Authors’ Response to referees’ comments on “Southern Annular Mode Persistence and
Westerly Jet: A Reassessment Using High-Resolution Global Models” by Chen et al.

MS No.: egusphere-2025-666

MS type: Research article

Following the reviewers’ advice, we have made substantial efforts to address their concerns—
particularly those raised by Reviewer 2—and revised the manuscript accordingly. In summary,
we have:

¢ Included a supplementary table presenting the results for each individual CMIP6 model.

o Replaced the EERIE spin-up runs and short simulations with longer (22-65 year) runs,
including two complete historical simulations, and added bootstrapping.

o Expanded the literature review with a broader discussion of processes affecting SAM
persistence and clarified the motivation for the AMIP (IFS) sensitivity experiments with
varied SST boundary conditions.

e Implemented two of the reviewer 2’s suggested methods for estimating frictional
impacts and expanded the related discussion.

e Adopted a reviewer-recommended method for identifying the westerly jet location
(though results remain similar).

Additional revisions have been made to the article to reduce repetition and incorporate new
content. All figures have been improved compared to their previous versions. Detailed
responses to each comment are provided below, with the reviewer’s comments in black and
our responses in green. The line numbers refer to the revised manuscript (without tracked
changes); however, a tracked-changes version is also provided for reference.



Referee 1 (RC1)
Overall Assessment

This study explores the atmospheric and oceanic influences on modelled SAM persistence and its
relationship with the latitude of the mid-latitude jet. The authors note the longstanding issue that
CMIP models (including the latest suite: CMIP6) overestimate SAM persistence (quantified using
the decorrelation timescale), particularly in early austral summer, which appears to be much
improved when using high-resolution, eddy-resolving simulations from the EERIE project. This
appearsto be in part due to more realistic simulation of the jet position/distribution (CMIP models
have tended to be too equatorward biased) but the importance of accurate SST representation is
also clear. Infact, the authors show that AMIP model experiments of the EERIE simulations perform
better than coupled experiments in terms of more realistically representing the jet position and
SAM decorrelation timescale. Enhanced resolution of the EERIE simulations likely plays a role in
the improvement relative to CMIP6 models but also improved model physics, particularly
concerning ocean mesoscale eddies which appear to slightly enhance the SAM decorrelation
timescale in early summer (at least for simulations run at 28 km resolution) according to sensitivity
simulations performed. However, cancellation effects (e.g., atmospheric eddy feedback strength
versus surface friction) make it difficult to ascertain which aspects help improve modelling of the
SAM persistence. For instance, the decorrelation timescale is more realistic stillin 9 versus 28 km
AMIP simulations, yet the role of ocean mesoscale eddies in enhancing SAM persistence is not
evident at this finer resolution. | found the study to be very well written, organised and logically
structured. The Figures are clearly presented and straightforward to understand and the step-by-
step computation of the different diagnostics examined will | think be much appreciated by many
readers. The conclusions drawn are supported by the results shown, so | can recommend this be
accepted for publication in Weather and Climate Dynamics. | include just a few comments for the
authors to consider prior to acceptance.

General Comments

| only had one main consideration for the authors which | found lacking in the paper. That is
information of which CMIP6 models were considered (if supplementary information were to be
provided, a table for this would be warranted). That is not to say that knowledge of which models
lie where in the distributions shown (Figures 2 and 3) are important in understanding this work. But
for others reading, it might be useful for them to know and the best way | feel to include this would
be to show similar Figures with individual CMIP6 models indicated in supplementary information.
Nevertheless, knowledge of which CMIP6 models lie where could help others or even the authors
to comment upon whether commonalities such as shared model components or known biases
more widely within the climate system might influence the results. So, | would encourage the
authors to think about providing this information.
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We would like to thank the reviewer for their encouraging comments, and we have taken the
suggestions into account for the revised version of the manuscript. A table has been added in the
supplementary materials:

Table S1. Annualand early-summer (NDJ) SAM persistence (the decorrelation timescale of the SAM
index; T) and westerly jet position for the 31 studied CMIP6 models (historical simulations) and
ERAS for the same period of 1980-2014.

Model T Annual T NDJ Jet latitude Annual Jet latitude NDJ
TaiESM1 8.2 11.6 -52.4 -50.4
AWI-ESM-1-1-LR 12.0 21.2 -49.0 -48.4
AWI-ESM-1-REcoM 14.1 25.1 -49.7 -50.4
BCC-CSM2-MR 11.2 21.5 -51.0 -50.3
BCC-ESM1 14.2 30.2 -50.5 -49.5
FGOALS-f3-L 11.4 16.6 -49.7 -48.9
FGOALS-g3 9.4 12.2 -49.7 -49.5
CanESM5 10.2 14.5 -49.6 -49.8
IITM-ESM 13.2 22.5 -47.0 -47.0
CNRM-CM6-1 11.3 18.7 -48.2 -48.4
CNRM-CM6-1-HR 9.8 12.6 -45.8 -46.2
CNRM-ESM2-1 11.9 20.2 -48.5 -48.4
ACCESS-CM2 13.9 27.0 -50.1 -49.6
EC-Earth3 9.4 12.9 -50.3 -49.4
MPI-ESM-1-2-HAM 12.7 24.3 -49.9 -49.7
INM-CM4-8 9.2 9.5 -51.7 -53.4
INM-CM5-0 10.7 15.2 -50.3 -52.0
IPSL-CMG6A-LR 12.7 22.9 -49.2 -48.8
MIROC6 11.7 20.3 -48.7 -49.6



MPI-ESM1-2-HR 11.9 15.6 -48.8 -48.4

MPI-ESM1-2-LR 10.0 14.3 -47.9 -48.4
MRI-ESM2-0 16.0 32.1 -48.0 -47.0
GISS-E2-1-G (1) 13.2 23.4 -51.1 -50.9
GISS-E2-1-G (2) 10.8 17.0 -50.8 -50.5
CESM2 9.0 13.4 -51.9 -52.3
CESM2-FV2 9.3 13.9 -52.7 -52.2
CESM2-WACCM 11.6 16.3 -52.0 -51.9
CESM2-WACCM-FV2 11.2 17.3 -52.3 -51.7
NorESM2-LM 7.1 9.6 -52.6 -51.6
NorESM2-MM 9.1 13.0 -52.6 -52.2
GFDL-CM4 9.2 12.4 -49.0 -48.7
ERAS 7.9 10.9 -51.1 -50.4

Specific Comments

L15: “a critical driver” » “a leading mode”? | wouldn’t consider the SAM to a driver itself, but more
of a reflection of driving influences. Expressing it as a leading mode would be more scientifically
accurate and consistent with earlier literature (e.g., Marshall, 2003; Marshall et al., 2022).

We thank the Reviewer and agree with this comment. We have changed the sentence as suggested.
(L15 in the revised manuscript).

L340-342: How reliable is the SAM derived from ERA5 pre-satellite era when comparing with the
EERIE coupled simulations? Presumably the SAM is more reliably reconstructed after 1979 from
ERAS5 but maybe difficult to quantify how much of an improvement there would be. It may be worthy
of further comment or caveating, however?

We agree that ERA5S is less reliable in the pre-satellite era (added to the Results section):

L366: “Note, however, that there is relatively less confidence in the accuracy of the value of the
SAM in ERAS5 prior to the satellite era.”

But we have also added that ERA5S is still a relatively better option among the available datasets (in
the Data section):



L216: “Amongthe reanalysis products that extend backwards in time beyond 1979 (ERA5, 20CRv3,
JRA-55), ERAS is found to agree best with station observations and produces good representation
of SAM, both before and after the advent of satellite sounder data (Marshall et al., 2022).”

