
Dear Editor,

We thank you for handling our manuscript, and we sincerely appreciate the time 
and effort that the Referee has dedicated to their thoughtful assessment.

Please find enclosed the revised version of the manuscript titled “Reducing 
Hydrological  Uncertainty  in  Large  Mountainous  Basins:  The  Role  of 
Isotope, Snow Cover, and Glacier Dynamics in Capturing Streamflow 
Seasonality”, reference number EGUSPHERE-2025-664.

After carefully reviewing the Referee’s comments,  we believe we have fully 
addressed each point, as detailed in the attached rebuttal document. We also 
include a PDF version of the revised manuscript with all modifications clearly 
marked using track changes.

We believe that the manuscript has significantly improved and now meets the 
quality  standards  of  Hydrology  and  Earth  System  Sciences.  We  have  also 
ensured that the revised version  complies with HESS guidelines on data 
sharing and reproducibility. In particular, we have updated the public data 
archive and clarified in the manuscript. We also believe that all shared elements 
are  sufficient  to  support  independent  assessment  and  interpretation  of  the 
results, even within the constraints imposed by data confidentiality.

Sincerely,
Diego Avesani
on behalf of the authors
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email: diego.avesani@unitn.it
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Reply to Editor and Reviewers

We thank the Editor and the Referee for the valuable comments. Below we reply 
point to point and describe the modifications introduced in the revised version of 
the manuscript. Our replies are evidenced in blue.

Reply to Editor

The reviewer is in principle satisfied with the proposed changes in the revised 
manuscript. There, however, remain a few open questions which I encourage you 
to  address  in  the  necessary  detail.  Please  also  make  sure  to  give  clear  and 
detailed explanations of the data availability issue and a full description of the 
reasons  what  cannot  be  published  and  why.  To  do  so  follow  the  open  data 
regulations provided on the HESS website.

Reply
As outlined in Section 2.1, streamflow data for the Yarlung Tsangpo River, which 
is  part  of  a  transboundary  river  system  with  China  located  upstream,  are 
classified as confidential under Chinese national regulations. As a result, these 
data  cannot  be  publicly  disclosed,  shared  online,  or  included  in  any  form of 
publication.  This  restriction  reflects  broader  geopolitical  considerations,  as 
highlighted  by  Lin  et  al.  (2023),  who  emphasize  the  heightened  sensitivity 
surrounding hydrological data in transboundary basins, particularly in regions 
affected  by  resource-related  or  political  tensions.  This  limitation  has  been 
explicitly acknowledged and discussed in the main text of the paper.
Such restrictions are  not  uncommon and have been acknowledged in  several 
articles  published  in  Hydrology  and  Earth  System  Sciences  (HESS),  where 
authors  have  transparently  reported  data  confidentiality  and  addressed  it 
through  alternative  data  representations  and  detailed  methodological 
documentation (e.g., Singh et al., 2023; Zhang et al., 2024). In line with HESS 
open data regulations, this study maintains scientific integrity by ensuring that 
all shared elements are sufficient to fully reproduce the results.
Nevertheless,  to  ensure  transparency  and  reproducibility  within  these 
constraints,  we  provide  access  to  the  5th–95th  percentile  confidence  bands 
derived from the prior and posterior streamflow distributions. These are clearly 
referenced in the Data Availability section and enable readers to evaluate the 
uncertainty  structure  and  relative  discharge  variability  represented  in  the 
analysis. In addition, the Supplementary Material includes dimensionless time 
series and flow duration curves that were normalized using consistent scales 
across  the  three  stations.  This  approach  facilitates  a  fair  comparison  of 
streamflow magnitudes while preserving the relative differences between sites. 
In  line  with  the  rationale  adopted by  Hydrology  and Earth System Sciences 
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regarding restricted datasets, these choices are clearly justified in the section on 
data availability and confidentiality.

----------------------------------------------------------------------------------------------------------------
   
Reply to Review 2:
I acknowledge the efforts that the authors made in revising the manuscript and 
the  point-to-point  response  to  each  comment.  Many  comments  have  been 
addressed,  while  a  few  comments  are  partially  addressed.  I  still  have  some 
concerns about the results of the revised manuscript.

