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Abstract. Continental shelves are critical for the global carbon cycle as they store substantial amounts of organic 

carbon (OC). Shelf sediments can also be subject to considerable anthropogenic pressures, offshore construction 15 

and bottom trawling for example, potentially releasing OC that has been sequestered into sediments. As a result, 

these sediments have attracted attention from policy makers regarding how their management can be leveraged to 

meet national emissions reduction targets. Spatial models offer solutions to identifying organic carbon storage 

hotspots; however,  regional predictions of OC often rely on global scale predictors which may have biases on 

smaller scales, reducing their utility for practical management decisions. In addition, estimates of dry bulk density 20 

(DBD), an important factor in calculating OC stock from sediment OC content, are typically derived from an 

empirical relationship developed in one region and applied elsewhere, rather than from local in situ data, leading 

considerable uncertainty in regional OC stock estimates. We compared the performance of two spatial models of 

OC stock. The first used unadjusted predictors and a commonly used empirical relationship to estimate DBD. The 

second spatial model incorporated bias-adjusted predictors and a machine learning DBD model, trained on in situ 25 

DBD data. The adjusted model predicted a total OC reservoir of 46.6 ± 43.6 Tg in the top 10cm of sediment in 

the Irish Sea, which was 31.4% lower compared to unadjusted estimates. 70.1% of the difference between adjusted 

and unadjusted OC stock estimates was due to the approach for estimating DBD. These findings suggest that 

previous models may have overestimated OC reservoirs and highlight the influence of accurate DBD and predictor 

adjustments on stock estimates. These findings highlight the need for increased in situ DBD measurements and 30 

refined modelling approaches to enhance the reliability of OC stock predictions. This study provides a framework 

for refining spatial models and underscores the importance of reducing uncertainties in key parameters to better 

understand and manage OC storage potential of marine sediments. 
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1 Introduction 35 

Continental shelves are important sinks of atmospheric carbon dioxide and play a key role in the global carbon 

cycle (Bianchi et al., 2018; Frankignoulle and Borges, 2001; Hedges and Keil, 1995). Marine sediments in these 

environments store substantial amounts of organic carbon (OC) over millennia (Laruelle et al., 2018; Smeaton et 

al., 2021b). Effective management of these natural long-term stores of OC has the potential to offer policy makers 

a mechanism to offset emissions. As a result, nature-based solutions to mitigating anthropogenic greenhouse gas 40 

emissions have received much scientific interest in recent years (Griscom et al., 2017). For example, coastal 

vegetated habitats store >30 Pg of OC globally and management of these habitats is thought to have the potential 

to offset approximately 3% of annual global greenhouse gas emissions (Macreadie et al., 2021). Global estimates 

suggest that OC stocks in continental shelf sediments, ranging from 256 to 274 Pg, are up to nine times that of 

coastal vegetated habitats (Atwood et al., 2020). Although still heavily debated, emissions from human pressures 45 

on marine sediments may be substantial (Hiddink et al., 2023; Sala et al., 2021). Despite their large capacity to 

store OC, efforts to quantify stocks and potential emissions reductions from management are relatively recent 

(Diesing et al., 2017; Epstein et al., 2024; Smeaton et al., 2021a). Subcontinental and national scale OC stock 

estimates have been conducted. For example Diesing et al. (2017) reported that the Northwest European 

continental shelf holds between 230 and 880 Tg of OC in the top 10 cm of the sediment column, while Smeaton 50 

et al. (2021a) estimated that between 456 and 592 Tg of OC were stored in surficial (0 – 10 cm) marine sediments 

within the United Kingdom Exclusive Economic Zone. 

Despite advancements in understanding OC storage in marine sediments, data and knowledge gaps remain. One 

such data gap is that of marine sediment Dry Bulk Density (DBD). DBD represents the mass of dry sediment 

within a given volume, which is multiplied by OC content and sediment depth to calculate the mass of OC in that 55 

given volume, which is termed OC stock (Taalab et al., 2013). DBD is a scaling factor on OC content and adjusts 

the OC stock in a given volume based on the density of sediment or soil. Thus, DBD has a significant effect on 

OC stock estimates. Previous estimates of OC stocks in terrestrial soils suggest much of the uncertainty in overall 

stock estimates results from uncertainty in soil density (Dawson and Smith, 2007). Despite the importance of 

DBD in calculating OC stock, there remains a lack of direct measurements for marine sediments. For example, 60 

Atwood et al. (2020) compiled a global database of ~12,000 sediment cores to predict global OC stocks and over 

two-thirds (69%) of their data were lacking DBD measurements.  

Subcontinental predictions of OC content are frequently based on global environmental predictors (Diesing et 

al., 2017, 2021, 2024; Smeaton et al., 2021a), which may contain biases when applied to regional or smaller 

scales (Galmarini et al. 2019). To address these discrepancies, bias adjustment techniques are commonly used in 65 

other scientific disciplines, for example in climate science, where large-scale models are adjusted to better align 

with local observational data (Laux et al., 2021; Luo et al., 2018). Bias adjustments reduce systematic errors in 

model outputs and ensures that projections match local conditions and are reliable for practical applications 

(Laux et al., 2021). Bias adjustments have been used to improve climate model utility in agricultural impact 

assessments, such as predicting planting dates and crop suitability in water-limited regions; to correct 70 

overestimations in soil moisture models and to improve predictions in sea ice thickness (Laux et al., 2021; Lee 

and Im, 2015; Mu et al., 2018). Despite their widespread use in climate science, bias adjustment methods are 
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underutilised in other areas of spatial environmental modelling, including OC stock modelling. These studies 

collectively highlight that bias adjustments are essential for improving the precision and applicability of climate 

model outputs across different environmental contexts, providing rationale for their application in this study. 75 

Public data repositories provide an opportunity to use data gathered over large spatial scales not practical to collect 

over short- and medium-term research projects (Mitchell et al., 2019). Ocean and earth sciences data, in particular, 

lend themselves to being collated across research groups and sampling expeditions. Much of the instrumentation 

and parameters measured are the same, for example sediment properties and OC content. In order to perform bias 

adjustments of globally modelled data, large datasets of parameters of interest are required (Laux et al., 2021). 80 

Public repositories, for example, the Pangaea repository of datasets (Felden et al., 2023), the International Council 

for the Exploration of the Seas (ICES) data centre (https://www.ices.dk/data/Pages/default.aspx) and national 

repositories such as Ireland’s Marine Institute offer large amounts of ocean data which can be used to perform 

localised bias adjustments. Additionally, data specifically useful for spatial modelling of marine sedimentary OC 

stock, for example OC content and DBD is available from the Modern Ocean Sediment Archive and Inventory of 85 

Carbon (MOSAIC) (Paradis et al., 2023; Paradis and Eglinton, 2024). 

