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Authors’ Response to referees’ comments on “Southern Annular Mode Persistence and 

Westerly Jet: A Reassessment Using High-Resolution Global Models” by Chen et al.  
MS No.: egusphere-2025-666 
MS type: Research article 
 

Following the reviewers’ advice, we have made substantial efforts to address their concerns—
particularly those raised by Reviewer 2—and revised the manuscript accordingly. In summary, 
we have: 

• Included a supplementary table presenting the results for each individual CMIP6 model. 

• Replaced the EERIE spin-up runs and short simulations with longer (22–65 year) runs, 
including two complete historical simulations, and added bootstrapping. 

• Expanded the literature review with a broader discussion of processes affecting SAM 
persistence and clarified the motivation for the AMIP (IFS) sensitivity experiments with 
varied SST boundary conditions. 

• Implemented two of the reviewer 2’s suggested methods for estimating frictional 
impacts and expanded the related discussion. 

• Adopted a reviewer-recommended method for identifying the westerly jet location 
(though results remain similar). 

Additional revisions have been made to the article to reduce repetition and incorporate new 
content. All figures have been improved compared to their previous versions. Detailed 
responses to each comment are provided below, with the reviewer’s comments in black and 
our responses in green. The line numbers refer to the revised manuscript (without tracked 
changes); however, a tracked-changes version is also provided for reference. 
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Referee 1 (RC1) 

Overall Assessment  

This study explores the atmospheric and oceanic influences on modelled SAM persistence and its 
relationship with the latitude of the mid-latitude jet. The authors note the longstanding issue that 
CMIP models (including the latest suite: CMIP6) overestimate SAM persistence (quantified using 
the decorrelation timescale), particularly in early austral summer, which appears to be much 
improved when using high-resolution, eddy-resolving simulations from the EERIE project. This 
appears to be in part due to more realistic simulation of the jet position/distribution (CMIP models 
have tended to be too equatorward biased) but the importance of accurate SST representation is 
also clear. In fact, the authors show that AMIP model experiments of the EERIE simulations perform 
better than coupled experiments in terms of more realistically representing the jet position and 
SAM decorrelation timescale.  Enhanced resolution of the EERIE simulations likely plays a role in 
the improvement relative to CMIP6 models but also improved model physics, particularly 
concerning ocean mesoscale eddies which appear to slightly enhance the SAM decorrelation 
timescale in early summer (at least for simulations run at 28 km resolution) according to sensitivity 
simulations performed. However, cancellation effects (e.g., atmospheric eddy feedback strength 
versus surface friction) make it difficult to ascertain which aspects help improve modelling of the 
SAM persistence. For instance, the decorrelation timescale is more realistic still in 9 versus 28 km 
AMIP simulations, yet the role of ocean mesoscale eddies in enhancing SAM persistence is not 
evident at this finer resolution.  I found the study to be very well written, organised and logically 
structured. The Figures are clearly presented and straightforward to understand and the step-by-
step computation of the different diagnostics examined will I think be much appreciated by many 
readers. The conclusions drawn are supported by the results shown, so I can recommend this be 
accepted for publication in Weather and Climate Dynamics. I include just a few comments for the 
authors to consider prior to acceptance. 

General Comments  

I only had one main consideration for the authors which I found lacking in the paper. That is 
information of which CMIP6 models were considered (if supplementary information were to be 
provided, a table for this would be warranted). That is not to say that knowledge of which models 
lie where in the distributions shown (Figures 2 and 3) are important in understanding this work. But 
for others reading, it might be useful for them to know and the best way I feel to include this would 
be to show similar Figures with individual CMIP6 models indicated in supplementary information. 
Nevertheless, knowledge of which CMIP6 models lie where could help others or even the authors 
to comment upon whether commonalities such as shared model components or known biases 
more widely within the climate system might influence the results. So, I would encourage the 
authors to think about providing this information. 
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We would like to thank the reviewer for their encouraging comments, and we have taken the 
suggestions into account for the revised version of the manuscript. A table has been added in the 
supplementary materials: 

Table S1. Annual and early-summer (NDJ) SAM persistence (the decorrelation timescale of the SAM 
index; τ) and westerly jet position for the 31 studied CMIP6 models (historical simulations) and 
ERA5 for the same period of 1980-2014. 

Model τ Annual τ  NDJ Jet latitude Annual Jet latitude NDJ 

TaiESM1 8.2 11.6 -52.4 -50.4 

AWI-ESM-1-1-LR 12.0 21.2 -49.0 -48.4 

AWI-ESM-1-REcoM 14.1 25.1 -49.7 -50.4 

BCC-CSM2-MR 11.2 21.5 -51.0 -50.3 

BCC-ESM1 14.2 30.2 -50.5 -49.5 

FGOALS-f3-L 11.4 16.6 -49.7 -48.9 

FGOALS-g3 9.4 12.2 -49.7 -49.5 

CanESM5 10.2 14.5 -49.6 -49.8 

IITM-ESM 13.2 22.5 -47.0 -47.0 

CNRM-CM6-1 11.3 18.7 -48.2 -48.4 

CNRM-CM6-1-HR 9.8 12.6 -45.8 -46.2 

CNRM-ESM2-1 11.9 20.2 -48.5 -48.4 

ACCESS-CM2 13.9 27.0 -50.1 -49.6 

EC-Earth3 9.4 12.9 -50.3 -49.4 

MPI-ESM-1-2-HAM 12.7 24.3 -49.9 -49.7 

INM-CM4-8 9.2 9.5 -51.7 -53.4 

INM-CM5-0 10.7 15.2 -50.3 -52.0 

IPSL-CM6A-LR 12.7 22.9 -49.2 -48.8 

MIROC6 11.7 20.3 -48.7 -49.6 
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MPI-ESM1-2-HR 11.9 15.6 -48.8 -48.4 

MPI-ESM1-2-LR 10.0 14.3 -47.9 -48.4 

MRI-ESM2-0 16.0 32.1 -48.0 -47.0 

GISS-E2-1-G (1) 13.2 23.4 -51.1 -50.9 

GISS-E2-1-G (2) 10.8 17.0 -50.8 -50.5 

CESM2 9.0 13.4 -51.9 -52.3 

CESM2-FV2 9.3 13.9 -52.7 -52.2 

CESM2-WACCM 11.6 16.3 -52.0 -51.9 

CESM2-WACCM-FV2 11.2 17.3 -52.3 -51.7 

NorESM2-LM 7.1 9.6 -52.6 -51.6 

NorESM2-MM 9.1 13.0 -52.6 -52.2 

GFDL-CM4 9.2 12.4 -49.0 -48.7 

ERA5 7.9 10.9   -51.1   -50.4 

Specific Comments  

L15: “a critical driver” → “a leading mode”? I wouldn’t consider the SAM to a driver itself, but more 
of a reflection of driving influences. Expressing it as a leading mode would be more scientifically 
accurate and consistent with earlier literature (e.g., Marshall, 2003; Marshall et al., 2022).   

We thank the Reviewer and agree with this comment. We have changed the sentence as suggested. 
(L15 in the revised manuscript). 

L340-342: How reliable is the SAM derived from ERA5 pre-satellite era when comparing with the 
EERIE coupled simulations? Presumably the SAM is more reliably reconstructed after 1979 from 
ERA5 but maybe difficult to quantify how much of an improvement there would be. It may be worthy 
of further comment or caveating, however?  

We agree that ERA5 is less reliable in the pre-satellite era (added to the Results section):  

L366: “Note, however, that there is relatively less confidence in the accuracy of the value of the 
SAM in ERA5 prior to the satellite era.” 

But we have also added that ERA5 is still a relatively better option among the available datasets (in 
the Data section): 
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L216: “Among the reanalysis products that extend backwards in time beyond 1979 (ERA5, 20CRv3, 
JRA-55), ERA5 is found to agree best with station observations and produces good representation 
of SAM, both before and after the advent of satellite sounder data (Marshall et al., 2022).” 