Discharge:
One of my key concerns is still that it is not possible to assess the simulated 
discharge performance. For example in Figure 5, the authors plot the discharge 
without  y-axis.  Only  the  best  simulated  discharge  data  of  the  posterior 
distributions are provided on the Zenodo (https://zenodo.org/records/15605202), 
however,  they  are  not  plotted  on  the  Figure  5.  The  authors  provided  the 
simulation results of two more discharge stations in the supplementary material, 
but neither observed nor simulated data are provided for these stations. I would 
suggest the authors to keep consistency: the best simulation’s data provided on 
the link should be plotted on the figures to allow readers to assess the differences 
between  the  observation,  prior,  and  posterior  distributions.  The  uncertainty 
bands are too wide to obtain this information and obscure the difference between 
the  simulation  and  observation.  The  title  of  the  manuscript  is  reducing 
hydrological  streamflow uncertainty by using snow, glacier,  and isotope data. 
However, the differences of the simulated discharge with these data are hardly 
seen in Figures 5, S6, S7 (a,c,e,b,d).

Reply
We thank the reviewer for their polite and constructive comment, and we are 
grateful for highlighting the importance of better representing the data used in 
our  figures.  This  suggestion  prompted  us  to  further  reflect  on  the  role  of 
ensemble  means  in  the  context  of  our  modeling  framework  and  to  address 
additional  important  questions.  In  response,  we  have  updated  the  Zenodo 
archive  (https://zenodo.org/records/15605202)  to  include  not  only  the  5-95 % 
uncertainty bands but also the mean streamflow trajectories for both the prior 
and  posterior  ensembles  at  all  three  gauging  stations  (Nuxia,  Yangcun,  and 
Nugesha). These simulation means are the same as those now shown in Figure 5 
of the main text and in Figures S6-S7 of the Supplementary Material.
We have also  revised the manuscript  accordingly.  In the Results  section,  we 
added  the  following  paragraph  to  enhance  interpretability  and  provide  a 
deterministic reference alongside the probabilistic representation:

3



“To  further  enhance  interpretability  and  provide  a  deterministic  reference 
alongside the probabilistic representation, Figure 5 includes the mean simulated 
streamflow trajectories for both the prior and posterior distributions, in addition 
to the uncertainty bands and observed data. As evident from the figure insets and 
the FDCs, the prior and posterior means exhibit slight differences across all cases, 
with a more noticeable divergence of the posterior mean from the prior in the case 
of isotope conditioning.”

Likewise,  in  the  Discussion  section,  we  now  explicitly  discuss  the  role  and 
limitations of the ensemble mean:

“In  this  context,  the  posterior  mean  streamflow,  especially  in  the  isotope-
conditioned  simulations,  fails  to  consistently  outperform  the  prior  mean 
streamflow in reproducing the observed discharge,  despite exhibiting narrower 
uncertainty bands in some streamflow regimes (see Section 3). This deterioration 
in deterministic skill is not unexpected. Previous studies (e.g., Vrugt and Sadegh, 
2013;  Botto  et  al.,  2018)  have  shown that  reducing ensemble  spread does  not 
automatically lead to improved agreement with observations. Structural model 
deficiencies and varying accuracy of input data sources (i.e., SCA, GMB, and I) 
may introduce systematic posterior bias, since the conditioning step attempts to 
compensate for processes that are poorly captured by the model or affected by 
different levels of uncertainty (Beven and Freer, 2001; Chowdhury and Sharma, 
2007). It is important to emphasize that the ensemble mean does not correspond to 
the best-performing simulation in terms of NSE, and may smooth out dynamic 
features that are better reproduced by individual ensemble members. Moreover, 
the goal of the data-conditioning approach is not to maximize deterministic skill, 
but rather to reduce predictive uncertainty by constraining the prior ensemble: the 
shift  from prior  to  posterior  aims  at  narrowing  the  uncertainty  bands  of  the 
streamflow simulations,  even  at  the  cost  of  some  loss  in  individual  accuracy 
(Beven, 2006).”

We  believe  that  these  additions  directly  address  the  reviewer’s  concern  and 
strengthen the coherence between the figures, the shared data, and the overall 
objective of the study.

