Salim Soltani, Chair of Sensor-based Geoinformatics (geosense), Faculty of Environment and Natural Resources, University of Freiburg, salim.soltani@geosense.uni-freiburg.de

To the Executive Editor and Reviewers of Biogeosciences

20.06.25

Ref. No.: egusphere-2025-662- "Automated mask generation in citizen science smartphone photos and their value for mapping plant species in drone imagery "

Dear Dr. Feldman and Reviewers,

Thank you for the constructive comments and the time dedicated to reviewing our manuscript. Your comments helped us improve the quality of the manuscript. We also thank Dr. Feldman for his editorial comments, which we have addressed in the updated manuscript.

We have revised the manuscript accordingly and hope the updated version addresses the shortcomings of the previous version. We look forward to your assessment and the next editorial decision.

Sincerely,

Salim Soltani

(on behalf of the Co-authors, Lauren E. Gillespie, Moises Exposito-Alonso, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn)

		Reviewer #:	1
ID	Line	Comment	Response
1	184-188	Other than learning rate, batch size, and epoch, did you tune other parameters? Also, for learning rate, batch size, and epoch, it is better to test with a wider range of values to evaluate model performance before narrowing them down to a specific range. Also, for model training, did you use k-fold cross-validation for hyperparameter tuning? If so, what is the k-fold value did you use? This needs to be clarified.	We thank the reviewer for pointing this out. Yes, we tested different hyperparameter settings both in this study and in our earlier work (Soltani et al., 2024), and the parameter settings we originally reported refer to these ideal hyperparameters. In the revised manuscript we describe these hyperparameters and their selection in more detail (Lines 252-267): "We explored a range of hyperparameters. Specifically, we tested learning rates from 0.00001 to 0.1 and batch sizes between 5 and 20. Additionally, we evaluated various optimizers (Adam, SGD, AdamW), momentum parameters for SGD (0.4 to 0.99), weight decay for regularization (1e-2 to 1e-5), dropout rates (0.1 to 0.5), and multiple dense layer configurations. We also compared different loss functions, including Cross-Entropy Loss and Focal Loss. Initial experiments showed that the AdamW optimizer with moderate weight decay (1e-4) and no dropout, combined with the dynamic OneCycleLR learning rate scheduler, with a maximum learning rate of 0.01 (Smith, 2018), consistently yielded the most stable and superior convergence. The optimal hyperparameters identified were a learning rate of 0.001 and a batch size of 16. The final model implementation utilized the PyTorch framework and was trained on a high-performance GPU system (NVIDIA A6000 with 48GB RAM). We partitioned the reference dataset into training (80%) and validation sets (20%)." We did not use k-fold cross-validation as the models were instead evaluated on an entirely independent test dataset (see Section 2.1.1), a common approach in

photos, it is hard to predict acquisition distance just from the photo itself; thus, distance thresholds of 0.2 m and 20 m seem skeptical. In the earlier paragraph, authors use an area threshold of 30% to filter out some photos. Should a similar method be used to filter out photos with large amounts of tree trunk/branch? Should a similar method be used to filter out photos with large amounts of tree trunk/branch? Should a similar method be used to filter out photos with large amounts of tree trunk/branch? Figure A2. Figure A2. Lose-up photos showing individual leaves or very distant photos showing broad landscapes. It does not aim to provide precise distance estimations but rather to filter out these two extreme cases. We saw that the applied threshold effectively removed such images while preserving photos taken at distances commonly found in close-range UAV imagery, which can be seen in the series of randomly-selected example citizen science photographs and their predicted distance provided in supplementary figure A2.			machine learning (Van Horn et al 2021
The prediction of acquisition distance seems skeptical. In citizen science data, people use various cameras and may set various zooming modes when capturing photos, it is hard to predict acquisition distance just from the photo itself; thus, distance thresholds of 0.2 m and 20 m seem skeptical. In the earlier paragraph, authors use an area threshold of 30% to filter out some photos. Should a similar method be used to filter out photos with large amounts of tree trunk/branch? The prediction of acquisition distance is indeed challenging without known camera parameters. Our approach, which was already evaluated in Soltani et al. (2022, 2024), was intended to exclude extremely close-up photos showing individual leave: or very distant photos showing broad landscapes. It does not aim to provide precise distance estimations but rather to filter out photos with large amounts of tree trunk/branch? Should a similar method be used to filter out photos with large amounts of tree trunk/branch? The prediction of acquisition distance is indeed challenging without known camera parameters. Our approach, which was already evaluated in Soltani et al. (2022, 2024), was intended to exclude extremely close-up photos showing individual leave: or very distant photos showing broad landscapes. It does not aim to provide filter out these two extreme cases. We saw that the applied threshold effectively removed such images while preserving photos taken at distances commonly found in close-range UAV imagery, which can be seen in the series of randomly-selected example citizen science photographs under the provided in supplementary figure A2.			
distance seems skeptical. In citizen science data, people use various cameras and may set various zooming modes when capturing photos, it is hard to predict acquisition distance just from the photo itself; thus, distance thresholds of 0.2 m and 20 m seem skeptical. In the earlier paragraph, authors use an area threshold of 30% to filter out some photos. Should a similar method be used to filter out photos with large amounts of tree trunk/branch? Should a similar method be used to filter out photos with large amounts of tree trunk/branch? Figur A. Employ of disea store, phonyable librarilis, to polled common provided in supplementary figure A2.			Beery et. al. 2022).
"Estimating acquisition distance from photographs using a CNN-based regression model was first introduced in	2	distance seems skeptical. In citizen science data, people use various cameras and may set various zooming modes when capturing photos, it is hard to predict acquisition distance just from the photo itself; thus, distance thresholds of 0.2 m and 20 m seem skeptical. In the earlier paragraph, authors use an area threshold of 30% to filter out some photos. Should a similar method be used to filter out photos with large amounts	Inferring absolute distance is indeed challenging without known camera parameters. Our approach, which was already evaluated in Soltani et al. (2022, 2024), was intended to exclude extremely close-up photos showing individual leaves or very distant photos showing broad landscapes. It does not aim to provide precise distance estimations but rather to filter out these two extreme cases. We saw that the applied threshold effectively removed such images while preserving photos taken at distances commonly found in close-range UAV imagery, which can be seen in the series of randomly-selected example citizen science photographs and their predicted distance provided in supplementary figure A2. Figure A2: Examples of citizen science photographs (line application distance) in the series of the provided distance provided in supplementary figure A2.

