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Abstract. This study evaluates the performance of high-resolution (grid sizes of 9–28 km for the 

atmosphere; 5–13 km for the ocean) global simulations from the EERIE project in representing the 15 

persistence of the Southern Annular Mode (SAM), a critical driver of Southern Hemisphere climate 

variability. Using the decorrelation timescale of the SAM index (τ), we compare EERIE coupled and 

atmosphere-only (AMIP) simulations with CMIP6 and ERA5 datasets. EERIE coupled simulations 

improve the long-standing biases in SAM persistence, especially in early summer, with τ values of 9–17 

days compared to CMIP6’s 9–32 days. This improvement generally correlates with a more accurate 20 

climatological jet latitude (λ0) distribution in EERIE simulations than in CMIP6, but such a correlation is 

not robust within EERIE AMIP simulations with a well-represented jet location, suggesting other factors 

in play. With prescribed SSTs, EERIE AMIP show even smaller biases in both τ and λ0 than EERIE 

coupled runs, highlighting the critical role of SST representation. Using the same AMIP model, finer 

grids (9 km vs. 28 km) can further reduce τ, but the underlying cause remains unclear, likely because of 25 

potential compensation between different processes. Sensitivity experiments filtering ocean mesoscale 

features in SST boundary conditions suggest that mesoscale processes enhance SAM persistence by ~2 

days in early summer, though this effect is clear in ensemble means at 28 km but not in the single 9-km 
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runs. We also show that the atmospheric eddy feedback strength is a better indicator than λ0 to infer the 

SAM persistence, although the metric alone does not fully explain the τ differences across SST scenarios. 30 

These findings underscore the interplay of dynamic processes influencing SAM persistence and offer 

insights for advancing global climate model performance.leading mode of Southern Hemisphere climate 

variability. Using the decorrelation timescale of the SAM index (τ), we compare EERIE simulations with 

CMIP6 models and ERA5 reanalysis.  

EERIE simulations reduce long-standing biases in SAM persistence, especially in early summer, with τ 35 

values of 9–20 days compared to CMIP6’s 9–32 days and ERA5’s 11 days. This improvement correlates 

with a more accurate climatological jet latitude (λ0). EERIE atmosphere-only AMIP runs outperform the 

coupled simulations in both τ and λ0, showing smaller biases and ranges of variability, underscoring the 

critical role of SST representation in shaping atmospheric circulation. In these AMIP experiments, the 

atmospheric eddy feedback strength, combined with the damping timescale estimated via friction, 40 

correlates more strongly with τ than λ0. We speculate that the well-captured jet position (biases <1° 

relative to ERA5), due to prescribed SSTs, limits λ0’s explanatory power for τ differences, allowing other 

processes to dominate. Using a finer model grid (9 km vs. 28 km) of the same AMIP model results in 

reduced τ, though the mechanism remains unclear. Finally, motivated by the importance of oceanic eddies 

in the Southern Ocean, we conducted sensitivity experiments that filter transient mesoscale features from 45 

the SST boundary conditions. The results suggest that oceanic eddies may enhance summertime SAM 

persistence (by ~2 days), though this signal is not statistically significant and is absent in the single 9-km 

run, pointing to a subtle role of mesoscale ocean-atmosphere interaction that remains to be explored. 

1 Introduction  

Over the extratropical Southern Hemisphere, the daily- to decadal climate variability is dominated by the 50 

Southern Annular Mode (SAM), a mode of natural variability manifested in the large-scale oscillation of 

atmospheric mass between mid- and high-latitudes and hence the north-southward shift and intensity 

changechanges of the eddy-driven jet in the midlatitudes (e.g., Fogt and Marshall, 2020). This internal 

variability both influences and is influenced by the atmospheric circulation, affecting regional 

temperatures and precipitation patterns, sea ice extent, and ocean circulation, with consequences for 55 
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global heat and carbon redistribution (e.g., Doddridge and Marshall, 2017; Gillett et al., 2006; Lefebvre 

and Goosse, 2005; Lenton and Matear, 2007; Lovenduski and Gruber, 2005). 

As inferred by its name “annular”, the spatial structure of SAM is approximately “ring-shaped” when 

viewed from above the South Pole and is nearly barotropic in the vertical direction (Gerber et al., 2010). 

During the positive phase of SAM, lower air pressure anomalies overlay Antarctica while higher pressure 60 

anomalies spread over the mid-latitudes, and such anomalous pressure distribution indicates a 

strengthening and poleward shifting of the westerly jet that climatologically sits at around 50°S (Lim et 

al., 2013). While the SAM can, to a first approximation, be described from a zonal-mean perspective, its 

structure can deviate from the zonal mean and vary across different timescales, affected by factors such 

as the seasonal cycle of midlatitude jet (atmospheric eddy activity), sea surface temperature (SST) 65 

variability, tropical oscillations such as the El Niño-Southern Oscillation (ENSO), stratosphere-

troposphere interactions and so on (e.g., Campitelli et al., 2022; Ding et al., 2012; Fogt and Marshall, 

2020; Karoly, 1989). On the seasonal scale, SAM is overall more zonally symmetric in austral summer 

(DJF) but exhibits asymmetric wavenumber 3 components when entering springautumn (MAM) and 

summerwinter (JJA). Readers interested in a comprehensive review of the SAM literature are encouraged 70 

to consult Fogt and Marshall (2020) and Thompson et al. (2011). 

An importantA key characteristic of SAM is its temporal persistence, referring to how long a given phase 

of the SAM (positive, negative or neutral) tends to last before transitioning. ItThis long persistence is 

important as it provides a source of predictability at a timescale longer than the one associated with 

synoptic variability (e.g., Robinson 2000; Lorenz and Hartmann 2001, Simpson and Polvani 2016).  SAM 75 

persistence is often measured as the decorrelation timescale (e-folding timescale) which indicates the 

average duration over which the SAM index remains strongly correlated with its past values. A standard 

explanation attributes the extended SAM persistence to the reinforcement of westerly flow anomalies by 

atmospheric eddy momentum fluxes, which are generated by changes in the mean flow and act to 

counteract dissipation from surface friction. Several mechanisms can be at the origin of this eddy-mean 80 

flow feedback that reinforces the shifted jet, including barotropic processes related to anomalous wave 

propagation and breaking and baroclinic processes associated with eddy generation and enhanced 

baroclinicity in the lower troposphere in response to shift in the westerly flow (e.g., Robinson 2000, 
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Lorenz and Hartmann 2001, Zurita-Gotor et al. 2014, Hassanzadeh and Kuang, 2019). The westerly flow 

anomalies also induce changes in the diabatic heating and cooling due to latent heat release and cloud 85 

radiative effect that modify the temperature gradients, affecting SAM persistence (Xia and Chang 2014, 

Smith et al.2024, Vishny et al. 2024). In addition to this eddy-mean flow feedback, SAM persistence can 

have an origin from the stratosphere, which introduces some non-stationary forcing to SAM. The main 

influence is likely in late spring and summer at the time of the seasonal breakdown of the stratospheric 

vortex (Simpson et al. 2011, Byrne et al. 2016, Byrne et al. 2017, Saggioro and Shepherd 2019). 90 

Furthermore, interactions between a stationary mode and a propagating mode of the zonal variability 

could also affect SAM persistence (Lubis and Hassanzadeh 2021, Sheshadri and Plumb 2017, Smith et 

al. 2024).  

While global climate models (GCMs) have shown good skills in capturing the spatial structure of SAM 

variability, a long-standing common challenge for GCMs is that they tend to overestimate the SAM 95 

persistence during the austral summer. Based on global reanalysis data, the SAM decorrelation timescale 

is found to be approximately 10 days on annual mean and is a couple of days higher in early summer 

(November–January; NDJ), during which period GCMs typically show values that are two to three-times 

larger (Bracegirdle et al., 2020). Many studies have found a strong dependency between the SAM 

persistence bias and the bias in the climatological westerly jet location (e.g., Kidston and Gerber, 2010; 100 

Simpson et al., 20132013a, b; Simpson and Polvani, 2016; Son et al., 2010), that is, GCMs showing too 

persistent SAM tend to be associated with a too equatorward-placed tropospheric westerly jet. A possible 

explanation for such a relationship is that the structure of the climatological jet can affect the tropospheric 

eddy-mean flow feedback, the process by which small-scale atmospheric eddies interact with large-scale 

climate anomalies to amplify them, and models with lower latitude jets exert stronger feedback to 105 

maintain SAM (Codron, 2005; Simpson and Polvani, 2016).  

