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Abstract. Continental shelves are critical for the global carbon cycle as they store ;-storing-substantial amounts
of organic carbon (OC)-ever—geological-timeseales. Shelf sediments can also be subject to considerable
anthropogenic pressures, offshore construction and bottom trawling for example, potentially releasing OC that
has been sequestered into sediments. As a result, these sediments have attracted attention from policy makers
regarding how their management can be leveraged to meet national emissions reductions targets. Spatial models
offer solutions to identifying organic carbon storage hotspots; however, data—saps rRegional spatial
medelspredictions of OC often userely on_global scale predictors which may have biases on smallerregional
scales.: reducing eanreduee-their utility for practical management decisions. Regienalspatialmedels-ofOCof
lebalsealepredieters-which-may-have-biases ienal-seales=In additionMereever, estimates of dry bulk

density (DBD), an important factor in calculating OC stock from sediment OC content, are typically derived from

an_empirical relationship developed in one region and applied elsewhere, rather than from local jn situ data
leading considerable uncertainty in regional OC stock estimates. has-comparatively-few-data-points-globally—We
compared the performance of two spatial models of OC stock-in-the trish-Sea. The first used ;-ene-usineunadjusted

predictors and a commonly previeusty-used empirical relationshipmethed to estimate DBD. The second spatial
model ;and-anetherineorporating-incorporated bias-adjusted predictors;frem-in-siti-data; and a machine learning
-based-DBD model, trained on jn situ DBD data.;—te—assess—thei aty rformanee: The adjusted model

predicted a total OC reservoir of 46.6 + 43.6 Tg in the top 10cm of sediment within the Irish Sea, which was

31.4% lower compared to unadjusted estimates. 70.1% of the difference between adjusted and unadjusted OC
stock estimates was due to the approach for estimating DBD. These findings suggest that previous models may
have overestimated OC reservoirs and emphasizes—highlight the influence of accurate DBD and predictor
adjustments on stock estimates. These findings highlight the need for increased jn situ DBD measurements and
refined modelling approaches to enhance the reliability of OC stock predictions—forpelieymakers. This study
provides a framework for refining spatial models and underscores the importance of addressing—reducing
uncertainties in key parameters to better understand and manage the-carben-OC storage sequestration-potential of

marine sediments.
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1 Introduction

Continental shelves are important sinks of atmospheric carbon dioxide and play a key role in the global carbon
cycle (Bianchi et al., 2018; Frankignoulle and Borges, 2001; Hedges and Keil, 1995). Marine sediments in these
environments store substantial amounts of organic carbon (OC) over millennia (Laruelle et al., 2018; Smeaton et
al., 2021b). Effective management of these natural long-term stores of OC has the potential to offer policy makers
a mechanism to offset emissions. As a result, nature-based solutions to mitigating anthropogenic greenhouse gas
emissions have received much scientific interest in recent years (Griscom et al., 2017). For example, coastal
vegetated habitats store >30 Pg of OC globally and management of these habitats is thought to have the potential
to offset approximately 3% of annual global greenhouse gas emissions (Macreadie et al., 2021). Global estimates
suggest that e£OC stocks in continental shelf sediments, ranging from 256 to 274 Pg, are up to nine times that of
coastal vegetated habitats—(between256-te274-Pg) (Atwood et al., 2020). Although still -and-whilesti-heavily
debated, emissions from human pressures on marine sediments are-thought-temay be substantial (Hiddink et al.,

2023; Sala et al., 2021). Despite their large capacity to store OC, efforts to quantify stocks and potential emissions
reductions from management are relatively recent (Diesing et al., 2017; Epstein et al., 2024; Smeaton et al.,
2021a). Subcontinental and national scale OC stock estimates have been_conducted. -undertaken;-Ffor example
Diesing et al. (2017) reported that the Northwest European continental shelf holdseontained between 230 and 880
Tg of OC stered-in the uppermeost-top 10 cm of the sediment column, while-and Smeaton et al. (2021a) estimated
that between 456 and 592 Tg of OC were stored in surficial (0 — 10 cm) marine sediments within the United

Kingdom Exclusive Economic Zone.

Despite advancements in understanding OC storage in marine sediments, data and knowledge gaps remain. One
such data gap is that of marine sediment Dry Bulk Density (DBD). DBD represents the mass of dry sediment
within a given volume-efwetsediment, which is multiplied by OC content and sediment depth to calculate the an
mass of OC in that given volumeper-unit-ofs-area, which is termedhe OC stock (Taalab et al., 2013). DBD is a
scaling factor on OC content and adjusts the OC eententstock in a given volume based on the density of sediment
or soil;altering OCstoek-estimates. Thus, DBD has a significant effect on OC stock estimates. Previous estimates
of OC stocks in terrestrial soils suggest much of the uncertainty in overall stock estimates results from uncertainty
in sediment-soil density (Dawson and Smith, 2007). Despite the importance of DBD in calculating OC stock;
hewever, there remains a lack of direct measurements for marine sediments. For example, Atwood et al. (2020)
compiled a global database of ~12,000 sediment cores to predict global OC stocks and over two-thirds (69%) of

their data were lacking DBD measurements.

Subcontinental predictions of OC content are frequently based on global environmental predictors (Diesing et <
al., 2017, 2021, 2024; Smeaton et al., 2021a), which may contain biases when applied to regional or smaller

scales (Galmarini et al. 2019). To address these discrepancies, bias adjustment techniques are commonly used in

other scientific disciplines, for example in climate science, where large-scale models are adjusted to As-a+result;

applying bias-adjustments-to-medebinput-datato-alisn-better align with local observational data is-commen

assessments-(Laux et al., 2021; Luo et al., 2018). Bias adjustments are-an-impertantcomponent-of climate

modellingte-reduce systematic errors in model outputs and ;-ensuresing that projections match local conditions
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and are reliable for practical applications (Laux et al., 2021). Bias adjustments have been used to improve
climate model utility in agricultural impact assessments, such as predicting planting dates and crop suitability in
water-limited regions; to correct overestimations in soil moisture models and to improve predictions in sea ice

thickness (Laux et al., 2021; Lee and Im, 2015; Mu et al., 2018). Despite their widespread use in climate

science, bias adjustment methods are underutilised in other areas of spatial environmental modelling, including

OC stock modelling. These studies collectively highlight that bias adjustments are essential for improving the
precision and applicability of climate model outputs across different environmental contexts, heweves;-their

providing rationale for their

application in this study.

Public data repositories provide an opportunity to use data gathered over large spatial scales not practical to collect
over short- and medium-term research projects (Mitchell et al., 2019). Ocean and earth sciences data, in particular,
lend themselves to being collated across research groups and sampling expeditions. Much of the instrumentation
and parameters measured are the same, for example sediment properties and OC content. temperature-and-satinity:
In order to perform bias adjustments of globally modelled data, large datasets of parameters of interest are required
(Laux et al., 2021). Public repositories, for example, the Pangaea repository of datasets (Felden et al., 2023), the
International Council for the Exploration of the Seas (ICES) data centre
(https://www.ices.dk/data/Pages/default.aspx) and national repositories such as Ireland’s Marine Institute offer
large amounts of ocean data which can be used to perform localised bias adjustments. Additionally, data
specifically useful for spatial modelling of marine sedimentary OC stock, for example OC content and DBD is
available from the Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC) (Paradis et al., 2023;
Paradis and Eglinton, 2024).