L343-344: Suggesting that a relative minority of models are considerably worse in representing SAM 
decorrelation timescale than the rest of the pack. Did the authors investigate why this might be or 
were they at least able to note some commonalities in the most unrealistic models that might point 
to the cause(s)? For instance, could there be an association between too equatorward jet position 
and shared model components? Or factors that may give plausibly give rise to the issue of realistic 
eddy feedback strength? It may be beyond the scope of the paper to delve into this, but others 
reading might be encouraged to look into this.  

It is indeed something interesting to study. However, we did not identify obvious commonalities 
shared by the worse performing models (e.g. spatial resolution or warm bias over Antarctica or the 
Southern Ocean or shared components).  

Previous studies using CMIP models have discussed the association between too equatorward jet 
position and models’ issues to represent the SAM persistence (e.g., Bracegirdle 2020, Zhang 2021) 
and the related role of the eddy feedback strength. However, we have the feeling that a 
comprehensive study of the shared components of these models falls beyond the scope of the 
study, which focuses on the added value of the high-resolution EERIE models. 

L477: “…a key driver…” → Again I think ‘…a leading mode…” would be more technically correct.  

We have modified the sentence in the revised version accordingly: 

L494-496: This study assesses the performance of new high-resolution global model simulations 
developed under the EERIE project in capturing the persistence of the Southern Annular Mode 
(SAM), a leading mode of climate variability in the Southern Hemisphere. 

Technical Corrections  

L52-53: “spring (MAM) and summer (JJA)”. → “autumn (MAM) and winter (JJA)”.   

Corrected (L52-53). Thank you. 

L153: “observation” → “observations” Table 1: Some font size inconsistencies noted.  

This sentence has been removed from the revised manuscript. Font size of Table 1 has been 
adjusted. 

L245: Tabulation before “Finally…”  

Corrected (L259). Thanks. 
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Referee 2 (RC2) 

"Southern Annular Mode Persistence and the Westerly Jet: A Reassessment Using High-Resolution 
Models" examines the relationship between SAM persistence, the climatological jet latitude, and 
the classic eddy-feedback parameter in both CMIP6 models and a new suite of high-ocean-
resolution models (EERIE), with some added AMIP-style simulations with one EERIE model to help 
interpret the effects of increased resolution. The work finds that EERIE simulations have much 
lower bias in the SAM timescale than CMIP6, particularly in summer (traditionally the worst season). 
The bias is even lower in the AMIP simulations forced by observational SSTs, which suggests that 
ocean-atmospheric coupling may contribute to the bias. While these EERIE simulations have a 
lower bias and lower resolution than most CMIP6 models, the CMIP models do not show much 
dependence on horizontal resolution. Instead, previously established relationships relating the 
SAM timescale to the jet latitude seem to hold for the CMIP models. For EERIE models, this 
relationship breaks down, and the eddy-feedback parameter has better correlations with the 
annular mode timescale. When SST gradients are reduced in the AMIP style simulations, the 
persistence is reduced, although the cause is unclear. 

I cannot recommend the paper to be published in its current form. With substantial revision and 
extended analysis, it could eventually be published, but the current state of the paper presents only 
a very marginal advancement in knowledge in the area of SAM timescales, and the results are 
challenging to interpret without more context in the literature and clearer interpretive frameworks. 

Despite these criticisms, the paper does a few things well. First, I think the question is well-defined: 
what are the impacts of high-resolution atmosphere and ocean models, and their coupling, on SAM 
persistence? I also think they have the data available to address this question, but it needs to be 
much better utilized. They outline their methodology in a very reproducible way, and generally they 
follow the previous literature (to a point). The writing is of good quality and reasonably easy to follow. 

My major concerns are summarized below; a detailed discussion follows. The novel contributions 
of this work are the analysis of high-resolution simulations, the SST sensitivity experiments, and the 
consideration of friction to explain intermodel differences. All of these contributions require 
serious improvement. 

We would like to thank the reviewer for the detailed and constructive evaluation of our manuscript, 
and we have made substantial suggested revisions to the manuscript. The additional material 
broadens the scope of our study, which was initially focused on a mainly descriptive, standard 
evaluation of the SAM in a new set of high-resolution simulations. The reviewer underlines three 
novel contributions in our work and that all three require serious improvement. The way we have 
introduced those improvements is explained in detail following each specific comment. The main 
changes are briefly summed up here: 
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• We have discarded spin-up EERIE simulations and replaced the shorter simulations with longer 
runs (ranging from 22-year to 65-year long, including 2 historical simulations) in our new 
analysis; and the sampling uncertainty in estimating their SAM e-folding timescale have been 
supplemented with the bootstrapping method. 

• We have expanded the literature review and strengthened its connection to our results. This 
includes a broader discussion of the processes contributing to SAM persistence and an 
extended examination of the potential role of ocean mesoscales, providing a clearer 
justification for our AMIP sensitivity experiments using varied SST boundary conditions. 

• We have followed two of the reviewer’s suggestions to modify our approaches to estimate 
frictional impact on SAM persistence and expanded the relevant discussion. 

• We have adopted the suggested papers’ approach in identifying the jet location. 

We also acknowledge that we cannot answer all the questions in a single study, but when it is not 
possible to have robust conclusions, we have highlighted it as well as the limitations of our study.  

1. Regarding the analysis of high-resolution simulations: the simulations are all short (10 years) and 
frequently non-stationary (spin-up) or non-overlapping with the observational record. Given the 
long timescales required for SAM timescale convergence, the significant impacts of non-
stationarity on the estimation of the timescale, and the potential for decadal and supra-decadal 
variability in the feedback itself (following the jet latitude), interpreting the difference between the 
EERIE simulations, ERA5, and CMIP6 is very challenging. Clearly the bias is reduced, but it is not 
clear at present whether this is due to artefacts, random chance, or physically meaningful 
reductions. This problem could be partially alleviated by carrying out the bootstrapping techniques 
used for the reanalysis for the EERIE simulations. Longer runs/overlapping time periods would be 
preferable, but given the computational expense involved the current simulations might be 
acceptable given appropriate explanation of the caveats involved. 

Since the submission of our manuscript, new simulations have been available. This allows us to 
analyze longer runs and to discard all the spin-up simulations that may have strong issues with 
stationarity. The changes of the simulations are highlighted in the table below (see Table 1 in the 
revised manuscript): 

Institution 
Alfred Wegener 

Institute (AWI) 

Max Planck Institute 

(MPI-M) 

Met Office 

(MO) 
ECMWF 

  Coupled atmosphere-ocean models (eddy-rich) Atmospheric model 
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System name IFS-FESOM2 ICON 
HadGEM3-

GC5-EERIE 
IFS 

Simulations analyzed 

in initial submission  

1950spinup (31 yrs) 

1950control (20 yrs) 

Historical (1950–1969) 

1950spinup  

Cycle 2 (11 yrs) 
piControl 

(30 yrs) 

Historical 

(1980–2023) 

Modified simulations 

in this revised 

manuscript 

1950control (65 yrs) 

Historical (1950–2014) 

1950control (22 yrs) 

Historical (1950–2014) 

piControl 

(30 yrs) 

Historical 

(1980–2023) 

 

We have also applied bootstrapping to all the EERIE simulations. Among them, only the ICON 
1950control simulation failed to produce a convergent fit across the 1,000 bootstrapped resamples, 
likely due to variability in the underlying autocorrelation structure and the relatively shorter 
simulation length. Consequently, we have added the standard deviation of the e-folding timescale 
(τ) to the revised Figure 2 in the revised manuscript for all simulations except ICON 1950control (Fig. 
R2-1 below).  

