions unless regridded to a common grid, as done here.  

4. Results 

4.1 Model performance for SAM persistence  

Figure 2 compares the performance of EERIE and CMIP6 models in representing SAM persistence, 370 

measured by the decorrelation time scale (τ). Consistent with Bracegirdle et al. (2020), CMIP6 models 

tend to overestimate SAM persistence compared to the reanalysis data analyzed over the same historical 

period (1980–2014). On the annual mean, CMIP6 presents a median value of 11 days, while the ERA5 

shows a τ of 8 days. A reduced bias is found for EERIE coupled simulations with a median τ of 9 days, 

although the distribution spread is still large, suggesting a large inter-model variability. Among these 375 

simulations, positive biases persist in the IFS-FESOM2 1950control (τ=13) and historical (τ=11) runs, 

and ICON historical simulation show negative bias (τ=6). Meanwhile, HadGEM3 piControl (τ=9) and 

ICON 1950control (τ=8) runs are closer to ERA5. Given that some of these simulations are run under a 

pre-industrial 1850s’ or 1950s’ forcing, we also examine the result based on an earlier-period ERA5 

(1958–1978), for which τ increases to 10 days. Note, however, that there is relatively less confidence in 380 

the accuracy of the value of the SAM in ERA5 prior to the satellite era. Nevertheless, EERIE still show 

an improved agreement with ERA5 as their τ fully cover the uncertainty ranges of ERA5 for both periods.  

During the austral early summer (NDJ), the overestimation of SAM persistence in CMIP6 is more 

pronounced with a longer tail of τ distribution. The maximum and median τ in CMIP6 is 32 days and 17 

days, respectively, compared to the ERA5 value of 11 days for the same historical period. Compared to 385 

CMIP6, EERIE coupled simulations exhibit some improvement with the maximum and median values 

dropping to 20 days and 16 days, respectively. However, the spread among different EERIE simulations 

remains large; while the positively biased τ are mostly captured by IFS-FESOM2, ICON tends to exhibit 

much smaller τ than ERA5 at 6-7 days.  
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Interestingly, the atmosphere-only EERIE simulations (IFS-AMIP) generally outperform the ocean-390 

coupled runs, exhibiting a reduced positive bias in τ compared to their coupled versions (IFS-FESOM2) 

and a much smaller spread. This suggests that the prescribed historical SST boundary condition serves a 

strong physical constraint on the SAM persistence. With all five members considered, the simulated τ at 

28 km is still positively biased for both annual and austral-summer means, but the biases do not exceed 

more than 4.5 days and at least one member presents almost identical values (8 days annually and 11 days 395 

in NDJ) to ERA5 (1980-2014). Refining the atmospheric resolution from 28 km to 9 km suggests a 

lowering of the SAM decorrelation timescale, with τ of 8 days annually and 10 days in NDJ. However, 

the difference may not be robust, as the bootstrapped error bars of both resolutions overlap. 

 

 400 

Figure 2. Distribution of τ (days) in CMIP6, EERIE coupled, and EERIE atmosphere-only (AMIP) simulations. CMIP6 and EERIE 

AMIP are both historical simulations, with a fixed period indicated in the x-axis labels, and the EERIE coupled simulations cover 

varied periods as indicated in Table 1. ERA5 is analyzed for two time periods. CMIP6 results from 31 experiments are presented in 

violin plot, in which the width indicates the density of the data points, the thin gray vertical box in the middle shows the 25th –75th 



18 

 

quantiles, and the white dot presents the median. For the rest, error bars are added wherever applicable to show the ±1 standard 405 

deviation of τ from the 1,000 bootstrap resampling.        