However, the climatological position of the midlatitude jet is not the only factor for the overly persistent 

SAM variability in GCMs. Simpson et al. (2013a) performed a series of experiments with nudging and 

bias correcting procedures using a stratosphere-resolving GCM, the Canadian Middle Atmosphere Model 

(CMAM). They found that the SAM persistence bias remains even when the representation of the 110 

climatological tropospheric winds is artificially improved. Similar conclusions are obtained when another 
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common bias for the overly-persistent summertime SAM —specifically, the delayed breakdown of the 

stratospheric vortex— was manually nudged toward the reanalysis-based seasonal climatology. Based on 

these results, they suggested that a substantial proportion of the SAM timescale bias arises from “internal” 

tropospheric dynamics, specifically the atmospheric eddy-mean flow feedback.  115 

Such a feedback mechanism assumes that the shifted midlatitude jet associated with the positive/negative 

SAM acts as a source of eddies. When eddies propagate away from the source region before breaking, 

convergence of eddy vorticity flux is produced in the upper troposphere. Such eddy vorticity flux 

convergence can reinforce the shifted jet by enhancing the baroclinicity through adiabatic heating/cooling 

associated with the induced secondary circulation, thus extending the SAM persistence against dissipation 120 

from surface friction. Within this framework, Barnes and Hartmann (2010) performed a budget analysis 

of the relative vorticity tendency equation in a global reanalysis. Their analysis showed that this feedback 

is present across the hemisphere in austral summer but lacking over the western Pacific in winter due to 

a weaker climatological midlatitude jet in that region. Such a seasonal variation appears to explain the 

longer SAM timescale in summer than in winter. Following a similar concept, Simpson et al. (2013) 125 

performed momentum budget analysis of the vertically averaged and zonally averaged zonal wind 

associated with SAM and confirmed that the maintenance of SAM anomalous wind is dominated by the 

eddy momentum flux convergence that compensates the negative contribution by friction. They also 

showedSimpson et al. (2013b) examined the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

climate models, and found that the overly persistent SAM is highly correlated (coefficient of 0.83) with 130 

the too strong total eddy feedback during the summer season in the Coupled Model Intercomparison 

Project Phase 5 (CMIP5) climate models..  

As GCMs improve in their representation of physics, resolution, and overall complexity, some 

advancements have been made in reducing biases associated with SAM persistence and the climatological 

jet latitude. Compared to earlier versions of CMIP models (e.g., CMIP3, CMIP5), noticeable reductions 135 

in these biases have been reported. Bracegirdle et al. (2020) found that the ensemble-mean bias in the 

westerly jet latitude decreased from 1.9° in CMIP5 to 0.4° in CMIP6 on an annual mean basis. 

Consistently, the early-summertime SAM persistence was reduced from approximately 30 days in CMIP5 

to 20 days in CMIP6. Nevertheless, the SAM decorrelation timescale remains systematically biased. 
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While higher resolution is generally regarded as beneficial, it is worth exploring whether additional 140 

improvements are achievable by further increasing the resolution or if other factors become increasingly 

significant when the resolution has reached beyond a sufficiently high level.  

This potential role of an increase in resolution in reducing the biases in SAM persistence and the 

relationship with the mean-state westerly jet is investigated here in new experiments conducted as part of 

the Horizon Europe project European Eddy-Rich Earth System Models (EERIE) (M. J. Roberts et al., 145 

2024a). A distinctive feature of the high-resolution atmosphere-ocean coupled Earth System Models 

(ESMs) built under EERIE is their adoption of high oceanic resolutions to explicitly represent ocean 

mesoscale processes, which have been increasingly recognized as critical for weather and climate 

simulation in recent studies (e.g., Busecke and Abernathey, 2019; Chassignet and Xu, 2021; Hewitt et al., 

2020). (e.g., Busecke and Abernathey, 2019; Chassignet and Xu, 2021; Hewitt et al., 2020). Mesoscale 150 

oceanic features can influence SAM persistence by strongly affecting surface heat fluxes and surface 

stress in the Southern Ocean—a hotspot of mesoscale activity (Frenger et al., 2013; Bishop et al., 2017). 

These ocean-atmosphere interactions can alter atmospheric temperature gradients and boundary layer 

structure, modifying diabatic heating and low-level baroclinicity, both of which have been linked to SAM 

persistence (Xia and Chang, 2014; Smith et al., 2024; Robinson, 2000; Zurita-Gotor et al., 2014). 155 

Furthermore, surface stress also plays a role as it tends to damp the westerly winds but also to enhance 

baroclinicity and the baroclinic feedback (Robinson 2000, Zurita-Gotor 2014, Vishny et al. 2024). 

In addition to the development of new coupled models, EERIE also includes a suite of atmosphere-only 

simulations and idealized experiments to facilitate exploration of the atmosphere response to the ocean 

mesoscales by excluding effects attributed to the air-sea coupling and SST biases. Those experiments will 160 

allow disentangling the role of the explicit resolution of the eddies compared to the one of increasing the 

model resolution. Using those experiments, we specifically analyze the potential role of the mesoscale 

oceanic eddies on SAM persistence, a contribution that has been studied to a minimum to date. The data 

sources and diagnostics are detailed in Sections 2 and 3, respectively, followed by the results in Section 

4 and the conclusions in Section 5. 165 

 



7 

 

2 Data 

2.1 EERIE models & simulations 

Running from January 2023 to December 2026, the EERIE project aims to build new generations of ESMs 

run at “eddy-rich resolution” (note that the “eddy” here refers to ocean eddies), which explicitly resolve 170 

ocean mesoscale processes with scales of 10–100 km. Crucial components at this scale include the ocean 

eddies (analogous to cyclones in the atmosphere) and boundary/frontal currents. EERIE will deliver 

simulations over multi-centennial timescales centered on four global coupled ESMs and two atmosphere-

only models, with an overarching objective to reveal and to quantify the role of ocean mesoscales in 

shaping the climate trajectory over seasonal to centennial time scales, regionally and globally (European 175 

Commission, 2022). The simulations are organized in two phases, with the Phase 1 providing guidance 

for the planning of Phase 2. 

2.1.1 Coupled simulations 

This study evaluates the preliminary EERIE Phase 1 simulations based on their(Wachsmann et al., 2024). 

To facilitate direct comparison across experiments, all outputs were regridded output onto a uniform 180 

0.25° ×0.25°  grid (Wachsmann et al., 2024). prior to analysis, except for the westerly jet location 

identification (Section 3.2). A detailed description of the EERIE models can be found in M. J. Roberts et 

al., (2024a), and here weTable 1 briefly summarizes the simulations used in the current study (Table 1). 

We analyze five coupled. IFS-FESOM2 and ICON model simulations in total: fourare conducted 

following a protocol similar to the CMIP6 HighResMIP (High Resolution Model Intercomparison 185 

Project; Haarsma et al., 2016), using either the IFS-FESOM2 or ICON models, and one following 

similar). The HadGEM3-GC5-EERIE model simulation follows protocol similar as CMIP6 DECK 

(Diagnostic, Evaluation and Characterization of Klima; Eyring et al., 2016) with the HadGEM3-GC5-

EERIE model.). HighResMIP differs from CMIP6 DECK primarily in its use of 1950s’ climate conditions 

instead of 1850s’ as the initial state and a shorter spin-up (~50 years instead of >= 200 years; which have 190 

been discarded and not counted in the simulation length shown in Table 1) due to the computational 

demands of high-resolution models. Using the IFS-FESOM2 model, we analyze selected segments of the 

spin-up and a 65-year control runs (referred to as 1950spinup and 1950control), both simulation 
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conducted under fixed 1950 forcings. The analyzed segments vary in length depending on data 

availability, as detailed in Table 1. Additionally, we examine a portion of the (referred to as 1950control), 195 

along with a historical simulation covering the period from 1950–1969.  to 2014. For the ICON model, 

only the 22-year 1950control and the 1950spinuphistorical run is availableare analyzed. For the 

HadGEM3 model, we investigate theexamine a 30-year pre-industrial control simulation (piControl) 

forced by 1850 conditions.  

