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Abstract. Hydrological modeling in large mountainous catchments faces challenges due to the complex interplay of snowmelt,

glacier dynamics, and groundwater contributions, which introduce significant uncertainty in streamflow predictions. This study

introduces a Bayesian multi-objective parameter estimation framework to reduce predictive streamflow uncertainty in large

mountainous catchments by integrating streamflow likelihood with three auxiliary likelihoods, analyzed individually: snow

cover area (SCA), glacier mass balance (GMB), and isotopic composition (I). The well-established Generalized Likelihood5

Uncertainty Estimation (GLUE) method is employed to investigate trade-offs among these likelihoods, providing a detailed

assessment of their distinct and combined contributions to hydrological model performance across various flow regimes. The

semi-distributed Representative Elementary Watershed-Tracer aided version (THREW-T) hydrological model applied in this

work captures both rapid surface dynamics and slow-response subsurface processes, offering a comprehensive representation

of streamflow variability.10

Results indicate that isotopic likelihood plays a critical role in reducing low-flow uncertainty by effectively constraining

subsurface flow and groundwater-surface water interactions, particularly during winter and early spring when these processes

dominate. Conversely, while SCA and GMB likelihoods demonstrate some effectiveness in capturing rapid processes such as

snowmelt and glacier melt, their influence is most pronounced during the melting season, with limited impact on reducing

overall streamflow uncertainty. This seasonality is reflected in sharpness values, which measure how much uncertainty is15

reduced, with isotopic likelihood achieving the highest peak of 0.34 in late winter, whereas SCA and GMB reach maximum

sharpness values of 0.19 and 0.16, respectively, during the melting season. Pareto plots further reveal the synergies and trade-

offs associated with each likelihood, underscoring the importance of adopting a multi-objective calibration approach that

accounts for seasonal variations in hydrological processes. In addition, the results highlight the critical role of seasonality

in shaping the effectiveness of auxiliary likelihoods, emphasizing their potential to improve predictive accuracy and reduce20

uncertainty in hydrological models.
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1 Introduction

Accurate hydrological modeling in large mountainous catchments remains particularly challenging due to the inherent com-

plexity of these systems (Gupta et al., 2008). The interplay of multiple water sources, such as snowmelt, glacier dynamics, and25

groundwater, combined with substantial spatio-temporal variability in streamflow generation, often results in equifinality and

significant uncertainty in predictions (e.g., Asong et al., 2020; Shuai et al., 2022; Dalla Torre et al., 2024). These complexi-

ties call for advanced modeling approaches capable of improving our understanding of streamflow variability and supporting

effective water resource management (Panchanathan et al., 2024).

Recent advancements in hydrological modeling have addressed these demands by focusing on the integration of auxiliary30

variables, such as snow cover area, glacier mass balance, and environmental tracers (e.g., stable oxygen isotopes, δ18O), to im-

prove model calibration and reduce parameter uncertainty (Di Marco et al., 2021; Nan et al., 2021b; Mohammadi et al., 2023).

These variables provide critical insights into cryospheric and subsurface processes, enabling models to better capture hydro-

logical responses that drive streamflow variability during periods of low flow (Panchanathan et al., 2024). Incorporating such

data improves the representation of specific model components and guides the evaluation of the model, ultimately enhancing35

reliability and reducing equifinality (Birkel et al., 2014; Tetzlaff et al., 2014). Tracer-aided modeling has proven particularly

effective in disentangling hydrological processes and identifying critical contributions from snowmelt and groundwater un-

der varying conditions (Nan et al., 2021b). Bayesian approaches have also been applied to explicitly address equifinality and

uncertainty in hydrological modeling in various mountain basins (e.g., Yang et al., 2007; Andraos, 2024).

Nonetheless, several challenges remain. Few studies have systematically compared the relative effectiveness of auxiliary40

datasets - such as snow cover area, glacier mass balance, and isotopic tracers - in reducing model uncertainty and equifinality

across different flow regimes (Finger et al., 2011; Xu et al., 2012; Nan and Tian, 2024). While some studies have explored

the role of individual datasets, such as isotopic tracers (Nan and Tian, 2024) or glacier mass balance (Finger et al., 2011), a

unified comparison of their respective contributions within a single modeling framework remains absent. This is particularly

true for low-flow conditions, which are often dominated by slow-response processes such as groundwater contributions and45

subsurface flow dynamics (Betterle and Bellin, 2024). Moreover, the potential for these datasets to improve the representation

of hydrological processes under varying seasonal conditions remains largely unexplored. Similarly, while previous work has

explored the Contributions of Runoff Components (CRC) to total streamflow (e.g., subsurface flow, rainfall runoff, snowmelt,

and glacier melt) (Stahl et al., 2008), a comprehensive understanding of how these components interact to influence streamflow

dynamics under different conditions remains insufficiently constrained by multi-source datasets. Current Bayesian frameworks,50

while powerful, often fail to fully leverage the complementary strengths of auxiliary datasets, particularly in large mountainous

catchments where complex cryospheric and subsurface interactions drive streamflow dynamics (Zhang et al., 2018; Chang

et al., 2024).

This study addresses these gaps by systematically evaluating the role of snow cover area, glacier mass balance, and iso-

topic tracers in reducing model uncertainty and equifinality within a fully Bayesian framework. Focusing on the Yarlung55

Tsangpo River Basin—a large mountainous catchment where streamflow variability arises from snowmelt, glacier dynamics,
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and groundwater contributions—we investigate how these auxiliary datasets can complement each other in constraining hy-

drological models across different flow regimes. Special emphasis is placed on low-flow periods, during which isotopic data

provide particularly strong constraints on subsurface flow and groundwater–surface water interactions (Rodgers et al., 2005).

By adopting a multi-source calibration approach, we explore trade-offs in model performance and quantify how each dataset60

influences the contributions of snowmelt, glacier melt, rainfall runoff, and subsurface flow. By shedding light on streamflow

generation processes, particularly during low-flow periods, these findings may offer a first step toward more integrated and

nuanced water management strategies in complex mountainous regions facing increasing drought risk (Wu et al., 2023).

To address these objectives, the paper is organized as follows: the adopted tracer-aided hydrological model, the study area,

and the Bayesian framework are described in Section 2. Section 3 presents the results, including parameter distributions, uncer-65

tainty analysis, and flow regime-specific improvements. Section 4 discusses the implications of the findings, while Section 5

provides concluding remarks and future research directions.

2 Materials and methods

2.1 Study area and data

The Yarlung Tsangpo River (YTR) basin was selected as the focus area of this study (Figure 2). The YTR basin is the upstream70

part of the Brahamaputra River basin, located on the southern Tibetan Plateau (TP). The YTR basin, as one of the longest rivers

originating from the TP, extends in the range of 27-32°N and 82-97°E with an elevation extent of 2900-6900 m above sea level.