OC stock is not directly measured; it is calculated by multiplying OC content, DBD and sediment depth. This

study aimed to improve two components of this equation, OC content and DBD. Since the accuracy of OC stock

estimates depends on the accuracy of these inputs, we assume that any improvements or errors in OC content and

DBD would be reflected in the final OC stock estimates. While it is not possible to directly verify whether our

adjusted OC stock values represent the true values, the improvements in model performance for both OC content

OC-stoek—within-the Irish-Sea—To address this question, the estimates of two spatial models to predict OC stock

in surficial sediments in the Irish Sea were contrasted. The first model was developed by using un-adjusted
predictors and a widely used DBD model (Diesing et al., 2017, 2021; Smeaton et al., 2021a) to estimate OC stock
from OC content; and the second model was developed by bias adjusting and downscaling predictors using

observational data and a machine learning spatial model of DBD (Fig. 1).

2 Regional setting

The Irish Sea was selected as the study area due to its ecological and economic importance, making it a focal point

for marine resource management and conservation. It is a cross-jurisdictional region bordered by both the UK and

Ireland, where overlapping policy and management frameworks elevate its relevance for spatial planning. The

Irish Sea supports some of the highest fishing intensities in Europe, with bottom otter trawling, a type of fishing
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gear typically used to catch species on or near the seabed, in areas such as the western Irish Sea ‘mud belt’ and

the ‘Smalls’ reaching an annual average of 14 hours per km? between 2009 and 2014 (ICES, 2014). These same

areas account for the majority of Nephrops landings in Ireland and contribute significantly to the European market,
with Nephrops caught within the Irish EEZ alone valued at €53.2 million (Gerritsen and Lordan, 2014). Notably.

Nephrops inhabit muddy sediments, which are associated with high OC stocks . Although OC stock estimates

exist for the Irish Sea, they are often either coarsely resolved or geographically limited in scope (Diesing et al.,

2017; Smeaton et al., 2021a), highlighting the need for refined spatial modelling. This is particularly important in

the Irish Sea, where although the region is generally data-rich, limited information on the impacts of human

activities on marine sedimentary OC stocks has been identified as a barrier to incorporating OC into marine spatial

planningframeworks (Allcock et al., 2024; Crowe et al., 2023). Moreover, the availability of broader

environmental datasets makes the Irish Sea well suited to test and apply the spatial modelling workflow developed

in this study.

The Irish Sea is a shallow continental shelf sea between the land masses of the island of Ireland and Great Britain,
with an average water depth of 60 m and a maximum depth of approximately 315 m—(Fig—2). The area has a
complex geological history of previous glaciation coupled with marine transgression, and so the seafloor in this
area consists of a mosaic of sediment types and bedforms (Arosio et al., 2023; Scourse et al., 2019; Ward et al.,
2015). At present, a combination of wave and tidal current action results in a significant amount of sediment being

mobilised and transported within the region (Coughlan et al., 2021). Previous-studies-in-mapping-organic-carbon

The study area detailed here covers a marine area of 75,229 km? and spans latitudes 50°N to 56°N and longitudes
8°W to 2°W (Fig. 2). OC content (%) (OCconten) and OC stock (OCistock) Were estimated within the study area,
excluding areas within inshore waters (Smeaton et al., 2021a). The inshore area was excluded from the study area

and was defined as the landward area of the low-water line along the coast as recognised by the Maritime

Boundaries Geodatabase (Maritime Boundaries Geodatabase: Internal Waters, version 4. ).

3 Methods

To estimate OCgiock in surficial sediments, we developed and compared two modelling workflows. Each

workflow involved predicting OCcon and dry bulk density (DBD). which were then combined to calculate

OCiiock. The key difference between the two workflows was the way environmental input data (predictors) were

treated. The first approach used unadjusted, commonly available predictors and a standard DBD estimation

method, while the second approach used bias-adjusted predictors, which were corrected using observational data

and used a machine learning model to estimate DBD. A schematic overview of the workflow is provided in Fig.

1. Briefly, the process of bias-adjusting shifts the distribution of predictor data based on observational data in an

effort to align predictor data with, in sifu observations. We evaluated the success of these improvements in two

ways. First, we tested whether bias-adjusted predictors more closely matched local measurements, using an error

metric (Root Mean Squared Error; RMSE) which measured how far predictions deviated from jn situ

observations. Second, we assessed whether these improved predictors led to more accurate predictions of OC cont

4
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and DBD using machine learning models, using cross-validation and RMSE. The assumption underpinning this

study is that predictors that better align with in sifu data would produce more reliable predictions of OConi and

DBD and thus more reliable estimates of OCgock.

3.1 Compiling response and predictor datasets

3.1.1 Organic-earbon-contentResponse, data “

Direet—measurements—of-sSediment OCconens and DBD measurements were obtained from various sources,

including published scientific literature, governmental organizations, as—well-as-aand one private organization

(Supplementary information S1). Prior to developing spatial modes, response data were screened and smoothed

to ensure consistency and minimise erroneous data points that could bias prediction stability. Only data from the
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top 10 cm of the sediment column were included, as the study aimed to estimate surficial sediment OCgck as this

is standard among larger scale marine sediment OCgck quantification studies, making our results comparable to
othersOaly-OC.onten
the-study-was-to-estimate surficial sediment OC openand-OC 00—, (Diesing et al., 2017, 2021, 2024). Within the

response data were visually inspected to ensure they fell within the study area. Response data were spatially

smoothed to match the finest resolution model predictor (EMODNet bathymetry, approximately 155 m by 230 m

cell size). When multiple response data values occurred within a single grid cell, the average across the grid cell

was calculated (Wei et al., 2022). Regarding OCj oy, where only Pata-thatreperted-Loss on Ignition (LOI) values

were available, were-converted-to-OCeontent Was estimated using Eq. (1), which was locally derived and based on

102 surficial sediment Irish Sea samples analysed with an elemental analyser Eg—~1H-(Grey et al., 2024);

OContens = LOI x 0.51 + 0.11, )

A total of 1670 jn situ measurements of surficial sediment OC..y Were obtained from various sources within the

study area (Fig. 2). After spatial aggregation of OC.n data and removing data points within the excluded inshore

area, 450 data points were available for model training. DBD had 642 data points across the entire Northwest

European Shelf.
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3.1.22 Predictor data “
To compare the two spatial models for predicting OCeontens, we developed two predictor datasets-were-developed:
pre-bias_adjustment predictors (predictorsp) and post-bias adjustment predictors (predictorsyes) (Table 1).
Predictor variables were Petential-meodelpredictors—were—selected based on their availability and expected
antieipated-relevance to OCconten: and predictors used in previous spatial modelling work of OCy, (Diesing et al.,
2017, 2021). Predictors,. were seureed—obtained from a—variety—efvarious governmental organizations and
published—scientific literature (Table 1). Detailed descriptions of these predictors ,.—are provided in the

supplementary methods.