L343-344: Suggesting that a relative minority of models are considerably worse in representing SAM
decorrelation timescale than the rest of the pack. Did the authors investigate why this might be or
were they at least able to note some commonalities in the most unrealistic models that might point
to the cause(s)? For instance, could there be an association between too equatorward jet position
and shared model components? Or factors that may give plausibly give rise to the issue of realistic
eddy feedback strength? It may be beyond the scope of the paper to delve into this, but others
reading might be encouraged to look into this.

It is indeed something interesting to study. However, we did not identify obvious commonalities
shared by the worse performing models (e.g. spatial resolution or warm bias over Antarctica or the
Southern Ocean or shared components).

Previous studies using CMIP models have discussed the association between too equatorward jet
position and models’ issues to represent the SAM persistence (e.g., Bracegirdle 2020, Zhang 2021)
and the related role of the eddy feedback strength. However, we have the feeling that a
comprehensive study of the shared components of these models falls beyond the scope of the
study, which focuses on the added value of the high-resolution EERIE models.

L477: “...a key driver...” > Again | think ‘...a leading mode...” would be more technically correct.
We have modified the sentence in the revised version accordingly:

L494-496: This study assesses the performance of new high-resolution global model simulations
developed under the EERIE project in capturing the persistence of the Southern Annular Mode
(SAM), a leading mode of climate variability in the Southern Hemisphere.

Technical Corrections

L52-53: “spring (MAM) and summer (JJA)”. > “autumn (MAM) and winter (JJA)”.
Corrected (L52-53). Thank you.

L153: “observation” > “observations” Table 1: Some font size inconsistencies noted.

This sentence has been removed from the revised manuscript. Font size of Table 1 has been
adjusted.

L245: Tabulation before “Finally...”

Corrected (L259). Thanks.
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Referee 2 (RC2)

"Southern Annular Mode Persistence and the Westerly Jet: A Reassessment Using High-Resolution
Models" examines the relationship between SAM persistence, the climatological jet latitude, and
the classic eddy-feedback parameter in both CMIP6 models and a new suite of high-ocean-
resolution models (EERIE), with some added AMIP-style simulations with one EERIE model to help
interpret the effects of increased resolution. The work finds that EERIE simulations have much
lower biasinthe SAM timescale than CMIP6, particularly in summer (traditionally the worst season).
The bias is even lower in the AMIP simulations forced by observational SSTs, which suggests that
ocean-atmospheric coupling may contribute to the bias. While these EERIE simulations have a
lower bias and lower resolution than most CMIP6 models, the CMIP models do not show much
dependence on horizontal resolution. Instead, previously established relationships relating the
SAM timescale to the jet latitude seem to hold for the CMIP models. For EERIE models, this
relationship breaks down, and the eddy-feedback parameter has better correlations with the
annular mode timescale. When SST gradients are reduced in the AMIP style simulations, the
persistence is reduced, although the cause is unclear.

| cannot recommend the paper to be published in its current form. With substantial revision and
extended analysis, it could eventually be published, but the current state of the paper presents only
a very marginal advancement in knowledge in the area of SAM timescales, and the results are
challenging to interpret without more context in the literature and clearer interpretive frameworks.

Despite these criticisms, the paper does a few things well. First, | think the question is well-defined:
what are the impacts of high-resolution atmosphere and ocean models, and their coupling, on SAM
persistence? | also think they have the data available to address this question, but it needs to be
much better utilized. They outline their methodology in a very reproducible way, and generally they
follow the previous literature (to a point). The writing is of good quality and reasonably easy to follow.

My major concerns are summarized below; a detailed discussion follows. The novel contributions
of thiswork are the analysis of high-resolution simulations, the SST sensitivity experiments, and the
consideration of friction to explain intermodel differences. All of these contributions require
serious improvement.

We would like to thank the reviewer for the detailed and constructive evaluation of our manuscript,
and we have made substantial suggested revisions to the manuscript. The additional material
broadens the scope of our study, which was initially focused on a mainly descriptive, standard
evaluation of the SAM in a new set of high-resolution simulations. The reviewer underlines three
novel contributions in our work and that all three require serious improvement. The way we have
introduced those improvements is explained in detail following each specific comment. The main
changes are briefly summed up here:



e We have discarded spin-up EERIE simulations and replaced the shorter simulations with longer
runs (ranging from 22-year to 65-year long, including 2 historical simulations) in our new
analysis; and the sampling uncertainty in estimating their SAM e-folding timescale have been
supplemented with the bootstrapping method.

e We have expanded the literature review and strengthened its connection to our results. This
includes a broader discussion of the processes contributing to SAM persistence and an
extended examination of the potential role of ocean mesoscales, providing a clearer
justification for our AMIP sensitivity experiments using varied SST boundary conditions.

e We have followed two of the reviewer’s suggestions to modify our approaches to estimate
frictional impact on SAM persistence and expanded the relevant discussion.

e We have adopted the suggested papers’ approach in identifying the jet location.

We also acknowledge that we cannot answer all the questions in a single study, but when it is not
possible to have robust conclusions, we have highlighted it as well as the limitations of our study.

Regarding the analysis of high-resolution simulations: the simulations are all short (10 years) and
frequently non-stationary (spin-up) or non-overlapping with the observational record. Given the
long timescales required for SAM timescale convergence, the significant impacts of non-
stationarity on the estimation of the timescale, and the potential for decadal and supra-decadal
variability in the feedback itself (following the jet latitude), interpreting the difference between the
EERIE simulations, ERA5, and CMIP6 is very challenging. Clearly the bias is reduced, but it is not
clear at present whether this is due to artefacts, random chance, or physically meaningful
reductions. This problem could be partially alleviated by carrying out the bootstrappingtechniques
used for the reanalysis for the EERIE simulations. Longer runs/overlapping time periods would be
preferable, but given the computational expense involved the current simulations might be
acceptable given appropriate explanation of the caveats involved.

Since the submission of our manuscript, new simulations have been available. This allows us to
analyze longer runs and to discard all the spin-up simulations that may have strong issues with
stationarity. The changes of the simulations are highlighted in the table below (see Table 1 in the
revised manuscript):

Alfred Wegener Max Planck Institute Met Office
Institution ECMWF
Institute (AWI) (MPI-M) (MO)
Coupled atmosphere-ocean models (eddy-rich) Atmospheric model




HadGEM3-
System name IFS-FESOM2 ICON IFS
GC5-EERIE
1950spinup (31 yrs)
Simulations analyzed 1950spinup piControl Historical
1950control (20 yrs)
ininitial submission Cycle 2 (11 yrs) (80 yrs) (1980-2023)
Historical (1950-1969)
Modified simulations
1950control (65 yrs) 1950control (22 yrs) piControl Historical
in this revised
Historical (1950-2014) | Historical (1950-2014) (30yrs) (1980-2023)
manuscript

We have also applied bootstrapping to all the EERIE simulations. Among them, only the ICON
1950control simulation failed to produce a convergent fitacross the 1,000 bootstrapped resamples,
likely due to variability in the underlying autocorrelation structure and the relatively shorter
simulation length. Consequently, we have added the standard deviation of the e-folding timescale
(t) totherevised Figure 2 in the revised manuscript for all simulations except ICON 1950control (Fig.
R2-1 below).
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Figure
R2-1. Distribution of t (days) in CMIP6, EERIE coupled, and EERIE atmosphere-only (AMIP) simulations. CMIP6 and
EERIE AMIP are both historical simulations, with a fixed period indicated in the x-axis labels, and the EERIE coupled
simulations cover varied periods as indicated in Table 1. ERA5 is analyzed for two time periods for reference. CMIP6
results from 31 experiments are presented in violin plot, in which the width indicates the density of the data points, the
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thin gray vertical box in the middle shows the 25" -75" quantiles, and the white dot presents the median. For the rest,
error bars are added wherever applicable to show the =1 standard deviation of T from the 1,000 bootstrap resampling.