 Figure 
R2-1. Distribution of τ (days) in CMIP6, EERIE coupled, and EERIE atmosphere-only (AMIP) simulations. CMIP6 and 
EERIE AMIP are both historical simulations, with a fixed period indicated in the x-axis labels, and the EERIE coupled 
simulations cover varied periods as indicated in Table 1. ERA5 is analyzed for two time periods for reference. CMIP6 
results from 31 experiments are presented in violin plot, in which the width indicates the density of the data points, the 
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thin gray vertical box in the middle shows the 25th –75th quantiles, and the white dot presents the median. For the rest, 
error bars are added wherever applicable to show the ±1 standard deviation of τ from the 1,000 bootstrap resampling.  

2. Regarding the SST sensitivity experiments: these simulations require much clearer justification. At 
the moment, there is very little literature which would suggest that mesoscale SST gradients should 
affect the SAM persistence. There are some possible physical arguments, but they are not given 
here. One might argue that the fact that they do appear to influence the timescale in some small 
ensembles using one model is justification enough, but without a solid hypothesis to test, there is 
no definitive answer about why the change in timescale appears. It is entirely possible that it is by 
chance (no estimate of sampling uncertainty is provided). An incomplete argument discusses the 
role of surface friction, but it requires more explicit discussion of possible mechanisms. Some 
additional analysis on why persistence changes grounded in possible physical mechanisms would 
drastically strengthen the paper. It also needs to be much clearer why two different types of 
mesoscale features are included. My understanding of the feedback literature is that there is no 
reason to expect different results from the two, and they provide basically identical results. 

As suggested by the Reviewer in a point below (main comment #5), we have added a paragraph in 
the revised version to better contextualize our work in the existing literature, specifically regarding 
the processes that control SAM persistence. After this paragraph, we have developed the 
justification for the sensitivity experiments (see (*) for major comment #5). 

3. Regarding the consideration of friction: The literature has established methods for estimating 
surface friction using the model output available to the authors, but they are not followed here. 
Instead, the authors estimate the frictional contributions in a way which is difficult to connect to 
established theory of SAM persistence and the feedback parameter they calculate, and in a way 
that also cannot be interpreted easily across model resolutions. Its physical units are not 
transformed to be consistent with the momentum budget (their interpretive framework). Much 
more work needs to be done regarding friction if it is to be used to interpret these simulations. 

To estimate the friction, we have applied two methods recommended by the reviewer in the specific 
comments (#16-19 below): the “faux-integration” of d(ρ⁻¹τ)/dz (Vallis 2006, Eq. 2.270) and the 
residual of the momentum budget. Both approaches yielded physically consistent units 
(N/m2/kg*m3/m=m/s2) and produced the correct sign within our momentum-budget framework 
(Simpson et al., 2012). We thank the reviewer for the suggestions. As a result, the outcomes are 
easier to interpret, as they follow the same conceptual framework as that employed for the eddy 
feedback strength. We have also extended the discussion and interpretation of the frictional impact 
and made connections to existing literature. For more details, please see our responses below to 
the specific comments #16-19.  
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4. Without significant improvements in its main areas of new contributions, the work only marginally 
advances knowledge in the area of SAM persistence. 

With substantial revision and extended analyses, we consider that we have addressed the main 
criticisms of the reviewer and provided substantial advances on the potential role of high resolution 
(specifically of oceanic processes) on the simulated SAM persistence. 

5. Finally, the work would be much stronger if it was better contextualized in the SAM feedback 
literature. It follows the SAM model bias literature reasonably well. Specifically, it should consider 
a few key areas which have important bearing on its results: 1) the evidence that the "feedback" 
which appears in austral summer (the focus of this work) is likely not due to eddy-mean flow 
interaction but nonstationary stratospheric variability (e.g., Byrne et al. 2016). 2) the understanding 
of SAM feedback mechanisms [barotropic (e.g. Lorenz and Hartmann 2001, Chen et al. 2008) vs 
baroclinic (e.g., Robinson 2000) vs diabatic (Xia and Chang 2014, Smith et al. 2024)] and how those 
feedback mechanisms might explain the role of surface friction and SST gradients. 3) The evidence 
for propagation of the SAM and for the stronger connection between SAM propagation biases and 
persistence biases than for eddy-feedback biases and persistence biases (e.g., Lubis and 
Hassanzadeh 2023). 4) the importance of the SAM timescale for climate predictability (e.g., 
Simpson and Polvani 2016, Ma et al. 2017, Hassanzadeh and Kuang 2019). 

The main topic of our study is the ability of models to reproduce the observed SAM persistence and 
to determine if a better representation of meso-scale oceanic processes reduces the biases seen 
in lower resolution models. The introduction of our submitted manuscript was thus mainly devoted 
to those ‘model-related’ elements. However, we agree with the Reviewer that a longer discussion 
of the literature devoted to SAM persistence in general and specifically of the processes at the 
origin of this persistence would put our results in a broader context and justify more explicitly the 
choice of some of our analyses.  

Consequently, we have added in the revised version a paragraph summarizing the main SAM 
feedback mechanisms. We have discussed how mesoscale oceanic features could influence the 
SAM persistence (point first raised in another major comment above, #2). We have also added a 
sentence justifying the importance of the SAM persistence for predictability. This paragraph is still 
relatively short considering the extensive literature on the subject. Describing all the mechanisms 
at play and discussing the uncertainties of those mechanisms would require a lengthy introduction 
considering the goal of the paper, but we come back to the relevant points in other sections of the 
manuscript, in particular in the conclusion when discussing some of the limitations of our study. 

Paragraph to replace the lines 55-58 of the submitted version where we were defining SAM 
persistence: 
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Lines 55-75: 

(*) “A key characteristic of SAM is its temporal persistence, referring to how long a given phase of 
the SAM (positive, negative or neutral) tends to last before transitioning. This long persistence is 
important as it provides a source of predictability at a timescale longer than the one associated 
with synoptic variability (e.g., Robinson 2000; Lorenz and Hartmann 2001, Simpson and Polvani 
2016). SAM persistence is often measured as the decorrelation timescale (e-folding timescale) 
which indicates the average duration over which the SAM index remains strongly correlated with its 
past values. A standard explanation attributes the extended SAM persistence to the reinforcement 
of westerly flow anomalies by atmospheric eddy momentum fluxes, which are generated by 
changes in the mean flow and act to counteract dissipation from surface friction. Several 
mechanisms can be at the origin of this eddy-mean flow feedback that reinforces the shifted jet, 
including barotropic processes related to anomalous wave propagation and breaking and 
baroclinic processes associated with eddy generation and enhanced baroclinicity in the lower 
troposphere in response to shift in the westerly flow (e.g., Robinson 2000, Lorenz and Hartmann 
2001, Zurita-Gotor et al. 2014, Hassanzadeh and Kuang, 2019). The westerly flow anomalies also 
induce changes in the diabatic heating and cooling due to latent heat release and cloud radiative 
effect that modify the temperature gradients, affecting SAM persistence (Xia and Chang 2014, 
Smith et al.2024, Vishny et al. 2024). In addition to this eddy-mean flow feedback, SAM persistence 
can have an origin from the stratosphere, which introduce some non-stationary forcing to SAM. The 
main influence is likely in late spring and summer at the time of the seasonal breakdown of the 
stratospheric vortex (Simpson et al. 2011, Byrne et al. 2016, Byrne et al. 2017, Saggioro and 
Shepherd 2019). Furthermore, interactions between a stationary mode and a propagating mode of 
the zonal variability could also affect SAM persistence (Lubis and Hassanzadeh 2021, Sheshadri 
and Plumb 2017, Smith et al. 2024).” 