The outlet hydrological station of the YTR basin is the Nuxia station, with a drainage area of approximately 2× 105 km2.

There are four hydrological stations along the mainstream of YTR: Nuxia, Yangcun, Nugesha and Lazi, from downstream to

upstream (Table 1). During 1990-2015, the mean annual precipitation in the YTR basin is around 490 mm, which is dominated75

by the South Asian monsoon in the Indian Ocean hydrosphere-atmosphere system resulting an obvious wet season during June

to September. The mean annual temperature is -1.5°C, leading to widely distributed snow and glacier, covering around 16.3%

and 1.5% of the basin.

Datasets of meteorological input, topography, underlying surface, streamflow and isotope were collected to establish the

model. The 30 m resolution digital elevation model (DEM) were downloaded from the Geospatial Data Cloud (https://www.gscloud.cn)80

for simulation unit dividing. Daily precipitation and temperature were extracted from the 0.1° China Meteorological Forcing

Dataset (Yang and He, 2019), which was produced by merging multiple satellite datasets with the national meteorological sta-

tion data. The daily potential evapotranspiration were obtained from the 1.0° reanalysis dataset ERA5_Land (Muñoz-Sabater

et al., 2021). For the underlying conditions, the MODIS leaf area index (LAI) product MOD15A2H (Myneni et al., 2015)

and the normalized difference vegetation index (NDVI) product MOD13A3 (Didan, 2015) were used to represent the vegeta-85

tion conditions and determine the ratio of vegetation covered area, and the Marmonized World Soil Database (He, 2019) was

used to estimate the soil property parameters not obtained by model calibration (including saturated hydraulic conductivity,

soil porosity, soil pore distribution index, field capacity, and air entry value). For the cryospheric elements, the second glacier

inventory dataset of China (Liu, 2012) was adopted to determine the boundary of regions where glacier simulation should
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be performed. The daily Tibetan Plateau Snow Cover Extent (TPSCE) product (Chen et al., 2018) during 2001-2015 and the90

0.5° yearly glacier elevation change dataset developed by Hugonnet et al. (2021) during 2001-2010 were used to validate the

simulated snow cover area (SCA) and glacier mass balance (GMB). Daily streamflow observation data at the Nuxia, Yangcun,

and Nugesha stations were collected to evaluate the performance of the hydrological simulations. However, due to Chinese

national regulations, streamflow data for the Yarlung Tsangpo River—a transboundary river system—are considered sensitive

and classified as confidential. As such, these data cannot be publicly disclosed or shared in this publication. This restriction95

reflects broader geopolitical concerns, as highlighted by Lin et al. (2023), who emphasize the particular sensitivity of hydrolog-

ical data in transboundary basins and regions subject to resource and geopolitical tensions. Considering the availability period

of the supporting datasets, the simulation period was set from 2001.01.01 to 2015.12.31, aligned with the time span of the

meteorological and vegetation input data.

Grab samples of stream and precipitation water were collected in 2005 at four stations to analyze the isotope composition100

(δ18O) to validate the tracer simulation (Table 1). The outputs of the Scripps Global Spectral Model with an isotope incorpo-

rated (isoGSM, Yoshimura et al. (2008)) with 1.875° resolution were extracted to represent the spatiotemporal variation of the

isotope composition in precipitation. Our previous evaluation on isoGSM (Nan et al., 2021a) indicated that it can effectively

capture the seasonal variation in precipitation δ18O, but exhibited a systematic overestimation bias in the study region and

performed relatively poorly in accurately capturing the isotope signature of specific events (Supplementary Figures S1 and105

S2). The bias corrected isoGSM product produced by Nan et al. (2022) was adopted as the input data, in which the bias of

isoGSM was adjusted based on a linear regression with altitude. Rainfall and snowfall were assumed to have the same isotope

composition as the precipitation δ18O in isoGSM. The glacier meltwater δ18O is calculated using the offset-parameter method,

in which the glacier meltwater δ18O is assumed to be temporally constant and 5‰ lower than the weighted average of local

precipitation δ18O. The value of the offset parameter was estimated from the data collected by Boral and Sen (2020).110

Table 1. Data and sample information at four hydrological stations adopted

Station Coordinate Elevation (m) Streamflow Isotope

Period Period (in 2005) Precipitation Stream water

number of samples δ18O (‰) number of samples δ18O (‰)

Nuxia 94.65°E, 29.47°N 3691 2001–2015 14 Mar–23 Oct 86 -10.33 34 -15.74

Yangcun 91.82°E, 29.27°N 4541 2001–2010 17 Mar–5 Oct 59 -13.14 30 -16.57

Nugesha 89.71°E, 29.32°N 4715 2001–2010 14 May–22 Oct 45 -14.29 25 -17.84

Lazi 87.58°E, 29.12°N 4889 / 6 Jun–22 Sep 42 -17.41 22 -16.52

2.2 The tracer-aided hydrological model

A semi-distributed tracer-aided cryospheric-hydrological model, Tsinghua Representative Elementary Watershed-Tracer aided

version (THREW-T) developed by Tian et al. (2006) and Nan et al. (2021b) was adopted to simulate the hydrological,
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cryospheric and isotopic processes in the YTR basin (Figure 1). The THREW-T model uses the representative watershed

method (REW) for spatial discretization, which divides the whole catchment into REWs based on DEM data. Two vertical lay-115

ers including eight subzones (i.e., surface layer including vegetation zone, bare soil, sub-stream network zone, snow-covered

zone, glacier-covered zone and main channel reach zone; subsurface layer including unsaturated zone and saturated zone) are

defined for each REW-based on the underlying surface type. The YTR basin was divided into 297 REWs with average area of

694 km2 in this study. The areal averages of the gridded datasets were calculated for each REW, which were used as the input

for simulation. More detailed descriptions of REW method could be found in Reggiani et al. (1999) and Tian et al. (2006).120

Figure 1. Schematic representation of the THREW-T model

The cryospheric module was incorporated into the model to simulate the evolutions of snowpack and glacier. The total

precipitation was partitioned into liquid (rainfall) and solid precipitation (snowfall), according to a temperature threshold set

as 0◦C. For the simulation of snowpack, the snow water equivalent of each REW was updated based on the snowfall and the

snowmelt, which was calculated using the degree-day factor method. The snow cover area (SCA) was determined by the snow

cover depletion curve (Fassnacht et al., 2016) and then compared with the satellite observation data. The snow sublimation was125

not simulated in the model, because previous studies estimated that the sublimation losses in the study region only accounted

for 2 3% of the annual snowfall, as the results of the wet climate condition (Khanal et al., 2021; Sun et al., 2024; Lutz et al.,

2016). For the simulation of glacier, each REW was further divided into several elevation bands with an interval of 200m,

to represent the variation in temperature and precipitation along the altitudinal profile. The glacier within the intersection of

each REW and elevation band was regarded as the representative unit for glacier simulation. The processes related to glacier130

evolution in the model included the snow accumulation and snowmelt over glaciers, the turnover of snow to ice, and the

ice melt. The ice melt was also calculated using the temperature index method but with a different degree-day factor from

snowmelt. The volume of the glacier was updated based on the mass balance equation and was transferred to the glacier cover

area based on a scale equation (Grinsted, 2013). The glacier melt was assumed to generate streamflow directly through the
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surface pathway, considering the low permeability of glacier surface. The output of the glacier simulation included the glacier135

mass balance (GMB) and the glacier cover area, and the simulated GMB would be compared with the measurement data. More

details of the cryospheric module can be found in Nan et al. (2021b) and Cui et al. (2023).