			11 11 1
			model achieved an R2 = 0.7 on independent test data. This accuracy indicates reliable performance in predicting acquisition distances from crowd-sourced photographs. An example of the model's predictions and the resulting distance-based filtering is provided in the appendix (Fig. A2)"
			Concerning tree trunk filtering, we addressed this issue by applying a separately trained classification model, which effectively filtered out photos dominated by bark or woody parts, making additional filtering unnecessary. We made this clear by making it more clear (Lines 327-329):
			"we developed a CNN-based regression model to predict acquisition distances in meters and a separate CNN-based classification model to detect the presence of the trunks."
3	278- 284	Did you use k-fold cross-validation to train the model? If so, the k-fold value you used should be reported.	As addressed in response 1, we did not use k-fold cross-validation during model training. Final model evaluation was performed using manually delineated reference data from UAV images that were completely excluded from the training process (see Section 2.1.1) which we clarify in the revised manuscript (Lines 403-407):
			"We trained the segmentation model on citizen science plant photographs using a fixed data split, with 80% of the data for training and 20% for validation. The final segmentation model performance was evaluated using independent reference data derived from visual interpretation of UAV orthoimage transects, which were not used during training."
4	286- 301	The classification performance seems to be low for various species. Citizen science data helps reduce time and labor in reference data collection; however, we also need to make sure output data are accurate and usable. With this low	We acknowledge the reviewer's concerns regarding segmentation accuracy and appreciate the forward-looking suggestions. First of all, we would like to highlight that using citizen science data for drone-based remote sensing is still in its infancy, and we are just pioneering the

accuracy, what do authors suggest for future works? Should we incorporate some UAV-based high accuracy labelled data in the model together with citizen science data to improve classification accuracy? Also, the hyperparameter tuning seems not to be well-performed in your deep learning model training, I recommend conducting a more exhaustive tuning and trying different deep learning architecture to see if the classification results are improved

possibilities. This study is not about providing an operational technology, but rather about exploring methodological ways to harness citizen science data and its potential for drone-based mapping.

Here, we demonstrate this potential in a very complex scenario with several broadleaved tree species with similar leaf forms. Given this pioneering character and the complexity of the case study, we think that the results are groundbreaking and open up possibilities for a series of followup studies. Clearly, there are many aspects that can be improved and explored in greater depth. The discussion section, specifically the subsection "Segmentation performance" presents several avenues that might be explored in future research, including higher orthoimage resolution, other segmentation methods or harnessing the increasing growth of citizen science datasets.