WhileAs these simulations cover different time periods, we do not expect these differences to significantly 200 

impact the evaluation of specific model performance in SAM persistence, as  and some of them include 

transient forcing, linear and low-frequency nonlinear trends and a slowly varying climatology are 

removed as standard procedures in the SAM-related diagnostics. However, itThis should be borne in mind 

that reduce the impact of the difference in experimental design on the evaluation of the model 

performance. However, this removal maydoes not fully eliminate allthe non-stationary features in the 205 

second moments. Therefore, when evaluating EERIE runs againstthat could have a clear influence on the 

evaluation of SAM persistence and of the eddy feedbacks (Byrne et al. 2016). We therefore adopt a 

bootstrapping procedure (Section 3.1) to provide partial quantification of the influence of non-stationarity 

and uncertainty due to the short period of some simulations. As will be shown later, through bootstrapping 

resampling, different results can be obtained with the same model even after de-trending. We also provide 210 

results using two different periods of the ERA5 reanalysis (Section 2.2), a fairer comparison would be 

based on a similar earlier period, but the best available option starts from 1958,) as observation in the 

Southern Hemisphere were sparse before thenreferences for comparisons. Note that the difference can be 

partly attributed to the larger data coverage after 1979 in ERA5. 

 215 

Table 1. EERIE simulations analyzed in the current study.  

Institution 
Alfred Wegener Institute 

(AWI) 

Max Planck Institute 

(MPI-M) 
Met Office (MO) 

European Centre for 

Medium-range Weather 

Forecasting (ECMWF) 

 Coupled atmosphere-ocean models (eddy-rich) Atmospheric model 

System name IFS-FESOM2 ICON 
HadGEM3-GC5-

EERIE 
IFS 
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Model 

components 

IFS CY48R1, 

FESOM2, FESIM2 

ICON-A, 

ICON-O 

UM,  

NEMO4.0.4, SI3 
IFS CY48R1 

Atmos. grid (km) Tco1279 (~9 km) R2B8 (~10 km) 
N640 (~20 km  

at 50N) 

Tco1279 (~9 km) 

Tco399 (~28 km)* 

*five ensemble members 

Atmos. vertical 

levels (model top) 
137 (0.01 hPa) 90 (0.01 hPa) 85 (85 km) 137 (0.01 hPa) 

Ocean grid (km) NG5 (~13-5 km) R2B9 (~5 km) eORCA12 (~8 km) - 

Ocean vertical 

levels 
70 72 75 - 

Protocol CMIP6 HighResMIP CMIP6  DECK HighResMIP2 

Simulations 

(analyzed 

segment lengths) 

1950control (65 yrs) 

Historical (1950–2014) 

1950control (22 years) 

Historical (1950-2014) 

piControl 

(30 yrs) 

Historical 

(1980–2023) 

2.1.2 Atmosphere-only simulations & sensitivity experiments  

The EERIE AMIP simulations were performed for the historical period of 1980–2023 following the 

HighResMIP2 highresSST-present experimental design (M. J. Roberts et al., 2024b). We analyze the 

simulations were produced with the IFS model, tested with  in two model grid sizes (~28 km and ~9 km; 220 

both with convection parameterization), and the higher-resolution configuration is identical to the 

atmosphere component of the coupled IFS-FESOM2 (Table 1). One member has been performed at the 

9-km resolution, but the 28-km simulations are supplemented with five ensemble members to represent a 

range of model uncertainty or noise. These ensembles are generated by perturbing the atmospheric initial 

conditions for January 1, 1980, using the same methodology employed in operational ECMWF ensemble 225 

forecasts (C. Roberts et al., 2024a). 

The prescribed boundary conditions includeare taken from the daily-mean SST reanalysis from the 

European Space Agency Sea Surface Temperature Climate Change Initiative (ESA CCI SST v3) and the 

daily-mean sea-ice concentration from the European Organisation for the Exploitation of Meteorological 

Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSI-SAF), both retrieved on 230 
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a 0.05° ×0.05° grid. External radiative forcings are generally specified following CMIP6/HighResMIP 

protocols, and the specificity can be found in C. Roberts et al. (2024a). 

Taking the IFS-AMIP simulations as the reference (ObsSST), a series of idealized experiments with the 

SST boundary condition modified are carried out as part of the EERIE project To enable exploration of 

the response of the atmosphere to the extratropical SST ocean mesoscale features (C. Roberts et al., 235 

2024b). Two types of modifications are designed. One is, EERIE project also conducted idealized 

experiments with modified SST boundary conditions. Taking the NoFronts experiment, in whichIFS-

AMIP simulations as the quasi-stationary features in the extratropics are smoothed out by applying a 

spatial low-pass filter to the climatological mean field of SST. The other is thecontrol experiments 

(denoted as ObsSST), NoEddies experiment, with experiments have the transient oceanic eddy features 240 

removed from their SST boundary conditions with the samea spatial low-pass filter but applied to the SST 

anomaly field (difference from the climatological mean). Sea ice cover remains unchanged in all 

experiments.NoEddies. We emphasize that such a design of NoEddies or NoFronts experiments only 

allows us to test the direct thermodynamic impact from ocean mesoscales (as reflected in SSTs) but not 

their relative winds-currents effects (wind stress feedback; or called current feedback).  245 

The filter being employed filter is a Gaussian filter from the GCM-Filters Python package (Loose et al., 

2022). The filter length scale is set to be 20𝐿𝑅 with a lower and higher limit of 30 km and 700 km, 

respectively,, where 𝐿𝑅 is the spatially varying climatological Rossby radius in the ocean. with a lower 

and higher limit of 30 km and 700 km, respectively. While a filter depending on a smaller 𝐿𝑅 at high 

latitudes can effectively remove the smaller oceanic eddies there, it also removes the larger-scale tropical 250 

instability waves near the equator as 𝐿𝑅  reaches maximum. The latter consequence may obscure the 

interpretation on the impact of the targeted extratropical ocean mesoscales due to the tropical-extratropical 

teleconnections.  To avoid this, low-latitude areas are masked out from the filtering with thea function 

with values ranging from 0 to 1: 𝑀(λ) =
1

2
(tanh (

|h−λ|

𝑠
) + 1), where ℎ= 10 determines the latitude where 

the 𝑀 value is halved (0.5) and 𝑠=3 scales the steepness of the masking function. Like the reference 255 

simulationsObsSST, the NoEddies experiment is run with two model grid sizes of ~28 km (five ensemble 
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members) and ~9 km (one member), and the NoFronts setup is only performed for the 28-km ensemble.). 

For more details of the experimental design, we refer readers to (C. Roberts et al., . (2024b). 

2.2 CMIP6 models & ERA5 reanalysis 

For the diagnostics of SAM persistence and westerly jet characteristics, the CMIP6 models are used to 260 

compare with EERIE models. We utilize theanalyze 31 CMIP6 historical simulations from the first 

ensemble member that provide outputs of daily geopotential at 500-hPa level and monthly zonal wind at 

850 hPa. A total of 31 simulations are available, and only the period of 1980-2014 is extracted to ensure 

a uniform data length. All CMIP6 outputs are regridded to a uniform 1° ×1° grid with the bilinear 

interpolation before performing the analysis. and only the period of 1980-2014 is extracted to ensure a 265 

uniform data length. As a proxy of observation, we use the global reanalysis dataset ERA5 (Hersbach et 

al., 2020) for the same variables and a total period from 1958 to 2023. The chosen period of ERA5-based 

analysis will be adjusted to align with the corresponding period of the target simulation for comparison. 

to cover the earlier period included in some EERIE simulations. Among the reanalysis products that 

extend backwards in time beyond 1979 (ERA5, 20CRv3, JRA-55), ERA5 is found to agree best with 270 

station observations and produces good representation of SAM, both before and after the advent of 

satellite sounder data (Marshall et al., 2022). While we analyze ERA5 on the commonly distributed 

0.25° ×0.25° grid, we have tested the impact with regridding it to the 1° ×1° grid and fiound no notable 

changes in our results.         

3 Diagnostics  275 

For the overall assessment of model performance, the diagnostics described in subsections 3.1 and 3.2 

below are applied to all available CMIP6 historical and EERIE simulations. Due to the limited 

accessibility of the EERIE data at the time of writing, diagnostics in subsections 3.3 and 3.4 are only 

performed on the EERIE atmosphere-only sensitivity experiments to provide more insightsdeeper 

investigation on the tropospheric mechanisms critical to the SAM persistence. 280 
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3.1 SAM persistence timescale  

Some variations exist in the definition of the SAM across the literature (Ho et al., 2012), and its 

persistence estimation may be sensitive to the methods employed. While many studies adopt similar 

methodological concepts, the details are often not fully transparent. To ensure clarity, we provide a step-

by-step explanation of our approach. Note that SAM is a rather barotropic feature, so even though some 285 

traditional definitions consider the vertical averaged field, we have chosen to follow Bracegirdle et al. 