The tracer module was incorporated into the model to simulate the isotope composition in multiple water bodies, which

characterized the isotopic variations during water mixture and phase change processes. The isotope fractionation during water

evaporation and snowmelt processes was simulated by the Rayleigh equation (Hindshaw et al. (2011)). The isotope composi-140

tions in each simulation unit were calculated based on the complete mixing assumption, meaning that the tracer concentration

homogeneity within a unit was achieved during a simulation time step (Nan et al. (2023)). Forced by the precipitation isotope

input, the model can simulate the isotope composition of all the water bodies, including river water, groundwater and snow-

pack, and the simulated isotope composition of river water would be compared with the observation data. More details of the

tracer module are provided in Nan et al. (2021b).145

The Contributions of Runoff Components (CRC) were analyzed to better understand the influence of multiple datasets on

hydrological simulations. Two definitions are commonly used to quantify CRC (He et al., 2021). One is based on water sources,

describing where the water originates; under this definition, the three components are rainfall, snowmelt and glacier melt. The

other is based on the runoff generation pathway, describing how water produces runoff; here, the two components are surface

and subsurface runoff. The THREW-T model quantified the runoff components based on the definition that combines water150

sources and runoff generation pathways. Specifically, the runoff was first divided into surface runoff and subsurface runoff

based on the runoff generation pathway. The surface runoff was further divided into three components induced by different

water sources: rainfall, snowmelt, and glacier melt. Consequently, the total runoff was divided into four components: subsurface

runoff, rainfall surface runoff, snowmelt surface runoff, and glacier melt surface runoff.
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Figure 2. The location and topography of (a) the Tibetan Plateau and (b) the Yarlung Tsangpo River basin
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Table 2. Parameter table with descriptions, ranges, and units.

Symbol Range Units Description

nt 0–0.2 – Manning roughness coefficient for hillslope

WM 0–10 m Tension water storage capacity used to calculate the sat-

uration area

B 0–1 – Shape coefficient used to calculate the saturation area

Gatr 0–10 – Coefficient representing spatial heterogeneity of ex-

change term between t-zone and r-zone

KKA 0–6 – Exponential coefficient to calculate the subsurface

runoff outflow rate

KKD 0–0.5 – Linear coefficient to calculate the subsurface runoff out-

flow rate

DDFS 0–10 mm°C-1d-1 Degree-day factor for snowmelt

DDFG 0–10 mm°C-1d-1 Degree-day factor for glacier melt

LL 0–1 – Coefficient to transfer snow water equivalent to snow

cover area using snow depletion curve

T0 -5 – 5 °C Temperature threshold above which snow and glacier

melting occurs

α 0–1 – Coefficient in the Muskingum method for runoff con-

centration calculation

β 0–1 – The proportion to the α coefficient in the Muskingum

method for runoff concentration calculation
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2.3 Multi-objective Parameter Estimation155

The uncertainty estimation of model parameters was performed using the Generalized Likelihood Uncertainty Estimation

(GLUE) methodology (Beven, 2006). GLUE employs Monte Carlo simulations to generate a large ensemble of model realiza-

tions, where each realization corresponds to a specific parameter set associated with a likelihood measure. Unlike traditional

optimization methods that focus on identifying a single best parameter set, GLUE emphasizes equifinality by retaining an

ensemble of acceptable parameterizations (Efstratiadis and Koutsoyiannis, 2010; Brazier et al., 2000), thus acknowledging160

that multiple parameter sets can produce similarly good simulations, which is particularly important when modeling complex

hydrological systems where uncertainties in processes and inputs can lead to varied but equally plausible outcomes (Di Marco

et al., 2021).

The selection of likelihood measures and thresholds to distinguish behavioral from non-behavioral simulations is inherently

subjective and problem-dependent (Blasone et al., 2008; Jin et al., 2010). In this study, the parameter space was sampled using165

Latin Hypercube Sampling (LHS) (McKay et al., 1979), assuming a uniform distribution for all parameters listed in Table 1. In

the absence of prior information, all parameter sets were initially considered equally probable, ensuring non-informative priors

(e.g., Gan et al., 2018; Teweldebrhan et al., 2018). The impact of this uniformity assumption on posterior results was evaluated

through sensitivity analyses.

A total of 25,000 parameter sets were generated and evaluated using a likelihood measure to quantify model performance.170

Behavioral simulations were identified based on a predefined threshold, the value of which is provided in the results sec-

tion. Non-behavioral simulations were assigned a likelihood of zero, while the likelihood values of retained simulations were

rescaled to sum to one, forming a posterior probability density function for the model parameters.

Predictive uncertainty of outputs, such as streamflow, was assessed by ranking behavioral simulations according to their

rescaled likelihoods. The empirical cumulative distribution, weighted by these likelihoods, was used to define uncertainty175

bounds by excluding the lower and upper 5th percentiles (Teweldebrhan et al., 2018; Franks et al., 1998).

The Nash-Sutcliffe Efficiency Index (NSE) (Nash and Sutcliffe, 1970) was selected as the likelihood measure for stream-

flow, snow-covered area (SCA), and isotopic composition (I) (Lamontagne and Barber, 2020; Araya et al., 2023), while the

Volumetric Deviation Efficiency (V E) (He et al., 2018) was adopted for glacier mass balance (GMB). These two metrics were

chosen to reflect both dynamic performance and cumulative accuracy across key hydrological variables.180

The NSE was used as the likelihood measure for streamflow, snow-covered area, and isotopic composition. Its formulation

is provided for completeness:

NSEX = 1−
∑N

t=1 (Xsim(t)−Xobs(t))
2∑N

t=1 (Xobs(t)−Xobs,mean)
2
, (1)

where X represents the variable of interest, Xsim(t) and Xobs(t) are the simulated and observed values at time step t, Xobs,mean

is the mean of the observed values, and N is the number of time steps.185
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For glacier mass balance (GMB), the Volumetric Deviation Efficiency (VE) was deemed more appropriate as it directly

evaluates the accuracy of the simulated mean relative to the observed mean, aligning better with the cumulative nature of

GMB:

VEGMB = 1− GMBmean,sim −GMBmean,obs

GMBmean,obs
, (2)

where GMBmean,sim and GMBmean,obs are the simulated and observed mean glacier mass balances, respectively.190

The multi-objective parameter estimation followed an informal Bayesian framework. The streamflow likelihood, LH(Q|pi),
was first used to constrain the model parameters, forming the prior likelihood distribution. Auxiliary variables (X) were then

incorporated to produce a posterior likelihood distribution (cLH), defined as:

cLH(pi|Q,X) =
1

C
·LH(Q|pi) ·LH(X|pi), (3)

where pi represents a parameter set, LH(Q|pi) and LH(X|pi) are the likelihoods for streamflow and auxiliary variables,195

respectively, and C is a normalization constant ensuring:∫
cLH(pi|Q,X)dpi = 1. (4)

In the absence of explicit guidelines for auxiliary datasets, except for streamflow, a threshold of NSE> 0 and VE> 0,

commonly used as minimal performance criteria, was systematically applied to all target variables, including streamflow (Q),

snow-covered area (SCA), glacier mass balance (GMB), and isotopic composition (I). The use of NSE> 0 for streamflow200

ensures consistency across all metrics, even though stricter thresholds are typically recommended to ensure the reliability

of streamflow simulations (Moriasi et al., 2007). Furthermore, following Di Marco et al. (2021); Ma et al. (2024), the 75th

percentile was chosen as the cutoff for both the prior and posterior distributions to select parameter sets, ensuring a consistent

and robust identification of the most likely parameters while balancing model accuracy and diversity.

2.4 Metrics for Quantifying Uncertainty205

To assess the added value of multi-objective model conditioning compared to single-objective approaches based solely on

streamflow observations, we utilized two uncertainty metrics: the first, known as the containing ratio (CR), evaluates the ability

of the simulated prediction intervals to capture the observed values and reads as follows (e.g., Teweldebrhan et al. (2018); Jin

et al. (2010)):

CR=
1

N

N∑
t=1

Γ(Qobs(t);Qsim,0.05(t),Qsim,0.95(t)) , (5)210

where Qsim0.05(t) and Qsim0.95(t) indicate the lower and upper bounds of the simulated 90% streamflow prediction interval,

respectively, while Γ returns a value of 1 if the observation falls within the prediction interval and 0 otherwise. A higher

CR value indicates that the prediction intervals are better at capturing observed values, reflecting improved reliability of the
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model outputs. Conversely, a lower CR suggests that the prediction intervals fail to encompass the observed data as effectively,

indicating potential deficiencies in the model’s calibration or input data.215

The second metric, the so-called sharpness (SH), is a measure that quantifies the reduction in prediction uncertainty achieved

through the integration of additional information and reads as follows:

SH = 1− cLH(pi |Q,X)

LH(Q | pi)
. (6)

A higher SH value signifies that the prediction intervals are narrower, implying reduced uncertainty in the model’s predictions

and a more precise representation of the streamflow dynamics. On the other hand, a lower SH value suggests broader prediction220

intervals, indicative of higher uncertainty or less precise modeling.

It is worth noticing that in an ideal scenario, a perfectly constrained model would achieve CR and SH values close to 1.

In practice, this would imply that the prediction intervals consistently capture observed values (CR= 1) and that the model

uncertainty diminishes to the point where the simulated output closely aligns with the observations, indicating that there is no

uncertainty in the predictions.225

3 Results

3.1 Behavioral simulations

For each run of the overall Monte Carlo ensemble, we computed likelihood values for streamflow (NSEQ) and for the addi-

tional performance metrics: Snow Cover Area likelihood (NSESCA), Glacial Mass Balance likelihood (VEGMB), and Isotope

likelihood (NSEI ). The bi-objective relationships between NSEQ and each of these metrics are illustrated in Figure 3, where230

each panel shows the distribution of the full ensemble of simulations. Specifically, the red markers indicate simulations on the

Pareto front, defined as the subset of runs that are non-dominated with respect to the two metrics shown. These points repre-

sent optimal trade-offs between the objectives, in the sense that no other simulation achieves better performance in one metric

without reducing performance in the other. The Pareto front was computed over the entire ensemble and independently of

any behavioral classification; red markers should therefore not be interpreted as behavioral simulations. The blue lines in each235

panel indicate the performance thresholds used to define behavioral solutions, and are included solely as a visual reference.

The relatively small number of Pareto-optimal solutions reflects the selective nature of multi-objective trade-offs: only a small

subset of parameterizations cannot be outperformed in both objectives simultaneously. This observation is consistent with find-

ings from Di Marco et al. (2021), who showed that Pareto-optimal simulations are typically far fewer than those classified as

behavioral. The remaining simulations, shown as gray points, represent dominated solutions, meaning that there exists at least240

one other simulation that performs equally well or better across all objectives. These points characterize the broader trade-off

space and provide insight into the variability of model performance across the full ensemble.

The Snow Cover Area likelihood (NSESCA) exhibits a strong positive relationship with streamflow likelihood (NSEQ). As

shown in Figure 3.a, the Pareto front points (red markers) are concentrated in the upper-right quadrant of the plot, indicating

that high streamflow likelihood values can coexist with high NSESCA values. This suggests strong compatibility between245
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these two objectives, meaning that improving streamflow performance does not inherently result in a reduction in NSESCA.

The dominated solutions (gray points) show a wider spread across the plot, including regions where both NSEQ and NSESCA

values are low. This indicates variability in model performance when considering different parameter sets. The clustering of

Pareto-optimal solutions in the high-likelihood region reflects the shared role of snow processes in regulating both streamflow

and snow cover dynamics suggest that it is possible to improve NSESCA without significant trade-offs when calibrating the250

model to optimize streamflow performance.

The Glacial Mass Balance likelihood (VEGMB) shows a slightly different behavior, as illustrated in Figure 3.b. Although

high streamflow likelihood values are still associated with moderate to high VEGMB values on the Pareto front, the verti-

cal spread of the red markers is more pronounced. This indicates a weaker synergy between these two metrics compared to

NSESCA. While some Pareto-optimal solutions achieve high likelihoods for both NSEQ and VEGMB , others show inter-255

mediate VEGMB values despite high NSEQ performance. This pattern suggests the presence of moderate trade-offs, where

accurately capturing glacial mass dynamics might be compromised to achieve better streamflow performance.

The Isotope likelihood (NSEI ) exhibits the most significant trade-offs among the three metrics, as illustrated in Figure 3.c.