In the revised manuscript, we made it clearer that this study is of a pioneering nature and focuses on method development rather than providing a ready-to-use solution. Accordingly, we revised the abstract and the introduction. Here are some examples:

"Here, we explore the potential of an automated workflow [...]" (Line 12-13)

"We demonstrate the potential of this approach [...]" (Line 147-157)

We applied several strategies to improve the segmentation accuracy across all tree species, including data augmentation, modifications of photograph backgrounds and scaling, hyperparameter tuning, and adjustments to model architectures. However, visual similarities among certain species led to trade-offs, improving accuracy for one species sometimes decreased it for others. Over several months, we conducted a thorough model ablation study, and the results presented here are the final outcome. The hyperparameter tuning is now described

		in more detail in the manuscript (see comment #1).
low stu spa scir con dis you aut ma scir res inc the sea important revenue. Ma mu con (m ima res htt	we of the main reasons that cause w segmentation accuracy in this udy could be the difference in the latial resolutions between citizen ience photos and UAV images. The possible solution for this screpancy could be that during our segmentation model training, athors may want to anipulate/resample citizen ience photos to different solutions, including the 0.22 cm solution of the UAV image, and corporate features extracted from ese layers into the final gmentation prediction to help approve the final segmentation sults (see below paper with milar idea, note: this is not a viewer's paper). artins et al., 2020. Exploring ultiscale object-based envolutional neural network multi-OCNN) for remote sensing lage classification at high spatial solution. tps://doi.org/10.1016/j.isprsjprs.2 10.08.004	We agree that differences in spatial resolution and perspective could present a challenge for our transfer learning approach. In our current implementation, we do resample and rescale the citizen science photos to various resolutions during training (see Section 2.3), including resolutions similar to the UAV imagery as the reviewer suggested. Achieving a perfect resolution match is difficult due to variability in ground-level photo distances, image quality, and variation in the drone-based imagery (e.g., due to differences in canopy height). We found that applying a generic scaling strategy sufficiently reduced the level of detail across all ground photographs to match that of the UAV imagery. While a multiscale architecture like the provided reference explicitly models these changes in scale, standard ("vanilla") architectures can still learn multiscale phenomena on the fly when sufficient variability is present. We agree with the reviewer that a more detailed exploration of resolution in the context of both image augmentation and model architecture are good focal areas for accuracy improvements in future work around UAV imagery segmentation, and have updated the discussion to reflect this: (Lines 493-497, 568-570): "However, this diversity can also hamper model performance if imagery is not curated to match the downstream tasks, which prompted our removal of extremely close and extremely far images during training. Incorporating additional task-specific image adjustments, such as spatial re-sampling to the resolution of the UAV imagery Martins et al. (2020) should further improve performance" "More complex architectures or methods, such as transformer or deeper CNN architectures, which integrate multi-scale

	feature extraction and attention mechanisms, offer promising alternatives (Li et al., 2024)."

	Reviewer #	2
ID Line	Comment	Response
ID Line 1	I would recommend the authors to add a workflow chart to help readers understand the various types of methods and data used for the study. There are several AI/ML models employed for various different data processing, including both photographs and UAV imagery. I found it hard to connect the different processing steps, and how different data streams and AI/ML methods are used.	Thank you for this feedback. We agree a workflow diagram will help clarify our multi-layered pipeline. Originally, Figure 3 was meant to serve this purpose. We have revised the figure to more clearly describe the workflow and moved it to the Introduction to improve its prominence (Lines 113-114): Close science of the Control of the Control of the Introduction to improve its prominence (Lines 113-114): Figure 1: Shamatis workflow of the regneratation make the promise model of the united the Control of the Introduction to the report Justice that the Control of the Introduction model of the Language were reported to make. The workflow of the Introduction text to ensure that the terminology aligns with all elements presented in the workflow diagram (Lines 125-138): "To address these limitations, we present a novel workflow that transforms weakly labeled, crowd-sourced plant photographs into high-quality segmentation makes (Fig. 1). Our approach leverages the Segment Anything Model (SAM), a state-of-the-art foundation model designed for generic segmentation with Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al. 2017). First, we train a computer vision model for a simple species classifications, Grad-CAM highlights image regions that contribute most to species
		classification, which we use to guide point- based prompts for SAM to generate

accurate segmentation masks. This enables an automated mask creation from images with only species-level labels, eliminating the need for manual pixel-wise annotation. Lastly, we enhance the transferability of these citizen science-based training data and its image features to the drone scale by exchanging the textures of the background class with common background samples from drone imagery."

2

Second, not much information is presented in the Results, barely enough to understand the performance of the model. The authors did quite significant work on processing and segmenting the photographs from iNaturealist and Pl@ntNet. However, results about these processing and segmentation are completely missed in the Results. I am nervous the presentation of Results is disconnected with the Methods. Recommend the authors to carefully tie them together, especially, how F1 score, confusion matrix was calculated. The authors mentioned independent transect validation data were identified from UAV imagery, but did not mention where and how those were produced, distribution across species and space etc. I think it is also useful to present the species maps across the experiment plots.