OC stock is not directly measured; it is calculated by multiplying OC content, DBD and sediment depth. This 

study aimed to improve two components of this equation, OC content and DBD. Since the accuracy of OC stock 

estimates depends on the accuracy of these inputs, we assume that any improvements or errors in OC content and 

DBD would be reflected in the final OC stock estimates. While it is not possible to directly verify whether our 90 

adjusted OC stock values represent the true values, the improvements in model performance for both OC content 

and DBD support the assumption that our revised estimates are more accurate. To address this question, the 

estimates of two spatial models to predict OC stock in surficial sediments in the Irish Sea were contrasted. The 

first model was developed by using unadjusted predictors and a widely used DBD model (Diesing et al., 2017, 

2021; Smeaton et al., 2021a) to estimate OC stock from OC content; and the second model was developed by bias 95 

adjusting and downscaling predictors using observational data and a machine learning spatial model of DBD (Fig. 

1). 

2 Regional setting 

The Irish Sea was selected as the study area due to its ecological and economic importance, making it a focal point 

for marine resource management and conservation. It is a cross-jurisdictional region bordered by both the UK and 100 

Ireland, where overlapping policy and management frameworks elevate its relevance for spatial planning. The 

Irish Sea supports some of the highest fishing intensities in Europe, with bottom otter trawling, a type of fishing 

gear typically used to catch species on or near the seabed, in areas such as the western Irish Sea ‘mud belt’ and 

the ‘Smalls’ reaching an annual average of 14 hours per km² between 2009 and 2014 (ICES, 2014).  These same 

areas account for the majority of Nephrops landings in Ireland and contribute significantly to the European market, 105 

with Nephrops caught within the Irish EEZ alone valued at €53.2 million (Gerritsen and Lordan, 2014). Notably, 

Nephrops inhabit muddy sediments, which are associated with high OC stocks . Although OC stock estimates 

exist for the Irish Sea, they are often either coarsely resolved or geographically limited in scope (Diesing et al., 

2017; Smeaton et al., 2021a), highlighting the need for refined spatial modelling. This is particularly important in 

the Irish Sea, where although the region is generally data-rich, limited information on the impacts of human 110 
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activities on marine sedimentary OC stocks has been identified as a barrier to incorporating OC into marine spatial 

planning frameworks (Allcock et al., 2024; Crowe et al., 2023). Moreover, the availability of broader 

environmental datasets makes the Irish Sea well suited to test and apply the spatial modelling workflow developed 

in this study. 

The Irish Sea is a shallow continental shelf sea between the land masses of the island of Ireland and Great Britain, 115 

with an average water depth of 60 m and a maximum depth of approximately 315 m. The area has a complex 

geological history of previous glaciation coupled with marine transgression, and so the seafloor in this area 

consists of a mosaic of sediment types and bedforms (Arosio et al., 2023; Scourse et al., 2019; Ward et al., 2015). 

At present, a combination of wave and tidal current action results in a significant amount of sediment being 

mobilised and transported within the region (Coughlan et al., 2021). 120 

The study area detailed here covers a marine area of 75,229 km2 and spans latitudes 50N to 56N and longitudes 

8W to 2W (Fig. 2). OC content (%) (OCcont) and OC stock (OCstock) were estimated within the study area, 

excluding areas within inshore waters (Smeaton et al., 2021a). The inshore area was excluded from the study area 

and was defined as the landward area of the low-water line along the coast as recognised by the Maritime 

Boundaries Geodatabase (Maritime Boundaries Geodatabase: Internal Waters, version 4. ). 125 

3 Methods 

To estimate  OCstock in surficial sediments, we developed and compared two modelling workflows. Each workflow 

involved predicting OCcont and dry bulk density (DBD), which were then combined to calculate OCstock. The key 

difference between the two workflows was the way environmental input data (predictors) were treated. The first 

approach used unadjusted, commonly available predictors and a standard DBD estimation method, while the 130 

second approach used bias-adjusted predictors, which were corrected using observational data and used a machine 

learning model to estimate DBD. A schematic overview of the workflow is provided in Fig. 1. Briefly, the process 

of bias-adjusting shifts the distribution of predictor data based on observational data in an effort to align predictor 

data with in situ observations. We evaluated the success of these improvements in two ways. First, we tested 

whether bias-adjusted predictors more closely matched local measurements, using an error metric (Root Mean 135 

Squared Error; RMSE) which measured how far predictions deviated from in situ observations. Second, we 

assessed whether these improved predictors led to more accurate predictions of OCcont and DBD using machine 

learning models, using cross-validation and RMSE. The assumption underpinning this study is that predictors that 

better align with in situ data would produce more reliable predictions of OCcont and DBD and thus more reliable 

estimates of OCstock.  140 

3.1 Compiling response and predictor datasets 

3.1.1 Response data 

Sediment OCcont and DBD measurements were obtained from various sources, including published scientific 

literature, government organizations, and one private organization (Supplementary information S1). Prior to 

developing spatial modes, response data were screened and smoothed to ensure consistency and minimise 145 

erroneous data points that could bias prediction stability. Only data from the top 10 cm of the sediment column 

were included, as the study aimed to estimate surficial sediment OCstock as this is standard among larger scale 
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marine sediment OCstock quantification studies, making our results comparable to others (Diesing et al., 2017, 