Lines 116-123: 

“Mesoscale oceanic features strongly impact the surface heat fluxes and surface stress in the 
Southern Ocean -a hotspot of mesoscale activity (Frenger et al., 2013; Bishop et al. 2017). This can 
influence on SAM persistence as the surface heat fluxes modify the atmospheric temperature 
gradients, the boundary layer structure and thus diabatic heating of the atmospheric column as 
well as the low-level baroclinicity, which have both a demonstrated impact on SAM persistence (Xia 
and Chang 2014, Smith et al. 2024 Robinson 2000; Zurita-Gotor et al. 2014 ). Furthermore, surface 
stress also plays a role as it tends to damp the westerly winds but also to enhance baroclinicity and 
the baroclinic feedback (Robinson 2000, Zurita-Gotor 2014, Vishny et al. 2024).” 

Other adjustments have been made to the introduction to avoid repetitions and make space for 
the new paragraphs. 
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Specific Comments 

1. Line 29: Assertion "eddy feedback is a better indicator" needs more justification and/or more clarity 
(better in what way? In what circumstances?) 

This statement referred to our results from the idealized AMIP sensitivity experiments, for which the 
eddy feedback shows a much stronger positive correlation with the summertime τ than the jet 
latitude (a clear context was already provided in the conclusion of the original manuscript). 
However, according to the reviewer’s comments (e.g., specific comments #21, #31), we realized 
this statement may be misleading. We have modified the sentence to  

“In these AMIP experiments, the atmospheric eddy feedback strength, combined with the damping 
timescale estimated via friction, correlates more strongly with τ than λ0. We speculate that the 
well-capture jet position (biases <1° relative to ERA5), due to prescribed SSTs, limits λ0’s 
explanatory power for τ differences, allowing other processes to dominate.” (L22-26) 

2. Line 30-31: "These findings…offer insights": More specific language would be stronger (what 
insights?) 

Due to the word limit of the abstract, we aimed to keep the wording concise. However, we have 
removed this sentence from the abstract and revised the conclusion to include more specific 
language. 

3. Introduction: I think this discussion would be stronger if it included the significance of the 
persistence. As it stands, the section reviews the SAM and its significance for SH climate, what 
persistence is, some of its potential causes (non-stationarity is not discussed, see following 
comment), its biases in GCMs, and some potential solutions for these biases. The problem is 
identified, but there exists a kind of motivational gap. The papers conclusions would be 
strengthened for unfamiliar readers if the significance of persistence was explicitly discussed. 

As discussed above in the main comment #5, we have added a sentence in the introduction to 
mention the interest of persistence to predictability of Southern Hemisphere climate (L56). 

4. Lines 67-70, 79-95: An eddy-jet feedback is not the only possible source of persistence for the SAM. 
There is substantial literature published after the papers reviewed here which highlights the 
possibility for a "feedback" caused by non-stationarity induced by stratospheric forcing (Byrne et 
al. 2016, 2017, Saggioro and Shepherd 2019, etc.). This kind of forcing is especially important during 
early summer, the focus of this paper (see Byrne et al. 2016), when the stratospheric polar vortex 
breaks down. Thus, the feedback parameters computed here may not be responding to any internal 
tropospheric dynamics but the coupled troposphere-stratosphere system. The bias correction of 
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Simpson et al. (2013a) suggests that this non-stationarity may not influence model biases, but it 
does not eliminate its possibility as one source of the feedback (Simpson et al. 2011 probably even 
supports this). Ma et al. 2017 further supports the notion of an eddy-feedback independent of non-
stationarity, but a comprehensive discussion of this would improve the interpretation of the results. 

As discussed above in the main comment #5, we have added a paragraph in the revised version 
explaining that eddy-mean flow (jet) feedback is not the only possible source of persistence and 
specifically mentioned the role of stratospheric forcing during early summer.  
We have also added more discussion in the Diagnostics section when introducing the “eddy 
feedback strength” (L331-336): 

“Furthermore, positive regression coefficients could be caused by non-stationarity of the series 
and in particular by interaction with the stratosphere and not just by eddy mean flow interactions. 
This introduces biases in the estimate of eddy feedback, particularly in late spring and summer 
(Byrne et al. 2016, Byrne et al. 2017), although this does not necessarily prevent using the 
regression method (Ma et al. 2017). The methodology is thus imperfect, but it provides an 
interpretative framework for the difference between the simulations and allows a comparison with 
earlier studies.” 

5. Line 143: Which segments of spin-up runs are retained? How much time is allowed for equilibration 
before using it for analysis? Given the importance of the stratosphere for the SAM and the time for 
its equilibration (~ 1 year), I would hope at least the first year is excluded from the analysis 

For the revision, we have discarded all the spin-up simulations from our analysis to alleviate the 
potential impact from non-stationarity on our results (see main comment #1). For the remaining 
EERIE control and historical simulations analyzed in this study, there is a 50-year spin-up time that 
was omitted for the IFS-FESOM2 and ICON coupled models (following the design of HighResMIP) 
and a 200-year spin-up that was discarded for the HadGEM3-GC5-EERIE model (following the 
design of CMIP6 DECK). We have clarified this in the revised manuscript (L153-154). 

6. Line 148: I'm not fully convinced by this reasoning. In part, Byrne et al. (2016) show that non-
stationarity does influence the calculation of eddy feedbacks, even given linear detrending. The 
spin-up simulations are certainly non-stationary, although that somewhat depends on whether 
some/how many of the initial years are omitted. The control simulations are likely not subject to 
this, but the historical simulations may be as well. Presumably they are more like reanalysis, but 
the point is that the differing periods may in fact influence the results beyond removing their 
climatological means (stationary or not). This non-stationary influence is notable in ERA5, where 
the bootstrapping Figure 2 shows substantially different decay timescales. In the case of NDJ, more 
likely influenced by non-stationarity, the two estimates are nearly non-overlapping. This is another 
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argument that the analysis time period is not a trivial consideration. One way to partially address 
this concern is to bootstrap estimates for EERIE simulations, as done with ERA, particularly for 
simulations with few ensemble members (9km-AMIP in particular). Another concern is that the 10 
years available for most simulations is not long enough to see strong convergence of the timescale, 
especially in coupled models (Gerber et al. 2008). 

We mentioned in the submitted version that the proposed detrending and removal of the seasonal 
cycle did not remove all the effects of non-stationarity. This was likely too short. We have modified 
this paragraph explaining that the procedure we applied is standard but highlighted that non-
stationarity still implies limitations in our approach. As mentioned above, we have discarded all the 
spin-up simulations, presented results for much-extended simulations, and applied the 
bootstrapping to most experiments (see for instance Fig. R2-1 above), reducing some of the 
limitations compared to the submitted version. 

In L160-166 of the revised manuscript, we have added:  

“As these simulations cover different time periods and some of them include transient forcing, 
linear and low-frequency nonlinear trends are removed as standard procedures in the SAM-related 
diagnostics. This should reduce the impact of the difference in experimental design on the 
evaluation of the model performance. However, this removal does not fully eliminate the non-
stationary features that could have a clear influence on the evaluation of SAM persistence and of 
the eddy feedbacks (Byrne et al. 2016). We therefore adopt a bootstrapping procedure (Section 3.1) 
to provide partial quantification of the influence of non-stationarity and uncertainty due to the short 
period of some simulations.” 

7. Lines 172-174: I would like more clarification about the choice to test the sensitivity of SAM 
persistence to different ocean mesoscale features. I do not understand the motivation very clearly. 
The zonal-mean, vertically-averaged zonal wind is a planetary-scale phenomenon, and while it is 
sensitive to ocean meso-scale features, I do not understand why it might be sensitive to one type 
over the other. The atmospheric eddies which power SAM and (potentially) its persistence are of a 
scale of 1000km, 10-100 times the scale of these features. While such temperature gradients can 
be important for lower-level baroclinicity and the organization of convection, the large-scale drivers 
of SAM represent a further aggregation of these smaller scale dynamics. Indeed, there is currently 
no proposed mechanism (so far as I am aware) which argues that SAM should respond differently 
to these features. The idea that high-frequency SST gradients might strengthen the boundary layer 
heat flux, potentially enhancing boundary layer drag and strengthening the baroclinic feedback 
could be one argument, but it does not differentiate between eddies and fronts. In general, these 
results should be discussed in light of theories for baroclinic feedbacks on SAM persistence 
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(Robinson 2000, Zurita-Gotor 2014, Zurita-Gotor et al. 2014). Diabatic feedbacks may also play a 
role here (Xia and Chang 2014, Smith et al. 2024). 