Regarding the SST sensitivity experiments: these simulations require much clearer justification. At
the moment, there is very little literature which would suggest that mesoscale SST gradients should
affect the SAM persistence. There are some possible physical arguments, but they are not given
here. One might argue that the fact that they do appear to influence the timescale in some small
ensembles using one model is justification enough, but without a solid hypothesis to test, there is
no definitive answer about why the change in timescale appears. It is entirely possible that it is by
chance (no estimate of sampling uncertainty is provided). An incomplete argument discusses the
role of surface friction, but it requires more explicit discussion of possible mechanisms. Some
additional analysis on why persistence changes grounded in possible physical mechanisms would
drastically strengthen the paper. It also needs to be much clearer why two different types of
mesoscale features are included. My understanding of the feedback literature is that there is no
reason to expect different results from the two, and they provide basically identical results.

As suggested by the Reviewer in a point below (main comment #5), we have added a paragraph in
the revised version to better contextualize our work in the existing literature, specifically regarding
the processes that control SAM persistence. After this paragraph, we have developed the
justification for the sensitivity experiments (see (*) for major comment #5).

Regarding the consideration of friction: The literature has established methods for estimating
surface friction using the model output available to the authors, but they are not followed here.
Instead, the authors estimate the frictional contributions in a way which is difficult to connect to
established theory of SAM persistence and the feedback parameter they calculate, and in a way
that also cannot be interpreted easily across model resolutions. Its physical units are not
transformed to be consistent with the momentum budget (their interpretive framework). Much
more work needs to be done regarding friction if it is to be used to interpret these simulations.

To estimate the friction, we have applied two methods recommended by the reviewer in the specific
comments (#16-19 below): the “faux-integration” of d(p‘1t)/dz (Vallis 2006, Eq. 2.270) and the
residual of the momentum budget. Both approaches yielded physically consistent units
(N/m?/kg*m3*/m=m/s?) and produced the correct sign within our momentum-budget framework
(Simpson et al., 2012). We thank the reviewer for the suggestions. As a result, the outcomes are
easier to interpret, as they follow the same conceptual framework as that employed for the eddy
feedback strength. We have also extended the discussion and interpretation of the frictional impact
and made connections to existing literature. For more details, please see our responses below to
the specific comments #16-19.
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4. Without significant improvements in its main areas of new contributions, the work only marginally
advances knowledge in the area of SAM persistence.

With substantial revision and extended analyses, we consider that we have addressed the main
criticisms of the reviewer and provided substantial advances on the potential role of high resolution
(specifically of oceanic processes) on the simulated SAM persistence.

5. Finally, the work would be much stronger if it was better contextualized in the SAM feedback
literature. It follows the SAM model bias literature reasonably well. Specifically, it should consider
a few key areas which have important bearing on its results: 1) the evidence that the "feedback"
which appears in austral summer (the focus of this work) is likely not due to eddy-mean flow
interaction but nonstationary stratospheric variability (e.g., Byrne et al. 2016). 2) the understanding
of SAM feedback mechanisms [barotropic (e.g. Lorenz and Hartmann 2001, Chen et al. 2008) vs
baroclinic (e.g., Robinson 2000) vs diabatic (Xia and Chang 2014, Smith et al. 2024)] and how those
feedback mechanisms might explain the role of surface friction and SST gradients. 3) The evidence
for propagation of the SAM and for the stronger connection between SAM propagation biases and
persistence biases than for eddy-feedback biases and persistence biases (e.g., Lubis and
Hassanzadeh 2023). 4) the importance of the SAM timescale for climate predictability (e.g.,
Simpson and Polvani 2016, Ma et al. 2017, Hassanzadeh and Kuang 2019).

The main topic of our study is the ability of models to reproduce the observed SAM persistence and
to determine if a better representation of meso-scale oceanic processes reduces the biases seen
in lower resolution models. The introduction of our submitted manuscript was thus mainly devoted
to those ‘model-related’ elements. However, we agree with the Reviewer that a longer discussion
of the literature devoted to SAM persistence in general and specifically of the processes at the
origin of this persistence would put our results in a broader context and justify more explicitly the
choice of some of our analyses.

Consequently, we have added in the revised version a paragraph summarizing the main SAM
feedback mechanisms. We have discussed how mesoscale oceanic features could influence the
SAM persistence (point first raised in another major comment above, #2). We have also added a
sentence justifying the importance of the SAM persistence for predictability. This paragraph is still
relatively short considering the extensive literature on the subject. Describing all the mechanisms
at play and discussing the uncertainties of those mechanisms would require a lengthy introduction
considering the goal of the paper, but we come back to the relevant points in other sections of the
manuscript, in particular in the conclusion when discussing some of the limitations of our study.

Paragraph to replace the lines 55-58 of the submitted version where we were defining SAM
persistence:
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Lines 55-75:

(*) “A key characteristic of SAM is its temporal persistence, referring to how long a given phase of
the SAM (positive, negative or neutral) tends to last before transitioning. This long persistence is
important as it provides a source of predictability at a timescale longer than the one associated
with synoptic variability (e.g., Robinson 2000; Lorenz and Hartmann 2001, Simpson and Polvani
2016). SAM persistence is often measured as the decorrelation timescale (e-folding timescale)
which indicates the average duration over which the SAM index remains strongly correlated with its
pastvalues. A standard explanation attributes the extended SAM persistence to the reinforcement
of westerly flow anomalies by atmospheric eddy momentum fluxes, which are generated by
changes in the mean flow and act to counteract dissipation from surface friction. Several
mechanisms can be at the origin of this eddy-mean flow feedback that reinforces the shifted jet,
including barotropic processes related to anomalous wave propagation and breaking and
baroclinic processes associated with eddy generation and enhanced baroclinicity in the lower
troposphere in response to shift in the westerly flow (e.g., Robinson 2000, Lorenz and Hartmann
2001, Zurita-Gotor et al. 2014, Hassanzadeh and Kuang, 2019). The westerly flow anomalies also
induce changes in the diabatic heating and cooling due to latent heat release and cloud radiative
effect that modify the temperature gradients, affecting SAM persistence (Xia and Chang 2014,
Smith et al.2024, Vishny et al. 2024). In addition to this eddy-mean flow feedback, SAM persistence
can have an origin from the stratosphere, which introduce some non-stationary forcingto SAM. The
main influence is likely in late spring and summer at the time of the seasonal breakdown of the
stratospheric vortex (Simpson et al. 2011, Byrne et al. 2016, Byrne et al. 2017, Saggioro and
Shepherd 2019). Furthermore, interactions between a stationary mode and a propagating mode of
the zonal variability could also affect SAM persistence (Lubis and Hassanzadeh 2021, Sheshadri
and Plumb 2017, Smith et al. 2024).”

Lines 116-123:

“Mesoscale oceanic features strongly impact the surface heat fluxes and surface stress in the
Southern Ocean -a hotspot of mesoscale activity (Frenger et al., 2013; Bishop et al. 2017). This can
influence on SAM persistence as the surface heat fluxes modify the atmospheric temperature
gradients, the boundary layer structure and thus diabatic heating of the atmospheric column as
well as the low-level baroclinicity, which have both a demonstrated impact on SAM persistence (Xia
and Chang 2014, Smith et al. 2024 Robinson 2000; Zurita-Gotor et al. 2014 ). Furthermore, surface
stress also plays a role as it tends to damp the westerly winds but also to enhance baroclinicity and
the baroclinic feedback (Robinson 2000, Zurita-Gotor 2014, Vishny et al. 2024).”