The simulated discharge for the other two stations (Fig. S6 and S7 only shown 
for 2005-2010) seem to be worse than Figure 5 (only shown for 2010-2015). The 
simulation period was set for 2001-2015. Can the authors please explain why the 
model is better for one station but worse for the other two stations? Why not 
show the overlapping period of all stations?

4



Reply
We thank the reviewer for this insightful observation. The lower performance at 
the  two  upstream  stations  is  mainly  due  to  the  absence  of  site-specific 
calibration: parameter sets were calibrated at Nuxia and transferred unchanged 
to  Yangcun  and  Nugesha,  so  they  do  not  fully  capture  local  hydrological 
behaviour.  This  outcome  is  consistent  with  earlier  findings  on  parameter 
transferability (e.g., Khakbaz et al., 2012; Demirel et al., 2024). This clarification is 
now  explicitly  noted  in  Section 3.2  of  the  revised  manuscript.  We  also 
acknowledge that, in the previous version, Figures 5, S6, and S7 did not cover the 
same time period at all stations, this was an oversight on our part. To ensure a 
fair and consistent comparison, we have redrawn these figures to span the same 
overlapping period (2001–2010) at all three sites. In addition, each panel now 
uses a uniform, dimensionless y-axis,  which facilitates direct  comparison and 
interpretation of differences across stations. To further support this comparison, 
we have added a new figure in the Supplementary Material (Figure S9), which 
directly contrasts the dimensionless observed streamflow time series across the 
three stations. This provides a clearer view of their relative hydrological regimes 
and supports the interpretation of ensemble performance discussed in the main 
text.

In Figure 5(b,d,f), S6(b,d,f), S7 (b,d,f), as there is no y-axis, I am not sure about 
the high and low discharge distribution, either upside or downside? I also do not 
understand the unevenly distributed ticks on y-axis.

Reply
We thank the reviewer for highlighting this issue. The unevenly spaced ticks in 
the original panels arose from plotting the flow-duration curves on a logarithmic 
axis.  In  the  revised  figures,  the  time-series  panels  now  display  normalized 
streamflow, while the FDC panels use a normalized log-discharge scale.  This 
approach  maintains  the  customary  logarithmic  representation  of  FDCs  yet 
presents all values in a clear, dimensionless form improving overall readability.

Pareto-front:  How  do  the  authors  define  the  Pareto  fronts  which  are  not 
dominated by both objectives in Figure 3 on L231?

Reply
We thank  the  reviewer  for  this  helpful  comment  and  acknowledge  that  our 
original phrasing was unclear. We have revised the relevant sentence to clarify 
how the Pareto front is defined in our analysis. Specifically, we follow standard 
practice in multi-objective hydrological modelling (Yapo et al., 1998, Efstratiadis 
and  Koutsoyiannis,  2010),  and  define  the  Pareto  front  as  the  set  of  non-
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dominated simulations;  those  for  which no  other  simulation in  the  ensemble 
achieves equal or better performance in both objectives and strictly better in at 
least  one.  These  points  represent  optimal  trade-offs:  improving  one  objective 
would  necessarily  deteriorate  the  other.  We have  updated the  manuscript  to 
reflect this more precise formulation.

Tech corrections:
In the data availability, the full names of the abbreviations should be given, e.g. 
CMFD, HWSD.

Reply
Thank you for your observation. We have updated the Data Availability section 
to  include  the  full  names  of  all  abbreviations,  including  CMFD  (China 
Meteorological Forcing Dataset) and HWSD (Harmonized World Soil Database), 
to improve clarity and ensure accessibility for all readers.

Figure 2: avoid using red and green color in the same figure to allow readers 
with color vision deficiency to correctly interpret the figure. This issue has been 
raised in last round of review but still has not been addressed. 

Reply
We appreciate  the  reviewer's  attention  to  accessibility  and  apologize  for  not 
having  fully  addressed  this  point  in  the  previous  revision.  In  the  revised 
manuscript, we have updated Figure 2 to avoid the use of red and green in the 
same  figure.  The  new  color  scheme  has  been  carefully  selected  to  be 
distinguishable for readers with color vision deficiency.  Additionally,  we have 
validated the updated figure using the Color Blindness Simulator available at 
https://www.color-blindness.com/coblis-color-blindness-simulator/  to  ensure 
accessibility.
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