As global scale models can have biases on regional scales (Casanueva et al., 2018, 2020a; Galmarini et al., 2019;

Roberts et al., 2019), we created predictorspest by data—were—developed—by—regionally—bias adjusting and

downscaling predictorsy data using in situ measurement-data. To increase the amount of Oobservation data

available for adjustment. we included measurements from across the Northwest European Shelf, ratherthan-not
just the study-area(Irish Sea. i i j e i

bias-adjusted predietorsyoq-data—These data were sourced X
sourced——from  public  repositories: Pangaca  (www.pangaea.de), = The  Marine  Institute

(https://erddap.marine.ie/erddap/tabledap/IMI_CTD.html) and MOSAIC (Paradis et al., 2023; Paradis and
Eglinton, 2024). and were temporally aligned with predictor datainputs,.—data. More detail of the observational

data is provided in supplementary methods.

3.2:2 Bias adjusting predictorsment <
Depending on data availability, different approaches were used to bias adjust predictorsy.. For Bbottom water

temperature (BW.T}.), bottom water salinity (BWSp.), mean and maximum bottom water velocities

(BWlpot Vmean and BWA.ULsimax), surface chlorophyll-a, summer surface suspended particulate matter
\

(SPMummer) and winter surface suspended particulate matter (SPMiyiner). -aH-followed-a quantile-quantile (QQ)

mapping bias—adjustment-approach was used (Casanueva et al. 2020). For bias adjusting predictors, data

availability varied significantly (Table 1). For example, 7o had more than 300 times the amount of data as SPM

which had the least amount of data available. First, point observational data were harmonized with predictorspre.
- Briefly, observation data; which-represent-a
measurement-at-one-pointin-timeand space;-were smoothed across time and space and then interpolated to create
a_spatially continuous surface—(Cheng et al., 2017, 2020; Cheng and Zhu, 2016). A-—spatially—continuous

Original predictors;:. data were then adjusted using the interpolated surface by QQ mapping. This approach aligns

the quantiles in observational and modelled data and preserves the spatial patterns of the original data, and has

QQ-mapping bias-adjusted-medels-have been shown to outperform un-adjusted models (Ngai et al., 2017). -and

S hev-n he —in-th N o b Bre ons>d b b

O o < P O a oaet; o & preea S a S ontoo

align—with—in-situ—measurements— However, QQ mapping may be sensitive to outliers and is less reliable in
capturing extreme values (Casanueva et al., 2020). To mitigate this, observational data were smoothed prior to

interpolation and QQ mapping to reduce the influence of extreme values. More detail of the point data smoothing
and QQ mapping appreach-is provided in supplementary methods.
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Sinee-multiple-models{For sediment properties— (mud ;-(the sum of silt and clay), sand, and gravel content)—
three existing spatial models were averaged exist-in-the-study-area-(Mitchell et al., 2019; Stephens and Diesing,
2015; Wilson et al., 2018); as they-were-averaged—pPrevious research has shown averaging multiple models can

reduee-error-improve predictions (Dormann et al., 2018). Sediment compositional data were pre-treated before

averaging as they Hewever—as-sediment-data-are proportional, bounded by 0 and 1 and their sum must equal 1

(Supplementary methods).

AbR=Jog< ¥ 2)
gravel
AR =log ) &
AHft 10 5
e

AR -and AERS wer%&he&m*eﬁ&ged—aemss%thfe%dﬁ%ere&&medel&(Mltchell etal.,2019; Stephens and Diesing,
2015; Wilson et al., 2018)-an

Eq—6-(Mitchell et al., 2019):

mud—= Pt 2 (4

=223 5 4
sand-= ins 2 (5)
GRE 5 )
aravel=1 (mud—+sand) (6)
graev + HUE—+-Sare); o)

Other variables were handled as follows: Aadjusted current and wave orbital velocities at the seabed-floer were

sourced directly from—seientifictiterature—as—these—models—were locally developed models using—in—sita
measurements-(Table 1) (Coughlan et al., 2021);- dBistance to coast was not adjusted as it is a simple calculation
i —bBathymetry was taken directly from

also—not-adjusted—as—only—the-EMODNet, which is a widely used —bathymetry—model-was—used—EMODNet
bathymetry—offers—the—highest resolution model and was developed specifically for European waters
(https://emodnet.ec.europa.eu/).

and -

3:2.3 Validatingen efpredictors accuracypes: “

The Ppredictorsyes dataset was were-validated against observation data to assess whether bias the-adjustment

improved their agreement with in situ data. To avoid artificial skill, a k fold cross-validation approach was

usedemployed, where each fold excluded a different. non-overlapping fifth of the observation dataset during

(Maraun

adjustment en
and Widmann, 2018).

nen-overlapping fifth-ef the ebservation-data—For each fold, the Root Mean Squared Error (RMSE) was calculated
for-the-bias-adjusted-predietor-using only the excluded data, the-observation-data-that had-been-omitted-from-the
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a-commonly used-metrie-to-testmodel performaneeproviding a more reliable estimate of prediction error (Maraun
and Widmann, 2018). -(Mila et al., 2022)-The average RMSE across all folds was then compared to the RMSE

of the original (pre-adjustment) predictors. Lower RMSE values represent improvements in model performance-

W-a peatea—across—a —aha SV SS a-to-rep o BV S

MWMMWMM. ‘W—Mmiﬁm}%%mi%mmw t S : ~ T~ t t
aeewraey- (Maraun and Widmann, 2018).

3.2:4 Dry bulk density estimates -

DBD is the mass of dry sediment per unit within—a-givea-volume of wet sediment and is required to calculate
OCiiock from OCeonteni- Although not used as While-it-is-net-a predictor for-medeHing-OCcontens, it is crucial in
calculating OCsock. FhereforetTwo versions of DBD were developed:; an ene-un-adjusted estimate and and-an

one-adjusted version, to pair with respective OC,on models (un-adjusted vs. adjusted). beJatercombined-with
adiusted—and—adiusted—O ontent—predictions—re 3

—respeetively—Unadjusted—Pre-adjusted DBD (DBDjpr) was
modelted-calculated using a commonly used approach from sediment porosity using Eq. 27, Eq. 38 and Eq. 49

(Diesing et al., 2017; Smeaton et al., 2021a):
DBD kgm™ = (1 — ¢)ps, (72)
ps = 2650 kg m™3, (83)

@ = 0.3805 X Emudypgeon: + 042071,
94)

Where-sSediment porosity (¢) was calculated as a function of spatially averaged mud content (€ uemudgon) and
assumed a constant grain density (ps) of 2650 kg m™. In -contrast. bias adjusted DBD (DBD,y) was spatially

(Breiman, 2001). By contrast. adjusted DBD (DBD,..) was spatially predicted using in- it data from-the
Nerthwest European-Shelf and-a Random Ferest(Breiman, 2001 ) medelHdetailsin-Seet-3-3-1-The model training
procedure and specific algorithm and predictor selection is described in detail in Sect. 3.5, alongside modelling
of OCpont.