The Pareto front (red markers) is notably dispersed, with even the highest-performing solutions for NSEQ rarely exceeding

an NSEI value of 0.4. This indicates a high degree of independence and conflict between these two metrics. The complexity260

of this relationship is further emphasized by the dominated solutions (gray points), where many configurations achieve high

NSEQ values but fail to yield satisfactory NSEI values.
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Figure 3. Pareto fronts (red markers) of streamflow likelihood (NSEQ) and likelihood metrics for (a) Snow Cover Area likelihood

(NSESCA), (b) Glacial Mass Balance likelihood (VEGMB), and (c) Isotope likelihood (NSEI ). The thin blue lines represent the per-

formance thresholds defined for the multi-objective behavioral selection: NSEQ = 0, NSESCA = 0, NSEI = 0, and NSEGMB = 0. The

dominated solutions are shown as gray points.
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3.2 Prior and posterior parameter distributions

Figure 4 shows the prior (black lines) and posterior parameter distributions, conditioned on the likelihoods of Snow-Cover

Area (SCA, orange dashed lines), Glacier Mass Balance (GMB, light blue dash-dotted lines), and isotope concentrations (IS,265

green dotted lines). All distributions are derived from the Monte Carlo ensemble, but only simulations with a Nash–Sutcliffe

Efficiency for streamflow (NSEQ > 0) are retained. This threshold ensures that simulations outperform the climatological

mean, thereby meeting a minimum criterion for behavioral plausibility. These behaviorally plausible simulations define the

prior distribution, which is then formally updated within a Bayesian framework using the likelihoods associated with the

additional observational datasets (i.e., SCA, GMB, and I). Visual inspection of the posterior distributions indicates that, in270

general, each dataset provides meaningful information to constrain parameters related to the physical processes it represents.

For example, the parameters DDFS and LL (Figures 4.g and 4.i), which control snow cover area transfer and snowmelt

processes, show a stronger response when conditioned on the likelihood of SCA, highlighting their direct influence on snow

dynamics. While DDFS regulates the magnitude of snowmelt, LL primarily affects the spatial extent and persistence of snow

cover. As such, its influence is more pronounced in shaping the spatial and temporal patterns of snow accumulation and melt,275

rather than the total amount of snowmelt contributing to runoff. This explains why the posterior of LL is well constrained under

SCA conditioning, but does not manifest as clearly in metrics focused on water yield, such as snowmelt fraction. Similarly, the

parameter DDFG (Figure 4.h), which governs glacier melt processes, exhibits tighter posterior constraints when conditioned

on the GMB likelihood, reflecting its strong connection to ice melt dynamics. Interestingly, the parameter DDFS shows a

contrasting response under the GMB likelihood, with the posterior distribution shifting in the opposite direction compared to280

the SCA posterior distribution.

A similar observation can be made for the isotopic likelihood, which effectively constrains parameters related to subsurface

flow and runoff partitioning. For example, the parameter KKA (Figure 4.e), which defines the subsurface runoff outflow rate,

shows noticeable convergence when conditioned on isotope data. Although both KKA and KKD influence subsurface runoff

outflow, only KKA shows a marked posterior convergence. This is likely due to its exponential formulation, which increases285

its sensitivity to the calibration targets, whereas KKD, as a linear coefficient, exerts a more gradual influence that is harder to

isolate and constrain. Other parameters, such as the tension water storage capacity WM (Figure 4.b) and the shape coefficient

B (Figure 4.c), which influence the calculation of the saturation area, also exhibit tighter posterior distributions, underscoring

the capacity of isotope data to inform processes related to water storage and release in the subsurface. Furthermore, the runoff

concentration coefficients α and β (Figures 4.k and 4.l) are better estimated with the inclusion of isotopic data with respect to290

the likelihoods of SCA and GMB.

An interesting case is the temperature threshold parameter T0 (Figure 4.j), which defines the threshold above which snow

and glacier melting occur. The SCA likelihood has the strongest influence on the posterior distribution of T0. However, both

the GMB and the isotopic likelihoods can narrow the posterior distribution of T0, albeit to a lesser extent, indicating that the

glacier mass balance and the isotopic data provide complementary constraints on this parameter.295
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In contrast, the posterior distribution of the parameter Gatr shows minimal variation compared to the previous (Figure 4. d),

aligning with expectations, as Gatr reflects spatial heterogeneity, which reduces its sensitivity to individual physical processes.

It is also worth noting that for the parameter nt, not only does none of the data sets (SCA, GMB, or I) significantly constrain the

posterior distribution compared to the prior, but the isotopic likelihood appears counterproductive in this case, as it increases

the uncertainty by broadening the posterior distribution and reducing its peak.300

3.3 Streamflow simulation uncertainty range

The prior and posterior likelihood distributions, as described in Section 2, were here used to estimate the 5th–95th percentile

prediction uncertainty ranges for daily streamflow simulations. Figure 5 illustrates this predictive uncertainty ranges compared

to observed streamflow data recorded at the Nuxia gauging station. The prior predictive uncertainty, represented by dark

grey bands, corresponds to the hydrological model conditioned solely on observed streamflow data. In contrast, the posterior305

uncertainty ranges, depicted by lighter bands, were obtained by integrating additional datasets: snow cover area, glacier mass

balance, and isotopic data.

The uncertainty bands prove to be overall effective in capturing observed streamflow values. Specifically, the containing

ratio (CR) metric indicates that the prior distribution encloses approximately 96% of the observed streamflow values (CR =

0.959). Posterior distributions derived from isotopic likelihoods exhibit a slightly reduced CR of 0.921, while those based on310

SCA and GMB yield CR values of 0.947 and 0.960, respectively. These findings suggest that, while SCA and GMB maintain

similar levels of coverage compared to the prior, they do not lead to a substantial reduction in predictive reliability. Conversely,

the posterior conditioned on isotopic data demonstrates a modest decrease in coverage.

Visual inspection of Figure 5 indicates no reductions in uncertainty bands for higher streamflow values across all scenarios.

On the contrary, the most pronounced contraction of predictive uncertainty occurs during low-flow periods when the model315

is conditioned with isotopic data (Figure 5.e), whereas conditioning with SCA and GMB does not produce comparable re-

ductions, Figures 5.a and 5.c respectively. Besides, Flow Duration Curves (FDCs), presented in the right panels of Figure 5,

provide further insights into the impact of these datasets across different flow regimes. For SCA and GMB Figure 5.b and

5.d, the posterior uncertainty ranges are generally comparable to or slightly narrower than the prior for medium-flow regimes.