(2020) using a single level for simplicity.  

We define the SAM as the first empirical orthogonal function (EOF) of daily zonal-mean geopotential 

anomalies on the 500-hPa level for the region south of 20°S (Bracegirdle et al., 2020). The anomalies are 

calculated based on Gerber et al. (2010). First, a time series of 500-hPa zonally mean 𝛷̅(λ,t) is taken, 290 

where λ and t refer to latitude and time at daily intervals, respectively, and the bar indicates zonal average. 

Then, for each day, we subtract the global mean of 500-hPa geopotential from 𝛷̅(λ,t) at each latitude, and 

the resulting data is linearly detrended. Lastly, a slowly varying climatology 𝛷̃(λ,t) is subtracted to 

remove the seasonal cycle and the low-frequency nonlinear trends associated with known external 

forcings such as the ozone hole formation/recovery and global warming signal. The 𝛷̃(λ,t) field is derived 295 

in two steps: 1) Applying. First, a 60-day low-pass filter is applied to the detrended 𝛷̅(λ,t) along the t axis, 

which leaves us the  to retain only seasonal-scale variations. 2) Then, forSecond, the same date in atime 

axis (t) is reindexed into calendar day (d) and year, (y). For each calendar day (e.g., Jan 1st, Jan 2nd, etc.), 

a 30-year low-pass filter is applied. along the y axis to capture long-term variations. If the data spans 

lessspan fewer than 30 years, the averaging of average across all available years for that same calendar 300 

datey is performed, and hence 𝛷̃(λ,t) isused, resulting in a fixed, repeating annual cycle that repeats across 

years. . 

The resultant anomalies 𝛷′̅̅ ̅(λ,t) reflect the internal/natural variability. We can then obtain SAM as the 

first EOF of 𝛷′̅̅ ̅(λ,t) over 20–90°S. For the computation of EOFs, 𝛷′̅̅ ̅(λ,t) is weighted by √cos⁡(λ) to 

account for the decreasing distance between meridians toward the pole. The resultant leading EOF 𝐞(λ) 305 

represents the spatial patterns of SAM, and its corresponding principal component time series PC(t) is 

referred to “SAM index”, expressed in normalized form with zero mean and unit variance (Fig. 1a-b).  
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To quantify the temporalSAM persistence of SAM, the decorrelation time scale is computed as the e‐

folding timescale ofbased on the autocorrelation function of the SAM index. Following the procedure in 

following Simpson et al. (2013), we first calculate the autocorrelation function as(2013a):   310 

                          ⁡ACF(𝑑, 𝑙) =

∑ PC(𝑑,𝑦)PC(𝑑+𝑙,𝑦)𝑁−1
𝑦=1

√∑ PC(𝑑,𝑦)2𝑁−1
𝑦=1 ∑ PC(𝑑+𝑙,𝑦)2𝑁−1

𝑦=1

,
∑ PC(𝑑,𝑦)PC(𝑑+𝑙,𝑦)𝑁−1
𝑦=1

√∑ PC(𝑑,𝑦)2𝑁−1
𝑦=1 ∑ PC(𝑑+𝑙,𝑦)2𝑁−1

𝑦=1

.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

whereHere, the daily time series PC(t) has been converted to is reindexed as a function of calendar day 

of the year (d (e.g., Jan 1st to Dec 31st) and lag days (l),year y, and N isdenotes the total number of years 

of the data. Equation (1) computes the autocorrelation of PC between a given day d and a lagged day d+l, 315 

averaged over all available years. The ACF(𝑑, 𝑙) is then smoothed over a 181-day window along the d 

axis (to smoothen daily fluctuations) using a Gaussian filter with a full width at half maximum of 42 days 

(standard deviation of 8 days). Finally, for each d, an exponential curve is fitted to the smoothed ACF(𝑙) 

up to a lag of 50 days using the least squares method. An, and the e-folding time scale (τ) is then derived 

for a given d, representing the time at which the exponential fit of the ACF decreases to 𝑒−1 (Fig. 1c). 320 

We found that the estimation of 𝜏(𝑑) exhibits some sensitivity to the length of the data record. To provide 

a measure of sampling uncertainty in the ERA5of τ, we perform 1,000 times of bootstrap resampling, 

each time redrawing all yearly PC(𝑑, 𝑦)⁡with replacement to form a new sample as large as the original 

sample size (same number of total years).N). Repeating the above ACF calculation for all bootstrap 

samples leads us to 1,000 values of τ for a given day (Fig. 1c). The distribution of these values provides 325 

the), showing its possible range of the estimated 𝜏(𝑑)..  

Note that we perform the above EOF analysis is performed separately for each datasetall datasets to 

identify SAM as the leading mode within each simulation, allowing for potential differences in its spatial 

structure across models. 

 330 
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Figure 1. Example of the SAM decorrelation timescale and eddy feedback strength calculation based on ERA5: (a) The first EOF 

pattern based on 500-hPa geopotential; (b) The associated first PC1 time series (only a partial segment is shown here); (c) 

Autocorrelation function (ACF) of the SAM index (smoothed with a Gaussian filter) shown for a given day of the year (black dashed), 335 

and an exponential fit (yellow). The e-folding timescale is denoted as 𝝉τ. The calculation of ACF is repeated 1,000 times (gray) 
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withfor the bootstrap sampling with replacement. samples (gray). (d) Same as (a) but based on vertically averaged zonal wind. (e) 

Lagged regression of the budget terms in Eqn. (3) onto the SAM index. (f) Eddy feedback strength b for lags 7–14 days. 

3.2 Tropospheric westerly jet position 

The westerly jet position is diagnosed following BracegirdleMenzel et al. (2020) based(2019) and Barnes 340 

and Polvani (2015) using the output on the native model grid. We apply a quadratic fit on the monthly 

mean zonally averaged 850-hPa zonal wind. at the latitude where the maximum value is found between 

75°S and 10°S and the four adjacent latitudes of the model. The latitude where the maximum value of the 

quadratic fit is found defines the position of the tropospheric westerly jet, λ0.. 

3.3 Contribution of atmospheric eddy feedback strength to SAM persistence  345 

In the literature, Various methods have been proposed to assess the strength of tropospheric eddy-mean 

flow feedback. We adopt the approach of Simpson et al. (2013b), as it has been successfully applied to 

potentially explainCMIP5 model evaluation and showed a high correlation with the SAM persistence bias 

in CMIP5 models. This approach estimates the contribution of eddy momentum flux convergence to the 

tendency of SAM-associated westerly wind anomalies. Therefore, within this framework, SAM is 350 

alternatively (but physics-consistently) described by the first EOF of vertically averaged (pressure 

weighted) zonal-mean zonal wind anomalies, deseasonalized and detrended, over 20-90°S. The resultant 

EOF latitudinal pattern (𝐞) and associated PC time series are defined such that the former has units of m 

s-1, (Fig. 1d), the latter has unit variance, and their multiplication reconstructs the SAM-associated (EOF1) 

zonal wind anomaly fields in latitude and time space. This shift from a definition of the SAM persistence 355 

timescale using geopotential height to the zonal wind for the estimation of the eddy-mean flow feedback 

is based on the standard assumption that geostrophic equilibrium provides a good approximation of the 

relevant variables. However, ageostrophic terms can also contribute to SAM persistence, introducing 

limitations to this hypothesis (Vishny et al. 2024; Smith et al. 2024). For simplicity and consistency with 

Simpson et al. (2013b) in their CMIP5 assessment, only three pressure levels of 850, 500, 250 hPa are 360 

utilized for calculating this diagnostic.analysis.  

A quantity or a forcing term (denoted as 𝑋  as an example) associated with the SAM is derived by 

projecting it onto the EOF pattern (𝐞) with the operator:  
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[𝑋̅]𝑠 =
[𝐗̅]𝐖𝐞

√𝐞Ｔ𝐖𝐞
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

where the overbars denote the zonal mean, brackets indicate the vertical average, [𝐗̅] is a vector form of 365 

[𝑋̅](λ, 𝑡), where λ and 𝑡 are latitude and time, and 𝐖 is a matrix with diagonal elements equal to the 

cos(λ) weighting when defining the EOF in Simpson et al. (2013b). The resultant [𝑋̅]𝑠 is a time series. 