3.53 Training machine learning modelsMedel-and-spatial prediction ha

3.3.1 Model training

Two models of OCconten: fr0dels-were trained to compare the effeets-use of using-pre-adjustment (OCcont.entpre) and
bias-adjusted (OCcontent post) predictors. Both models used the Fhe-Random Forest (RF) algorithm, was-used-as-it
has-beenshewn-to-which performs well for geospatial modelling (Diesing et al., 2021; Hengl et al., 2015; Meyer
et al., 2018). Predictors were selected using the Fhe RE-rmodelwas-trained-usingthe-Forward Feature Selection
(FFS) algorithm, which iteratively builds models by adding one predictor at a time -to-omit-unimportant predictors

(Meyer et al., 2018). It begins with FES-trains-multiple RF’s-using-all possible 2-predictor combinations, retains
the best performing pair, and then adds additional predictors only if they reduce the model’s RMSE —Fhe-best-of
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(Meyer et al., 2018).

-After medektraining, partial dependence plots were used to visualize visualhy-inspeet-the associations between
therespense-data{OCconens) and the selected predictors-deemed-to-be-impertant by FES. The adjusted DBD model,
Additionally,- DBDyos. Was developed in the same way, using an RF FFS applied to the bias adjusted predictors
and was spatialy-medelled—to-later used to calculate OCstock. From-OC onen—Predictorspos—were-tised—to—train

3.63-2 Model validation

All FFS RF models (OCeont.ent pre, OCcontent post and DBDpost) were validated using the s Nearest Neighbour Distance

Matching (kNNDM) Leave-One-Out (LOO) Cross Validation (CV) approach (Mila et al., 2022). This approach
NNDM-EOO-CV-matches the distance distribution functions of training to testing data to the distance distribution
function of prediction to training data (Supplementary information S2+ and S32). Random k-fold cross-validation

can produce overly optimistic performance estimates by allowing spatially autocorrelated data to be split across

training and testing sets. In contrast, KNNDM explicitly enforces spatial independence between folds, so that

models are evaluated on data that is spatially uncorrelated with the training data. This provides a more realistic

estimate of model re

training-data—In addition to KNNDM-EOO-CV, the RMSE of DBDjost predictions RMSE-against-ebservationat

data-was calculated against jn sifu measurements to evaluate whether the machine learning model outperformed

the unadjusted estimates of te
improvement compared-to-medeling DBD ﬁceﬁfrpefesﬁyu(DBDp,e) (details in Sect. 3.42-3). Model stablhty was

also tested by examining prediction consistency across repeated runs using the final selected predictors. We looked

at prediction stability in the highest and lowest 15% of predicted values., we specifically chose this threshold as

this is the range most susceptible to the effects of outliers (Lange et al., 2025).

3.73:3 Model uncertainty

It should be noted that the uncertainty estimates derived here are limited to model variance. Uncertainty introduced

from measurement error in response variables (OC content or DBD) and input predictors, for example

chlorophyll-a, Jho. sediment properties, etc. was not quantified due to a lack of available uncertainty in the
underlying datasets. Medel-Uuncertainty for both was-ealeulated-for-each-ofthe-OCeontent models and as-wel-as
DBDp.,S( was estimated using the sum of the standard deviations of 25 RF model predictions—Uneertainty—was
i tath ietions (Diesing et al., 2021).
For each run rResponse data were randomly split into divided-into25-folds;each-with-a-70% training and t6-30%

testing setstrain/test-split, resulting in 25 models. For each pixel, the standard deviation of the 25 predictions was
computed. The total uncertainty was then determined by summing these standard deviations across the study area

(Diesing et al., 2021). In addition, an Area of Applicability (AOA) analysis was conducted to assess whether our
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adjusted OC content and DBD models could be reliably applied to the study area (Meyer and Pebesma, 2021).

AOA identifies regions where the training and prediction data are comparable, indicating where machine learning

models are likely to make reliable predictions. The analysis calculates a Dissimilarity Index (DI), which quantifies

how different the prediction data are from the training data.

3.84 Calculation of organic carbon stock and total reservoir

The spatial variation in OCsock, Which is the mass of OC stored in sediment per unit ef-area to a specific depth,
aeross-the-study-area-was calculated using both fer-each-set-of-un-adjusted inpuits-(OCeontent-pre and DBDyyre) and

adjusted inputs (OCecontentpost and DBDpos) inputs . OCgioc was calculated using the using-the-following equations

(Diesing et al., 2017):

0C-stockgioc pre Kg/m* = OCcontent pre X DBDyye X cell area X depth
(Eq-—105)

0C-s5to€k o0 post kg/M* = OCcontent post X DBDpost X cell area x depth (Eg—116)

OCeontent and DBD were the predicted outputs from the respective pre-adjustment (pre) and post bias adjustment

models (post) conteni-ate-DBD-medels; respeetively—Cell area was calculated for
each grid cell using the cellSize() function in the terra package (Hijmans, 2025) in R, which accounts for spatial
variation in cell size —Fhe-celSizef)function-caleulatesthe-areacovered by grid-cell-inthe study-area;rather than
assuming a constant grid-cell size across the study area. Depth-was-assumed-to-be-Aa constant depth of 6410 cm

was used to estimate surficial sediment. These equations were applied to every grid cell across the study area. -O€

To estimate the total organic carbon (OC) reservoir in the study area. predicted OC stock values were summed

across all grid cells. To assess the relative contribution of OC content and DBD estimates to the final OC stock

values, we calculated OC stock using all four combinations of input models: (1) Pre-adjustment OC content with

post bias-adjustment DBD, (2) pre-adjustment OC content with adjusted DBD, (3) adjusted OC content with

unadjusted DBD, and (4) adjusted OC content with adjusted DBD. Total OC stock uncertainty was calculated

using the following equation: Additienally-the totalmass-of OCto-aspe depth-v

0C uncertaintysoc, kg/m? = 0C uncertainty.,,, X DBD uncertainty X cell area x depth(7)

4 Results

4.1 Data collation

4.1.1 Data sourced

Lot 1670 insi fourficialcedi e biainedf . thin il
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4.1.2 Predictor improvement:predietorspr-vs-predietorspos

With the exception of Exeept-for-SPMummer and BWET ., all bias adjusted predictors (predictorspesy) data showed

improved eonsisteney-agreement with ebservation in situ data, based on aecordingto-RMSE comparisons (Table

versions -were retained used-in the predictorspos dataset for model training.