During low-flow conditions, however, the posterior bands are wider than the prior, indicating that incorporating SCA and GMB320

datasets introduces additional variability in streamflow predictions during low flow dominated periods, likely due to challenges

in accurately constraining slow-response hydrological processes. For medium- and high-flow regimes, these datasets appear to

modestly refine or maintain predictive uncertainty. In contrast, conditioning the model with isotopic data (Figure 5.f) results in

a significant reduction in uncertainty, particularly during low-flow conditions. In contrast, conditioning the model with isotopic

data (Figure 5.f) results in a significant reduction in uncertainty, particularly during low-flow conditions. The posterior uncer-325

tainty range is substantially narrower than the prior, indicating improved model consistency in simulating low flow dominated

periods.
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Figure 4. Parameter distributions obtained by conditioning the model with streamflow observations recorded at the Nuxia station (prior PDF,

black line) and by combining streamflow measures with: (i) snow cover area (posterior PDF, orange dashed line); (ii) glacier mass balance

(posterior PDF, light blue dash-dotted line); and (iii) isotope concentrations (posterior PDF, green dotted line).
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These patterns of uncertainty reduction—particularly the distinct effect of isotopic data during low-flow periods—are also

evident at the Yangcun and Nugesha stations (Figures S6 and S7 in the Supplementary Material), further supporting the con-

clusions presented above.330

3.4 Runoff component analysis

Figure 6 shows the CRC produced by different behavioral parameter sets. The boxplots illustrate the contributions of the four

runoff components under the prior parameter set and the posterior parameter sets constrained by snow cover area, glacier mass

balance, and isotope likelihoods. The contributions of subsurface runoff and rainfall surface runoff are similar, both accounting

for approximately 40–45% of the total runoff (Figure 6.a and 6.b). In contrast, snowmelt surface runoff and glacier melt surface335

runoff contribute approximately 8% and 6%, respectively (Figure 6.c and 6.d). The estimated contributions of snowmelt and

glacier melt are lower than some previous estimations in the study area (Boral and Sen, 2020; Lutz et al., 2014), but are close

to some recent studies constraining the CRC estimation based on multiple datasets (Nan et al., 2025; Zhang et al., 2025; Chen

et al., 2017).

The differences in the average CRCs among the parameter sets are relatively small, with variations generally below 3% for340

all four components. However, the inferences drawn from the different datasets reveal interesting patterns regarding uncertainty

reduction. The prior leads to a wider distribution of contributions across all runoff components, reflecting higher uncertainty

in the model predictions. Posterior parameter sets constrained by specific datasets help reduce this uncertainty to varying

extents. Constraining the model with the likelihood of glacier mass balance leads to a significant reduction in the uncertainty

of glacier melt surface runoff (Figure 6.d), as evidenced by the tighter interquartile range and fewer outliers in the box plot.345

This indicates that the GMB simulation provides strong constraints on glacier-related processes. In contrast, the snow cover

area does not lead to a significant reduction in the uncertainty of snowmelt surface runoff (Figure 6.c). This is because SCA

data only constrains the area of snow but does not provide much constraint on the volume of snow, as the snow area-volume

relation is determined by a calibrated parameter. Notably, the isotope likelihood demonstrates a broader impact on reducing

uncertainty across multiple runoff components. The boxplots for I show narrower distributions for subsurface runoff, rainfall350

surface runoff, and snowmelt surface runoff, indicating that isotope simulation provides valuable constraints on both surface

and subsurface hydrological processes.

The influence of each dataset on CRC uncertainties can be further illustrated by the result of sensitivity analysis, which

evaluates the extent to which each performance metric is influenced by the contribution of each runoff component. To this end,

Figure 7 presents the sensitivity of model performance metrics to the contributions of different runoff components, namely355

subsurface runoff (Css), rainfall surface runoff (Csr), snowmelt surface runoff (Csm), and glacier melt surface runoff (Csgm).

The sensitivity analysis evaluates the extent to which each performance metric—streamflow NSEQ, snow cover area NSESCA,

glacier mass balance VEGMB , and isotope NSEI—is influenced by the relative contribution of each runoff component to total

streamflow.

The results indicate that streamflow performance NSEQ and snow cover area performance NSESCA respond differently to360

variations in the contribution of individual runoff components. While NSESCA remains largely insensitive to CRC variations,
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showing consistently high values across a wide range of runoff component contributions, NSEQ exhibits a more noticeable

response. The scatterplots reveal that although streamflow performance remains relatively high (NSEQ > 0.8) even when CRC

deviates from its optimal value, there is a clear tendency for behavioral solutions to cluster towards an optimal CRC, indicating

a degree of sensitivity. In contrast, glacier mass balance performance VEGMB shows strong sensitivity to glacier melt runoff365

Csgm, with VEGMB dropping significantly when Csgm exceeds approximately 10%. The most pronounced sensitivity is ob-

served in the isotope performance metric NSEI , which responds to variations in multiple runoff components. The scatterplots

reveal that NSEI declines markedly when the contributions of subsurface runoff Css, rainfall runoff Csr, or snowmelt runoff

Csm deviate from optimal values. In particular, NSEI decreases significantly from 0.4 to below 0.2 when the contributions of

these components shift, indicating that isotopic simulations are much more sensitive to changes in runoff contributions com-370

pared to other performance metrics. This sensitivity underscores the importance of accurately quantifying the partitioning of

different runoff components to achieve reliable isotope-based model predictions. Overall, the analysis highlights that VEGMB

simulations are primarily sensitive to glacier melt runoff, whereas isotope-based simulations NSEI are more sensitive to a

broader range of runoff components.

It is worth noting that, although NSE is not ideally suited to capture spatial features of snow cover dynamics, our analysis fo-375

cuses on the catchment-integrated snow-covered area, for which NSE remains an informative metric to evaluate the agreement

between observed and simulated temporal patterns of areal extent. In this regard, to better assess model performance, we pro-

vide the time series of observed versus simulated SCA in Figure S3, along with corresponding comparisons for glacier mass

balance and isotopic signatures in Figures S4 and S5 of the Supplementary Material. These visualizations allow the reader

to evaluate the temporal evolution and potential systematic biases for each variable, together with the associated posterior380

predictive uncertainty ranges for SCA, GMB, and isotopic data.
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Figure 5. The 5–95% percentile prior, conditioned solely on streamflow, and posterior predictive uncertainty ranges for streamflow, calculated

under different conditions: snow cover area (SCA), glacier mass balance (GMB), and isotopes (I). Left panels: daily streamflow time series

for the period 2010-2015, with insets showing zoomed views of low-flow dynamics; right panels: flow duration curves for the entire period

2001–2015. Streamflow data are presented in dimensionless form due to dissemination restrictions imposed by the data provider.
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Figure 6. Boxplots showing the variability in the contributions of different surface runoff components under prior estimates conditioned

solely on streamflow (Q) and posterior estimates conditioned on additional datasets: snow cover area (SCA), glacier mass balance (GMB),

and isotopic data (I). Panel (a): Subsurface runoff; panel (b): rainfall surface runoff; panel (c): Snowmelt surface runoff; panel (d): glacier

melt runoff.
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Figure 7. Sensitivity of model performance metrics to runoff component contributions: streamflow NSEQ, snow cover area NSESCA, glacier

mass balance VEGMB , and isotopes NSEI , plotted against subsurface runoff (Css), rainfall surface runoff (Csr), snowmelt surface runoff

(Csm), and glacier melt surface runoff (Csgm). Each point represents a behavioral solution from the multi-objective calibration.
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4 Discussion

Overall, the results presented in Section 3 highlight the differential value of auxiliary datasets in hydrological model calibration.