Other adjustments have been made to the introduction to avoid repetitions and make space for
the new paragraphs.
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Specific Comments

Line 29: Assertion "eddy feedback is a better indicator" needs more justification and/or more clarity
(better in what way? In what circumstances?)

This statement referred to our results from the idealized AMIP sensitivity experiments, for which the
eddy feedback shows a much stronger positive correlation with the summertime t than the jet
latitude (a clear context was already provided in the conclusion of the original manuscript).
However, according to the reviewer’s comments (e.g., specific comments #21, #31), we realized
this statement may be misleading. We have modified the sentence to

“In these AMIP experiments, the atmospheric eddy feedback strength, combined with the damping
timescale estimated via friction, correlates more strongly with T than A0. We speculate that the
well-capture jet position (biases <1° relative to ERA5), due to prescribed SSTs, limits AO’s
explanatory power for t differences, allowing other processes to dominate.” (L22-26)

Line 30-31: "These findings...offer insights": More specific language would be stronger (what
insights?)

Due to the word limit of the abstract, we aimed to keep the wording concise. However, we have
removed this sentence from the abstract and revised the conclusion to include more specific
language.

Introduction: | think this discussion would be stronger if it included the significance of the
persistence. As it stands, the section reviews the SAM and its significance for SH climate, what
persistence is, some of its potential causes (non-stationarity is not discussed, see following
comment), its biases in GCMs, and some potential solutions for these biases. The problem is
identified, but there exists a kind of motivational gap. The papers conclusions would be
strengthened for unfamiliar readers if the significance of persistence was explicitly discussed.

As discussed above in the main comment #5, we have added a sentence in the introduction to
mention the interest of persistence to predictability of Southern Hemisphere climate (L56).

Lines 67-70, 79-95: An eddy-jet feedback is not the only possible source of persistence for the SAM.
There is substantial literature published after the papers reviewed here which highlights the
possibility for a "feedback" caused by non-stationarity induced by stratospheric forcing (Byrne et
al. 2016, 2017, Saggioro and Shepherd 2019, etc.). This kind of forcing is especially important during
early summer, the focus of this paper (see Byrne et al. 2016), when the stratospheric polar vortex
breaks down. Thus, the feedback parameters computed here may not be responding to any internal
tropospheric dynamics but the coupled troposphere-stratosphere system. The bias correction of
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Simpson et al. (2013a) suggests that this non-stationarity may not influence model biases, but it
does not eliminate its possibility as one source of the feedback (Simpson et al. 2011 probably even
supports this). Ma et al. 2017 further supports the notion of an eddy-feedback independent of hon-
stationarity, but a comprehensive discussion of this would improve the interpretation of the results.

As discussed above in the main comment #5, we have added a paragraph in the revised version
explaining that eddy-mean flow (jet) feedback is not the only possible source of persistence and
specifically mentioned the role of stratospheric forcing during early summer.
We have also added more discussion in the Diagnostics section when introducing the “eddy
feedback strength” (L331-336):

“Furthermore, positive regression coefficients could be caused by non-stationarity of the series
and in particular by interaction with the stratosphere and not just by eddy mean flow interactions.
This introduces biases in the estimate of eddy feedback, particularly in late spring and summer
(Byrne et al. 2016, Byrne et al. 2017), although this does not necessarily prevent using the
regression method (Ma et al. 2017). The methodology is thus imperfect, but it provides an
interpretative framework for the difference between the simulations and allows a comparison with
earlier studies.”

. Line 143: Which segments of spin-up runs are retained? How much time is allowed for equilibration
before using it for analysis? Given the importance of the stratosphere for the SAM and the time for
its equilibration (~ 1 year), | would hope at least the first year is excluded from the analysis

For the revision, we have discarded all the spin-up simulations from our analysis to alleviate the
potential impact from non-stationarity on our results (see main comment #1). For the remaining
EERIE control and historical simulations analyzed in this study, there is a 50-year spin-up time that
was omitted for the IFS-FESOM2 and ICON coupled models (following the design of HighResMIP)
and a 200-year spin-up that was discarded for the HadGEM3-GC5-EERIE model (following the
design of CMIP6 DECK). We have clarified this in the revised manuscript (L153-154).

. Line 148: I'm not fully convinced by this reasoning. In part, Byrne et al. (2016) show that non-
stationarity does influence the calculation of eddy feedbacks, even given linear detrending. The
spin-up simulations are certainly non-stationary, although that somewhat depends on whether
some/how many of the initial years are omitted. The control simulations are likely not subject to
this, but the historical simulations may be as well. Presumably they are more like reanalysis, but
the point is that the differing periods may in fact influence the results beyond removing their
climatological means (stationary or not). This non-stationary influence is notable in ERA5, where
the bootstrapping Figure 2 shows substantially different decay timescales. In the case of NDJ, more
likely influenced by non-stationarity, the two estimates are nearly non-overlapping. This is another
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argument that the analysis time period is not a trivial consideration. One way to partially address
this concern is to bootstrap estimates for EERIE simulations, as done with ERA, particularly for
simulations with few ensemble members (9km-AMIP in particular). Another concern is that the 10
years available for most simulationsis not long enough to see strong convergence of the timescale,
especially in coupled models (Gerber et al. 2008).

We mentioned in the submitted version that the proposed detrending and removal of the seasonal
cycle did not remove all the effects of non-stationarity. This was likely too short. We have modified
this paragraph explaining that the procedure we applied is standard but highlighted that non-
stationarity stillimplies limitationsin our approach. As mentioned above, we have discarded all the
spin-up simulations, presented results for much-extended simulations, and applied the
bootstrapping to most experiments (see for instance Fig. R2-1 above), reducing some of the
limitations compared to the submitted version.

In L160-166 of the revised manuscript, we have added:

“As these simulations cover different time periods and some of them include transient forcing,
linear and low-frequency nonlinear trends are removed as standard procedures in the SAM-related
diagnostics. This should reduce the impact of the difference in experimental design on the
evaluation of the model performance. However, this removal does not fully eliminate the non-
stationary features that could have a clear influence on the evaluation of SAM persistence and of
the eddy feedbacks (Byrne et al. 2016). We therefore adopt a bootstrapping procedure (Section 3.1)
to provide partial quantification of the influence of non-stationarity and uncertainty due to the short
period of some simulations.”

. Lines 172-174: | would like more clarification about the choice to test the sensitivity of SAM
persistence to different ocean mesoscale features. | do not understand the motivation very clearly.
The zonal-mean, vertically-averaged zonal wind is a planetary-scale phenomenon, and while it is
sensitive to ocean meso-scale features, | do not understand why it might be sensitive to one type
over the other. The atmospheric eddies which power SAM and (potentially) its persistence are of a
scale of 1000km, 10-100 times the scale of these features. While such temperature gradients can
be important for lower-level baroclinicity and the organization of convection, the large-scale drivers
of SAM represent a further aggregation of these smaller scale dynamics. Indeed, there is currently
no proposed mechanism (so far as | am aware) which argues that SAM should respond differently
to these features. The idea that high-frequency SST gradients might strengthen the boundary layer
heat flux, potentially enhancing boundary layer drag and strengthening the baroclinic feedback
could be one argument, but it does not differentiate between eddies and fronts. In general, these
results should be discussed in light of theories for baroclinic feedbacks on SAM persistence
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(Robinson 2000, Zurita-Gotor 2014, Zurita-Gotor et al. 2014). Diabatic feedbacks may also play a
role here (Xia and Chang 2014, Smith et al. 2024).