,_1

-The degree of adjustment varied across variables extent-to-which-predietors,.~were-adjusted-varied-(Fig. 3). For
instance, mMean RMSE change for adjusted Sp.BWS was minimal, for-example;showed little chang R

7
H

MS
Vi

s

betweenpredictorsy—andpredietorspes (FableH—With a mMean difference of ehange-inBWS—was-0.0
between eempared-te-predictorsyr and predictorsy.. In contrast, Hewever-SPMyiner Was adjusted to a greater

degree, showing a ~Mmean change in-SPMinerwas-of -9.97 mg 1!, which is also reflected in a greater shift in_its
SPMiners-ata-distribution (Fig. 3). Sediment properties, mud, sand and gravel content were not changed to a
large degree (Fig. 3). The mean Mean—adjusted—change between frem—predictorsye. to predictorspes forin

CrnuemMUdpon, Esand-sandeon and Egraver-gravelon wasere -0.03, 0.07 and -0.04, respectively.
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4.2 Random forest modelling
4.2.1 OCcontent and DBDyost Variable selection

Different predictors were selected during the OCconeens model training process. -FES-chosefSevenive important

predictors were selected for bet-h—OCcommpre—&né (Supplementary information S4), while five were chosen for

pest-S-Mean Squared Error (MSE) mefeaseekby 56.823% and 32.427-9%, respectively whenaCnui-and- WOV max

wererespeetively removed-from-the-model(Supplementary information S54). Partial plots alse-showed OCpon
increased with €mea-mudgon: had-a-positiverelationship-with-OCconenwhiteand decreased with WOV 1o max Was

inverselyrelatedt0-OC ontent (Fig. 4).

-For OContpre the selected predictors In-eentrast—predietors-seleetedfor OC.ontent preWere SPMummer, distance to /

Formatted:

Subscript

Formatted:

Subscript

Formatted:

Font: Italic

Formatted:

Subscript

Formatted:

Subscript

Formatted:

Subscript

Formatted:

Subscript

Formatted:

Subscript

Formatted

: Subscript

Not Superscript/ Subscript

Formatted:

Font: Italic

Formatted:

Subscript

Formatted:

Font: Italic

Formatted

: Subscript

the nearest coast, Jhot, Spoi, Sakinity—chlorophyl-a, WOV 1 max and sandgonCeraver (Supplementary information

S4Fig—4). The most important of these was SPM whose removal increased model MSE -was—the-mest
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impertantpredictorfor OCcontent pror Which-accountedforaby37.1-62.9% inerease inthe model MSE-whenremoved
(Supplementary information S54).

Six-Six important predictors were selected for the by REFESfor DBDpoy model: (Fig—4)-Tmportant predictors
were—Cuuasandeont, SPMaummer, SPMuinter. Uorb,meangprb.max_SPMsummer, aNd SPMuyintegUpot. mean. 5 Ceravelr WOV max—aird

means SaNdeonEmud, Was the most important predictor, with a positive relationship to DBD whieh—was

Formatted:

Subscript

Formatted:

Font: Italic

Formatted

: Subscript

Formatted:

Font: Italic

Formatted:

Subscript

Formatted:

[
[
[
[
[
[
[
[
[
[
[
[ Formatted:
[
[
[
[
[
[
[
[
[
[
[
[

Subscript

o 0 JC A U JC A JC U L )




A05

A10

A15

A20

A25

A30

A35

inverselyrelated-to DPBD-(Fig. 54). Its removal increased model MSE -was-the-most-impertant predietor; resulting
in-an-inerease-in-model RMSE-by 45.943% -whenremeoved (Supplementary information S54).

4.2.2 Model performance and predictions

OContpost had an R? of 0.47 and RMSE of 0.31%. and showed a slight improvement in performance compared to

OCeontpres (OCeonipost AR> = +0.06 vS. OCeontpre; OCeontpost ARMSE = -0.01% vs. OCeontpre)-OCconient pos- (RZ=0:61
RMSE-03120) showed-ashght-inercase-in-performance-comparcd 10-OC e pee (Table 20 OC pen ponr ART—
+0-03-v5—OC content prei O Ceontent post ARMSE —=—0:04%v5—OContent pre)- Despite this, predicted Fhis-similarityin
performanee-wasreflectedin-comparable-OC onien: Values were generally similar across predietions—aeress-the
study area. The Mmean OCcontentpost prediction was 0.587 + 0.6158 %, compared to whereas-OC opent pre-Was-0.65
+ 0.67 %35 for OCconcpre (Table 2). Spatial differences were not uniform, Hewever—patteras—for-OCcontadient Was

higher in areas such as near the Irish coast predictions—were-not-consistently tower for- OC.onient pos(Fig—)—For

example; OC onentpos-Was-predicted-to-be-higher-in-areasnear-the frish-eoastand southeast of the Isle of Man (Fig.
5). Area of Applicability (AOA) analysis of our adjusted OC,on model showed that 97.1% of the study area fell

within its AOA (Supplementary Information S6). For the DBD,.s model, 93.6% of the study area was within the

AOA (Supplementary Information S6). RF model stability analysis revealed that a prediction stability of 95% was

achieved with only 29 trees (the models were trained with 500 trees), indicating highly consistent predictions

across runs. This low tree requirement suggests the RF models are not overly sensitive to variation in the training

data.

In contrast, the adjusted hnpeortantly-foreatenlating OC-stoeks;DBD model- (DBDjposy) had a better agreement with

in situ data compared to DBDye (Table 1). DBDyos explained 4483% of the variance in jn situ the- DBD peint-data,

with aeress-the NW-Europeanshelf and-had-an RMSE of 187192 kg m™. Within the study area, DBDjoy predicted

consistently lower values than DBD,, largelyshowed-areductionin-DBD-across-thestudy-area-with a mean

reduction of 310 kg m=3. This reduction was even more pronounced in high mud regions like the Smalls and the

western Irish Sea ‘mud belt’, where average j—areas-of knownhish-mud-content such-as—The-Smalls” and-the
“Mudbelt’mean-reductions reached in-DBD . were-even-greater{506 kg m™) (Fig. 6).

These differences in DBD significantly influenced A-substantial-difference—inpredieted-total OCgck estimates.
Using the bias adjusted model (OCsiockpost), the total aeress—the-study-area—wasfound -between-thetwo-trained

models{Table2)Based-on-OC ek posthe-total-OC reservoir was 46.6 = 43.6 Tg in the study area, which was
68.6% {total-OC oa—67-9+63-0-Fg)-of the unadjusted model estimate of 67.9 £ 63.0 Tg (Table 2). Despite this

difference in magnitude, OCreserveirbased-on-OCocpretFable2)—Bboth adjusted-and-unadjusted-predietions
eapturedmodels predicted similar spatial patterns, with higher OCpon and OCgiock #-OC conten-atd-OC ock(Fig—5

and-7)—Bethin ~Fthe wWestern Irish Sea ‘mMud belt’ and ‘The Smalls’ had-comparatively-high-OC ouen—and
OCck (Fig. 5-and-76), and lower values in deeper central areas of the Irish Sea.