While SCA and GMB provide insights into snow and glacier dynamics, they appear less effective in reducing streamflow

uncertainty. Not only do the results prove that integrating multiple data sources within the Bayesian framework influences both385

streamflow simulation uncertainties and the computation of CRC components, but they also show varying effects depending

on the type of dataset and runoff component considered, as discussed below.

4.1 Reducing Streamflow Model Uncertainty Using a Bayesian framework

The results of this study differ in another perspective from those of Di Marco et al. (2021), who observed a consistent rela-

tionship in snow-dominated basins between an increased likelihood of streamflow and snow cover area (SCA), alongside a390

reduction in streamflow uncertainty. In contrast, our findings do not show a comparable narrowing of streamflow uncertainty

bands when applying the Bayesian filtering approach with snow and glacier parameters (Figure 5). This discrepancy suggests

that the coupling between snow and glacier dynamics and streamflow performance is not straightforward, particularly in larger

or more heterogeneous catchments.

As noted by Ruelland (2024), the potential for snow data to enhance streamflow simulation consistency and robustness395

depends on various factors, including hydro-climatic conditions, spatial variability, the modeling framework, and the accuracy

of snow cover data (Hao et al., 2022) and input forcing (Raleigh et al., 2015). Factors such as catchment complexity, spatial

heterogeneity, and structural uncertainties in the model—stemming from unresolved hydrological processes or oversimplified

dynamics—likely contribute to the persistence of wide uncertainty ranges. In contrast, isotopic likelihoods effectively constrain

the parameter space, resulting in improved simulation performance and reduced uncertainty bands, particularly during low-flow400

conditions. This finding confirms the ability of isotopic data to capture key hydrological processes, such as groundwater-surface

water mixing and subsurface flow dynamics, which are especially influential during low-flow periods (Jasechko and Taylor,

2015), where seasonality plays a critical role (Bierkens et al., 2001; Birkel et al., 2009).

The influence of hydrological processes seasonality on the effectiveness of likelihoods is demonstrated by the sharpness

polar plot (Figure 8). This figure illustrates the sharpness ranges for posterior likelihoods conditioned on SCA, GMB, and I405

datasets throughout the year. A maximum SH value of 0.34 was observed for isotopes on March 16, 2008, while the maximum

SH values for SCA and GMB were 0.19 on April 30, 2009, and 0.16 on June 10, 2009, respectively. These results highlight

the effectiveness of isotopic likelihoods during winter and early spring, with sharpness values remaining consistently narrow

and never dropping below zero, a period when the model indicates a predominance of contributions from the subsurface flow

component. In contrast, SCA and GMB likelihoods achieve their sharpness peaks during spring and early summer, coinciding410

with periods of rapid snowmelt and glacier runoff. This pattern underscores the importance of integrating SCA and GMB likeli-

hoods for capturing high-flow dynamics and highlights the need to further develop these datasets to enhance their effectiveness

in constraining streamflow uncertainty during these critical periods.
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At this point, it is important to recall that sharpness refers to the degree of concentration of the ensemble simulations

where a sharper ensemble has a narrower spread, indicating higher predictive confidence (Gneiting et al., 2007). However,415

increased sharpness does not necessarily translate into improved reliability. In our case, the inclusion of isotopic data led to a

more constrained ensemble, resulting in a sharper posterior distribution of streamflow simulations. While this outcome reflects

the stronger constraining power of isotopic information, it also increased the likelihood that observed values fall outside the

model’s predictive bounds, thereby reducing the containing ratio (CR). Compared to calibrations using snow-covered area

(SCA) or glacier mass balance (GMB), the sharper ensemble derived from isotope-informed calibration was less able to fully420

capture observed variability. This illustrates the classic trade-off between predictive confidence and reliability — in other

words, between sharpness and containing ration — in probabilistic modeling (Beven and Binley, 1992), and emphasizes the

need to balance these aspects when evaluating ensemble-based hydrological simulations.

These results confirm that isotopic data are highly effective in reducing model uncertainty by providing independent con-

straints on flow partitioning and subsurface processes. However, to translate this enhanced internal consistency into improved425

predictive coverage, future research should explore model structural refinements that better align sharpness with CR. Further-

more, these findings illustrate both the potential and the limitations of Bayesian inference in simultaneously capturing fast

surface runoff and slower subsurface dynamics. Although sharpness values demonstrate its capacity to constrain parameter

uncertainty across diverse hydrological processes, alternative calibration strategies, such as multi-objective weighted optimiza-

tion, may offer additional improvements in streamflow simulation accuracy (He et al., 2019). Still, the sensitivity of model430

outputs to weight selection necessitates careful application (Tong et al., 2021, 2022). Finally, the interplay between likelihood

functions underscores the metric-dependent nature of parameter uncertainty reduction and the value of integrating multiple

complementary evaluation criteria during calibration (e.g., Fenicia et al., 2018; Majone et al., 2022).

These results also point to the need for improved coupling and integration of individual model components. Such integra-

tion would allow for better exploitation of the strengths of each dataset and enhance the Bayesian framework’s capability to435

constrain parameter ranges across diverse hydrological conditions. By addressing these structural connections and leveraging

synergies between complementary metrics, the Bayesian framework’s potential to optimize parameter calibration and improve

predictive accuracy can be fully realized.

4.2 Runoff Component Uncertainty

The GMB dataset effectively reduces uncertainty in glacier melt surface runoff simulations (Figure 6.d), emphasizing its440

value for improving model constraints in glacier-dominated systems. This finding aligns with previous studies highlighting

the importance of incorporating GMB data to enhance streamflow predictions in such catchments (Stahl et al., 2008; O’Neel

et al., 2014; Yang et al., 2024). However, this reduction in uncertainty does not always translate into improved streamflow

predictions at the basin scale. The effectiveness of the Bayesian framework in reducing uncertainties depends on the proportion

of runoff attributed to glacier melt processes. Consequently, even when glacier-related dynamics are well constrained by GMB445

data, their contribution to reducing overall streamflow prediction uncertainty may be limited in basins where other processes
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dominate. This underscores the importance of considering basin scale and dominant runoff processes when selecting datasets

for hydrological modeling.