2021, 2024). Within the wider Northwest European shelf, sedimentation rates can range between 0 and 0.61 cm 

yr-1 (Diesing et al., 2021), assuming a mean sedimentation rate of the mid-point between these values (0.31 cm 150 

yr-1), the top 10 cm corresponds to approximately the last 33 years, based on 210Pb sedimentation rates. Geographic 

locations of all response data were visually inspected to ensure they fell within the study area. Response data were 

spatially smoothed to match the finest resolution model predictor (EMODNet bathymetry, approximately 155 m 

by 230 m cell size). When multiple response data values occurred within a single grid cell, the average across the 

grid cell was calculated (Wei et al., 2022). Regarding OCcont, where only Loss on Ignition (LOI) values were 155 

available, OCcont was estimated using Eq. (1), which was locally derived and based on 102 surficial sediment Irish 

Sea samples analysed with an elemental analyser (Grey et al., 2024): 

𝑂𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝐿𝑂𝐼 × 0.51 + 0.11,          (1) 

A total of 1670 in situ measurements of surficial sediment OCcont were obtained from various sources within the 

study area (Fig. 2). After spatial aggregation of OCcont data and removing data points within the excluded inshore 160 

area, 450 data points were available for model training. DBD had 642 data points across the entire Northwest 

European Shelf. 

 

3.1.2 Predictor data 

To compare the two spatial models for predicting OCcont, we developed two predictor datasets: pre-bias adjustment 165 

predictors (predictorspre) and post-bias adjustment predictors (predictorspost) (Table 1). Predictor variables were 

selected based on their availability and expected relevance to OCcont and predictors used in previous spatial 

modelling work of OCcont (Diesing et al., 2017, 2021). Predictorspre were obtained from various governmental 

organizations and scientific literature (Table 1). Detailed descriptions of these predictors are provided in the 

supplementary methods. 170 

As global scale models can have biases on regional scales (Casanueva et al., 2018, 2020a; Galmarini et al., 2019; 

Roberts et al., 2019), we created predictorspost by bias adjusting and downscaling predictorspre data using in situ 

data. To increase the amount of observation data available for adjustment, we included measurements from across 

the Northwest European Shelf, not just the Irish Sea. These data were sourced from public repositories: Pangaea 

(www.pangaea.de), The Marine Institute (https://erddap.marine.ie/erddap/tabledap/IMI_CTD.html) and 175 

MOSAIC (Paradis et al., 2023; Paradis and Eglinton, 2024), and were temporally aligned with predictor data. 

More detail of the observational data is provided in supplementary methods. 

3.2 Bias adjusting predictors 

Depending on data availability, different approaches were used to bias adjust predictorspre. For bottom water 

temperature (Tbot), bottom water salinity (Sbot), mean and maximum bottom water velocities (Ubot,mean and Ubot,max), 180 

surface chlorophyll-a, summer surface suspended particulate matter (SPMsummer) and winter surface suspended 

particulate matter (SPMwinter), a quantile-quantile (QQ) mapping approach was used (Casanueva et al. 2020). For 

bias adjusting predictors, data availability varied significantly (Table 1). For example, Tbot had more than 300 

times the amount of data as SPM, which had the least amount of data available. First, point observational data 
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were harmonized with predictorspre. Briefly, observation data were smoothed across time and space and then 185 

interpolated to create a spatially continuous surface (Cheng et al., 2017, 2020; Cheng and Zhu, 2016). Original 

predictor data were then adjusted using the interpolated surface by QQ mapping. This approach aligns the 

quantiles in observational and modelled data and preserves the spatial patterns of the original data, and has  been 

shown to outperform un-adjusted models (Ngai et al., 2017).  However, QQ mapping may be sensitive to outliers 

and is less reliable in capturing extreme values (Casanueva et al., 2020). To mitigate this, observational data were 190 

smoothed prior to interpolation and QQ mapping to reduce the influence of extreme values. More detail of the 

point data smoothing and QQ mapping is provided in supplementary methods. 

For sediment properties (mud (the sum of silt and clay), sand, and gravel content) three existing spatial models 

were averaged (Mitchell et al., 2019; Stephens and Diesing, 2015; Wilson et al., 2018) as previous research has 

shown averaging multiple models can improve predictions (Dormann et al., 2018). Sediment compositional data 195 

were pre-treated before averaging as they are proportional, bounded by 0 and 1 and their sum must equal 1 

(Supplementary methods) (Mitchell et al., 2019; Stephens and Diesing, 2015; Wilson et al., 2018). 

Other variables were handled as follows: adjusted current and wave orbital velocities at the seabed were sourced 

directly from locally developed models (Table 1) (Coughlan et al., 2021); distance to coast was not adjusted as it 

is a simple calculation and bathymetry was taken directly from EMODNet, which is a widely used high resolution 200 

model and was developed specifically for European waters (https://emodnet.ec.europa.eu/). 

3.3 Validating predictor accuracy 

The predictorspost dataset was validated against observation data to assess whether bias adjustment improved their 

agreement with in situ data. To avoid artificial skill, a k fold cross-validation approach was used, where each fold 

excluded a different, non-overlapping fifth of the observation dataset during adjustment (Maraun and Widmann, 205 

2018). For each fold, the Root Mean Squared Error (RMSE) was calculated using only the excluded data, 

providing a more reliable estimate of prediction error (Maraun and Widmann, 2018). The average RMSE across 

all folds was then compared to the RMSE of the original (pre-adjustment) predictors. Lower RMSE values 

represent improvements in model performance (Maraun and Widmann, 2018). 

3.4 Dry bulk density estimates 210 
DBD is the mass of dry sediment per unit volume of wet sediment and is required to calculate OCstock from OCcont. 

Although not  used as a predictor OCcont, it is crucial in calculating OCstock. Two versions of DBD were developed: 

an un-adjusted estimate and an adjusted version, to pair with respective OCcont models (un-adjusted vs. adjusted). 

