
Reviewer 1​
​
The manuscript presents a hydrological modeling study in a glacier-influenced 

catchment. The work explores the value of auxiliary datasets, namely water 

isotope composition, snow cover area, and glacier mass balance in model 

calibration in a GLUE framework. The model structure allows tracer simulations 

and comparison with spatially variable datasets. The works finds different 

datasets have more power in model calibration in different hydrological seasons: 

isotopes during baseflow, and snow and glacier related observations during the 

melt period. 

 

I liked the systematic approach for including model validation datasets of very 

different origin to model evaluation scheme. The GLUE uncertainty analysis 

framework for the work is in my judgement valid. The overall approach the 

authors develop to explore parameter sensitivity to model validation objectives 

and stream source water contribution are in my opinion of interest to the 

community. I recommend the work to be published after addressing my 

comments below: 

 

MAJOR COMMENTS 

 

I’d like to see better presentation of the stable water isotope data. You have only 

isotope data of the streamflow validation, it remains unclear how representative 

the input precipitation data is of the catchment. Do any of the references cited for 

the model development have any comparison data for simulated precipitation, 

snow or groundwater isotope composition? Having even cursory validation of the 

simulated isotope composition in different model compartments (snow, glacial 

melt, groundwater mainly) in the would give more credibility that the streamflow 

isotopes are correctly simulated and informative for the right reasons. On that 

note, I’d like to see a figure of the stream isotope data and model simulation fit to 

stream isotopes. 

 

Response: 

We will add more descriptions about the isotope of various water bodies. 

●​ Precipitation: Our previous evaluation of isoGSM (Nan et al., 2021) indicated 

that it can effectively capture the seasonal variation in precipitation δ18
O, but 

exhibited a systematic overestimation bias in the study region and performed 

relatively poorly in accurately capturing the isotope signature of specific 

events (see the Figures 1 and 2). We adopted the corrected isoGSM product 

from Nan et al. (2022) as the input data, in which the bias of isoGSM was 

adjusted based on a linear regression with altitude. Note that the corrected 

isoGSM directly incorporates measured precipitation δ18
O data for locations 

and dates with observations, so comparing the corrected isoGSM with 

measured data is not meaningful. Instead, we only show the relationship 

between the original isoGSM and measurements to illustrate the capability 

of the original isoGSM in simulating precipitation δ18
O. 
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●​ Glacier melt: The δ18
O of glacier meltwater was calculated using the 

offset‑parameter method, in which the glacier‑melt δ18
O was assumed to be 

temporally constant and 5 ‰ lower than the weighted average of local 

precipitation δ¹⁸O. The value of the offset parameter (5 ‰) was estimated 

from the data collected by Boral and Sen (2020). 

●​ Groundwater: We were not able to collect groundwater samples for isotope 

validation. Nonetheless, the characteristics of groundwater δ¹⁸O are clear: it 

exhibits much lower temporal variation than precipitation or streamflow, due 

to the long water travel time. 

●​ Snowmelt: We were also not able to collect snowmelt water samples for 

isotope validation. So the parameters constrained by isotope didn’t lead to 

significant difference in snow simulation and the estimation of snowmelt 

runoff. The snow simulation is mainly constrained by the snow cover area 

data. 

●​ Streamflow: Yes. We will add a figure to show the simulation and observation 

of stream water δ18
O. 

 

 

 

Fig. 1: Temporal variations in the precipitation δ18
O derived from observation and 

isoGSM data at four stations. 
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Fig. 2: The scatter diagrams between the isoGSM and measured isotope data at 

four stations. 

 

 

 

 

The fractions for snowmelt surface runoff and glacier surface runoff seem low to 

me. Can you provide comparison with fractions found in other montanous snow 

and glacier influenced sites? Quite often end-member mixing analysis fraction 

estimations are done for three end members: snow, rain and glacial melt. In your 

model analysis groundwater is explicitly considered as a component, but 

isotopically it is essentially composed of rain, snow and glacial melt. This in my 

opinion creates a bit of confusion, and makes the glacial and snow melt seem less 

important for the regions water resources. I don’t think there is an error in your 

analysis, but would be good to clarify the concepts further, to make your results 

more relatable to other literature. 

 

Response: 

●​ There are two common ways to define runoff components. One is based on 

water source, describing where the water originates; under this definition, 

the three end‑members are rainfall, snowmelt, and glacier melt. The other is 

based on the runoff‑generation pathway, describing how water produces 

runoff; here, the two end‑members are surface runoff and subsurface runoff. 

In both cases, the sum of component contributions equals one. Because 

groundwater is also important, including all components would require 

reporting two separate sets of results (e.g., rainfall 80%, snowmelt 10%, 
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glacier melt 10%; surface runoff 40%, subsurface runoff 60%), which can be 

confusing. Therefore, in this study we combined these definitions and defined 

four runoff components.  

●​ The contribution of runoff component is highly dependent on the calculation 

definition and the dataset used for model validation. In our result, the low 

contribution of snow and glacier runoff is partly due to our component 

definitions and the correspondingly high share of subsurface runoff. The 

contributions of snowmelt and glacier meltwater in the study area are highly 

uncertain, ranging from less than 5 % to over 30 %. Nonetheless, studies 

using snow and glacier data to validate the model—thereby enhancing 

reliability—have all estimated relatively low contributions. For example, 

Chen et al. (2017) estimated snowmelt and glacier‑melt contributions as 

10.6 % and 9.9 % (ratios defined as SM/Q and GM/Q), whereas Zhang et al. 

(2025) reported corresponding values of 6.0 % and 6.2 % (ratios defined as 

SM/(RF + SM + GM) and GM/(RF + SM + GM)). When calculated in the same 

manner, our results closely match these estimates. 