How strongly the eddy forcing sustains the SAM wind anomalies is then estimated by projecting the 

vertically and zonally averaged zonal momentum tendency equation onto 𝐞:  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝜕[𝑢̅]𝑠
𝜕𝑡

= ⁡⁡ [𝑚̅]𝑠 + [𝐹̅]𝑠,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 370 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[𝑚̅]𝑠 = −[
1

𝑎𝑐𝑜𝑠2λ

𝜕(𝑢′𝑣′̅̅ ̅̅ ̅̅ 𝑐𝑜𝑠2λ)

𝜕λ
]
𝑠

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

where [𝑚̅]𝑠 is the eddy momentum flux convergence attributed to SAM, 𝑢′ and 𝑣′ are the deviation of 

the zonal and meridional velocities from their zonal means, respectively, and are calculated based on the 

instantaneous fields at 6-hourly intervals before being converted to daily means, 𝑎 is the Earth radius, and 

[𝐹̅]𝑠 represents all the residual momentum forcing associated with SAM. Note that Equation (3) assumes 375 

that the sum of individual projected forcing terms on the right-hand side is in balance with the tendency 

of the SAM anomalies. While this assumption may not be strictly mathematically valid, Simpson et al. 

(2013b) demonstrated that it holds in their simulations. 

Lorenz and Hartmann (2001) hypothesized that the eddy forcing of the SAM consists of a random 

component and a feedback component that depends linearly on the pre-existing state of SAM, [𝑚̅]𝑠 =380 

𝑚̃ + 𝑏[𝑢̅]𝑠, where 𝑏 denotes the eddy feedback strength. To obtain 𝑏, Simpson et al. (2013b) performed 

the lagged linear regressions of [𝑚̅]𝑠  and [𝑢̅]𝑠  onto the SAM index PC(t), such that for a lag day l, 

[𝑚̅]𝑠(𝑡 + 𝑙) ≈ 𝛽𝑚(𝑙)𝑃𝐶(𝑡)  and [𝑢̅]𝑠(𝑡 + 𝑙) ≈ 𝛽𝑢(𝑙)𝑃𝐶(𝑡) , where 𝛽𝑚  and 𝛽𝑢  are the regression 

coefficients. (Fig. 1e). Accordingly, the eddy forcing of SAM at lag l, [𝑚̅]𝑠(𝑡 + 𝑙), can be expressed as 

𝛽𝑚(𝑙)𝑃𝐶(𝑡) = 𝛽𝑚̃(𝑙)𝑃𝐶(𝑡) + 𝑏𝛽𝑢(𝑙)𝑃𝐶(𝑡) . Assuming that at sufficiently large positive lags, the 385 

feedback component dominates the eddy forcing, i.e.,  𝛽𝑚̃ ≈ 0, we can estimate the eddy feedback 

strength as a function of lag days (𝑙) by 
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𝑏(𝑙) =
𝛽𝑚(𝑙)

𝛽𝑢(𝑙)
⁡. 

In Simpson et al. (2013b), the b averaged over lags from 7 to 14 days is used to denote the eddy feedback 

strength contributing to the SAM for the intercomparison of the models. (Fig. 1f).  390 

The approach followed here assumes that analyzing only the first PC is a good approximation to study 

SAM persistence. However, although the PCs are uncorrelated by construction on short timescale, this is 

not the case at longer lags and the coupling between the first two components influences SAM persistence 

(Sheshadri and Plumb 2017, Lubis and Hassanzadeh 2021, and Lubis and Hassanzadeh 2023). Analyzing 

only the first PC brings thus clear limitations in our analysis of the model spread in simulated SAM 395 

persistence. Furthermore, positive regression coefficients could be caused by non-stationarity of the series 

and in particular by interaction with the stratosphere and not just by eddy mean flow interactions. This 

introduces biases in the estimate of eddy feedback, particularly in late spring and summer (Byrne et al. 

2016, Byrne et al. 2017), although this does not necessarily prevent using the regression method (Ma et 

al. 2017). The methodology is thus imperfect, but it provides an interpretative framework for the 400 

difference between the simulations and allows a comparison with earlier studies.  

3.4 Contribution of surface wind stressfriction to SAM persistence  

While the eddy momentum flux convergence primarily contributes positively to the persistence of SAM, 

it is counteracted by the negative impacts, predominantly driven by the surface friction (appears as a 

subcomponent of [𝐹̅]𝑠 in Equation (3)),, which acts to dissipate the SAM anomalies. Since the friction 405 

term for the zonal wind tendency is not directly forcing is not a standard output of EERIE simulations, 

we estimate it from the available from the phase 1 EERIE simulation outputs, we infer its impact from 

the surface variable: the turbulent wind stress in the eastward direction. This variable, 𝑚𝑒𝑡𝑠𝑠  (or 

𝑎𝑣𝑔_𝑖𝑒𝑤𝑠 as renamed in the ECMWF encoding), represents (in units of N m-2). By assuming the turbulent 

wind stress is zero at the model top, we can estimate the friction as 
0−𝜌0

−1𝑊𝑆0

𝐻0
, where 𝑊𝑆0 indicates the 410 

daily-mean eastward turbulent surface stress near the surface, resulting from turbulent atmospheric eddies 

near the surface (due to the roughness of the surface) and turbulent orographic form drag, represented in 

units of N m-2. Positive. For simplicity, we assume fixed values of 𝑚𝑒𝑡𝑠𝑠 indicate that the air flowing 
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over the surface exerts stress directed toward the East, which translates into a westward frictional force 

acting on the wind, slowing down the eastward wind tendencies.  415 

density 𝜌0 =1.204 kg/m³ and the atmosphere column depth 𝐻0=8,464 meters here. Following a similar 

approach for calculating [𝑚̅]𝑠, we multiplied 𝑚𝑒𝑡𝑠𝑠 by −1 and [𝑚̅]𝑠, we projected itthe result onto the 

EOF pattern (𝐞) as in Equation (2) to estimateobtain the frictional forcing for the SAM zonal wind 

anomalies, denoted as [𝑓]̅
𝑠
. Note that [𝑓]̅

𝑠
 does not have the same physical units as [𝑚̅]𝑠 or 

𝜕[𝑢]𝑠

𝜕𝑡
 (unit: m 

s-2), and thus cannot be quantitatively compared with [𝑚̅]𝑠. Still, it is useful for the intercomparison 420 

among IFS-AMIP idealized experiments to examine whether the surface friction causing the SAM 

dissipation mechanism is affected by the presence of ocean mesoscales features (specifically their direct 

thermodynamic forcing) in the SST field.[𝑓]̅
𝑠
. To provide an alternative measure of friction forcing and 

verify the estimation, the residual term of Eq. (3), [𝐹̅]𝑠, is also computed based on the estimates of the 

acceleration and eddy momentum flux convergence, given the dominance of friction in this residual as 425 

shown in Simpson et al. (2013b).  

It is important to note that the projection values of all budget terms are resolution (number of data points)-

dependent, as defined by Eq. (2). Therefore, their magnitudes are not directly comparable across datasets 

with differing resolutions unless regridded to a common grid, as done here.  

4. Results 430 

4.1 Model performance for SAM persistence  

Figure 2 compares the performance of EERIE and CMIP6 models in representing SAM persistence, 

measured by the decorrelation time scale (τ). Consistent with Bracegirdle et al. (2020), CMIP6 models 

tend to overestimate SAM persistence compared to the reanalysis data analyzed over the same historical 

period (1980–2014). On the annual mean, CMIP6 presents a median value of 11 days, while the ERA5 435 

shows a τ of 8 days. Systematically positive biases in τ seems to persist in the A reduced bias is found for 

EERIE coupled simulations, with a median value of 10 days. However, it should be noted that mostτ of 

9 days, although the distribution spread is still large, suggesting a large inter-model variability. Among 

these simulations, positive biases persist in the IFS-FESOM2 1950control (τ=13) and historical (τ=11) 
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runs, and ICON historical simulation show negative bias (τ=6). Meanwhile, HadGEM3 piControl (τ=9) 440 

and ICON 1950control (τ=8) runs are closer to ERA5. Given that some of these simulations are run under 

a pre-industrial 1850s’ or 1950s’ forcing (even the IFS-FESOM2 historical simulation is only available 

for 1950–1969). The Southern Hemisphere circulation and the SAM can change over time, influenced by 

multiple factors such as the stratospheric ozone depletion and recovery, ENSO variability, changes in sea-

ice extent and more. While our analysis of the SAM has removed the seasonal cycle and long-term trends, 445 

some non-stationary features may remain, leading to a varying τ depending on the analysis periods. 