Pre-adjusted DBD (DBDpre) was calculated using a commonly used approach from sediment porosity using Eq. 

2, Eq. 3 and Eq. 4 (Diesing et al., 2017; Smeaton et al., 2021a): 215 

𝐷𝐵𝐷 𝑘𝑔 𝑚−3 = (1 − 𝜙)𝜌𝑠,         (2) 

𝜌𝑠 = 2650 𝑘𝑔 𝑚−3,          (3) 

𝜙 = 0.3805 ×  𝑚𝑢𝑑𝑐𝑜𝑛𝑡 + 0.42071,        (4) 
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Sediment porosity () was calculated as a function of spatially averaged mud content (mudcont) and assumed a 

constant grain density (s) of 2650 kg m-3. In contrast, bias adjusted DBD (DBDpost) was spatially modelled using 220 

in situ DBD measurements from the Northwest European Shelf and a machine learning approach (Breiman, 2001). 

(Breiman, 2001)The model training procedure and specific algorithm and predictor selection is described in detail 

in Sect. 3.5, alongside modelling of OCcont.  

3.5 Training machine learning models 

Two models of OCcont were trained to compare the use of pre-adjustment (OCcont,pre) and bias-adjusted (OCcont post) 225 

predictors. Both models used the Random Forest (RF) algorithm, which performs well for geospatial modelling 

(Diesing et al., 2021; Hengl et al., 2015; Meyer et al., 2018). Predictors were selected using the Forward Feature 

Selection (FFS) algorithm, which iteratively  builds models by adding one predictor at a time (Meyer et al., 2018). 

It begins with all possible 2-predictor combinations, retains the best performing pair, and then adds additional 

predictors only if they reduce the model’s RMSE  (Meyer et al., 2018). 230 

After training, partial dependence plots were used to visualize the associations between OCcont and the selected 

predictors. The adjusted DBD model, DBDpost, was developed in the same way, using an RF FFS applied to the 

bias adjusted predictors and was later used to calculate OCstock.  

3.6 Model validation 

All FFS RF models (OCcont,pre, OCcont,post and DBDpost) were validated using the k Nearest Neighbour Distance 235 

Matching (kNNDM) Leave-One-Out (LOO) Cross Validation (CV) approach (Milà et al., 2022). This approach 

matches the distance distribution functions of training to testing data to the distance distribution function of 

prediction to training data (Supplementary information S2 and S3). Random k-fold cross-validation can produce 

overly optimistic performance estimates by allowing spatially autocorrelated data to be split across training and 

testing sets. In contrast, kNNDM explicitly enforces spatial independence between folds, so that models are 240 

evaluated on data that is spatially uncorrelated with the training data. This provides a more realistic estimate of 

model In addition to kNNDM, the RMSE of DBDpost predictions was calculated against in situ measurements to 

evaluate whether the machine learning model outperformed the unadjusted estimates of DBD (DBDpre) (details in 

Sect. 3.4). Model stability was also tested by examining prediction consistency across repeated runs using the 

final selected predictors. We looked at prediction stability in the highest and lowest 15% of predicted values, we 245 

specifically chose this threshold as this is the range most susceptible to the effects of outliers (Lange et al., 2025). 

3.7 Model uncertainty 

It should be noted that the uncertainty estimates derived here are limited to model variance. Uncertainty introduced 

from measurement error in response variables (OC content or DBD) and input predictors, for example, 

chlorophyll-a, Tbot, sediment properties, etc. was not quantified due to a lack of available uncertainty in the 250 

underlying datasets. Uncertainty for both OCcont models and DBDpost was estimated using the sum of the standard 

deviations of 25 RF model predictions (Diesing et al., 2021). For each run, response data were randomly split into 

70% training and 30% testing sets, resulting in 25 models. For each pixel, the standard deviation of the 25 

predictions was computed. The total uncertainty was then determined by summing these standard deviations 

across the study area (Diesing et al., 2021). In addition, an Area of Applicability (AOA) analysis was conducted 255 
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to assess whether our adjusted OC content and DBD models could be reliably applied to the study area (Meyer 

and Pebesma, 2021). AOA identifies regions where the training and prediction data are comparable, indicating 

where machine learning models are likely to make reliable predictions. The analysis calculates a Dissimilarity 

Index (DI), which quantifies how different the prediction data are from the training data. 

3.8 Calculation of organic carbon stock and total reservoir 260 

The spatial variation in OCstock, which is the mass of OC stored in sediment per unit area to a specific depth, was 

calculated using both unadjusted (OCcont,pre and DBDpre) and adjusted inputs (OCcont,post and DBDpost) inputs. 

OCstock was calculated using the following equations (Diesing et al., 2017): 

𝑂𝐶𝑠𝑡𝑜𝑐𝑘,𝑝𝑟𝑒 𝑘𝑔/𝑚2 =  𝑂𝐶𝑐𝑜𝑛𝑡 𝑝𝑟𝑒 × 𝐷𝐵𝐷𝑝𝑟𝑒 × 𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎 × 𝑑𝑒𝑝𝑡ℎ                      (5) 

𝑂𝐶𝑠𝑡𝑜𝑐𝑘,𝑝𝑜𝑠𝑡  𝑘𝑔/𝑚2 =  𝑂𝐶𝑐𝑜𝑛𝑡 𝑝𝑜𝑠𝑡 × 𝐷𝐵𝐷𝑝𝑜𝑠𝑡 × 𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎 × 𝑑𝑒𝑝𝑡ℎ                                   (6) 265 

OCcontent and DBD were the predicted outputs from the respective pre-adjustment (pre) and post bias adjustment 

models (post) Cell area was calculated for each grid cell using the cellSize() function in the terra package (Hijmans, 