The results show that improvements in DBD modelling had a stronger influence on total -Generallytower OC ontent
and-OCsqock estimates than improvements in OCcon. Replacing DBDjye with DBDpos (while holding OCgon

constant) lead to a 15.1 Tg reduction in the total OC reservoir. In comparison, updating OC o alone reduced the

(| U D
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content—pos-With-DBD e
reduced-the-total OC-stock-estimate by 6.5 Tg.-whereas;-combining the OC onient pre-With DBDposreduced-the-total

5 Discussion

Our findings show that bias-adjusted model inputs substantially-reduced estimates of organic carbon (OC) stock
in surficial sediments within the Irish Sea by almest-nearly one-third (31.4%). Adjusted inputs shewed-better
alignedment with in situ measurements, with lower errors observed for both -and-predietions—£or-OContpostent post

+of poresityted-to-thegreatest reduetions-in OC stock resulted from RF modelling of DBD, which

replaced widely used porosity-based approaches. estimates—Importantly, OC stock is not a directly measured

value. In the equation for calculating OC stock (Eq. 5), DBD acts as a scaling factor that multiples the content of

OC in the sediment by the amount of sediment (DBD). Therefore, it is likely that better predictions of OC content

and DBD will result in more realistic estimates of OC stock. Additionally, Fthese findings highlight the importance

of using suggest-that-improved DBD models and suggests that previous estimates of OC stock that used the

porosity empirical relationship may represent overestimates. These improvements in OC stock estimation are

directly relevant to marine spatial planning, particularly in the context of managing OC stocks under climate and

biodiversity targets. More accurate and regionally relevant OC stock estimates can improve the reliability of

national assessments, help prioritise areas for protection, and inform industry activities, such as offshore

)
S—to—Hmprovepr

suppoert-policy-makers-and-marine-planning-deeisions—Our results underscore the importance of improving input
data to enhance model reliability for informing marine spatial planning decisions.stady—eontributes—to—the

Approximately two-thirds (70.1%) of the difference between adjusted and unadjusted #-OC stock estimates
between—the-two—estimates (OCock preV5—OCsiock pos-Was due to attributed-to-adjustments in DBD, with the
remainder attributable to and-theremaining-differences was-due-to-adjustments-in OC content medelpredictions.
DBDyos showed-had reduced error ;-compared-to-DBD,,-and revealed-and consistently lower PBD-values across
the study area ;resultinginlower OC stock-estimates(DBDypoy mean 1191 + 175 kg m™; DBDjye mean: 1501 +
65kg m). While Apart-from-recent work which-used-ahas applied machine learning medel-to estimate DBD
(Diesing et al., 2024), most previous work has largely—focused on acenrately-modelling OC content-estimates,
with less attention being-given to DBD estimates(Diesing et al., 2017, 2021; Smeaton et al., 2021a).- For example,
previous-work-has-medeled-unadjusted DBD was modelled from porosity as-was-performed-in-the-OCoek pre

model-developedfor-the-eurrent study—using DBD data solely collected from the Mississippi-Alabama-Florida
shelf (Jenkins, 2005)_and implicitly assumes global applicability of this relationship. Moreover, the unadjusted

DBD estimate assumed a constant grain density (2650 kg m™) (Diesing et al. 2017), however, even within similar

sediment types grain density can vary, marine mud grain densities can range from 2410 to 2720 kg m;> (Opreanu,
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compared-to-PBD,, i
than RE-medelling—In contrast, >90% of the study area has predictor data comparable to training data, we can

assume that the relationships ‘learned’ by the model during training are still applicable in the majority of the study
arca. Additionally, Atwood et al. (2020) estimated DBD using a used-a-transfer function-te-estimate DBD-from
based on OC content, however, the transfer-function was not based solely on marine sediment data and contained
OC content values substantially greater than those observed on continental shelves. Since Previeusresearch-has
shown-that-OC storage dynamies-varies from inland to coastal to shelf sediments (Smeaton et al. 2021), these

methods may not be representative of shelf sediments. Ourfinding

ndings-highlicht-the-importance-of reducing uncertaintics-around-DBD-and-reinforees priorsuggestions-for

standardized DBD measurement protocols_and highlight DBD as a key uncertainty in ;partienlarlyregarding
DBD;which-influenees-OC stock estimates (Graves et al., 2022).-More reliable DBD estimates, as presented here,

will result in more robust baseline assessments of marine sediment OC stocks, which are crucial to investigating

the effects of human pressures on seabed OC stocks and whether managing these systems can result in meaningful

emissions reductions. For example, more accurate DBD estimates can result in reducing the substantial

suggest that as a result of bottom trawling, significant amounts of COp, may be emitted from resuspending OC

stocks in marine sediment. However, results from our study show OC stocks in surficial sediments may be

substantially lower than previously reported. Additionally, impacts of trawling on marine sedimentary OC stocks

has been identified as data deficient in the Irish Sea (Crowe et al., 2023), therefore, in order to incorporate marine

sediment OC stocks in national marine spatial planning frameworks, more data are needed to refine estimates and

provide policy makers robust empirical evidence with which to base management decisions.

Consistent with previous work, Previeusresearch-has-consistenthy highlishted-mud(the sum-of silt-and-elay)

(Diesing et al., 2017; Smeaton et al., 2021a). -agreement-with-previous-work;-OC onent pos-idicated-that Coua
was-the-mostimportant predietor 6f OC onen—Muds across fjords and other coastal sediments have been shown to
contain greater amounts of OC than sand, coarse sediments and mixed sediments (Smeaton et al., 2021a). The
clay fraction in marine muds effers-provides a large surface area for the adsorption and preservation of organic
matter, including reactive interlayer surfaces in certain clay minerals, making it a key factor in OC sequestration

(Babakhani et al., 2025; Keil and Hedges, 1993; Kennedy et al., 2002). The capacity for sediments to bind OC

through clay-OC interactions can also vary with different mineral phases occurring in sediments, varying in the
surface charge and distribution, topography and particle size and subsequent geochemical conditions constraining
these characteristics (e.g. pH and ionic strength of pore water) (Bruni et al., 2022; Hunt et al., 2020; Kleber et al.,
2021; Smeaton and Austin, 2019).

Our results showed Despite-ourdataset-showing-a largely positive relationship between mud content and OC

contentCpug-and-OConen, but extremely low €pua-mudgen values (<0.05%-E.ua) were also associated with high

OC onenOC content, which is-in-contrasts-te previous work that reporteding a positive relationship between the
two parameters €pua-ard-OConen (Diesing et al., 2017; Smeaton et al., 2021a). In continental shelves relationships
between mud and OC€......:OC content are complex. Previeus-werk-hasshownlLittle variation in OC _contenteoniest

14

[ Formatted: Subscript

[ Formatted: Subscript

[ Formatted: Subscript

[ Formatted: Subscript




520

525

530

535

540

b45

550

fss

between mud, sand and coarse sediments has been reported on shelf areas (Smeaton et al., 2021a). However, the
lability of organic matter can vary significantly between these environments (Smeaton and Austin, 2022). -Marine
muds have been shown to store organic matter ranging from highly reactive to highly resistant to degradation,
whereas whilst-coarser sediments typically only contain have-beenshown-to-almost-exelusively-house-organic
matter highly resistant to degradation (Smeaton and Austin, 2022). Furthermore, muddy sediments tend to house
be-sites-of relatively-higher infaunal biomass than coarser sediment, and these-benthie-faunathese benthic faunae
coupled in—eembination—with microbial metabolism play a key role in mediating OC mineralisation and

preservation (Lin et al., 2022). For example, -Zhang et al. (2024)estimated- bioturbation-induced remineralisation

can te-account for between 25 and 30 % of total seabed respiration (Zhang et al. 2024). These biological processes

act alongside sediment disturbance from commercial fishing to create this nuanced relationship between mud and

organic matter content (Epstein and Roberts, 2022; Zhang et al., 2024), which —Fhis-may explain why the-mud

partial-plot-did not exhibit a clear positive relationship with OC content.;-as-the-heterogeneity-in-organic-matter
- Fect OC s N -