We agree with the reviewer that there is no strong theoretical basis for separating the analysis by
different ocean mesoscale features (i.e., fronts vs. eddies). These sensitivity experiments were
originally designed as part of the broader objectives of the EERIE project — specifically, to
investigate "the relative importance of sharp SST gradients associated with quasi-stationary ocean
fronts and transient ocean eddies on the large-scale extratropical atmospheric circulation" (C.
Roberts et al., 2024b). Out of curiosity and to explore whether any notable differences might
emerge in the context of SAM persistence, we initially analyzed all available experiments and
retained this separation in the submitted manuscript. However, we acknowledge that this may have
caused confusion. In the revised version, we now present only the ObsSST and NoEddies
experiments, which are available at both model resolutions, allowing for a more consistent and
parallel comparison. Additionally, we have expanded the discussion in the introduction on the
potential role of high-frequency SST gradients in modulating SAM persistence (see response to
main comment #5 above).

Line 230: "for the same date in a calendar year". | think | know what this means, but more clarity
would be better

We have changed the sentence to “The (At) field is derived in two steps. First, a 60-day low-pass
filter is applied to the detrended (A,t) along the t axis to retain only seasonal-scale variations.
Second, the time axis (t) is reindexed into calendar day (d) and year (y). For each calendar day (e.g.,
Jan 1st, Jan 2nd, etc.), a 30-year low-pass filter is applied along the y axis to capture long-term
variations. If the data span fewer than 30 years, the average across all available years for that
calendar day is used, resulting in a fixed, repeating annual cycle.” (L241-246)

Equation (1): y seems to be year, but it is not explicitly defined. The separation of tinto d, y could
be more clearly explained (see previous comment)

We have modified the relevant sentences (L255-257) following Eq. (1): “Here, the daily time series
PC(¢)isreindexed as a function of calendarday d(e.g., Jan 1stto Dec 31st) and year y, and N denotes
the total number of years. Equation (1) computes the autocorrelation of PC between a given day d
and a lagged day d+/, averaged over all available years.”

Line 249: As mentioned previously, this should be repeated for simulations with few ensemble
members (5 or less).
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We have performed 1,000 bootstrap resampling iterations to estimate the sampling uncertainty for
all EERIE simulations presented, and the results—where applicable—are included in the revised
manuscript (Fig. 2).

Figure 1: Other reviewers and readers may disagree with me, but | think Figure 1 belongs as
supplemental materials. The freed up PU (publication unit) could be used much more effectively
for other topics, some of which already mentioned, some to be mentioned. A very large majority of
WCD readers interested in SAM and SAM timescale know what the pattern looks like, and if not, it
is easily found. A more useful figure might be comparing the pattern across models. A similar
argument is true for the timeseries. The raw timeseries is not relevant to the analysis being
performed. Both are referenced once, only in passing. Panel c is more useful, but it is a visual
explanation of e-folding time, which will be familiar to many readers, climate-oriented and not.
Figure 1 could be more useful if it also depicted how the eddy feedback parameter (b) is calculated,
as this is a more complex and less familiar calculation. Even with such an inclusion, | have a hard
time justifying including Figure 1 in the main body of the text.

We agree that the original Figure 1 is relatively simple and does not present new findings beyond
what is already available in the literature. However, based on previous interactions with
researchers less familiar with SAM persistence, we have found that the concept of e-folding time is
not always intuitive. Given that our manuscript contains a limited number of figures, we believe that
including this introductory illustration aids some readers without distracting more specialized
audiences. To further justify its inclusion, we have added subplots to Fig.1 that illustrate how the
eddy feedback strength is calculated (R2-2).
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Figure R2-2. Example of the SAM decorrelation timescale and eddy feedback strength calculation based on ERA5: (a)
The first EOF pattern of zonal-mean geopotential anomalies; (b) The corresponding first PC time series (SAM index); (c)
Autocorrelation function (ACF) of the SAM index shown for a selected day of the year (black dashed) and an exponential
fit (yellow). The e-folding timescale is denoted as t. The ACF isrepeated 1,000 times (gray) with the bootstrap sampling
with replacement. (d) Same as (a) but based on vertically averaged zonal wind anomalies. (e) Lagged regression of
different momentum budget terms in Eq. 3 onto the SAM index. (f) Eddy feedback strength b for positive lags 6-17 days.

Line 265: Because many of your models have different resolutions (particularly CMIP5 vs EERIE,
you mention regridding CMIP5 to the same grid, but not EERIE), | would highly suggest following
Menzel et al. (2019) or Barnes and Polvani (2015) and doing quadratic interpolation around the jet
maximum to define the jet latitude. This will alleviate some of the degeneracy (models with identical
jet latitudes) in Figure 3 and is consistent with the literature.

As suggested by the reviewer, we have performed a quadratic interpolation with the model output
on its native grid around the jet latitude maximum to define jet latitude. While we did not observe
any major difference between our previous and new results (Fig. R2-3), we have still updated our
results using the new method in the revised version and added some clarifications in sec. 3.2:

L276-280: “The westerly jet is diagnosed following Menzel et al. (2019) and Barnes and Polvani
(2015). We apply a quadratic fit method on the monthly mean zonally averaged 850-hPa zonal wind
at the latitude where the maximum value is found between 75°S and 10°S and the four adjacent
latitudes of the model. The latitude where the maximum value of the quadratic fit is found defines
the position of the tropospheric westerly jet.”
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Figure R2-3. Jet latitude identified using two different methods, one of which is as shown in the initial version of the
manuscript (y-axis) and the other follows Menzel et al. (2019) and Barnes and Polvani (2015) (x-axis).

Line 273: The switch from geopotential height for defining the timescale to zonal wind for defining
the feedbackis notwithout caveats. The assumption here is that the wind relevant for the SAM (and
its feedbacks) is the geostrophic wind. Recently, however, Smith et al. (2024) demonstrate that
SAM has significant eddy-feedbacks from the ageostrophic momentum fluxes which are leading-
order in DJF in MERRAZ2. Vishny et al. (2024) also find important contributions to persistence from
the ageostrophically-driven mean meridional circulation in idealized simulations. Thus, the
imputation that models whose decay timescale is based on geopotential height will be consistent
with the feedback from full (geostrophic+ageostrophic) zonal wind is probable, but not guaranteed.
I think there is enough literature supporting the use of both (geopotential height and zonal wind)
methods that it is not reasonable to redo the ACF calculations using zonal wind, but | do think it is
worth acknowledging the geostrophic assumption and its limitations.

As suggested, a discussion of the limitations of the geostrophic assumption has been added in the
revised version:

L290-294: “This shift from a definition of the SAM persistence timescale using geopotential height
to the zonal wind for the estimation of the eddy-mean flow feedback is based on the standard
assumption that geostrophic equilibrium provides a good approximation of the relevant variables.
However, ageostrophic terms can also contribute to SAM persistence, introducing limitations to
this hypothesis (Vishny et al. 2024; Smith et al. 2024).”

Line 278: Ithinkthe choice of three levels by Simpson et al. (2013b) was notintended to be the ideal,
rather it was the best available information at the time (CMIP3). The vertical structure of SAM can
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be quite nuanced despite its barotropic nature (Wall et al. 2022, Sheshadri et al. 2018), and a
significant fraction of the eddy momentum flux necessary for the feedback exists above 250 hPa
(Nie et al. 2014, Sheshadri et al. 2018). | suspect much more than those three levels are available
for CMIP6, and there inclusion would strengthen this analysis.