We agree with the reviewer that there is no strong theoretical basis for separating the analysis by 
different ocean mesoscale features (i.e., fronts vs. eddies). These sensitivity experiments were 
originally designed as part of the broader objectives of the EERIE project — specifically, to 
investigate "the relative importance of sharp SST gradients associated with quasi-stationary ocean 
fronts and transient ocean eddies on the large-scale extratropical atmospheric circulation" (C. 
Roberts et al., 2024b). Out of curiosity and to explore whether any notable differences might 
emerge in the context of SAM persistence, we initially analyzed all available experiments and 
retained this separation in the submitted manuscript. However, we acknowledge that this may have 
caused confusion. In the revised version, we now present only the ObsSST and NoEddies 
experiments, which are available at both model resolutions, allowing for a more consistent and 
parallel comparison. Additionally, we have expanded the discussion in the introduction on the 
potential role of high-frequency SST gradients in modulating SAM persistence (see response to 
main comment #5 above). 

8. Line 230: "for the same date in a calendar year". I think I know what this means, but more clarity 
would be better 

We have changed the sentence to “The (λ,t) field is derived in two steps. First, a 60-day low-pass 
filter is applied to the detrended (λ,t) along the t axis to retain only seasonal-scale variations. 
Second, the time axis (t) is reindexed into calendar day (d) and year (y). For each calendar day (e.g., 
Jan 1st, Jan 2nd, etc.), a 30-year low-pass filter is applied along the y axis to capture long-term 
variations. If the data span fewer than 30 years, the average across all available years for that 
calendar day is used, resulting in a fixed, repeating annual cycle.” (L241-246) 

9. Equation (1): y seems to be year, but it is not explicitly defined. The separation of t into d, y could 
be more clearly explained (see previous comment) 

We have modified the relevant sentences (L255-257) following Eq. (1): “Here, the daily time series 
PC(t) is reindexed as a function of calendar day d (e.g., Jan 1st to Dec 31st) and year y, and N denotes 
the total number of years. Equation (1) computes the autocorrelation of PC between a given day d 
and a lagged day d+l, averaged over all available years.” 

10. Line 249: As mentioned previously, this should be repeated for simulations with few ensemble 
members (5 or less). 



   
 

 17  
 

We have performed 1,000 bootstrap resampling iterations to estimate the sampling uncertainty for 
all EERIE simulations presented, and the results—where applicable—are included in the revised 
manuscript (Fig. 2). 

11. Figure 1: Other reviewers and readers may disagree with me, but I think Figure 1 belongs as 
supplemental materials. The freed up PU (publication unit) could be used much more effectively 
for other topics, some of which already mentioned, some to be mentioned. A very large majority of 
WCD readers interested in SAM and SAM timescale know what the pattern looks like, and if not, it 
is easily found. A more useful figure might be comparing the pattern across models. A similar 
argument is true for the timeseries. The raw timeseries is not relevant to the analysis being 
performed. Both are referenced once, only in passing. Panel c is more useful, but it is a visual 
explanation of e-folding time, which will be familiar to many readers, climate-oriented and not. 
Figure 1 could be more useful if it also depicted how the eddy feedback parameter (b) is calculated, 
as this is a more complex and less familiar calculation. Even with such an inclusion, I have a hard 
time justifying including Figure 1 in the main body of the text. 

We agree that the original Figure 1 is relatively simple and does not present new findings beyond 
what is already available in the literature. However, based on previous interactions with 
researchers less familiar with SAM persistence, we have found that the concept of e-folding time is 
not always intuitive. Given that our manuscript contains a limited number of figures, we believe that 
including this introductory illustration aids some readers without distracting more specialized 
audiences. To further justify its inclusion, we have added subplots to Fig.1 that illustrate how the 
eddy feedback strength is calculated (R2-2). 
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Figure R2-2. Example of the SAM decorrelation timescale and eddy feedback strength calculation based on ERA5: (a) 
The first EOF pattern of zonal-mean geopotential anomalies; (b) The corresponding first PC time series (SAM index); (c) 
Autocorrelation function (ACF) of the SAM index shown for a selected day of the year (black dashed) and an exponential 
fit (yellow). The e-folding timescale is denoted as τ. The ACF is repeated 1,000 times (gray) with the bootstrap sampling 
with replacement. (d) Same as (a) but based on vertically averaged zonal wind anomalies. (e) Lagged regression of 
different momentum budget terms in Eq. 3 onto the SAM index. (f) Eddy feedback strength b for positive lags 6–17 days.  

12. Line 265: Because many of your models have different resolutions (particularly CMIP5 vs EERIE, 
you mention regridding CMIP5 to the same grid, but not EERIE), I would highly suggest following 
Menzel et al. (2019) or Barnes and Polvani (2015) and doing quadratic interpolation around the jet 
maximum to define the jet latitude. This will alleviate some of the degeneracy (models with identical 
jet latitudes) in Figure 3 and is consistent with the literature. 

As suggested by the reviewer, we have performed a quadratic interpolation with the model output 
on its native grid around the jet latitude maximum to define jet latitude. While we did not observe 
any major difference between our previous and new results (Fig. R2-3), we have still updated our 
results using the new method in the revised version and added some clarifications in sec. 3.2: 

L276-280: “The westerly jet is diagnosed following Menzel et al. (2019) and Barnes and Polvani 
(2015). We apply a quadratic fit method on the monthly mean zonally averaged 850-hPa zonal wind 
at the latitude where the maximum value is found between 75°S and 10°S and the four adjacent 
latitudes of the model. The latitude where the maximum value of the quadratic fit is found defines 
the position of the tropospheric westerly jet.” 
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Figure R2-3. Jet latitude identified using two different methods, one of which is as shown in the initial version of the 
manuscript (y-axis) and the other follows Menzel et al. (2019) and Barnes and Polvani (2015) (x-axis). 

13. Line 273: The switch from geopotential height for defining the timescale to zonal wind for defining 
the feedback is not without caveats. The assumption here is that the wind relevant for the SAM (and 
its feedbacks) is the geostrophic wind. Recently, however, Smith et al. (2024) demonstrate that 
SAM has significant eddy-feedbacks from the ageostrophic momentum fluxes which are leading-
order in DJF in MERRA2. Vishny et al. (2024) also find important contributions to persistence from 
the ageostrophically-driven mean meridional circulation in idealized simulations. Thus, the 
imputation that models whose decay timescale is based on geopotential height will be consistent 
with the feedback from full (geostrophic+ageostrophic) zonal wind is probable, but not guaranteed. 
I think there is enough literature supporting the use of both (geopotential height and zonal wind) 
methods that it is not reasonable to redo the ACF calculations using zonal wind, but I do think it is 
worth acknowledging the geostrophic assumption and its limitations. 

As suggested, a discussion of the limitations of the geostrophic assumption has been added in the 
revised version: 

L290-294: “This shift from a definition of the SAM persistence timescale using geopotential height 
to the zonal wind for the estimation of the eddy-mean flow feedback is based on the standard 
assumption that geostrophic equilibrium provides a good approximation of the relevant variables. 
However, ageostrophic terms can also contribute to SAM persistence, introducing limitations to 
this hypothesis (Vishny et al. 2024; Smith et al. 2024).” 