In addition, the importance of WOV,..maximum wave orbital velocity at the seafloor in our model highlights the

role of hydrodynamics eenditions-in shaping OC content-and-steeks. In agreement with previous research The

hydrodynamie-aetivity-(Song et al., 2022), we found an inverse relationship between OC content and maximum
wave orbital velocity at the seafloor. —High energy environments with Fheseregions;—charaeterized-by-thicker

Sediment Mixed Layers (SML) limit OC burial by resuspending fine particles and increasing oxygen exposure, ;

to-exyeen;-potentially increasing remineralization and reducing organic carbon accumulation rates (Song et al.,

2022). However, in dynamic coastal regions, Seveﬁal—kﬂeﬂeég%gapﬁema&fﬁegafdmg&h%pmcesses governing
tons—First, the

carbon mineralization in marine sediments are still not clear.

mechanistie—interplay—interaction between sediment resuspension, microbial community activity, and carbon
mineralization pathways remains poorly constrained (LaRowe et al., 2020). While-eOxygen exposure time is a
key driver of OC degradation (Hartnett et al., 1998) and -the extent of short-term te-whieh-short-term-disturbance
events, such as—eg storms or trawling) that impact aler—oxygen penetration depth and thus carbon
remineralization rates is not well understood need—further—investication—(Bartl et al., 2025; Glud, 2008).
Additionally, the interaction between bioturbation —a-eritical-process—mixing partieulate-orsanie-matter—and
resuspension driven transport of sediments across-spatial-seales-is not well quantified in models predicting carbon

storage (Cozzoli et al., 2019). The hydrodynamic regime has a strong influence over sediment type, as high energy
environments prevent mud deposition or resuspend finer particles, while low energy environments allow fine
sediments to settle and accumulate, which is conducive to mud deposition and OC accumulation (Hanebuth et al.,
2015). Similar findings were reported by Diesing et al. (2017), where low hydrodynamic activity was positively
correlated with OC content. These insights, coupled with the present work, underscore the need to incorporate
sediment dynamics, such as sediment mixing or disturbance, into models predicting OC stock, particularly in light

of human activities such as trawling and offshore development (Epstein and Roberts, 2022).
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Diesing et al. (2017), Smeaton et al. (2021a) and Atwood et al. (2020) all reported better-improved model accuracy
compared to these-in-the present study. For example, Diesing et al. (2017) and Atwood et al. (2020) reported R?
values of 75% and 76%, respectively. compared to 47% in the present study (bias adjusted OC content). Pespite

DBD)SIK}V drrln Arrv del-perf reported-here—islower—when dt 3 tudt

- moder FaH s IS—Hower—waeh mparea—to—previous—staates

investisating OC o inmarine sediments—TheseFhese apparent differences in model performance may be due to
the validation approach used and spatial autocorrelation, which may be inflating model metrics (Mila et al., 2022).
For example, the present study used the kKNNDM algorithm to ensure spatial independence between cross
validation training folds;whi

oftest-data. However, random k fold cross validation, as used by Atwood et al. (2020) and Diesing et al. (2017),

are likely to train and test on data that are spatially dependant, and thus artificially increasing the likelihood of the
model predicting correctly (Mila et al., 2022). Similarly, Smeaton et al. (2021) who did use a form of spatial cross
validation reported comparable model performance to our study (R*=53%, RMSE=1.72). Smeaton et al. (2021)
used ‘spatial blocks’ to determine train/test splits. However, these spatial blocks were defined as ICES statistical

grids, which do not ensure spatial independence between train/test folds, unlike the KNNDM algorithm used in

the present study.

Predictions presented here still carry uncertainty,

despite reducing model error through adjusting model input data. Uncertainty in OC stock estimates was greatest

in nearshore areas, around the perimeter of the western Irish Sea ‘mud belt’ and the ‘Smalls’, which coincided

with higher OC stock predictions. These areas intersect with zones of intense human activity, such as bottom

trawling and offshore development (Crowe et al., 2023), highlighting the need for caution in marine spatial

planning decisions that rely solely on model outputs. Improving spatial coverage of jn situ measurements

especially of DBD and OC content, in these higher uncertainty zones would help refine model estimates. The OC

stock uncertainty presented here likely underestimates the true uncertainty due to unreported sampling errors in

OC content measurements and modelled predictor data. Even—though—prediction—uncertainty—estimates—were

a;Additionally, DBD data were lacking across

the study area and only 3% (18 of 642) of all DBD observational data used in bias adjustment were located within

the study area. However, despite low spatial coverage of training data points within the study areathis, analysis of

the adjusted DBD model’s AOA revealed it can still be expected to perform well within the study arca. BBD
shelf when-compared-to-estimates-from-porosity. Findings from the present study show spatial models of organic
carbon can still be significantly improved from increased in sifu data. Additionally, incorporating these datasets
into public repositories can improve efforts to estimate organic carbon stocks by providing ground truthed data on

which to base numerical models. The refined estimates presented in this study rely on large amounts of in situ

data and environmental predictors, making this approach most suitable for data-rich regions. Within our study

area, the limited availability of DBD measurements required the use of an Area of Applicability (AOA) analysis
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to assess whether the adjusted DBD model could be reliably applied, highlighting potential limitations of this

approach in data-poor settings. Nonetheless, our findings demonstrate that where sufficient observational data are

available, OC stock estimates can be substantially improved. As more in situ datasets become available in

currently under-sampled regions, this modelling framework can be replicated and further refined to support better-

informed carbon assessments.

6 Conclusion

Overall, our findings suggest that marine sedimentary OC stocks could be lower than previously estimated, with

implications for marine spatial planning and nature-based climate solutions. A key result of this study is that

uncertainties in dry bulk density (DBD) estimates strongly influence OC stock predictions. We show that reliance

on previously developed empirical relationships for DBD can introduce substantial error, underscoring the need

for regionally relevant data. Improved OC stock estimates, grounded in more accurate DBD values, can support

more informed seabed management by identifying areas with higher carbon vulnerability or conservation

potential. ~The findings suggest that adjusting
improving model inputs based on in situ data, may help refine reduce-uneertainties-in-model predictions_to be

more locally relevant. We highlight the critical role that accurate DBD estimates play in determining OC stock.
Moving forward, more comprehensive in situ DBD measurements and refined DBD models are essential for
improving the accuracy of OC stock predictions. Alternatively, OC stocks could be calculated directly per
sediment core, reducing the number of models needed to estimate OC stocks, thus reducing uncertainty in final
estimates. These efforts will be instrumental in developing better strategies for managing marine sedimentary OC

stocks.