We agree that including additional vertical levels would enhance the analysis. However, this choice
was limited by computational constraints associated with the high-resolution EERIE simulations.
As this is an international project that must balance the requirements of multiple teams within
limited storage capacity, the 6-hourly data availability is currently restricted to only three vertical
levels. To maintain consistency and enable comparison, we intentionally requested the same three
levels used by Simpson et al. (2013b), allowing for a direct check against their results.

Line 300: The assumption of the Simpson framework is that the PCs are uncorrelated. Sheshadri
and Plumb (2017), Lubis and Hassanzadeh (2020), Lubis and Hassanzadeh (2023), and Smith et al.
(2024) have all shown this is not the case. Specifically, Sheshadri and Plumb (2017), Lubis and
Hassanzadeh (2020), and Lubis and Hassanzadeh (2023) have shown that the coupling between
EOF1 and EOF2influences the SAM persistence timescale and the estimation of the eddy feedback
parameter, and that the SAM timescale in CMIP6 models shows a strong dependence on the
strength of the coupling between EOF1 and EOF2 (as measured by SAM's propagation period, see
Lubis and Hassanzadeh 2023, Figure 7). Without examination of the coupling between modes
across models, the spread in eddy-feedback parameters is difficult to interpret.

To address this comment, we have included the following paragraph in the revised version.

L326-336: “The approach followed here assumes that analyzing only the first PC is a good
approximation to study SAM persistence. However, although the PCs are uncorrelated by
construction on short timescale, this is not the case at longer lags and the coupling between the
first two components influences SAM persistence (Sheshadri and Plumb 2017, Lubis and
Hassanzadeh 2021, and Lubis and Hassanzadeh 2023). Analyzing only the first PC brings thus clear
limitations in our analysis of the model spread in simulated SAM persistence. Furthermore, positive
regression coefficients could be caused by non-stationarity of the series and in particular by
interaction with the stratosphere and not just by eddy mean flow interactions. This introduces
biases in the estimate of eddy feedback, particularly in late spring and summer (Byrne et al. 2016,
Byrne et al. 2017), although this does not necessarily prevent using the regression method (Ma et
al. 2017). The methodology is thus imperfect, but it provides an interpretative framework for the
difference between the simulations and allows a comparison with earlier studies.”

Line 310-325: | have two concerns involving the friction term. First, more could be done to properly
estimate it and, second, utilize itin the interpretation of the results. | will begin with its estimation.
Given t as the surface stress, one can estimate the resulting torque as d(p™'t)/dz (see Vallis 2006,
eq. 2.270), p being density. If you only have 1 at the surface, because you are vertically-integrating
it, you can simply use the surface value and divide by the depth (in meters) of the atmospheric
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column, as the turbulent stress is likely zero at the model top. This faux-integration also yields a net
negative sign (since the stress decreases with height), and should be of the right units
(N/m?/kg*m3/m=m/s?) and the correct sign. This approach should still be approximately valid in the
case that the "surface" stress is actually the output turbulent stress from the boundary layer
scheme for the full boundary layer.

We have followed the reviewer’s suggestions (#16 and #17) to improve estimation of the friction
term (L340-350):

(1) Since the only EERIE model output available is the turbulent surface stress, we performed
the “faux-integration” by assuming (1) zero turbulent surface stress at the top of the
atmospheric column, (b) fixed air density of 1.204 kg/m3 (at 15°C, 70% relative humidity and
100 kPa) and an atmosphere column depth of H=8,464 meters. As this modification
introduces the multiplication of the estimate used in the submitted version by a constant
factor, this would not change our cross-simulation comparison shown in the submitted
manuscript but provides the friction estimation with physically correct unit and sign,
allowing the results to be interpreted more easily.

(2) To validate the estimation in (1), we have also computed the residual of the momentum
budget of Eq. (3) as an alternative estimation.

Due to space constraints, the results of (1) are presented in the main manuscript, while the
comparison between (1) and (2) is provided in the supplementary material (Fig. R2-4a, b). Our
results show that the two methods differ in their absolute magnitudes (not surprising given the
simplified assumptions), but the inter-simulation comparisons are consistent between the two
methods. The negative linear regression between the estimated friction term and t is also not
strongly affected by the employed methods.
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Figure R2-4. (a) Scatter plot of T and the frictional impact estimated as the residual of Eq.3 in the main article (black
and red markers are for ObsSST and NoEddies experiments, respectively; star markers indicate the 9-km simulations
and the rests are the 28-km runs; yellow circle represents ERAD). (b) Scatter plot of Tt and the eddy feedback strength,
b. (d) Scatter plots of T and the combined effects of friction (expressed as Rayleigh damping timescale, tf) and eddy
feedback strength b, measured as ti/(1- b - t;) following Lorenz and Hartmann (2001). In all subplots, the dotted gray line
represents the linear regression fit, and the correlation coefficient and p value are shown in the top-right corner.

However, the friction in Lorenz and Hartmann (2001; and in other studies building on this
framework) is generally parameterized as Rayleigh drag with a constant damping timescale.
LH2001 explain in their Appendix A how to estimate it from timeseries of m and z. Since both of
these fields are used in this analysis, it should be possible to estimate a friction via Rayleigh drag.
This has two key benefits: 1) it can be used to validate the friction estimated from the stress, and
triple checked against the residual of the momentum budget, evaluated from your equation (3),
which should also be possible. In my experience, the residual usually matches the Rayleigh drag
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quite well. The second benefit is that it is useful for the interpretation of the feedback parameter,
which | discuss more later.

Lorenz and Hartmann (2001) quantified the eddy feedback and the frictional term using spectral
analysis and cross covariance. Here, we follow a different approach to estimate the feedback
parameter, following Simpson et al. (2013b) (see for instance their appendix for a justification). To
additionally compute the frictional term following LH2001 would require too much extra space to
explain the different methodology and introduce more complexity in our discussion, and so we have
decided not to apply this approach. By contrast, we have computed the friction term as a residual
of the momentum budget as suggested.

Afinalissue with the estimation of the friction (no matter which method, preferably at least 2 of the
3) is that its projection value is proportional to the square root of the number of latitudes, and thus
its magnitude should not be compared directly with simulations with different horizontal resolution.
Thisistrue for all the budget terms, but the feedback parameteris resolution-independent because
it involves the ratio of two budget terms. To understand why, consider a simplified version of your
equation (2) where W = | (the identity). If e is a (square-) integrable function f(A), sampled on an
equally spaced grid (reasonable for GCM output), its Euclidean norm will be proportional to the
square-root of the integral of [f(A)]? over latitude (M), divided by the grid spacing (since we multiplied
by the grid spacing to convert the sum into an integral). The integral should converge to the same
value regardless of the resolution for most smoothly-varying, well-resolved f (again reasonable at
even coarse GCM resolutions). However, the inverse of the grid spacing is proportional to the
number of latitudes N (if the grid is evenly spaced). Thus the norm of e is proportional to v N. The
multiplication of Xe is proportional to N (not the square root), by the same logic (because e is an
orthogonal basis, the only component of X that survives the integration is proportionalto e, and the
product is proportional to ee). However, Xe has no square root, and thus Xe/y ee is proportional to
VN. See a small example which should generalize well as the attached image. Note that including
a non-identity weighting matrix W#l does not change this, it simply adds another term into the
integration. One could divide by VN to alleviate this, or use integrals in the top and bottom instead.
Or, one could divide the friction by the zonal wind projection as done for the feedback parameter.
At that point, you may as well compute the damping timescale following the literature (LH2001,
Appendix A).