14. Line 278: I think the choice of three levels by Simpson et al. (2013b) was not intended to be the ideal, 
rather it was the best available information at the time (CMIP3). The vertical structure of SAM can 
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be quite nuanced despite its barotropic nature (Wall et al. 2022, Sheshadri et al. 2018), and a 
significant fraction of the eddy momentum flux necessary for the feedback exists above 250 hPa 
(Nie et al. 2014, Sheshadri et al. 2018). I suspect much more than those three levels are available 
for CMIP6, and there inclusion would strengthen this analysis.   

We agree that including additional vertical levels would enhance the analysis. However, this choice 
was limited by computational constraints associated with the high-resolution EERIE simulations. 
As this is an international project that must balance the requirements of multiple teams within 
limited storage capacity, the 6-hourly data availability is currently restricted to only three vertical 
levels. To maintain consistency and enable comparison, we intentionally requested the same three 
levels used by Simpson et al. (2013b), allowing for a direct check against their results.  

15. Line 300: The assumption of the Simpson framework is that the PCs are uncorrelated. Sheshadri 
and Plumb (2017), Lubis and Hassanzadeh (2020), Lubis and Hassanzadeh (2023), and Smith et al. 
(2024) have all shown this is not the case. Specifically, Sheshadri and Plumb (2017), Lubis and 
Hassanzadeh (2020), and Lubis and Hassanzadeh (2023) have shown that the coupling between 
EOF1 and EOF2 influences the SAM persistence timescale and the estimation of the eddy feedback 
parameter, and that the SAM timescale in CMIP6 models shows a strong dependence on the 
strength of the coupling between EOF1 and EOF2 (as measured by SAM's propagation period, see 
Lubis and Hassanzadeh 2023, Figure 7). Without examination of the coupling between modes 
across models, the spread in eddy-feedback parameters is difficult to interpret. 

To address this comment, we have included the following paragraph in the revised version. 

L326-336: “The approach followed here assumes that analyzing only the first PC is a good 
approximation to study SAM persistence. However, although the PCs are uncorrelated by 
construction on short timescale, this is not the case at longer lags and the coupling between the 
first two components influences SAM persistence (Sheshadri and Plumb 2017, Lubis and 
Hassanzadeh 2021, and Lubis and Hassanzadeh 2023). Analyzing only the first PC brings thus clear 
limitations in our analysis of the model spread in simulated SAM persistence. Furthermore, positive 
regression coefficients could be caused by non-stationarity of the series and in particular by 
interaction with the stratosphere and not just by eddy mean flow interactions. This introduces 
biases in the estimate of eddy feedback, particularly in late spring and summer (Byrne et al. 2016, 
Byrne et al. 2017), although this does not necessarily prevent using the regression method (Ma et 
al. 2017). The methodology is thus imperfect, but it provides an interpretative framework for the 
difference between the simulations and allows a comparison with earlier studies.” 

16. Line 310-325: I have two concerns involving the friction term. First, more could be done to properly 
estimate it and, second, utilize it in the interpretation of the results. I will begin with its estimation. 
Given τ as the surface stress, one can estimate the resulting torque as d(ρ-1τ)/dz (see Vallis 2006, 
eq. 2.270), ρ being density. If you only have τ at the surface, because you are vertically-integrating 
it, you can simply use the surface value and divide by the depth (in meters) of the atmospheric 
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column, as the turbulent stress is likely zero at the model top. This faux-integration also yields a net 
negative sign (since the stress decreases with height), and should be of the right units 
(N/m2/kg*m3/m=m/s2) and the correct sign. This approach should still be approximately valid in the 
case that the "surface" stress is actually the output turbulent stress from the boundary layer 
scheme for the full boundary layer. 

We have followed the reviewer’s suggestions (#16 and #17) to improve estimation of the friction 
term (L340-350): 

(1) Since the only EERIE model output available is the turbulent surface stress, we performed 
the “faux-integration” by assuming (1) zero turbulent surface stress at the top of the 
atmospheric column, (b) fixed air density of 1.204 kg/m³ (at 15°C, 70% relative humidity and 
100 kPa) and an atmosphere column depth of H=8,464 meters. As this modification 
introduces the multiplication of the estimate used in the submitted version by a constant 
factor, this would not change our cross-simulation comparison shown in the submitted 
manuscript but provides the friction estimation with physically correct unit and sign, 
allowing the results to be interpreted more easily. 

(2) To validate the estimation in (1), we have also computed the residual of the momentum 
budget of Eq. (3) as an alternative estimation.  

Due to space constraints, the results of (1) are presented in the main manuscript, while the 
comparison between (1) and (2) is provided in the supplementary material (Fig. R2-4a, b). Our 
results show that the two methods differ in their absolute magnitudes (not surprising given the 
simplified assumptions), but the inter-simulation comparisons are consistent between the two 
methods. The negative linear regression between the estimated friction term and τ is also not 
strongly affected by the employed methods.  
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Figure R2-4. (a) Scatter plot of τ and the frictional impact estimated as the residual of Eq.3 in the main article (black 
and red markers are for ObsSST and NoEddies experiments, respectively; star markers indicate the 9-km simulations 
and the rests are the 28-km runs; yellow circle represents ERA5). (b) Scatter plot of τ and the eddy feedback strength, 
b. (d) Scatter plots of τ and the combined effects of friction (expressed as Rayleigh damping timescale, t f) and eddy 
feedback strength b, measured as tf/(1− b∙tf) following Lorenz and Hartmann (2001). In all subplots, the dotted gray line 
represents the linear regression fit, and the correlation coefficient and p value are shown in the top-right corner. 

17. However, the friction in Lorenz and Hartmann (2001; and in other studies building on this 
framework) is generally parameterized as Rayleigh drag with a constant damping timescale. 
LH2001 explain in their Appendix A how to estimate it from timeseries of m and z. Since both of 
these fields are used in this analysis, it should be possible to estimate a friction via Rayleigh drag. 
This has two key benefits: 1) it can be used to validate the friction estimated from the stress, and 
triple checked against the residual of the momentum budget, evaluated from your equation (3), 
which should also be possible. In my experience, the residual usually matches the Rayleigh drag 
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quite well. The second benefit is that it is useful for the interpretation of the feedback parameter, 
which I discuss more later. 

Lorenz and Hartmann (2001) quantified the eddy feedback and the frictional term using spectral 
analysis and cross covariance. Here, we follow a different approach to estimate the feedback 
parameter, following Simpson et al. (2013b) (see for instance their appendix for a justification). To 
additionally compute the frictional term following LH2001 would require too much extra space to 
explain the different methodology and introduce more complexity in our discussion, and so we have 
decided not to apply this approach. By contrast, we have computed the friction term as a residual 
of the momentum budget as suggested. 

18. A final issue with the estimation of the friction (no matter which method, preferably at least 2 of the 
3) is that its projection value is proportional to the square root of the number of latitudes, and thus 
its magnitude should not be compared directly with simulations with different horizontal resolution. 
This is true for all the budget terms, but the feedback parameter is resolution-independent because 
it involves the ratio of two budget terms. To understand why, consider a simplified version of your 
equation (2) where W = I (the identity). If e is a (square-) integrable function f(λ), sampled on an 
equally spaced grid (reasonable for GCM output), its Euclidean norm will be proportional to the 
square-root of the integral of [f(λ)]2 over latitude (λ), divided by the grid spacing (since we multiplied 
by the grid spacing to convert the sum into an integral). The integral should converge to the same 
value regardless of the resolution for most smoothly-varying, well-resolved f (again reasonable at 
even coarse GCM resolutions). However, the inverse of the grid spacing is proportional to the 
number of latitudes N (if the grid is evenly spaced). Thus the norm of e is proportional to √N. The 
multiplication of Xe is proportional to N (not the square root), by the same logic (because e is an 
orthogonal basis, the only component of X that survives the integration is proportional to e, and the 
product is proportional to ee). However, Xe has no square root, and thus Xe/√ee is proportional to 
√N. See a small example which should generalize well as the attached image. Note that including 
a non-identity weighting matrix W≠I does not change this, it simply adds another term into the 
integration. One could divide by √N to alleviate this, or use integrals in the top and bottom instead. 
Or, one could divide the friction by the zonal wind projection as done for the feedback parameter. 
At that point, you may as well compute the damping timescale following the literature (LH2001, 
Appendix A). 