 

4.2 The relationship between jet location and τ 

The bias relationship between westerly jet location (λ0) and SAM decorrelation timescale (τ) is then re-

visited. Similar to their predecessors, CMIP6 models show a positive correlation between λ0 and τ, that 410 

is, models with a more equatorward jet location tend to exhibit a more persistent SAM. Consistent with 

Simpson & Polvani’s (2016) result based on CMIP5 models, the slope of the linear fit is larger during 

NDJ, indicating a larger variation in τ given the same variation in  λ0 during this season.  Examining 

As EERIE results suggest that higher resolution may reduce persistence biases, we examine the model 

resolution of each CMIP6 simulation. However, there appears no strong or clear relationship between the 415 

model resolution and the model biases in these two quantities (sameeither τ or λ (the conclusion holds for 

both latitudinal and longitudinal resolutions and for both atmosphereic and ocean modelsoceanic 

components, although only the atmospheric latitudinal resolution is expressed in Fig. 3). A potential 

dependency on resolution could be obscured in the CMIP6 ensemble by other cancellingcompensating 

factors, which vary arising from simulations incorporating different model configurations and model 420 

systems.system designs. However, it is also possible that the resolution-driven improvements typically 

attributed to higher resolution on the performance of large-scale SAM variability and the mean jet have 

reached a plateau atplateaued within the typical grid sizes used in size range of current GCMs (e.g., 

CMIP6). For instance, based on simplified atmospheric GCMs with idealized forcing, Gerber et al. (2008) 

found that the decorrelation timescale of the annular mode is unrealistically large at a coarse resolution 425 

of T21 (5.6°). While such a bias was notably reduced by refining the model resolution to T42 (2.8°), no 

further improvement was shown with a higher resolution of T85 (1.4°) and the τ converges to a still 

positively biased value. No test was performed in this study to determine if τ is improved again at even 

higher resolution or if the plateau continues. 

On the annual mean, EERIE simulations generally fall within a region smaller than that covered by 430 

CMIP6, with the IFS-FESOM 1950control being the worst performing experiment among the EERIE 

simulations (Fig. 3a), showing both the greatest positive bias in τ and λ0. For NDJ, a clear improvement 
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of EERIE models in representing the SAM persistence is again shown asFor NDJ, the spread of EERIE 

clearly shifts toward a lower τ, closer to ERA5’s τ compared to other CMIP6 exhibiting a similar jet 

location. In all, a positive⁡λ0-τ relationship remains and appears stronger in summertime across EERIE 435 

models (Fig. 3). The most skillful EERIE simulations for the SAM persistence, IFS-AMIP, all well 

capture the jet location (with a bias < 1°). This highlights again the importance of well-represented sea 

surface features to the large-scale atmospheric circulation and variability. Still, even with the same IFS 

model and the same 28-km grid size, the five IFS-AMIP ensemble members generated by perturbing the 

initial conditions (the only difference is the internal atmospheric variability) exhibits a spread in τ of about 440 

5 days, which is not positively correlated with the corresponding simulated jet location. Note that the 

ensemble members were generated by perturbing the initial conditions, and so the only difference is the 

internal atmospheric variability. This result suggests that the documented bias relationship between τ and 

λ0 in the literature does not hold in this configuration with prescribed SSTs. It is also possible that when 

the jet location has already been well-captured, other factors become increasingly important to influence 445 

the persistence of SAM, and we explore some of these potential factors in the next section using idealized 

sensitivity experiments. 
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Figure 3. Scatter plot of climatological jet latitude (°) versus SAM decorrelation timescale τ (days; error bar indicates ±1 standard 

deviation from the bootstrapping) for (a) annual and (b) early-summer (NDJ) means in the Southern Hemisphere. Green crosses 450 

are based on CMIP6 historical simulations (colored by their latitudinal atmospheric resolution). Model names are not labeled here 

for visual clarity, but details are provided in Supplementary Table 1. ERA5 reanalysis and EERIE simulations are indicated as in 

the legend. Vertical and horizontal black lines are the ERA5 values. The green dotted straight line is the linear least-squares 

regression fit for CMIP6 models (slope is denoted as m, and Pearson correlation coefficient r is expressed in bold if statistically 

significant with the p value <0.05 in green in the top left corner). Similarly, the black dotted fitted line is for all EERIE simulations.  455 

  