We thank the Reviewer for pointing this out. We mentioned that all the analysis were performed on
the EERIE model outputs interpolated onto a 0.25° x 0.25° grid (Line 133-134 in the original
manuscript) to facilitate direct comparison across experiments. This has now been made more
explicit in the revised manuscript (L144-146). As a result, differences in the models’ native grid
resolutions do not introduce relative bias in this comparison. Nonetheless, we agree that thisis an
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important point to emphasize. We have therefore included a note in the revised manuscript (L351-
353) highlighting the dependence of such a calculation on data resolution.

While we have chosen to retain the projected friction term in Fig. 4, we have also calculated a
damping timescale (tf) using the residual term of Eq. (3), equivalent to the one corresponding to a
Rayleigh drag, i.e.,

[F]s= - [u]s/ t;.

Instead of following the spectrum approach as in LH2001, here we follow the same framework for
the eddy feedback strength estimation of Simpson et al. (2013b) by performing the lagged linear
regression of [F]s and [u]s onto the PC(t). Finally, tiqcan be estimated by taking the ratio between the
regressed [u]s (in unit of m/s) and the regressed [F]s (unit of m/ s?) averaged over the lag days of 7-
14 days. Our resultant damping timescale is 8.6 days for ERA5, very close to the 8.9 days estimated
in LH2001 (L472-476).

The second friction-related issue is with the interpretation of the feedback. Following LH2001, the
eddy feedback parameter (b) lengthens the effective timescale for the SAM by t/(1-b*t), where tsis
the frictionaltimescale. Thus, both the eddy feedback and the frictional timescale can effect SAM's
persistence, and if models have differing frictional timescales, it could also explain differences in
their persistence. In theory, one could see if this effective timescale ti/(1-b*t;) followed the
autocorrelation timescale more closely (I suspect it would), but the model bias literature (Gerber
et al. 2008, Kidston and Gerber 2010) generally does not follow this convention, so | don't think this
is strictly necessary. However, it may give a better interpretive framework for the friction to plot the
frictional timescale (rather than the projection) and use this LH2001 relation to explain how the
frictional timescale interacts with the eddy-feedback parameter to determine the total timescale.

As indicated above, we have computed a similar estimation of the damping timescale (tf) to extend
our interpretation to the existing literature. This allows us to examine the quantity of tf/ (1 - b- tf)
(Fig. R2-4d). In our results, this quantity indeed shows a stronger positive correlation with SAM
persistence t with a larger correlation coefficient and lower p-value compared to when using b as
the sole predictor variable. This quantity therefore more effectively describes the joint impact of
friction and large eddy feedback on SAM persistence. However, like b and friction, this quantity
does not provide a clear explanation for the subtle sensitivity of T to different SST boundary
conditions and the model resolution. Nevertheless, we have provided this additional diagnostic in
the supplementary material.

Figure 2 (caption): Please describe the violin plot in more detail; | don't believe they are common
enough to assume they can be interpreted properly without explanation.
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We have modified the Figure 2 caption to

“Distribution of T (days) in CMIP6, EERIE coupled, and EERIE atmosphere-only (AMIP) simulations.
CMIP6 and EERIE AMIP are both historical simulations, with a fixed period indicated in the x-axis
labels, and the EERIE coupled simulations cover varied periods as indicated in Table 1. ERAS5 is
analyzed for two time periods. CMIP6 results from 31 experiments are presented in violin plot,
in which the width indicates the density of the data points, the thin gray vertical box in the
middle shows the 25th -75th quantiles, and the white dot presents the median. For the rest,
error bars are added wherever applicable to show the +1 standard deviation of T from the 1,000
bootstrap resampling.”

Lines 396-398: | think this point on the interpretation of the IFS-AMIP experiments requires more
discussion and computation. These are an IC ensemble from the same GCM with the same
boundary conditions, and thus represent internalvariability of the same mean climate in a way that
isn't the case for comparisons across the CMIP models. For example, you could likely run 5 more
IC ensembles, and you might get a completely different pattern between jet latitude and e-folding
timescale. But | don't think that somehow contradicts the expectation that the two should be
positively correlated due to the stronger wave reflection (and weaker feedback) of more poleward
jets (Barnes and Hartmann 2010, Lorenz 2023). Despite this, according to the convergence
estimates of Gerber et al. (2008), the 40 years of AMIP simulations should be enough to constrain
the decorrelation timescale within a day, and 4 of the ensemble members are within one day of
their mean. This is where | think bootstrapped estimates of the sampling uncertainty could help
resolve this question of whether sampling uncertainty can explain the lack of relationship, or
whether this is indeed a breakdown of the expected theory.

We agree with the Reviewer that the IC ensemble is different from CMIP models as the boundary
conditions are the same for all the IC members while ensemble of coupled models can have very
different SST patterns, for instance. This has been made more explicit in the revised version by
mentioning ‘internal atmospheric variability’ instead of just ‘internal variability’ (L422). We agree
with the Reviewer and we also “...don't think that somehow contradicts the expectation that the
two should be positively correlated due to the stronger wave reflection (and weaker feedback) of
more poleward jets (Barnes and Hartmann 2010, Lorenz 2023).” We agreed that the documented
relationship between biases in T and AO in the literature is based on strong physical arguments.
However, the sentences referenced here (original L396-398) are purely descriptive of the shown
results that there is no clear positive correlation between t and A, among IFS-AMIP simulations.
The hypothesis we put forward is that, when the position of the jetis well captured as in allIFS-AMIP
experiments (due to the constrained SST boundary conditions or not), the difference in jet position
is too small between these experiments (compared for instance with CMIP models) to explain the
difference in decorrelation timescale and other factors dominates, but this is only a speculation at
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this stage. We have also examined the uncertainty via bootstrapping, but it doesn’t help to explain
the lack of such a relationship here. Finally, as noted in our reply to a comment below (#31), we
have modified the conclusion to make it clear that that the AMIP results are not interpreted as
evidence that jet latitude is irrelevant.

Figure 3: When uncertainty exists in both the dependent and independent variables of a regression,
it may be more appropriate to use a different type of regression than least-squares, especially if the
uncertainties are correlated (see Pendergrass and Kao 2022, and York 2004 for an alternative).

We agree that a more sophisticated regression method could be more precise, but we have chosen
here the standard least-squares for simplicity as in some previous studies.

Line 415: Sample size of one, not enough evidence to support conclusion (bootstrapping would
help)

We have added the standard deviation of t for all AMIP simulations using bootstrap resampling. The
decrease in T with higher resolution is not particularly robust on the annual-mean scale, as the
estimated tin the 9-km simulation falls within (though toward the lower end of) the range covered
by the 28-km simulations (Fig. R2-1a). However, during the NDJ season, the reduction in t for the 9-
km simulation is more pronounced, with its estimated range extended outside those of the 28-km
simulations (Fig. R2-1b).

.Lines 425-430: Some connection to existing feedback mechanisms would be appropriate here

We have added some connections to the existing literature in the revised manuscript. See also our
responses to specific comments #16-#19.

Lines 441-449: See previous comments regarding friction
Addressed in responses to specific comments #16-#19.

Line 462: Is the convection parameterization turned off at 9km? Stronger latent heating in the 9km
run could create a stronger negative diabatic feedback (Xia and Chang 2014), decreasing the
persistence

The convection parameterization is still active at 9 km, as at 28 km resolution, consistently with the
convection parameterization settings applied in ECMWF operational forecasts (added in L176).

Figure 4: Panels (f), (g) and (h) should be greatly simplified, maybe down to one panel (or even a
table), showing the simulation on one axis and the value of the x axis on the other. The decay
timescales are identical, and two points is not enough to infer any relationship, so the current
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scatter plots visually complicate the comparison between simulations. Readers will understand

why they do not follow (b), (c), and (d), no need to artificially fit that pattern.