We thank the Reviewer for pointing this out. We mentioned that all the analysis were performed on 
the EERIE model outputs interpolated onto a 0.25° × 0.25° grid (Line 133-134 in the original 
manuscript) to facilitate direct comparison across experiments. This has now been made more 
explicit in the revised manuscript (L144-146). As a result, differences in the models’ native grid 
resolutions do not introduce relative bias in this comparison. Nonetheless, we agree that this is an 
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important point to emphasize. We have therefore included a note in the revised manuscript (L351-
353) highlighting the dependence of such a calculation on data resolution. 

While we have chosen to retain the projected friction term in Fig. 4, we have also calculated a 
damping timescale (tf) using the residual term of Eq. (3), equivalent to the one corresponding to a 
Rayleigh drag, i.e.,  

[F]s= - [u]s/ tf . 

Instead of following the spectrum approach as in LH2001, here we follow the same framework for 
the eddy feedback strength estimation of Simpson et al. (2013b) by performing the lagged linear 
regression of [F]s and [u]s onto the PC(t). Finally, tf can be estimated by taking the ratio between the 
regressed [u]s (in unit of m/s) and the regressed [F]s (unit of m/ s2) averaged over the lag days of 7-
14 days. Our resultant damping timescale is 8.6 days for ERA5, very close to the 8.9 days estimated 
in LH2001 (L472-476). 

19. The second friction-related issue is with the interpretation of the feedback. Following LH2001, the 
eddy feedback parameter (b) lengthens the effective timescale for the SAM by tf/(1-b*tf), where tf is 
the frictional timescale. Thus, both the eddy feedback and the frictional timescale can effect SAM's 
persistence, and if models have differing frictional timescales, it could also explain differences in 
their persistence. In theory, one could see if this effective timescale tf/(1-b*tf) followed the 
autocorrelation timescale more closely (I suspect it would), but the model bias literature (Gerber 
et al. 2008, Kidston and Gerber 2010) generally does not follow this convention, so I don't think this 
is strictly necessary. However, it may give a better interpretive framework for the friction to plot the 
frictional timescale (rather than the projection) and use this LH2001 relation to explain how the 
frictional timescale interacts with the eddy-feedback parameter to determine the total timescale. 

As indicated above, we have computed a similar estimation of the damping timescale (tf) to extend 
our interpretation to the existing literature. This allows us to examine the quantity of tf / (1 – b· tf) 
(Fig. R2-4d). In our results, this quantity indeed shows a stronger positive correlation with SAM 
persistence τ with a larger correlation coefficient and lower p-value compared to when using b as 
the sole predictor variable. This quantity therefore more effectively describes the joint impact of 
friction and large eddy feedback on SAM persistence. However, like b and friction, this quantity 
does not provide a clear explanation for the subtle sensitivity of τ to different SST boundary 
conditions and the model resolution. Nevertheless, we have provided this additional diagnostic in 
the supplementary material.   

20. Figure 2 (caption): Please describe the violin plot in more detail; I don't believe they are common 
enough to assume they can be interpreted properly without explanation. 
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We have modified the Figure 2 caption to  

“Distribution of τ (days) in CMIP6, EERIE coupled, and EERIE atmosphere-only (AMIP) simulations. 
CMIP6 and EERIE AMIP are both historical simulations, with a fixed period indicated in the x-axis 
labels, and the EERIE coupled simulations cover varied periods as indicated in Table 1. ERA5 is 
analyzed for two time periods. CMIP6 results from 31 experiments are presented in violin plot, 
in which the width indicates the density of the data points, the thin gray vertical box in the 
middle shows the 25th –75th quantiles, and the white dot presents the median. For the rest, 
error bars are added wherever applicable to show the ±1 standard deviation of τ from the 1,000 
bootstrap resampling.” 

21. Lines 396-398: I think this point on the interpretation of the IFS-AMIP experiments requires more 
discussion and computation. These are an IC ensemble from the same GCM with the same 
boundary conditions, and thus represent internal variability of the same mean climate in a way that 
isn't the case for comparisons across the CMIP models. For example, you could likely run 5 more 
IC ensembles, and you might get a completely different pattern between jet latitude and e-folding 
timescale. But I don't think that somehow contradicts the expectation that the two should be 
positively correlated due to the stronger wave reflection (and weaker feedback) of more poleward 
jets (Barnes and Hartmann 2010, Lorenz 2023). Despite this, according to the convergence 
estimates of Gerber et al. (2008), the 40 years of AMIP simulations should be enough to constrain 
the decorrelation timescale within a day, and 4 of the ensemble members are within one day of 
their mean. This is where I think bootstrapped estimates of the sampling uncertainty could help 
resolve this question of whether sampling uncertainty can explain the lack of relationship, or 
whether this is indeed a breakdown of the expected theory. 

We agree with the Reviewer that the IC ensemble is different from CMIP models as the boundary 
conditions are the same for all the IC members while ensemble of coupled models can have very 
different SST patterns, for instance. This has been made more explicit in the revised version by 
mentioning ‘internal atmospheric variability’ instead of just ‘internal variability’ (L422). We agree 
with the Reviewer and we also “...don't think that somehow contradicts the expectation that the 
two should be positively correlated due to the stronger wave reflection (and weaker feedback) of 
more poleward jets (Barnes and Hartmann 2010, Lorenz 2023).” We agreed that the documented 
relationship between biases in τ and λ0 in the literature is based on strong physical arguments. 
However, the sentences referenced here (original L396-398) are purely descriptive of the shown 
results that there is no clear positive correlation between τ and λ₀ among IFS-AMIP simulations. 
The hypothesis we put forward is that, when the position of the jet is well captured as in all IFS-AMIP 
experiments (due to the constrained SST boundary conditions or not), the difference in jet position 
is too small between these experiments (compared for instance with CMIP models) to explain the 
difference in decorrelation timescale and other factors dominates, but this is only a speculation at 
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this stage. We have also examined the uncertainty via bootstrapping, but it doesn’t help to explain 
the lack of such a relationship here. Finally, as noted in our reply to a comment below (#31), we 
have modified the conclusion to make it clear that that the AMIP results are not interpreted as 
evidence that jet latitude is irrelevant.    

22. Figure 3: When uncertainty exists in both the dependent and independent variables of a regression, 
it may be more appropriate to use a different type of regression than least-squares, especially if the 
uncertainties are correlated (see Pendergrass and Kao 2022, and York 2004 for an alternative). 

We agree that a more sophisticated regression method could be more precise, but we have chosen 
here the standard least-squares for simplicity as in some previous studies. 

23. Line 415: Sample size of one, not enough evidence to support conclusion (bootstrapping would 
help) 

We have added the standard deviation of τ for all AMIP simulations using bootstrap resampling. The 
decrease in τ with higher resolution is not particularly robust on the annual-mean scale, as the 
estimated τ in the 9-km simulation falls within (though toward the lower end of) the range covered 
by the 28-km simulations (Fig. R2-1a). However, during the NDJ season, the reduction in τ for the 9-
km simulation is more pronounced, with its estimated range extended outside those of the 28-km 
simulations (Fig. R2-1b). 