2025) in R, which accounts for spatial variation in cell size rather than assuming a constant cell size across the 

study area. A constant depth of 10 cm was used to estimate surficial sediment. These equations were applied to 

every grid cell across the study area.  270 

To estimate the total organic carbon (OC) reservoir in the study area, predicted OC stock values were summed 

across all grid cells. To assess the relative contribution of OC content and DBD estimates to the final OC stock 

values, we calculated OC stock using all four combinations of input models: (1) Pre-adjustment OC content with 

post bias-adjustment DBD, (2) pre-adjustment OC content with adjusted DBD, (3) adjusted OC content with 

unadjusted DBD, and (4) adjusted OC content with adjusted DBD. Total OC stock uncertainty was calculated 275 

using the following equation:  

𝑂𝐶 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑠𝑡𝑜𝑐𝑘  𝑘𝑔/𝑚2 =  𝑂𝐶 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑐𝑜𝑛𝑡 × 𝐷𝐵𝐷 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 × 𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎 × 𝑑𝑒𝑝𝑡ℎ             (7) 

4 Results 

4.1 Data collation 

4.1.1 Data sourced 280 

4.1.2 Predictor improvement 

With the exception of SPMsummer and Tbot, all bias adjusted predictors (predictorspost) data showed improved 

agreement with in situ data, based on RMSE comparisons (Table 1). As no improvement was observed in 

SPMsummer and Tbot, their pre-bias adjustment versions were retained in the predictorspost dataset for model training. 

The degree of adjustment varied across variables (Fig. 3). For instance, mean RMSE change for Sbot was minimal, 285 

With a mean difference of 0.09 psu between predictorspre and predictorspost. In contrast, SPMwinter was adjusted to 

a greater degree, showing a mean change of -9.97 mg l-1, which is also reflected in a greater shift in its distribution 

(Fig. 3). Sediment properties, mud, sand and gravel content were not changed to a large degree (Fig. 3). The mean 
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change between predictorspre to predictorspost for mudcont, sandcont and gravelcont was -0.03, 0.07 and -0.04, 

respectively. 290 

4.2 Random forest modelling 

4.2.1 OCcont and DBDpost Variable selection 

Different predictors were selected during the OCcont model training process. Seven important predictors were 

selected for OCcont,pre (Supplementary information S4), while five were chosen for OCcont,post (Fig. 4) . For 

OCcont,post, the selected predictors were mudcont, uorb,max, distance to the nearest coast, chlorophyll-a and bathymetry. 295 

Among these, mudcont and  uorb,max were the most important, removing them increased the model’s Mean Squared 

Error (MSE) by 56.8% and 32.4%, respectively (Supplementary information S5). Partial plots showed OCcont 

increased with mudcont and decreased with  uorb,max (Fig. 4). 

For OCcont,pre, the selected predictors were SPMsummer, distance to the nearest coast, Tbot, Sbot, chlorophyl-a,  uorb,max 

and sandcont (Supplementary information S4). The most important of these was SPMsummer, whose removal 300 

increased model MSE by37.1% (Supplementary information S5). 

Six important predictors were selected for the DBDpost model: sandcont, SPMsummer, SPMwinter, uorb,mean,uorb,max , and 

Ubot,mean.. Sandcont, was the most important predictor, with a positive relationship to DBD (Fig. 5). Its removal 

increased model MSE by 45.9%  (Supplementary information S5). 

4.2.2 Model performance and predictions 305 

OCcont,post had an R2 of 0.47 and RMSE of 0.31%, and showed a slight improvement in performance compared to 

OCcont,pre, (OCcont,post R2  = +0.06 vs. OCcont,pre; OCcont,post RMSE  = -0.01% vs. OCcont,pre). Despite this, predicted 

OCcont values were generally similar across the study area. The mean OCcont,post prediction was 0.58 ± 0.61 %, 

compared to 0.65 ± 0.67 % for OCcont,pre (Table 2). Spatial differences were not uniform, OCcont,adj was higher in 

areas such as near the Irish coast and southeast of the Isle of Man (Fig. 5). Area of Applicability (AOA) analysis 310 

of our adjusted OCcont model showed that 97.1% of the study area fell within its AOA (Supplementary Information 

S6). For the DBDpost model, 93.6% of the study area was within the AOA (Supplementary Information S6). RF 

model stability analysis revealed that a prediction stability of 95% was achieved with only 29 trees (the models 

were trained with 500 trees), indicating highly consistent predictions across runs. This low tree requirement 

suggests the RF models are not overly sensitive to variation in the training data. 315 

In contrast, the adjusted DBD model (DBDpost) had a better agreement with in situ data compared to DBDpre (Table 

1). DBDpost explained 48% of the variance in in situ DBD data, with an RMSE of 192 kg m-3. Within the study 

area, DBDpost predicted consistently lower values than DBDpre, with a mean reduction of 310 kg m-3. This 

reduction was even more pronounced in high mud regions like the Smalls and the western Irish Sea ‘mud belt’, 

where average reductions reached 506 kg m-3 (Fig. 6). 320 

These differences in DBD significantly influenced total OCstock estimates. Using the bias adjusted model 

(OCstock,post), the total OC reservoir was 46.6 ± 43.6 Tg in the study area, which was 68.6% of the unadjusted 

model estimate of 67.9 ± 63.0 Tg (Table 2). Despite this difference in magnitude, both models predicted similar 
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spatial patterns, with higher OCcont and OCstock in the western Irish Sea ‘mud belt’ and ‘The Smalls’ (Fig. 6), and 

lower values in deeper central areas of the Irish Sea. 325 

The results show that improvements in DBD modelling had a stronger influence on total OCstock estimates than 

improvements in OCcont. Replacing DBDpre with DBDpost (while holding OCcont constant) lead to a 15.1 Tg 

reduction in the total OC reservoir. In comparison, updating OCcont alone reduced the estimate by 6.5 Tg. 