Indeed, the EERIE median value is much closer to the , we also examine the result based on an earlier-

period ERA5 (1958–1978) ERA5 result of 10.3 days,), for which τ increases to 10 days. Note, however, 

that there is relatively less confidence in the accuracy of the value of the SAM in ERA5 prior to the 

satellite era. Nevertheless, EERIE still show an improved agreement with biases that are smaller and more 450 

evenly distributed onERA5 as their τ fully cover the uncertainty ranges of ERA5 for both sidesperiods.  

During the austral early summer (NDJ), the overestimation of SAM persistence in CMIP6 is more 

pronounced with a longer tail of τ distribution. The maximum and median τ in CMIP6 is 32 days and 

1617 days, respectively, compared to the ERA5 value of 11 days for the same historical period. Compared 

to CMIP6, EERIE coupled simulations exhibit some noticeable improvement with the maximum and 455 

median value of 17values dropping to 20 days and 1416 days, respectively. Again, such a distribution is 

even lessHowever, the spread among different EERIE simulations remains large; while the positively 

biased when compared to the earlier-periodτ are mostly captured by IFS-FESOM2, ICON tends to exhibit 

much smaller τ than ERA5 (τ of 16at 6-7 days)..  

Interestingly, the atmosphere-only EERIE simulations (IFS-AMIP) ovgenerally outperform the ocean-460 

coupled runs with, exhibiting a reduced positive bias in τ compared to their coupled versions (IFS-

FESOM2) and a much smaller spread of τ, suggesting. This suggests that the prescribed historical SST 

boundary condition serves a goodstrong physical constraint on the SAM persistence. With all five 

members considered, the simulated τ at 28 km is still positively biased for both annual and austral-summer 

means, but the biases do not exceed more than 4.5 days and at least one member presents almost identical 465 

values (8 days annually and 11 days in NDJ) to ERA5. (1980-2014). Refining the atmospheric resolution 

from 28 km to 9 km lowers suggests a lowering of the SAM decorrelation timescale to become slightly 
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negatively biased (, with τ of 8 days annually and 10 days in NDJ) although they are still within the 

measurement uncertainty ranges of ERA5. 

 470 
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Figure 2. Distribution of simulated τ (days) in CMIP6, EERIE coupled, and EERIE atmosphere-only (AMIP) simulations. The 

simulations from CMIP6 and EERIE AMIP are both historical simulations, with theira fixed period indicated in the x-axis labels, 

and the simulations from EERIE coupled vary as simulations cover varied periods as indicated in Table 1. ERA5 is analyzed for two 475 

time periods as references for. CMIP6 results from 31 experiments are presented in violin plot, in which the historicalwidth indicates 

the density of the data points, the thin gray vertical box in the middle shows the 25th –75th quantiles, and pre-industrial periods, 

both expressed in the white dot presents the median. For the rest, error bars showingare added wherever applicable to show the ±1 

standard deviation of the resultsτ from the 1,000 bootstrap resamplesing.        

 480 

4.2 The relationship between jet location and τ 

The bias relationship between westerly jet location (λ0) and SAM decorrelation timescale (τ) is then re-

visited. Similar to their predecessors, CMIP6 models show a positive correlation between λ0 and τ, that 

is, models with a more equatorward jet location tend to exhibit a more persistent SAM. Consistent with 

Simpson & Polvani’s (2016) result based on CMIP5 models, the slope of the linear fit is larger during 485 

NDJ, indicating a larger variation in τ given the same variation in  λ0 during this season.  Examining the 
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model resolution of each CMIP6 simulation, there appears no strong or clear relationship between the 

model resolution and the model biases in these two quantities (same for both latitudinal and longitudinal 

resolutions and for both atmosphere and ocean models, although only the atmospheric latitudinal 

resolution is expressed in Fig. 3). A potential dependency on resolution could be obscured in the CMIP6 490 

ensemble by other cancelling factors, which vary from simulations incorporating different configurations 

and model systems. However, it is also possible that the importance of resolution (or the improvements 

typically attributed to a higher resolution) in determining on the performance of the large-scale SAM 

variability and the mean jet hasve reached a plateau withat the typical grid size reachedsizes used in the 

current GCMs (e.g., CMIP6) and other factors are becoming more critical.). For instance, based on 495 

simplified atmospheric GCMs with idealized forcing, Gerber et al. (2008) found that the decorrelation 

timescale of the annular mode is unrealistically large at a coarse resolution of T21 (5.6°). While such a 

bias was notably reduced by refining the model resolution to T42 (2.8°), no further improvement was 

shown with a modelhigher resolution higher than T42of T85 (1.4°) and the τ converges to a still positively 

biased value. No test was performed in this study to determine if τ is improved again at even higher 500 

resolution or if the plateau continues. 

On the annual mean, EERIE simulations generally fall within a region smaller than that covered by 

CMIP6, with the IFS-FESOM 1950control being the worst performing experiment among the EERIE 

simulations (Fig. 3a), showing both the greatest positive bias in τ and λ0. For NDJ, a clear improvement 

of EERIE models in representing the SAM persistence is again shown as the spread of EERIE clearly 505 

shifts toward a lower τ, closer to ERA5’s τ compared to other CMIP6 exhibiting a similar jet location. In 

all, a positive⁡λ0-τ relationship remains and appears stronger in summertime across EERIE models (Fig. 

3). However, the slope of the linear fit is greater for annual means than for early summer, mainly because 

of the specific behavior of the IFS-FESOM control. The most skillful EERIE simulations for the SAM 

persistence, IFS-AMIP, all well capture the jet location (with a bias < 1°). This highlights again the 510 

importance of well-represented sea surface features to the large-scale atmospheric circulation and 

variability. Still, even with the same IFS model and the same 28-km grid size, the five IFS-AMIP 

ensemble members generated by perturbing the initial conditions (the only difference is the internal 

atmospheric variability) exhibits a spread in τ of about 5 days, which is not positively correlated with the 
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corresponding simulated jet location. This result suggests that the documented bias relationship between 515 

τ and λ0 in the literature does not always hold, particularly in our IFS-AMIP setupthis configuration with 

prescribed SSTs. It is also possible that when the jet location is relativelyhas already been well-captured, 

other factors become increasingly important to influence the persistence of SAM, and we explore some 

of these potential factors in the next section using idealized sensitivity experiments. 

 520 
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Figure 3. Scatter plot of climatological jet latitude (°) versus SAM decorrelation timescale τ (days; error bar indicates ±1 standard 

deviation from the bootstrapping) for (a) annual and (b) early-summer (NDJ) means in the Southern Hemisphere. Green crosses 

are based on CMIP6 historical simulations (colored by their latitudinal atmospheric resolution). Model names are not labeled here 

for visual clarity, but details are provided in their atmospheric model).Supplementary Table 1. ERA5 reanalysis and EERIE 525 

simulations are indicated as in the legend. Vertical and horizontal black lines are the ERA5 values. The green dotted straight line is 

the linear least-squares regression fit for CMIP6 models (slope is denoted as m, and Pearson correlation coefficient r is expressed in 

bold if statistically significant with the p value <0.05 in green in the top left corner). Similarly, the black dotted fitted line is the linear 

fit for all EERIE simulations.  

  530 

4.3 Sensitivities to varying SST boundary conditions 

EERIE simulations demonstrate a reduced bias in summer-timesummertime SAM persistence compared 

to CMIP6, but identifying the cause is challenging due to variability in model systems. Although CMIP6 

results show no clear link between model resolution and performance in τ and λ0, the higher resolution in 

EERIE remains one possible contributing factor to such an improvement. One piece of evidence is the 535 

reduction in τ when transitioning from a 28-km to a 9-km model grid size using a consistent IFS model. 

Another possibility is that the new generation of models in EERIE improves model physics, reducing the 

biases in processes that resulted in a toooverly-persistent SAM in earlier CMIP-like GCMs. In addition, 
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EERIE begins to explicitly resolve the ocean mesoscales, which are parameterized in CMIP6, though the 

resulting impacts on SAM persistence have not been investigated. To explore these possibilities, this 540 

section focuses on EERIE atmosphere-only sensitivity experiments with varied SST boundary conditions, 

aiming to investigate the influence of ocean mesoscales and model resolution in the observed 

improvement within a controlled framework. 