Thank you for this helpful feedback! We acknowledge that the original Results section was too brief and appreciate the reviewer's suggestions. We have revised the Results section to include the missing results around mask generation and species distribution maps, and to ensure stronger alignment with the Methods section. In the Methods section, we have also elaborated the description of the independent test data creation (transects). We have added the following information in the method section (Lines 408-417):

We evaluated the model performance of the segmentation model using the F1 score. The F1 score combines both Precision and Recall into a single measure, balancing false positives and false negatives (Eq. 1). The formulas used to compute Precision, Recall, and the F1 score are provided below:

$$\begin{aligned} & \operatorname{Precision} = \frac{TP}{TP + FP} \\ & \operatorname{Recall} = \frac{TP}{TP + FN} \end{aligned} \tag{1} \\ & F_1 = 2 \times \frac{\operatorname{Precision} \times \operatorname{Recall}}{\operatorname{Precision} + \operatorname{Recall}} \end{aligned}$$

In addition, we computed a confusion matrix for each class to reveal systematic confusion between species. We obtained the confusion matrix based on the predicted and reference segmentation


masks on a per-pixel basis. For each class, we counted the number of True Positives (TP), False Positives (FP), False Negatives (FN), and True Negatives (TN).

We have added the following information to the Results section, including a new figure (Fig. 4) illustrating the results of automatic mask generation using citizen science plant photographs from iNaturalist and Pl@ntNet (Lines 421-427):

"Across the ten tree species, the automated mask creation generated precise segmentation masks. These masks clearly delineated the target species, accurately capturing leaf contours, edges, and complex and even small morphological features such as small twigs, petioles, and branches (Fig. 4). Even in complex image scenarios and across the heterogeneous scene components, such as hands or other species, the masks consistently indicated the silhouettes of the target species."

Additionally, we included a map displaying the predictions on the monoculture plots (Fig. 6).

with several examples per species, showing the large variability in the images, including both leaf-level and whole-plantlevel photographs. From this, it should become evident that the model can extract features describing the canopy structure. Figure A2: Examples of citizen science photographs illustrating the predicted camera-to-object acquisition distances, demonstrating the accuracy and utility of our CNN-based re-gression model (Soliani et al., 2022). Rows represent increasing predicted distances, ranging from close-up leaf-level details to entire trees and broader landscape views, highlighting the variability in training data. Individual predicted distances are indicated below each image. 4 I wonder what features the authors The reviewer is correct that we used only used for segmentation? It is clear that RGB image data for both the SAM-based the authors used only RGB imagery, segmentation and the CNN model. We did but are other indices or not compute or incorporate any additional transformations incorporated in the spectral or textural indices, as SAM is SAM segmentation? primarily trained on RGB imagery and hence, any sophisticated feature engineering does not appear to be necessary. This is confirmed by the overall high quality of the output (see Fig. 1). In the revised manuscript, we emphasized that we used only RGB imagery as input (Lines 238-241). "Using Grad-CAM, we located the pixels that were important for the model to reveal the approximate location of the species within the image. Then, we

The author mentioned that photos/masks from citizen science were 'zoomed' out when applied as training for UAV imagery. What's the resolution after that? Is it comparable to UAV resolution? Since the original citizen science images had varying resolutions, applying fixed factors for zooming-out did not result in a uniform output resolution. However, our aim was to approximate the UAV resolution as closely as possible. We tested several factors for the zoom-out, and the selected value provided the best model performance. We have clarified this process in the revised manuscript (Lines 306-310): "Specifically, we duplicated each photograph and zoomed out the plant foreground by 60 %. This approach ensures that our training dataset includes both the original and zoomed-out photographs. The value of 60 % was set heuristically, since an effective resolution of the citizen science photos is not			sampled points from these image regions as input for the segmentation mask generation using SAM. Thereby, SAM was directly applied to the raw citizen science photographs."
avallable.	5	photos/masks from citizen science were 'zoomed' out when applied as training for UAV imagery. What's the resolution after that? Is it comparable	had varying resolutions, applying fixed factors for zooming-out did not result in a uniform output resolution. However, our aim was to approximate the UAV resolution as closely as possible. We tested several factors for the zoom-out, and the selected value provided the best model performance. We have clarified this process in the revised manuscript (Lines 306-310): "Specifically, we duplicated each photograph and zoomed out the plant foreground by 60%. This approach ensures that our training dataset includes both the original and zoomed-out photographs. The value of 60% was set heuristically, since an effective resolution