Similarly, SCA datasets provide valuable constraints on snowmelt surface runoff (Figure 6.c) but have a more limited im-

pact on reducing streamflow uncertainty. This may be due to the spatial and temporal resolution limitations of SCA datasets450

(Di Marco et al., 2020), or because the snowmelt contribution to total runoff is relatively minor in large basins compared to

other components, such as subsurface runoff and rainfall surface runoff. Furthermore, uncertainties in the timing and rate of

snowmelt, which are critical for runoff generation, may not be fully captured by remotely sensed SCA data (Andreas Juer-

gen Dietz and Dech, 2012). This limitation is particularly relevant in basins with complex snow dynamics, where snow cover

depletion varies significantly across different elevation bands and time periods (Molotch and Margulis, 2008).455

In contrast, isotopic data stand out for their ability to reduce uncertainty across multiple runoff components, particularly

during low-flow conditions. By tracing water sources and pathways, isotopic tracers provide critical insights into subsurface

and groundwater contributions, which are difficult to capture with traditional datasets (Birkel et al., 2015). Isotopic tracers,

such as oxygen-18 (δ18O) and deuterium (D), are widely used to distinguish between recent precipitation, snowmelt, and

groundwater contributions to streamflow, improving the calibration of hydrological models (Jasechko, 2019). Our results show460

that the isotope data does not reduce the uncertainty of glacier melt runoff, because the model assumes that glacier melt

generate runoff directly through surface pathway, not involved in the surface-subsurface runoff partitioning, the aspect for

which isotopic data are most useful. The results suggest that incorporating isotopic data into hydrological models can help

reduce uncertainties related to water source contributions and flow pathways, particularly in catchments with complex surface-

subsurface interactions. Such benefit comes from the significant divergence in the isotope signatures of surface and subsurface465

runoff, i.e., a much lower temporal variability of groundwater isotope compared to surface runoff because of the long travel

time.

These differences in the influence of datasets underscore the importance of selecting appropriate data sources based on the

specific hydrological processes and uncertainties that need to be addressed in a given catchment. For example, GMB data

should be prioritized in glacier-fed basins to improve predictions of glacier melt runoff (Huss and Hock, 2015), whereas470

isotope data can provide valuable constraints on multiple runoff components, particularly in catchments with diverse flow

generation processes (Rodgers et al., 2005; Birkel et al., 2011). The integration of multi-source datasets can help reduce model

uncertainties more effectively than relying on a single dataset (Beven, 2006), resulting in more robust predictions of water

availability and streamflow variability under changing climatic conditions (Borriero et al., 2023).

4.3 Limitations475

This study systematically evaluates the value of snow cover area, glacier mass balance, and isotopes in reducing model uncer-

tainties. Results highlight the critical role of isotope data in improving low-flow simulations and runoff component separation.

However, several limitations persist. First, while streamflow simulations achieve NSE values up to 0.9, peak flows are consis-

tently underestimated, likely due to inaccuracies in precipitation forcing data (Jiang et al., 2022; Xu et al., 2017). Metrics for

SCA and isotope simulations remain around 0.5, indicating potential for further optimization. Second, the model structure is480
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rather simplified when conceptualizing processes such as groundwater and snow/ice melting. In specify, only two subsurface

layers (u-zone and s-zone in the model) are defined, and the subsurface outflows are simulated as a sum. Only the shallow

groundwater processes are considered, only occurring within each REW, which is unable to adequately describe subsurface

processes in the TP, where deep interbasin groundwater pathways exist (Chen et al., 2025). Meanwhile, the simple degree-

day factor method was used to simulate the melting processes, to make the model adequately efficient for subsequent GLUE485

analysis. These modules can be improved to strengthen the physical basis of the model. Third, as this analysis is based on a

single case study in a specific region, its broader applicability is uncertain. Unlike prior studies (Di Marco et al., 2021; Tong

et al., 2021), snow and glacier datasets did not significantly enhance model performance here, suggesting the need to clarify

the conditions under which such data prove most beneficial.

Despite these challenges, the study underscores the importance of employing multiple datasets to constrain hydrological490

models. Although snow and glacier datasets alone may not substantially improve streamflow simulations, they are essential for

ensuring model reliability in capturing key processes. Isotope data, in particular, effectively constrain surface and subsurface

runoff separation due to the low variability in groundwater isotopic composition (Nan et al., 2024; McGuire and McDonnell,

2006), reducing low flow uncertainties and enhancing model robustness.

5 Conclusions495

This study provides new insights into reducing uncertainty and equifinality in the hydrological modeling of large mountainous

catchments by integrating multiple auxiliary datasets within a Bayesian framework. By systematically comparing the con-

tributions of snow cover area (SCA), glacier mass balance (GMB), and isotopic tracers, we demonstrate how these datasets

distinctly improve model performance across various flow regimes.

A critical conclusion drawn from this research is the unique advantage of isotopic data in reducing model uncertainty dur-500

ing low-flow periods. The isotopic likelihood has shown to be more effective in constraining subsurface flow contributions

and groundwater-surface water interactions, resulting in narrower uncertainty ranges for streamflow predictions under low-

flow conditions. This finding underscores the critical role of isotopic tracers in improving the representation of slow-response

hydrological processes, which are essential for the mitigation of drought and sustainable management of water resources in

mountainous regions. In contrast, the SCA and GMB datasets were found to be more effective in capturing rapid surface dynam-505

ics, such as snowmelt and glacier melt processes. However, their contributions to reducing streamflow uncertainty were limited,

particularly during low-flow conditions. This discrepancy highlights the need for multi-objective calibration approaches that

balance the trade-offs between rapid surface responses and slow subsurface processes.

Our results also reveal the differential impact of each dataset on the contributions of runoff components. The glacier mass

balance likelihood significantly reduces uncertainty in glacier melt surface runoff, whereas isotopic data provide broader con-510

straints across multiple runoff components, including subsurface runoff, rainfall surface runoff, and snowmelt surface runoff.

These differences emphasize the importance of selecting appropriate datasets based on the dominant hydrological processes in

a given catchment.
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The study further highlights the limitations of current Bayesian frameworks in fully leveraging the complementary strengths

of auxiliary datasets. While Bayesian approaches are effective in reducing parameter uncertainty and improving model calibra-515

tion, the persistent wide uncertainty ranges for streamflow predictions indicate the need for improved coupling and integration

of individual model components. Enhancing these structural connections within the modeling framework could allow for better

exploitation of multi-source datasets, ultimately improving predictive accuracy across diverse hydrological conditions.

In conclusion, our findings stress the importance of incorporating multi-source datasets in hydrological modeling to achieve

robust performance across different flow regimes. The integration of isotopic tracers, snow cover, and glacier mass balance data520

within a Bayesian framework offers a promising pathway to reduce uncertainty and enhance the understanding of streamflow

variability in large mountainous catchments. Future research should focus on developing more advanced coupling methods

that account for the complex interplay between cryospheric and subsurface processes, as well as exploring the potential of

multi-objective weighted calibration approaches to further improve model reliability.
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Figure 8. Polar plots showing the daily sharpness band computed from the maximum and minimum sharpness values across the years

2010–2015. The shaded regions represent the range of sharpness variability for each day of the year, while the solid black line indicates

the reference level at zero sharpness. The subplots illustrate the sharpness calculated under different conditioning: cLH(pi|Q,SCA) (a),

cLH(pi|Q,GMB) (b), and cLH(pi|Q,I) (c).
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al., 2018; Liu et al., 2007
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