4.3 Sensitivities to varying SST boundary conditions 

EERIE simulations demonstrate a reduced bias in summertime SAM persistence compared to CMIP6, 

but identifying the cause is challenging due to variability in model systems. Although CMIP6 results 

show no clear link between model resolution and performance in τ and λ0, the higher resolution in EERIE 460 

remains one possible contributing factor to such an improvement. One piece of evidence is the reduction 

in τ when transitioning from a 28-km to a 9-km model grid size using a consistent IFS model. Another 

possibility is that the new generation of models in EERIE improves model physics, reducing the biases 

in processes that resulted in a overly-persistent SAM in earlier CMIP-like GCMs. In addition, EERIE 

begins to explicitly resolve the ocean mesoscales, which are parameterized in CMIP6, though the resulting 465 

impacts on SAM persistence have not been investigated. To explore these possibilities within a controlled 

framework, this section focuses on EERIE atmosphere-only sensitivity experiments with variedand 

without SST boundary conditions, aiming to investigate the influence of ocean mesoscales andeddies 

(ObsSST vs. NoEddies) at two model resolution in the observed improvement within a controlled 

frameworkresolutions. 470 

We first focus on the 28-km simulations. Regarding the seasonal variation of 𝜏 (Fig. 4a), the NoEddies 

experiments exhibit intermingled patterns overlapping with those of ObsSST. Although their ensemble 

means suggest a slight reduction in 𝜏 (by approximately 2 days) in NDJ in the absence of ocean eddies 

—hinting that mesoscale SST features may help sustain SAM persistence—this difference is not 

statistically significant at 95% confidence level. For the 9-km configuration, the subtle impact of ocean 475 

eddies is not observed as NoEddies shows no clear changes in 𝜏 from ObsSST, and both show smaller 𝜏 

than the 28-km counterparts (Fig. 4b).  
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All these sensitivity experiments show a slightly poleward biased jet latitude compared to ERA5 (within 

1°) during NDJ, and ObsSST are generally less biased than NoEddies (Fig. 4c). While this seems to be in 

agreement with the literature that a more southward-shifted jet is associated with a longer SAM 480 

persistence, the correlation between λ0 and τ is weak (with a correlation coefficient of 0.03) across all 

simulations in the IFS-AMIP configurations.  

Compared to λ0 , the metric eddy feedback strength 𝑏 shows a much stronger correlation with SAM 

persistence τ, with a higher correlation coefficient of 0.52 and a lower p-value of 0.08 (Fig. 4d), suggesting 

it may be a more informative indicator of SAM persistence in this configuration. Meanwhile, the surface 485 

friction and τ exhibit a negative correlation (Fig. 4e) with a moderate correlation coefficient of -0.48 and 

p-value of 0.11. It is worth noting that our results using [𝑓]̅
𝑠

 based on surface wind stress show 

qualitatively consistent patterns with those using the residual estimates, [𝐹̅]𝑠, across simulations despite 

some differences in the absolute values (Fig. S1a, b). A closer examination shows that the member with 

the largest value in [𝑓]̅
𝑠
 is accompanied by the weakest eddy feedback 𝑏 (red cross markers in Fig. 4d, e) 490 

and vice versa (red square). The opposite shifts of these two dominant mechanisms indicates an offset 

between each other, leading to subtle combined effects on the SAM persistence.  

Lorenz and Hartmann (2001) proposed that the eddy feedback can interact with the frictional impact to 

lengthen the effective timescale of SAM by 
𝑡𝑓

(1−𝑏𝑡𝑓)
, where 𝑡𝑓 is the damping timescale. Here, we estimate 

𝑡𝑓 by taking the ratio between the regressed [𝑢̅]𝑠 (in unit of m/s) and the regressed [𝐹̅]𝑠 (unit of m/ s2) 495 

averaged over the 7-14 lag days, which gives a value of 8.6 days for ERA5 (close to the 8.9 days in Lorenz 

and Hartmann (2001)). We found that This metric indeed correlates with τ more strongly than b or 

[𝑓]̅
𝑠
([𝐹̅]𝑠) alone with, showing a higher correlation coefficient of 0.61 and a lower p-value of 0.03 (Fig. 

S1d), pointing). This result points to its superior usefulnessthe importance to assess the joint/net impact 

of the two competing dominant mechanisms.  500 

However, although those metrics explain some of the differences between individual experiments, none 

of them shows systematic differences between ObsSST and NoEddies and none clearly accounts for the 

significant reduction in τ when the model grid size is refined from 28 km to 9 km. Considering the large 

variability in the 28-km ensemble members, one member at 9 km may be not enough to identify the 
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influence of the resolution. Additional simulations and different experimental approaches may be required 505 

to confirm the underlying cause for the observed model grid spacing dependency.  