Code/Data availability

Spatially modelled organic carbon content, stock data, and their associated uncertainties are available as a Zenodo
repository (https://doi.org/10.5281/zenodo.14859982). Additionally, the bias adjusted predictor data layers
developed and the random forest dry bulk density model can be accessed from Zenodo
(https://doi.org/10.5281/zenodo.14859982). The underlying code used to develop these data layers and produce
spatial predictions of organic carbon content and stock is available from the “Bias-Adjusted Predictors and
Random  Forest Models for  Organic  Carbon  Stock  Estimation”  github  repository
(https://github.com/markchatting/Bias-Adjusted-OC-Stock-Model.git).
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Tables and Figures

Table 1: Summary of organic carbon content and stock model inputs. Directly sourced adjustments were when
the adjusted data was soured directly from literature that developed a model based on locally measured
observational data. SPM data points were for all months to create monthly interpolated surfaces then they were
merged to create seasonal interpolated surfaces. ARMSE represents the change in RMSE after QQ mapping.
Negative RMSE values represent reduced error, while positive RMSE values show increased error.

NWE shelf
. . o Pre adjustment data Adjustment ARMSE
Predictor Unit Abbreviation . after
source points method diust ¢
available adjustment
Distance to coast km - Calcu]atcc_l from - None -
data points
Bathymetry m - EMODNet - None -
Copernicus
Bottom water salinity - BWSS; o ma:;:ctjata 57,965 QQ mapping -0.01 { Formatted: Subscript
Copernicus
o — . .
Bottom water temperature C BW T ma.;?xiacllata 173,607 QQ mapping 0.00 { Formatted: Subscript
Copernicus
i -l AVAPA i - i - . .
Mean bottom water velocity ms BWALhotumean mqig]iac}ata Averaging [ Formatted: Font: Italic, Underline
_ _ : , Copemicus ) [ Formatted: Subscript
Maximum bottom water velocity ms BW Upot: Vimax marine data - Averaging -
portal { Formatted: Font: Italic
Copernicus
Surface chlorophyll-a pgl! - marine data 21,108 QQ mapping -1.13
portal
N Copernicus
Summer surface Suspended 1 . « .
Particulate Matter mg | SPMummer marine data 542 QQ mapping +2.31
portal
. Copernicus
Winter surface Suspended n et . .
Particulate Matter mg | SPMyinter marine data 542 QQ mapping -0.85
portal
. Mitchell et al. .
o . _ R K
Mud content % CameMudgon 2019) Averaging 0.03 [ Formatted: Subscript J
e Mitchell et al. .
; o - g, - _ .
Sand content % CianaSandgon (2019) Averaging 0.05 { Formatted: Subscript J
Mitchell et al. .
o ) jrav - < .
Gravel content % CaraverGravelpon (2019) Averaging 0.03 [ Formatted: Subscript J
Mean wave orbital velocity at a0 I Wilson et al. Directly
seafloor ms 2 Valurh mean (2018) = sourced = { Formatted: Font: Italic J
Maximum wave orbital velocity a1 I Wilson et al. Directly X
at seafloor ms OVt o (2018) - sourced - [ Formatted: Subscript J
Modelled from Random
Dry bulk density kg m* DBD modelled 706 forest -194.73
porosity modelling

Table 2: Summary of outputs from models trained on non-bias adjusted data (predictors,y.) and bias adjusted
data (predictorspost). Mean OCeonten represents the mean prediction value across the study area; total reservoir
estimate is the total OC stock reservoir for the study area; mean DBD is the mean DBD predicted across the
study area.-R> : ror 5 : ane ies i S i

Total reservoir OC estimate

3 o

Input data Mean DBD (kg m*?) + sd Mean OCeontenc (%) £ sd (Tg) + total uncertainty
Predictorsy. 1501.60 + 66 0.65 +0.62 67.9+62.9
Predictorsp, 1191 + 175 0.57+0.58 46.6 +43.6
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(1) Response data

(2b) Legacy data bias adjustment

o 1|

el

(2a) Predictors,,,,

Mon(en( pre

(4a) DBD,,

(4b) occonlen( post

(5b) DBD,,

Mtock pre

6b) OC,10ry poss

Figure 1: Summary of steps taken to train and predict form two different models, which include: 1) collating
response data; 2a) compiling OC content predictor data (predictorsyunadir); 3@) training a random forest model to
predict OC content on the non-adjusted predictor data (OCyundi); 4a) modelling Dry Bulk Density (DBD) from
porosity (DBDjunadire); 5a) predicting OC stock across the study area using OCpcontunadire and DBDjpunadice; 2b) bias
adjusting predictors,udir data using quantile-quantile mapping; 3b) compiling OC content predictor data after it
has been bias adjusted (OCeontadient post); 4b) training a random forest model to predict OC content on the bias
adjusted predictor data (predictors,agiest); Sb) training a random forest model to predict DBD on the bias adjusted
predictor data (DBDjadies:); 6) predicting OC stock across the study area using OCpcont.adios: atd DBDpagjos.
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8°W 6°W 4°W 2°W 0° 2°E

OC content (%) 0 1 5

Figure 2: Study area within the Irish Sea (thin black border) and within the greater North West European shelf
(inset). Points indicate organic carbon (OC) data coloured by the organic carbon content. Pink areas show
internal waters that have been excluded from the study area. Thick black outlined polygons indicate the “western

Irish Sea ‘mMud bbelt’ (northern) and the ‘Smalls’ (southern), areas of known high mud content within the Irish
Sea.
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Figure 3: Cumulative distribution functions (CDF) of bias adjusted (adjusted) and not bias adjusted (modelled)
model input data and observational data used in bias adjustment.
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Figure 5: Partial dependence plots showing the relationship between bias adjusted predictors selected by FFS
and dry bulk density (DBD): sand content, surface summer suspended particulate matter, surface winter
suspended particulate matter, mean wave orbital velocity at the seafloor, maximum wave orbital velocity at the

31



32



(a)

56°N - [ N - { 56°N -
\

55°N = °N - Y 55°N -

53°N - ) °N - ' 53°N -

52°N o \ 52°N

51°N- < N- Z il \ L

S0°N- . \ f . . SO°N- . . \ . . S0°N- . . i . .
Wooew 5w 4w 3w Wooew sW 4w 3w wooew 5w 4w 3w

DBD
DBD (kg m™) - uncertainty(kg m™ ) I I ADBD (kgm™) I I

500 1000 1500 500 1000 1500 -1000 -100 800



(a)

-
T
~

OC stock

t
i
8

uncertainty (kgm )
°

34



Figure 6: a) Predicted organic carbon (OC) content using adjusted model inputs; b) the associated uncertainty
and c) difference between not bias adjusted and bias adjusted predictions across the study area (difference =
OCcontent pre = OCeontent post): da) Predicted dry bulk density (DBD) content using adjusted model inputs; eb) the
associated uncertainty and fe) difference between DBD modelled from porosity and using an RF (DBD e -
DBDjunadiest): ive-valuesindicate-wh ietions-with-adius - H swere-high 4 o hiac
adjusted-inputs: g) Predicted organic carbon (OC) stock using adjusted model inputs; h) the associated
uncertainty and i) difference between not bias adjusted and bias adjusted predictions across the study area

difference = OCisiockunadi — OCsiockadi). Negative values in panels (¢ and (i) indicate where predictions with
adjusted model inputs were higher than non-bias adjusted inputs.
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