5 Discussion 

Our findings show that bias-adjusted model inputs reduced estimates of organic carbon (OC) stock in surficial 330 

sediments within the Irish Sea by nearly one-third (31.4%). Adjusted inputs better aligned with in situ 

measurements, with lower errors observed for both OCcont,post and DBDpost compared to their unadjusted 

counterparts. Among these, the greatest reduction in OC stock resulted from RF modelling of DBD, which 

replaced widely used porosity-based approaches. Importantly, OC stock is not a directly measured value. In the 

equation for calculating OC stock (Eq. 5), DBD acts as a scaling factor that multiples the content of OC in the 335 

sediment by the amount of sediment (DBD). Therefore, it is likely that better predictions of OC content and DBD 

will result in more realistic estimates of OC stock. Additionally, these findings highlight the importance of using 

improved DBD models and suggests that previous estimates of OC stock that used the porosity empirical 

relationship may represent overestimates. These improvements in OC stock estimation are directly relevant to 

marine spatial planning, particularly in the context of managing OC stocks under climate and biodiversity targets. 340 

More accurate and regionally relevant OC stock estimates can improve the reliability of national assessments, 

help prioritise areas for protection, and inform industry activities, such as offshore renewable energy development 

and fisheries management. Our results underscore the importance of improving input data to enhance model 

reliability for informing marine spatial planning decisions. 

Approximately two-thirds (70.1%) of the difference between adjusted and unadjusted OC stock estimates was due 345 

to adjustments in DBD, with the remainder attributable to differences in OC content predictions. DBDpost had 

reduced error and consistently lower values across the study area (DBDpost mean 1191 ± 175 kg m-3; DBDpre mean: 

1501 ± 65kg m-3). While recent work has applied machine learning to estimate DBD (Diesing et al., 2024), most 

previous work has focused on modelling OC content, with less attention given to DBD (Diesing et al., 2017, 2021; 

Smeaton et al., 2021a). For example, unadjusted DBD was modelled from porosity using DBD data solely 350 

collected from the Mississippi-Alabama-Florida shelf (Jenkins, 2005) and implicitly assumes global applicability 

of this relationship. Moreover, the unadjusted DBD estimate assumed a constant grain density (2650 kg m-3) 

(Diesing et al. 2017), however, even within similar sediment types grain density can vary, marine mud grain 

densities can range from 2410 to 2720 kg m-3 (Opreanu, 2003). In contrast, >90% of the study area has predictor 

data comparable to training data, we can assume that the relationships ‘learned’ by the model during training are 355 

still applicable in the majority of the study area. Additionally, Atwood et al. (2020) estimated DBD using a transfer 

function based on OC content, however, the function was not based solely on marine sediment data and contained 

OC content values substantially greater than those observed on continental shelves. Since OC storage varies from 

inland to coastal to shelf sediments (Smeaton et al. 2021), these methods may not be representative of shelf 

sediments. Our results support calls for standardized DBD measurement protocols and highlight DBD as a key 360 

uncertainty in OC stock estimates (Graves et al., 2022). More reliable DBD estimates, as presented here, will 
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result in more robust baseline assessments of marine sediment OC stocks, which are crucial to investigating the 

effects of human pressures on seabed OC stocks and whether managing these systems can result in meaningful 

emissions reductions. For example, more accurate DBD estimates can result in reducing the substantial 

uncertainties in CO2 emissions resulting from bottom trawling. Sala et al. (2021) and Atwood et al. (2024) both 365 

suggest that as a result of bottom trawling, significant amounts of CO2 may be emitted from resuspending OC 

stocks in marine sediment. However, results from our study show OC stocks in surficial sediments may be 

substantially lower than previously reported. Additionally, impacts of trawling on marine sedimentary OC stocks 

has been identified as data deficient in the Irish Sea (Crowe et al., 2023), therefore, in order to incorporate marine 

sediment OC stocks in national marine spatial planning frameworks, more data are needed to refine estimates and 370 

provide policy makers robust empirical evidence with which to base management decisions.  

Consistent with previous work, mud content (mudcont) was identified as the most important predictor of OC content 

(Diesing et al., 2017; Smeaton et al., 2021a). Muds across fjords and other coastal sediments have been shown to 

contain greater amounts of OC than sand, coarse sediments and mixed sediments (Smeaton et al., 2021a). The 

clay fraction in marine muds provides a large surface area for the adsorption and preservation of organic matter, 375 

including reactive interlayer surfaces in certain clay minerals, making it a key factor in OC sequestration 

(Babakhani et al., 2025; Keil and Hedges, 1993; Kennedy et al., 2002). The capacity for sediments to bind OC 

through clay-OC interactions can also vary with different mineral phases occurring in sediments, varying in the 

surface charge and distribution, topography and particle size and subsequent geochemical conditions constraining 

these characteristics (e.g. pH and ionic strength of pore water) (Bruni et al., 2022; Hunt et al., 2020; Kleber et al., 380 

2021; Smeaton and Austin, 2019). 

Our results showed a largely positive relationship between mud content and OC content, but extremely low mudcont 

values (<0.05%) were also associated with high OC content, which contrasts previous work that reported a positive 

relationship between the two parameters  (Diesing et al., 2017; Smeaton et al., 2021a). In continental shelves 

relationships between mud and OC content are complex. Little variation in OC content between mud, sand and 385 

coarse sediments has been reported on shelf areas (Smeaton et al., 2021a). However, the lability of organic matter 

can vary significantly between these environments (Smeaton and Austin, 2022). Marine muds have been shown 

to store organic matter ranging from highly reactive to highly resistant to degradation, whereas coarser sediments 

typically only contain organic matter highly resistant to degradation (Smeaton and Austin, 2022). Furthermore, 

muddy sediments tend to house higher infaunal biomass than coarser sediment, and these benthic faunae coupled 390 

with microbial metabolism play a key role in mediating OC mineralisation and preservation (Lin et al., 2022). For 

example, Zhang et al. (2024) bioturbation-induced remineralisation can account for between 25 and 30 % of total 

seabed respiration (Zhang et al. 2024). These biological processes act alongside sediment disturbance from 

commercial fishing to create this nuanced relationship between mud and organic matter content (Epstein and 

Roberts, 2022; Zhang et al., 2024), which may explain why mud did not exhibit a clear positive relationship with 395 

OC content. 