 

 

Figure 4. Analysis of the IFS-AMIP idealized experiments (black for ObsSST and red for NoEddies; yellow for ERA5 as reference): 

(a) SAM decorrelation timescale (τ) as a function of month for IFS-AMIP 28km simulations (dashed for eachindividual ensemble 510 

members and solid for the ensemble means; black for ObsSST and red for NoEddies experiments) and ERA5 (yellow). (b) Similar 

to (a) but for 9 km experiments (shades for the ±1 standard deviation of τ from the 1,000 bootstrap resampling). (c) Scatter plot of 

τ (days; y-axis) and westerly jet latitude (x-axis; filled-color markers for 28 km; hollow stars for 9 km simulations). (d)–(e) Similar 

to (c) but with x-axis variable replaced with the eddy feedback strength and frictional impact, respectively. In (b)–(d), the same 

marker shape indicates the same ensemble member. The gray dotted line represents the linear regression fit, and the correlation 515 

coefficient and p-value are indicated in the top-right corner.  
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5 Discussion and conclusions 

This study assesses the performance of new high-resolution global model simulations developed under 

the EERIE project in capturing the persistence of the Southern Annular Mode (SAM), a leading mode of 

climate variability in the Southern Hemisphere. EERIE simulations are conducted with a model grid size 520 

of 9–28 km for the atmosphere and 5–13 km for the ocean. The persistence of the SAM is assessed using 

the decorrelation timescale of the SAM index (τ), for which CMIP GCMs have historically exhibited a 

systematic positive bias (overly persistent) in austral summer, often correlated with a climatological 

westerly jet that is too equatorward. Our conclusions and discussion based on the phase 1 preliminary 

simulations of the EERIE models are organized into two subsections: (1) the performance of coupled 525 

simulations, and (2) the performance of atmosphere-only (AMIP) simulations and insights obtained from 

the sensitivity experiments with varied SST boundary conditions under the AMIP setup.  

5.1 EERIE Coupled simulations 

Compared to CMIP6, the EERIE coupled simulations show improvement in representing the SAM 

persistence. Although the inter-model variability remains large, the annual τ distribution of EERIE 530 

coupled simulations clearly shifts to lower biases with a median value of 9 days, closer to the ERA5 value 

of 8 days than the CMIP6’s median of 11 days. During early summer, the pronounced long tail of τ in 

CMIP6 simulations is also noticeably reduced in EERIEs, with the former ranging from 9 to 32 days 

(median: 16 days) and the latter ranging from 9 to 17 days (median: 14 days) closer to ERA5’s 11 days. 

The relationship between biases in the westerly jet location (λ₀) and τ remains positively correlated in 535 

EERIE simulations as has been documented for CMIP-like models. Consistently, the smaller bias for τ in 

EERIE simulations is accompanied by improved representation of λ₀ compared to CMIP6. However, the 

outperformance for τ in EERIE some CMIP6 models compared to the CMIP6 runs that capture similar 

jet locations indicates thatsimilar to EERIE, yet still perform worse for τ, suggesting other factors are at 

play. While the improvement of EERIE models compared to CMIP6 indicates that increased resolution 540 

can offer benefits, the varied skills within CMIP6 in representing either λ₀ or τ do not show a clear 

dependency on the model resolution. It is possible that the impact of resolution is outweighed by other 

varying factors varying in CMIP6 simulations incorporating different configurations and model systems, 
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or that the benefit requires the resolution exceeding a certain threshold-driven benefits have plateaued 

within the grid-size ranges in current CMIP6 and require more substantial resolution refinement to 545 

emerge. 