We first focus on the 28-km simulations. Regarding the seasonal variation of 𝜏 (Fig. 4a), the NoEddies 

experiments in which ocean mesoscales are removed (either NoEddies or NoFronts) exhibit intermingled 545 

patterns overlapping with those of ObsSST. However,Although their ensemble means suggest a slight 

reduction in 𝜏 (by approximately 2 days) during NDJ. This result indicates that the presence in the absence 

of ocean eddies —hinting that mesoscale SST features, whether quasi-stationary or transient, helps may 

help sustain SAM persistence (hence—this difference is not statistically significant at 95% confidence 

level. For the larger9-km configuration, the subtle impact of ocean eddies is not observed as NoEddies 550 

shows no clear changes in 𝜏 in the ensemble mean offrom ObsSST) during this period. , and both show 

smaller 𝜏 than the 28-km counterparts (Fig. 4b).  

All these 28-kmsensitivity experiments show a slightly poleward biased jet latitude compared to ERA5 

(within 1°) during NDJ, and the ensemble mean of ObsSST is the leastare generally less biased compared 

to those ofthan NoEddies and NoFronts (Fig. 4b4c). While this seems to be in agreement with the 555 

literature that a more southward-shifted jet is associated with a longer SAM persistence, there is an overall 

small and even negative the correlation between the λ0 and τ is weak (with a correlation coefficient of -

0.22 considering03) across all IFS-AMIP simulations in the IFS-AMIP configurations.  

In contrast,Compared to λ0, the metric eddy feedback strength 𝑏 appears a better indicator for shows a 

much stronger correlation with SAM persistence , exhibiting a correlation coefficient with τ of 0.47, with 560 

a higher correlation coefficient of 0.52 and a lower p-value of 0.08 (Fig. 4c). While the p-value does not 

meet the conventional threshold for statistical significance (p<0.05), it is notably lower than the examined 

λ0-τ relationship (p-value 0.42). However, the difference of 𝑏 among different sets of SST-boundary-

condition experiments cannot explain solely the observed reduction 4d), suggesting it may be a more 

informative indicator of SAM persistence in both NoEddies and NoFronts. Specifically, while the 565 

ensemble mean of NoEddies shows a slightly weaker 𝑏 thanthis configuration. Meanwhile, the surface 
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friction and τ exhibit a negative correlation (Fig. 4e) with a moderate correlation coefficient of -0.48 and 

p-value of 0.11. It is worth noting that of ObsSST, NoFrontsour results using [𝑓]̅
𝑠
 based on surface wind 

stress show values similar with or even larger than ObsSST. 

We then examine the surface frictional effects on SAM in thesequalitatively consistent patterns with those 570 

using the residual estimates, [𝐹̅]𝑠, across simulations (Fig. 4d), and no clear difference in [𝑓]̅
𝑠
 is found 

among ObsSST, NoEddies, and NoFronts. Experiments ObsSST and NoFronts exhibit highly similar 

values, while NoEddies exhibit a large ensemble spread and a slightly larger ensemble-mean value.despite 

some differences in the absolute values (Fig. S1a, b). A closer examination shows that the member in 

NoEddies with the largest value in [𝑓]̅
𝑠
 is accompanied by the weakest eddy feedback 𝑏  (red cross 575 

markers in Fig. 4c-d4d, e) and vice versa (red square markers). The opposite shifts of these two dominant 

mechanisms indicates an offset between each other, which explains why these members with the largest 

magnitudes of [𝑓]̅
𝑠
 do not appear as outliers in the distribution of SAM persistence. However, the 

quantification of the net effects of eddy forcing and surface friction requires a comprehensive budget 

analysisleading to subtle combined effects on the SAM persistence.  580 

The potential impact from ocean mesoscale on the SAM persistence is, however, not observed in the 9 

km simulations, as NoEddies shows almost no change from ObsSST in 𝜏 (Fig. 4e). That said, one 

ensemble member may be not enough to identify the influence of the ocean eddies as the 𝜏 fluctuation is 

quite large among the 28-km ensemble members, even given the same SST boundary condition. For the 

other metrics, the single runs of 9 km qualitatively align with the ensemble means of 28-km simulations: 585 

The suppression/filtering of ocean eddies in SST boundaries leads to a slight poleward shift (more biased 

than ObsSST) of the mean-state jet, a weaker Lorenz and Hartmann (2001) proposed that the eddy 

feedback sustaining the SAM anomalies, and a slightly reduced surface can interact with the frictional 

impact dissipating SAM. The same signs of changes in the latter two counteracting mechanisms render 

their net impact on sustaining SAM uncertain. It is possible that the changes in these two processes, 590 

influenced to lengthen the effective timescale of SAM by the presence of ocean eddies, counterbalance 

each other at 9 km, resulting in a comparable τ 
𝑡𝑓

(1−𝑏𝑡𝑓)
, where 𝑡𝑓 is the damping timescale. Here, we 

estimate 𝑡𝑓  by taking the ratio between NoEddiesthe regressed [𝑢̅]𝑠  (in unit of m/s) and ObsSST. the 
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regressed [𝐹̅]𝑠 (unit of m/ s2) averaged over the 7-14 lag days, which gives a value of 8.6 days for ERA5 

(close to the 8.9 days in Lorenz and Hartmann (2001)). We found that this metric indeed correlates with 595 

τ more strongly than b or [𝑓]̅
𝑠
([𝐹̅]𝑠) alone with a higher correlation coefficient of 0.61 and a lower p-

value of 0.03 (Fig. S1d), pointing to its superior usefulness to assess the joint impact of the two competing 

dominant mechanisms.  

However, these analyses do notalthough those metrics explain some of the differences between individual 

experiments, none of them shows systematic differences between ObsSST and NoEddies and none clearly 600 

accounts for the significant reduction in τ when the model grid size is refined from 28 km to 9 km, as all 

three diagnostics indicate that the 9-km simulation falls within the range of values covered by the 28-km 

simulations.. Considering the large variability in the 28-km ensemble members, one member at 9 km may 

be not enough to identify the influence of the resolution. Additional simulations and diagnostics 

woulddifferent experimental approaches may be required to confirm the underlying cause for the observed 605 

model grid spacing dependency.  
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 610 

Figure 4. (a) SAM decorrelation timescale (τ) as a function of month for IFS-AMIP 28km simulations (dashed lines for each ensemble 

members and solid lines for the ensemble means; black for ObsSST and red for NoEddies experiments indicated in the legend) and 

ERA5 (yellow). (b(b) Similar to (a) but for 9 km experiments (shades for the ±1 standard deviation of τ from the 1,000 bootstrap 

resampling). (c) Scatter plot of τ (days; y-axis) and westerly jet latitude (each markerx-axis; filled-color markers for one simulation; 

the horizontal bar in the bottom shows the minimum- to maximum- range with the circle28 km; hollow stars for the ensemble mean 615 

of each set of the SST experiments). (c)–(9 km simulations). (d)–(e) Similar to (bc) but forwith x-axis variable replaced with the eddy 

feedback strength and frictional effects associated with SAMimpact, respectively. In (b)–(d), the gray dotted line represents the 

linear regression fit, and the correlation coefficient isand p-value are indicated in the top-right corner.  (e)–(h) Same as (a)–(d), but 

for the 9-km simulations. 

5 Discussion and conclusions 620 

This study assesses the performance of new high-resolution global model simulations developed under 

the EERIE project in capturing the persistence of the Southern Annular Mode (SAM), a key driverleading 

mode of climate variability in the Southern Hemisphere. EERIE simulations are conducted with a model 
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grid size of 9–28 km for the atmosphere and 5–13 km for the ocean. The persistence of the SAM is 

assessed using the decorrelation timescale of the SAM index (τ), for which CMIP GCMs have historically 625 

exhibited a systematic positive bias (overly persistent) in austral summer, often correlated with a 

climatological westerly jet that is too equatorward. Our conclusions and discussion based on the phase 1 

preliminary simulations of the EERIE models are organized into two subsections: (1) the performance of 

coupled simulations, and (2) the performance of atmosphere-only (AMIP) simulations and insights 

obtained from the sensitivity experiments with varied SST boundary conditions under the AMIP setup.  630 

5.1 EERIE Coupled simulations 

Compared to CMIP6, the EERIE coupled simulations show a slight improvement in representing the 

SAM persistence on an . Although the inter-model variability remains large, the annual-mean basis and a 

notable advancement in early summer (NDJ). The annual-mean τ distribution in theof EERIE coupled 

simulations (clearly shifts to lower biases with a median: 10 value of 9 days) is similar to that in the 635 

CMIP6 historical simulations (median: 11 days), both are positively biased compared, closer to the ERA5 

value of 8 days for 1980–2014. Notably, the EERIE simulations primarily representthan the earlier 1850s 

or 1950s period, for which reanalysis suggest a higher τCMIP6’s median of 1011 days. ForDuring early 

summer (NDJ),, the EERIE simulations demonstrate τ valuespronounced long tail of τ in CMIP6 

simulations is also noticeably reduced in EERIEs, with the former ranging from 9 to 32 days (median: 16 640 

days) and the latter ranging from 9 to 17 days (median: 14 days), in contrast to CMIP6's overestimated 

range of 9) closer to 32 days (median: 16 days). This clear improvement of the EERIE simulations for 

early summer τ holds regardless of the two reference periods used for ERA5 (ERA5’s 11 days for the 

historical period as in CMIP6 and 16 days for an earlier period of 1958-1978). 