24. Lines 425-430: Some connection to existing feedback mechanisms would be appropriate here 

We have added some connections to the existing literature in the revised manuscript. See also our 
responses to specific comments #16-#19. 

25. Lines 441-449: See previous comments regarding friction 

Addressed in responses to specific comments #16-#19. 

26. Line 462: Is the convection parameterization turned off at 9km? Stronger latent heating in the 9km 
run could create a stronger negative diabatic feedback (Xia and Chang 2014), decreasing the 
persistence 

The convection parameterization is still active at 9 km, as at 28 km resolution, consistently with the 
convection parameterization settings applied in ECMWF operational forecasts (added in L176).  

27. Figure 4: Panels (f), (g) and (h) should be greatly simplified, maybe down to one panel (or even a 
table), showing the simulation on one axis and the value of the x axis on the other. The decay 
timescales are identical, and two points is not enough to infer any relationship, so the current 
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scatter plots visually complicate the comparison between simulations. Readers will understand 
why they do not follow (b), (c), and (d), no need to artificially fit that pattern. 

We have removed the original panels (f), (g) and (h) in Fig. 4, showing the 9-km results on the same 
scatter plots as the 28-km members (shown here as Fig. R2-5). 

 

Figure R2-5. (a) SAM decorrelation timescale (τ) as a function of month for IFS-AMIP 28km simulations (dashed for each 
ensemble member and solid for the ensemble means; black for ObsSST and red for NoEddies experiments) and ERA5 
(yellow). (b) Similar to (a) but for 9 km experiments (shades for the ±1 standard deviation of τ from the 1,000 bootstrap 
resampling). (c) Scatter plot of τ (days; y-axis) and westerly jet latitude (x-axis; filled-color markers for 28 km; hollow 
stars for 9 km simulations). (d)–(e) Similar to (c) but with x-axis variable replaced with the eddy feedback strength and 
frictional impact, respectively. In (b)–(d), the gray dotted line represents the linear regression fit, and the correlation 
coefficient and p-value are indicated in the top-right corner.  

28. Line 492: For the 10 year, coupled EERIE simulations, I'm not convinced this is long enough to really 
reduce the sampling uncertainty, which converges very slowly (see Gerber et al. 2008). 
Bootstrapped measures would help alleviate this concern; without such attempts, it is hard to 
interpret the difference between the EERIE simulations and the longer CMIP6 simulations (and the 
longer IFS-AMIP simulations for that matter). 

As our responses to major comment #1, we have replaced the previously shown EERIE coupled 
simulations with much-extended ones (two 65-year simulations with IFS-FESOM2, one 30-year 
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control run with HadGEM3, and one 22-year control and one 65-year historical runs with ICON) and 
apply bootstrapping resampling to strengthen our analysis.   

29. Line 540: please clarify: better indicator of what? 

Please see our response to specific comment #1.  

30. Line 541: "more statistically significantly" If I recall, while the p-value was small, the result was not 
significant. I think significance is too binary for this language. I would stick with language which 
discusses what a small p-value means (the relationship is unlikely to be due to random chance). 

The lower the p-value indicates that we have higher confidence to conclude that there is a 
significant linear relationship between the two variables (i.e., higher confidence to reject the null 
hypothesis of no correlation). We think p-value is standard and does not need to be further 
explained. However, we have rephrased the lines: 

“Compared to λ₀, the metric eddy feedback strength b shows a much stronger correlation with SAM 
persistence τ, with a higher correlation coefficient of 0.52 and a lower p-value of 0.08 (Fig. 4d), 
suggesting it may be a more informative indicator of SAM persistence in this configuration. 
Meanwhile, the surface friction and τ exhibit a negative correlation (Fig. 4e) with a moderate 
correlation coefficient of -0.48 and p-value of 0.11.” (L462-466) 

31. Line 522: I'm not convinced the path forward is that promising from these results. A higher 
resolution atmosphere helps. That is good. But it does not seem to benefit from being coupled (bias 
improves in AMIP) and it does not seem to benefit from mesoscale ocean features (smoothed SST 
runs have lower bias). Improvements in jet latitude at these resolutions do not seem to help either. 
However, the climate community will want to run coupled models for the estimation of climate 
variability and sensitivity for the foreseeable future. If other models behave like IFS (a big 
assumption), it is likely models will be stuck with some irreducible bias in SAM timescale. Perhaps 
I am too pessimistic. If so, please help me understand what other path these results suggest. 

Proposing a clear path forward based on these results is inherently challenging and subject to 
considerable uncertainty. As the reviewer rightly points out, our AMIP simulations suggest that 
model performance in representing SAM persistence does not clearly benefit from two-way ocean–
atmosphere coupling or from the explicit inclusion of ocean mesoscale features.  

Our hypothesis is that while coupled models offer a more physically consistent representation of 
the climate system, they also tend to introduce SST biases—potentially due to under-tuning in high-
resolution configurations or imbalances in the coupling process. As demonstrated by our AMIP 
experiments, which use prescribed SST boundaries, these SST biases have a more pronounced 
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effect on SAM characteristics than the explicit representation of air–sea coupling. In fact, previous 
studies have shown that eddy-permitting models can exhibit larger SST biases than either coarser 
models with parameterized eddy fluxes or fully eddy-rich models (e.g., Storkey et al. 2025). 
Although our AMIP SST-varied experiments do not identify a robust, direct impact of ocean 
mesoscale eddies on SAM persistence, their localized influence in the atmospheric boundary layer 
and critical roles in the Southern Ocean climate system are well documented. We conclude that 
while ocean eddies’ local impact on the atmospheric boundary layer is well established, their direct 
influence in modulating large-scale modes such as the SAM appears limited under our AMIP setup 
without air-sea coupling. 

A key takeaway from the above is that reducing SST biases remains essential for advancing the 
representation of SAM and Southern Hemisphere climate variability. It is likely that only with more 
accurate SST fields can the climate modeling community properly assess the role of ocean 
mesoscale processes. 

Another point we would like to clarify is that overall, the high-resolution EERIE models—both 
coupled and uncoupled—show improvement in certain aspects of SAM variability, indicating that 
increased resolution can offer benefits. Specifically, the reduction in τ bias relative to CMIP6 
models is accompanied by improved representation of jet latitude. Consistent with the existing 
literature, a correlation between τ and jet latitude is also found in the EERIE simulations (as shown 
in our Fig. 3). Although this relationship is virtually absent in the atmosphere-only AMIP 
experiments—characterized by a negligible slope and a large p-value—this should not be 
interpreted as evidence that jet latitude is irrelevant. Rather, it highlights that when the jet is already 
well captured (with <1° bias) and SSTs are prescribed, other second-order processes may come 
into play to affect τ.  

In light of the reviewer’s comments, we have revised the Discussion and Conclusions section to 
more clearly articulate these implications and highlight the broader relevance of our findings. 

Technical Corrections 

Lines 73, 90, 240: Simpson 2013 referenced without a/b 

Corrected. Thanks. 

Lines 376-379: This sentence "However, it is also possible… more critical" could benefit from more 
clarity, including maybe breaking into smaller sentences. 
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The sentence has been shortened to “However, it is also possible that the improvements typically 
attributed to higher resolution on the performance of large-scale SAM variability and the mean jet 
have reached a plateau at the grid sizes used in current GCMs (e.g., CMIP6).” (L404-406) 

Lines 511-514: Rephrasing (and separating into smaller sentences) would improve clarity here 

We have rephrased the sentence to “While Sen Gupta and England (2006) showed that air-sea 
coupling is critical for modulating the SAM—albeit focusing on interseasonal timescales, which are 
longer than the intraseasonal scale investigated here—our results suggest that atmosphere-ocean 
coupling plays a secondary role. Instead, SST biases introduced by the coupling—an ongoing 
challenge in coupled GCMs (Zhang et al., 2023)—appear to be more influential.” (L525-529) 
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