5.2 EERIE Atmosphere-only simulations 

Among EERIE simulations, the IFS-AMIP runs with prescribed historical SST and sea ice boundary 

conditions show the optimal performance in both SAM persistence and westerly jet location, with smaller 

spreads and closer values to ERA5 than the coupled runs. This highlights the importance of accurately 550 

representing sea surface thermal conditions to improve the simulation of these large-scale atmospheric 

quantities. While Sen Gupta and England (2006) showed that air-sea coupling is critical for modulating 

the SAM—albeit focusing on interseasonal timescales, which are longer than the intraseasonal scale 

investigated here—our results suggest that atmosphere-ocean coupling plays a secondary role. Instead, 

SST biases introduced by the coupling—an ongoing challenge in coupled GCMs (Zhang et al., 2023)—555 

appear to be more influential.   

For the AMIP historical simulations, the λ₀–τ bias relationship is virtually absent. We speculate that when 

the jet is already well captured (all AMIP runs are with <1° bias) and SSTs are prescribed, other second-

order processes may come into play to affect τ. Indeed, we find that the metrics of atmospheric eddy-

mean feedback strength, surface friction and their combinationjoint effect correlate more strongly with τ 560 

than with λ₀ in the AMIP configurations, highlighting the importance of these two competing dominant 

mechanisms on SAM persistence. However, these metrics cannot fully explain the clear reduction of τ 

when the model resolution is refined from 28 km to 9 km using the same atmospheric model.  

Finally, the thermodynamic impact from the ocean mesoscale features is explored via idealized AMIP 

experiments by filtering out the transient ocean eddies (NoEddies) in the SST boundary conditions. While 565 

the difference between the 28-km ensemble means of ObsSST and NoEddies imply that the ocean 

mesoscale SST features may help to maintain the SAM anomalies (increase τ by roughly 2 days) in early 

summer, such an impact is not statistically significant and is not captured in the 9-km simulations. Among 

the 28-km members, we also do not see a systematic change of eddy feedback or surface friction due to 

the presence or absence of ocean eddies in the SST field. The critical role of oceanic mesoscale eddies in 570 
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the Southern Ocean climate system is well documented. While their local impact on the atmospheric 

boundary layer is well established, their direct influence in modulating large-scale modes such as the 

SAM appears limited under our AMIP setup without air-sea coupling. A similar conclusion was obtained 

by Purich et al. (2021) with a coarser coupled GCM (model resolution of ~130 km), ACCESS1.0. They 

found that suppressing Southern Ocean SST variability by restoring the SST to the monthly mean patterns 575 

does not impact SAM persistence in their simulations, but they also concluded that eddy-resolving models 

are required to properly capture the air–sea feedbacks in the Southern Hemisphere.  

Between EERIE coupled and AMIP simulations, The superior performance of the latter seemsAMIP 

compared to coupled simulations might suggest that model skills in representing SAM persistence does 

not clearly benefitgains little from the two-way ocean–atmosphere coupling or from the explicit inclusion 580 

ofresolving ocean mesoscale features. Our hypothesis is that while coupled models offer a more 

physically consistent representation of the climate system, they also tend to introduce SST biases—

potentially due to under-tuning in high-resolution configurations or imbalances in the coupling process. 

In fact, previous studies have shown that eddy-permitting models can exhibit larger SST biases than either 

coarser models with parameterized eddy fluxes or fully eddy-rich models (e.g., Storkey et al. 2025). 585 

Reducing SST biases remains essential for advancing the representation of SAM and Southern 

Hemisphere climate variability. The large variability among ensemble members with the same model 

configuration also highlights the complexity ofintricate mechanisms contributing to the behind SAM 

persistence in GCMs and call for further. It urges deeper investigation or differentand alternative 

approaches to address theresolve outstanding questions regarding the atmospheric variability in the 590 

Southern Hemisphere. For example, this study only considers the zonally averaged properties, but non-

zonal components likely play important roles in shaping SAM characteristics and hence their 

representation in GCMs (e.g., Barnes and Hartmann, 2010; Sen Gupta and England, 2006). Nevertheless, 

the general improvements seen in the phase 1 simulations of the EERIE coupled models present promising 

results in addressing the long-standing GCM biases in SAM persistence, especially considering the 595 

challenges in optimally configuring high-resolution models (i.e., tuning) and the lack of community 

experience in doing so. Furthermore, the controlled framework of the IFS-AMIP idealized eddy-rich 
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experiments offers significant potential for enhancing our understanding of atmospheric responses to 

ocean mesoscales.  

 600 
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