. The relationship between biases in the westerly jet location (λ₀) and τ remains positively correlated in 645 

EERIE simulations as has been founddocumented for CMIP-like models. Consistently, the smaller bias 

for τ in EERIE simulations during the austral summer is accompanied by a smaller rangeimproved 

representation of λ₀ (closer to ERA5) compared to CMIP6. However, the outperformance for τ in EERIE 

models compared to the CMIP6 runs that capture similar jet locations indicates that other factors inare at 

play. AmongWhile the improvement of EERIE models compared to CMIP6, indicates that increased 650 
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resolution can offer benefits, the varied skills within CMIP6 in representing either λ₀ or τ do not show a 

clear dependency on the model resolution shows weak dependency on biases in either λ₀ or τ, but. It is 

possible that the impact of resolution is outweighed by other factors varying in CMIP6 simulations 

incorporating different configurations and model systems., or that the benefit requires the resolution 

exceeding a certain threshold to emerge.  655 

5.2 EERIE Atmosphere-only simulations 

Among EERIE simulations, the IFS-AMIP runs with prescribed historical SST and sea ice boundary 

conditions show the optimal performance in both SAM persistence and westerly jet location, with smaller 

spreads and closer values to ERA5 than the coupled runs. This highlights the importance of accurately 

representing sea surface thermal conditions to improve the simulation of these large-scale atmospheric 660 

quantities. While some studies have demonstratedSen Gupta and England (2006) showed that the air-sea 

coupling is critical infor modulating the SAM (although they focused—albeit focusing on interseasonal 

scales,timescales, which are longer than the intraseasonal scale being investigated here; Sen Gupta and 

England, 2006), —our results suggest that the atmosphere-ocean coupling plays a secondary role relative 

to the. Instead, SST biases introduced by the coupling, —an ongoing challenge common to ocean-665 

atmospherein coupled GCMs (Zhang et al., 2023). Notably, the IFS-AMIP historical simulations 

significantly reduce biases compared to CMIP6, with errors of less than 4.5 days in τ and 1° in λ₀ with 

respect to ERA5.)—appear to be more influential.   

For the AMIP historical simulations, the λ₀–τ bias relationship does not apply, as the approximately 5-

day ensemble spread in τ shows no positive correlation with the minimally varying λ₀. It is possibleis 670 

virtually absent. We speculate that when the jet location is already well -captured (all AMIP runs are with 

<1° bias) and SSTs are prescribed, other factors become increasingly important for second-order 

processes may come into play to affect τ. Indeed, we find that the metrics of atmospheric eddy-mean 

feedback strength, surface friction and their combination correlate more strongly with τ than with λ₀ in 

the AMIP configurations, highlighting the importance of these two competing dominant mechanisms on 675 

SAM persistence of SAM. Especially,. However, these metrics cannot fully explain the impact ofclear 

reduction of τ when the model resolution stands out and can be more clearly interpreted using the same 
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model. Refining the IFS model grid sizeis refined from 28 km to 9 km lowers the simulated τ to even 

lower than the ERA5 value, although it is worth noting that ERA5 has a resolution closer to 28 kmusing 

the same atmospheric model.  680 

The potential importance of Finally, the thermodynamic impact from the ocean mesoscale features is 

explored via idealized AMIP experiments. Taking the historical runs as reference (ObsSST experiment), 

two experiments are carried out by filtering out the quasi-stationary ocean fronts (NoFronts experiment) 

or the transient ocean eddies (NoEddies) in the SST boundary conditions. While three experiments (each 

with five ensemble members) at 28 km show intertangled seasonal variations of τ, their the difference 685 

between the 28-km ensemble means suggestof ObsSST and NoEddies imply that the presence of ocean 

mesoscales, regardless of fronts or eddies,mesoscale SST features may help to maintain the SAM 

anomalies increasing the persistence (increase τ by roughly 2 days) in early summer. However, such an 

effect impact is not statistically significant and is not captured in the 9-km simulations, although there is 

only one ensemble member for each experiment. . Among the 28-km members, we also do not see a 690 

systematic change of eddy feedback or surface friction due to the presence or absence of ocean eddies in 

the SST field. The critical role of oceanic mesoscale eddies in the Southern Ocean climate system is well 

documented. While their local impact on the atmospheric boundary layer is well established, their direct 

influence in modulating large-scale modes such as the SAM appears limited under our AMIP setup 

without air-sea coupling. A similar conclusion was obtained by Purich et al. (2021) performed similar 695 

experiments but with a coarser coupled GCM, (model resolution of ~130 km), ACCESS1.0, to explore 

the role of oceanic variability on SAM by restoring the SST to the monthly mean patterns.. They found 

that suppressing Southern Ocean SST variability by restoring the SST to the monthly mean patterns does 

not impact SAM persistence in their simulations, but their analysis was on monthly rather than daily 

means and with a coarser model resolution of ~130 km. As they also concluded, that eddy-resolving 700 

models are required to properly capture the air–sea feedbacks in the Southern Hemisphere.  

Using the idealized AMIP experiments, we conduct further exploration on the “internal” atmospheric 

dynamical mechanisms contributing to the SAM persistence, eddy feedback strength and surface friction. 

It is worth noting that the eddy feedback strength appears to be a better indicator than the mean-state jet 

latitude λ₀, linking positively and more statistically significantly to the simulated summertime τ among 705 
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the IFS AMIP simulations. Still, by how much it is counteracted by the surface friction requires a more 

comprehensive budget analysis. Likely because of those compensating effects, the metrics of jet latitude, 

eddy feedback and frictional impact, do not provide a clear answer as to what contribute to the observed 

differences in the simulated τ when ocean mesoscales are removed.  

This result highlights the complexity of mechanisms contributing to the SAM persistence in GCMs. For 710 

instance, the interplay between eddy forcing and surface friction suggests that even small errors in one 

process may result in notable uncertainty in their net impact. AdditionallyBetween EERIE coupled and 

AMIP simulations, the superior performance of the latter seems to suggest that model skills in 

representing SAM persistence does not clearly benefit from the two-way ocean–atmosphere coupling or 

from the explicit inclusion of ocean mesoscale features. Our hypothesis is that while coupled models offer 715 

a more physically consistent representation of the climate system, they also tend to introduce SST 

biases—potentially due to under-tuning in high-resolution configurations or imbalances in the coupling 

process. In fact, previous studies have shown that eddy-permitting models can exhibit larger SST biases 

than either coarser models with parameterized eddy fluxes or fully eddy-rich models (e.g., Storkey et al. 

2025). Reducing SST biases remains essential for advancing the representation of SAM and Southern 720 

Hemisphere climate variability. The large variability among ensemble members with the same model 

configuration also highlights the complexity of mechanisms contributing to the SAM persistence in 

GCMs and call for further investigation or different approaches to address the outstanding questions. For 

example, this study only considers the zonally averaged properties, but non-zonal components likely play 

important roles in shaping SAM characteristics in climate systems and hence their representation in 725 

GCMs (e.g., Barnes and Hartmann, 2010; Sen Gupta and England, 2006). Nevertheless, the general 

improvements seen in the phase 1 simulations of the EERIE coupled models present a promising path 

forwardresults in addressing the long-standing GCM biases in SAM persistence, especially considering 

the challenges in optimally configuring high-resolution models (i.e., tuning) and the lack of community 

experience in doing so. Furthermore, the controlled framework of the IFS-AMIP idealized eddy-rich 730 

experiments offers significant potential for enhancing our understanding of atmospheric responses to 

ocean mesoscales.  
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