 

MINOR COMMENTS 

 

L12: I perceive GW-SW interactions as specific water exchange processes 

between surface and subsurface water. As you don’t really delve deeper into 

GW-SW interactions in your simulations, I’d propose that you stick with talking 

only about baseflow, not GW-SW interactions (which baseflow generation if of 

course a manifestation of) 

Thank you for this clarification. We agree with your observation and will avoid 

using the term “groundwater–surface water interactions” in the revised 

manuscript, as our analysis does not explicitly address these processes. Instead, 

we will refer to subsurface flow, which is more consistent with the scope of our 

simulations and aligns with Reviewer 2’s comments 

 

L54-L66: seems like the research questions are to some extent repeated. Suggest 

to review and rewrite more concisely. 

Thank you for the suggestion. We acknowledge the redundancy and will revise 

the paragraph to make the research questions more concise and focused in the 

revised manuscript. 

 

L110: Do you think snow sublimation would be a significant flux in your region, 

possibly influencing the snow storage and isotope composition of the snowpack 

consequently snow melt? 

Some studies indicated that due to the wet condition in the YTR basin, the 

sublimation losses are relatively small, accounting for only 2-3% of the annual 

snowfall (Lutz et al., 2016, Khanal rt al., 2021).  Consequently, our model doesn’t 

consider the influence of snow sublimation, as some other modeling studies in 

this basin (e.g., Chen et al., 2017, Sun at al., 2024). 

 

L213: not clear how the simulations comprising the pareto front (red markers in  
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are selected. seems like the number of the included simulations is fairly low, 

around 15. 

Thank you for your observation. The red markers correspond to simulations on 

the Pareto front, identified in the bi-objective space shown in each panel. The 

relatively small number of red points (~15) reflects the fact that only a limited 

subset of simulations are non-dominated with respect to both objectives. We 

emphasize that the Pareto front is computed over the entire simulation 

ensemble, independently of any behavioral classification. The red points should 

therefore not be interpreted as behavioral simulations, but rather as 

Pareto-optimal solutions based solely on the two performance metrics shown. 

This behavior is consistent with what was reported by Di Marco et al. (2021), who 

found that the number of Pareto-optimal simulations was substantially lower 

than the number of behavioral ones, highlighting how multi-objective trade-offs 

can lead to highly selective optimal subsets. We will revise the manuscript and 

the figure caption to make this distinction clearer. 

 

L238: can you further explain where the prior parameter distributions in Fig.4 

comes from. Is it the parameters with >0 NSE for streamflow? ​
We agree that the origin of the prior parameter distributions shown in Fig. 4 

requires further clarification. The prior parameter distributions are derived from 

model parameter sets that resulted in a positive Nash-Sutcliffe Efficiency (NSE > 

0) for streamflow. This filtering step ensures that only behaviorally plausible 

parameterizations—those capable of reproducing streamflow dynamics to a 

reasonable degree—are included in the prior. We will revise the manuscript to 

explicitly state this criterion in the main text, and we will update the caption of 

Fig. 4 accordingly for clarity. 

 

L304: I don’t fully understand why the sensitive LL parameter does not manifest 

in the snowmelt fraction. 

From a water balance perspective, the contribution of snowmelt is primarily 

governed by the fraction of snowfall in total precipitation, which depends on the 

temperature threshold used for rainfall/snowfall partitioning. While the LL 

parameter mainly affects the spatial extent of snow cover — and thus the spatial 

and temporal distribution of snowmelt — its influence on the total amount of 

snowmelt remains limited. We will clarify this aspect more explicitly in the 

revised manuscript. 

 

L307: the narrower ranges for isotope simulations are not evident visually 

compared to the Q simulations. Would any statistical test either looking for 

differences in central values or variability in the distributions be helpful in 

identifying the differences? 

We will provide some quantitative results to illustrate this. 

 

L310: incomplete sentence? ​
Thank you for pointing this out. We will correct the manuscript accordingly. 
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L341-343: not very clear how successful the snow cover extent simulations are in 

the first place. The NSE metric is not very intuitive for snow cover extent 

variable. If for example the extent in area does not quantify, if the snow cover is 

simulated in the correct location. Similarly as requested for the isotopes, can you 

provide the timeseries of observed vs simulated snow cover extent to identify and 

discuss some potential some biases. 

Thank you for this comment. We agree that NSE, while commonly used, may not 

fully capture spatial aspects of snow cover dynamics. Our analysis focuses on the 

catchment-integrated snow-covered area (SCA), where NSE remains an 

informative metric for evaluating the agreement between observed and simulated 

temporal patterns of areal extent. To better illustrate model performance, we 

have included the time series of observed vs. simulated SCA in Figure 3, along 

with corresponding comparisons for glacier mass balance (GMB) and isotopic 

signatures in Figures 4 and 5. These figures allow the reader to visually assess 

the temporal dynamics and potential biases for each variable. As detailed in 

Sections 3.3 and 2.2, the figures also represent the posterior predictive 

uncertainty ranges for streamflow, SCA, GMB, and isotopic data. These will be 

provided as part of the Supplementary Material of the revised manuscript. We 

believe these additional results will help clarify how successful the simulations 

are in reproducing the observed seasonal and interannual variability. 

 

 

 

Fig. 3. Observed Snow Cover Area and posterior model ensemble LH(pᵢ | Q, SCA), 

based on joint conditioning with streamflow and snow cover area information. 
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Fig. 4. Comparison between observed δ¹⁸O and the model posterior ensemble LH(pᵢ 
| Q, I), conditioned on streamflow and isotope information. 

 

Fig. 5. Observed glacier mass balance and posterior model ensemble LH(pᵢ | Q, 

GMB), based on joint conditioning with streamflow and mass balance 

information. 
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