In addition, the importance of maximum wave orbital velocity at the seafloor in our model highlights the role of 

hydrodynamics in shaping OC content. In agreement with previous research (Song et al., 2022), we found an 

inverse relationship between OC content and maximum wave orbital velocity at the seafloor. High energy 
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environments with thicker Sediment Mixed Layers (SML) limit OC burial by resuspending fine particles and 400 

increasing oxygen exposure, potentially increasing remineralization and reducing organic carbon accumulation 

rates (Song et al., 2022). However, in dynamic coastal regions, processes governing carbon mineralization in 

marine sediments are still not clear. First, the interaction between sediment resuspension, microbial community 

activity, and carbon mineralization pathways remains poorly constrained (LaRowe et al., 2020). Oxygen exposure 

time is a key driver of OC degradation (Hartnett et al., 1998) and the extent of short-term disturbance events, such 405 

as storms or trawling, that impact oxygen penetration depth and thus carbon remineralization rates is not well 

understood (Bartl et al., 2025; Glud, 2008). Additionally, the interaction between bioturbation and resuspension 

driven transport of sediments is not well quantified in models predicting carbon storage (Cozzoli et al., 2019). The 

hydrodynamic regime has a strong influence over sediment type, as high energy environments prevent mud 

deposition or resuspend finer particles, while low energy environments allow fine sediments to settle and 410 

accumulate, which is conducive to mud deposition and OC accumulation (Hanebuth et al., 2015). Similar findings 

were reported by Diesing et al. (2017), where low hydrodynamic activity was positively correlated with OC 

content. These insights, coupled with the present work, underscore the need to incorporate sediment dynamics, 

such as sediment mixing or disturbance, into models predicting OC stock, particularly in light of human activities 

such as trawling and offshore development (Epstein and Roberts, 2022). 415 

Diesing et al. (2017), Smeaton et al. (2021a) and Atwood et al. (2020) all reported improved model accuracy 

compared to the present study. For example, Diesing et al. (2017) and Atwood et al. (2020) reported R2 values of 

75% and 76%, respectively, compared to 47% in the present study (bias adjusted OC content). These apparent 

differences in model performance may be due to the validation approach used and spatial autocorrelation, which 

may be inflating model metrics (Milà et al., 2022). For example, the present study used the kNNDM algorithm to 420 

ensure spatial independence between cross validation training folds. However, random k fold cross validation, as 

used by Atwood et al. (2020) and Diesing et al. (2017), are likely to train and test on data that are spatially 

dependant, and thus artificially increasing the likelihood of the model predicting correctly (Milà et al., 2022). 

Similarly, Smeaton et al. (2021) who did use a form of spatial cross validation reported comparable model 

performance to our study (R2=53%, RMSE=1.72). Smeaton et al. (2021) used ‘spatial blocks’ to determine 425 

train/test splits. However, these spatial blocks were defined as ICES statistical grids, which do not ensure spatial 

independence between train/test folds, unlike the kNNDM algorithm used in the present study. 

Predictions presented here still carry uncertainty, despite reducing model error through adjusting model input data. 

Uncertainty in OC stock estimates was greatest in nearshore areas, around the perimeter of the western Irish Sea 

‘mud belt’ and the ‘Smalls’, which coincided with higher OC stock predictions. These areas intersect with zones 430 

of intense human activity, such as bottom trawling and offshore development (Crowe et al., 2023), highlighting 

the need for caution in marine spatial planning decisions that rely solely on model outputs. Improving spatial 

coverage of in situ measurements, especially of DBD and OC content, in these higher uncertainty zones would 

help refine model estimates. The OC stock uncertainty presented here likely underestimates the true uncertainty 

due to unreported sampling errors in OC content measurements and modelled predictor data. Additionally, DBD 435 

data were lacking across the study area and only 3% (18 of 642) of all DBD observational data used in bias 

adjustment were located within the study area. However, despite low spatial coverage of training data points 

within the study area, analysis of the adjusted DBD model’s AOA revealed it can still be expected to perform well 
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within the study area. . Findings from the present study show spatial models of organic carbon can still be 

significantly improved from increased in situ data. Additionally, incorporating these datasets into public 440 

repositories can improve efforts to estimate organic carbon stocks by providing ground truthed data on which to 

base numerical models. The refined estimates presented in this study rely on large amounts of in situ data and 

environmental predictors, making this approach most suitable for data-rich regions. Within our study area, the 

limited availability of DBD measurements required the use of an Area of Applicability (AOA) analysis to assess 

whether the adjusted DBD model could be reliably applied, highlighting potential limitations of this approach in 445 

data-poor settings. Nonetheless, our findings demonstrate that where sufficient observational data are available, 

OC stock estimates can be substantially improved. As more in situ datasets become available in currently under-

sampled regions, this modelling framework can be replicated and further refined to support better-informed carbon 

assessments.  

6 Conclusion 450 

Overall, our findings suggest that marine sedimentary OC stocks could be lower than previously estimated, with 

implications for marine spatial planning and nature-based climate solutions. A key result of this study is that 

uncertainties in dry bulk density (DBD) estimates strongly influence OC stock predictions. We show that reliance 

on previously developed empirical relationships for DBD can introduce substantial error, underscoring the need 

for regionally relevant data. Improved OC stock estimates, grounded in more accurate DBD values, can support 455 

more informed seabed management by identifying areas with higher carbon vulnerability or conservation 

potential. The findings suggest that improving model inputs based on in situ data, may help refine model 

predictions to be more locally relevant. We highlight the critical role that accurate DBD estimates play in 

determining OC stock. Moving forward, more comprehensive in situ DBD measurements and refined DBD 

models are essential for improving the accuracy of OC stock predictions. Alternatively, OC stocks could be 460 

calculated directly per sediment core, reducing the number of models needed to estimate OC stocks, thus reducing 

uncertainty in final estimates. These efforts will be instrumental in developing better strategies for managing 

marine sedimentary OC stocks. 
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Tables and Figures 

Table 1: Summary of organic carbon content and stock model inputs. Directly sourced adjustments were when 

the adjusted data was soured directly from literature that developed a model based on locally measured 

observational data. SPM data points were for all months to create monthly interpolated surfaces then they were 

merged to create seasonal interpolated surfaces. RMSE represents the change in RMSE after QQ mapping. 