We have removed the original panels (f), (g) and (h) in Fig. 4, showing the 9-km results on the same

scatter plots as the 28-km members (shown here as Fig. R2-5).

20.04(a) 28 km ERAS 20.0(b) 9 km == ObsSST
- ObsSST == NoEddies
17.5 1 - NoEddies 17.51
— 15.0 — 15.0 1
wn "
) )
g 1251 | 8 1254
* 10.0 1 ¥ 1001
7.5 1
5.0 1
] AS O N D J F M A M | ] AS O ND | F M A M |
month month
61 r=003 | [@ r=0s52 | |l r=-0.48
s v p=0.94 s v P=008" . v = p=0.11
_ o . .
—
> 14 B v 14 Voo 144 = -
A
= R - - ..
a 12 A 12 12 4
= x® * u O * L4 "
101 2% L EE— %* 10 4 .
-51.5° -51.0° -50.5° 0.04 0.07 0.10 -11 -1.0 -09 -0.8

NDJ jet latitude

NDJ eddy feedback b (day™1)

NDJ frictional impact (ms~2)

Figure R2-5. (a) SAM decorrelation timescale (1) as a function of month for IFS-AMIP 28km simulations (dashed for each
ensemble member and solid for the ensemble means; black for ObsSST and red for NoEddies experiments) and ERA5
(yellow). (b) Similar to (a) but for 9 km experiments (shades for the +1 standard deviation of Tt from the 1,000 bootstrap
resampling). (c) Scatter plot of T (days; y-axis) and westerly jet latitude (x-axis; filled-color markers for 28 km; hollow
stars for 9 km simulations). (d)-(e) Similar to (c) but with x-axis variable replaced with the eddy feedback strength and
frictional impact, respectively. In (b)-(d), the gray dotted line represents the linear regression fit, and the correlation
coefficient and p-value are indicated in the top-right corner.

Line 492: Forthe 10 year, coupled EERIE simulations, I'm not convinced this is long enough to really
reduce the sampling uncertainty, which converges very slowly (see Gerber et al. 2008).
Bootstrapped measures would help alleviate this concern; without such attempts, it is hard to
interpret the difference between the EERIE simulations and the longer CMIP6 simulations (and the
longer IFS-AMIP simulations for that matter).

As our responses to major comment #1, we have replaced the previously shown EERIE coupled
simulations with much-extended ones (two 65-year simulations with IFS-FESOM2, one 30-year
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29.

30.

31.

controlrun with HadGEM3, and one 22-year control and one 65-year historical runs with ICON) and
apply bootstrapping resampling to strengthen our analysis.

Line 540: please clarify: better indicator of what?
Please see our response to specific comment #1.

Line 541: "more statistically significantly" If | recall, while the p-value was small, the result was not
significant. | think significance is too binary for this language. | would stick with language which
discusses what a small p-value means (the relationship is unlikely to be due to random chance).

The lower the p-value indicates that we have higher confidence to conclude that there is a
significant linear relationship between the two variables (i.e., higher confidence to reject the null
hypothesis of no correlation). We think p-value is standard and does not need to be further
explained. However, we have rephrased the lines:

“Compared to A,, the metric eddy feedback strength b shows a much stronger correlation with SAM
persistence T, with a higher correlation coefficient of 0.52 and a lower p-value of 0.08 (Fig. 4d),
suggesting it may be a more informative indicator of SAM persistence in this configuration.
Meanwhile, the surface friction and t exhibit a negative correlation (Fig. 4e) with a moderate
correlation coefficient of -0.48 and p-value of 0.11.” (L462-466)

Line 522: I'm not convinced the path forward is that promising from these results. A higher
resolution atmosphere helps. Thatis good. But it does not seem to benefit from being coupled (bias
improves in AMIP) and it does not seem to benefit from mesoscale ocean features (smoothed SST
runs have lower bias). Improvements in jet latitude at these resolutions do not seem to help either.
However, the climate community will want to run coupled models for the estimation of climate
variability and sensitivity for the foreseeable future. If other models behave like IFS (a big
assumption), itis likely models will be stuck with some irreducible bias in SAM timescale. Perhaps
| am too pessimistic. If so, please help me understand what other path these results suggest.

Proposing a clear path forward based on these results is inherently challenging and subject to
considerable uncertainty. As the reviewer rightly points out, our AMIP simulations suggest that
model performance in representing SAM persistence does not clearly benefit from two-way ocean-
atmosphere coupling or from the explicit inclusion of ocean mesoscale features.

Our hypothesis is that while coupled models offer a more physically consistent representation of
the climate system, they also tend to introduce SST biases—potentially due to under-tuningin high-
resolution configurations or imbalances in the coupling process. As demonstrated by our AMIP
experiments, which use prescribed SST boundaries, these SST biases have a more pronounced
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effect on SAM characteristics than the explicit representation of air—sea coupling. In fact, previous
studies have shown that eddy-permitting models can exhibit larger SST biases than either coarser
models with parameterized eddy fluxes or fully eddy-rich models (e.g., Storkey et al. 2025).
Although our AMIP SST-varied experiments do not identify a robust, direct impact of ocean
mesoscale eddies on SAM persistence, their localized influence in the atmospheric boundary layer
and critical roles in the Southern Ocean climate system are well documented. We conclude that
while ocean eddies’ localimpact on the atmospheric boundary layer is well established, their direct
influence in modulating large-scale modes such as the SAM appears limited under our AMIP setup
without air-sea coupling.

A key takeaway from the above is that reducing SST biases remains essential for advancing the
representation of SAM and Southern Hemisphere climate variability. It is likely that only with more
accurate SST fields can the climate modeling community properly assess the role of ocean
mesoscale processes.

Another point we would like to clarify is that overall, the high-resolution EERIE models—both
coupled and uncoupled—show improvement in certain aspects of SAM variability, indicating that
increased resolution can offer benefits. Specifically, the reduction in T bias relative to CMIP6
models is accompanied by improved representation of jet latitude. Consistent with the existing
literature, a correlation between t and jet latitude is also found in the EERIE simulations (as shown
in our Fig. 3). Although this relationship is virtually absent in the atmosphere-only AMIP
experiments—characterized by a negligible slope and a large p-value—this should not be
interpreted as evidence that jet latitude is irrelevant. Rather, it highlights that when the jetis already
well captured (with <1° bias) and SSTs are prescribed, other second-order processes may come
into play to affect t.

In light of the reviewer’s comments, we have revised the Discussion and Conclusions section to
more clearly articulate these implications and highlight the broader relevance of our findings.

Technical Corrections
Lines 73, 90, 240: Simpson 2013 referenced without a/b
Corrected. Thanks.

Lines 376-379: This sentence "However, itis also possible... more critical" could benefit from more
clarity, including maybe breaking into smaller sentences.
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The sentence has been shortened to “However, it is also possible that the improvements typically
attributed to higher resolution on the performance of large-scale SAM variability and the mean jet
have reached a plateau at the grid sizes used in current GCMs (e.g., CMIP6).” (L404-406)

Lines 511-514: Rephrasing (and separating into smaller sentences) would improve clarity here

We have rephrased the sentence to “While Sen Gupta and England (2006) showed that air-sea
couplingis critical for modulating the SAM—albeit focusing on interseasonal timescales, which are
longer than the intraseasonal scale investigated here—our results suggest that atmosphere-ocean
coupling plays a secondary role. Instead, SST biases introduced by the coupling—an ongoing
challenge in coupled GCMs (Zhang et al., 2023)—appear to be more influential.” (L525-529)
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