Negative RMSE values represent reduced error, while positive RMSE values show increased error. 

Predictor Unit Abbreviation 
Pre adjustment 

source 

NWE shelf 

data 

points 

available 

Adjustment 

method 

RMSE 

after 

adjustment 

Distance to coast km - 
Calculated from 

data points 
- None - 

Bathymetry m - EMODNet - None - 

Bottom water salinity - Sbot 

Copernicus 

marine data 

portal 

57,965 QQ mapping -0.01 

Bottom water temperature C Tbot 

Copernicus 

marine data 
portal 

173,607 QQ mapping 0.00 

Mean bottom water velocity m s-1 Ubot,mean 

Copernicus 

marine data 
portal 

- Averaging - 

Maximum bottom water velocity m s-1  Ubot,max 

Copernicus 

marine data 
portal 

- Averaging - 

Surface chlorophyll-a g l-1 - 

Copernicus 

marine data 
portal 

21,108 QQ mapping -1.13 

Summer surface Suspended 

Particulate Matter 
mg l-1 SPMsummer 

Copernicus 

marine data 
portal 

542* QQ mapping +2.31 

Winter surface Suspended 

Particulate Matter 
mg l-1 SPMwinter 

Copernicus 

marine data 
portal 

542* QQ mapping -0.85 

Mud content % Mudcont 
Mitchell et al. 

(2019) 
- Averaging -0.03 

Sand content % Sandcont 
Mitchell et al. 

(2019) 
- Averaging -0.05 

Gravel content % Gravelcont 
Mitchell et al. 

(2019) 
- Averaging -0.03 

Mean wave orbital velocity at 

seafloor 
m s-1 uorb,mean 

Wilson et al. 

(2018) 
- 

Directly 

sourced 
- 

Maximum wave orbital velocity 

at seafloor 
m s-1 uorb,max 

Wilson et al. 

(2018) 
- 

Directly 

sourced 
- 

Dry bulk density kg m-3 DBD 
Modelled from 

modelled 

porosity 

706 
Random 

forest 

modelling 

-194.73 

 

Table 2: Summary of outputs from models trained on non-bias adjusted data (predictorspre) and bias adjusted 

data (predictorspost). Mean OCcont represents the mean prediction value across the study area; total reservoir 

estimate is the total OC stock reservoir for the study area; mean DBD is the mean DBD predicted across the 

study area. 

Input data Mean DBD (kg m-3) ± sd Mean OCcont (%) ± sd 
Total reservoir OC estimate 

(Tg) ± total uncertainty 

Predictorspre 1501.60 ± 66 0.65 ± 0.62 67.9 ± 62.9 

Predictorspost 1191 ± 175 0.57 ± 0.58 46.6 ± 43.6 
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Figure 1: Summary of steps taken to train and predict form two different models, which include: 1) collating 

response data; 2a) compiling OC content predictor data (predictorsunadj); 3a) training a random forest model to 

predict OC content on the non-adjusted predictor data (OCunadj); 4a) modelling Dry Bulk Density (DBD) from 

porosity (DBDunadj); 5a) predicting OC stock across the study area using OCcont,unadj and DBDunadj; 2b) bias 

adjusting predictorsunadj data using quantile-quantile mapping; 3b) compiling OC content predictor data after it 

has been bias adjusted (OCcont,adj); 4b) training a random forest model to predict OC content on the bias adjusted 

predictor data (predictorsadj); 5b) training a random forest model to predict DBD on the bias adjusted predictor 

data (DBDadj); 6) predicting OC stock across the study area using OCcont,adj and DBDadj. 

 



22 
 

 
Figure 2: Study area within the Irish Sea (thin black border) and within the greater North West European shelf 

(inset). Points indicate organic carbon (OC) data coloured by the organic carbon content. Pink areas  show 

internal waters that have been excluded from the study area. Thick black outlined polygons indicate the western 

Irish Sea ‘mud belt’ (northern) and the ‘Smalls’ (southern), areas of known high mud content within the Irish 

Sea. 
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Figure 3:  Cumulative distribution functions (CDF) of bias adjusted (adjusted) and not bias adjusted (modelled) 

model input data and observational data used in bias adjustment. 
 

 
Figure 4:  Partial dependence plots showing the relationship between OC content and bias adjusted predictors 

selected by FFS: mud content, maximum wave orbital velocity at the seafloor, distance to the nearest coast, 

surface chlorophyll-a, and bathymetry. 
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Figure 5: Partial dependence plots showing the relationship between bias adjusted predictors selected by FFS 

and dry bulk density (DBD): sand content, surface summer suspended particulate matter, surface winter 

suspended particulate matter, mean wave orbital velocity at the seafloor, maximum wave orbital velocity at the 

seafloor, and current velocity at the seafloor.  
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Figure 6: a) Predicted organic carbon (OC) content using adjusted model inputs; b) the associated uncertainty 

and c) difference between not bias adjusted and bias adjusted predictions across the study area (difference = 

OCcontent pre – OCcontent post); d) Predicted dry bulk density (DBD) content using adjusted model inputs; e) the 

associated uncertainty and f) difference between DBD modelled from porosity and using an RF (DBDadj  - 

DBDunadj);  g) Predicted organic carbon (OC) stock using adjusted model inputs; h) the associated uncertainty 

and i) difference between not bias adjusted and bias adjusted predictions across the study area (difference =  

OCstock,unadj – OCstock,adj). Negative values in panels (c), (f), and (i) indicate where predictions with adjusted 

model inputs were higher than non-bias adjusted inputs. 

 
 


