
Author Comment (AC) 
Response to Referee #1 (All comments) 

Manuscript: “A ground motion prediction model for the Italian region based on a mixture of 
experts framework” 

 

Referee #1 – Comment 1 (Validation strategy and event-wise independence) 

The referee expresses concern that random record-wise data splits may allow recordings from the 
same earthquake to appear in both training and testing subsets, causing event-level information 
leakage and overly optimistic performance estimates. The referee requests an explicit event-wise 
validation/testing design and recomputation of all reported metrics and residual diagnostics 
under event-wise independence. 

Author response (intended revisions) 

We thank the referee for raising this critical methodological point. We agree that ground-motion 
recordings from the same earthquake are correlated through shared source, path, and rupture 
characteristics, and that a purely random record-wise split can introduce event-level information 
leakage if not carefully controlled. 

In the discussion paper, our initial use of a random split was primarily motivated by practical 
coverage considerations (to maintain broad and comparable coverage across magnitude, distance, 
and site-condition ranges in the development subsets). However, we acknowledge that this 
choice does not, by itself, provide a sufficiently strict basis for claims about generalization to 
unseen earthquake events. In the revised manuscript, we will therefore (i) document the 
validation/testing strategy more explicitly and (ii) revise wording in the abstract, results, and 
conclusions so that any statements regarding “independent events” are supported by event-wise 
independent evaluation. 

Planned evaluation redesign (event-wise independence) 

To address the referee’s request while also preserving strict comparability with the benchmark 
study used in our manuscript, we will report results under two complementary experimental 
tracks corresponding to the two datasets considered in the paper: 

Track A: Benchmark dataset aligned with the published GPR comparison study 

 Objective: ensure an apples-to-apples comparison with the benchmark study by reproducing 
its data partitioning and evaluation protocol as closely as possible. 

 Training/validation: we will follow the benchmark study’s 5-fold cross-validation procedure 
on its training/validation pool to mirror the reported workflow and hyperparameter selection 
strategy. 



 Independent testing: we will retain the 2016-10-30 Central Italy Mw 6.5 event (241 station 
recordings) as the held-out test event, fully excluded from all model development steps. 

 Reporting: on this held-out event, we will recompute and report key generalization metrics 
(e.g., RMSE and correlation) and residual diagnostics (e.g., residual distributions and 
event/within-event dispersion) for our MoE model and the benchmark GPR model (and any 
baseline GMPEs used in the benchmark study, where applicable). 

 

Track B: Our expanded official dataset (primary basis for assessing robustness on a larger dataset) 

 Data splitting: we will adopt a record-wise partitioning strategy consistent with the 
benchmark framework, designed to preserve comparable magnitude–distance–site-condition 
coverage between development and test subsets. 

 Development (validation): we will use 5-fold cross-validation on the development pool to set 
any hyperparameters and finalize the model configuration, without using any held-out test 
data. 

 Final training: after fixing the final configuration, we will retrain the MoE model on the full 
development pool. 

 Independent testing: we will evaluate the final model on a held-out test subset that is not used 
in any training or validation step, and we will recompute performance metrics and residual 
diagnostics under this fixed protocol. 

 Baselines: under the same train/validation/test protocol, we will compare MoE against the 
GPR baseline and selected conventional GMPE baselines in a consistent manner (same IM 
definition, preprocessing, and residual definition). 

 

Across both tracks, we will ensure that hyperparameter choices are made using only 
development data, and we will not adjust models after observing test-set performance. All 
figures/tables and statements in the manuscript that summarize predictive performance will be 
updated accordingly, and any conclusions about generalization strength will be based on the 
fixed held-out test results described above. 

  



Referee #1 – Comment 2 (Interpretation of aleatory variability and residual reduction) 

The referee questions our interpretation of the reduced residual dispersion (σ) reported for the 
MoE model and notes that, for flexible ML models, variance reduction may reflect 
methodological artifacts rather than a physically meaningful reduction of aleatory variability. 
The referee requests that we (i) clarify how residual components are estimated for complex ML 
architectures, (ii) benchmark the inferred variability against published GMPE variability models 
(σ, τ, ϕ), and (iii) discuss physical plausibility versus potential artifacts. 

Author response (intended revisions) 

We thank the referee for this important and nuanced comment. We agree that, in the context of 
ground-motion modeling, a reduction of overall residual dispersion in a flexible ML model 
should not be interpreted automatically as a reduction of aleatory variability in the GMPE sense. 
We also agree that reductions in residual variance can, in principle, arise from methodological 
factors (e.g., model flexibility, implicit smoothing, or event-specific pattern exploitation) and 
therefore require careful evaluation and benchmarking against established GMPE practice. 

Clarification of terminology and scope 

In the discussion paper, our reported “σ reduction” primarily referred to a decrease in the overall 
residual dispersion computed from residuals of the form r = ln(Y_obs) − ln(Y_pred). In the 
revised manuscript, we will make explicit that this overall dispersion is not necessarily 
equivalent to the aleatory variability as commonly characterized in GMPEs through the 
decomposition into between-event and within-event components. We will therefore avoid 
language that could be read as claiming a direct physical reduction of aleatory variability solely 
on the basis of smaller overall residual scatter. 

Planned additions and analyses (to address items i–iii) 

 (i) Residual-component estimation for ML predictions 

We will add a dedicated methodological description explaining how variability components 
will be estimated from ML-based residuals under an independent testing framework. 
Specifically, we will follow the standard event-term decomposition commonly used in 
GMPE residual analysis, i.e., r_ij = η_i + ε_ij, where η_i represents the event term (between-
event component) and ε_ij the within-event residual. In practice, we will estimate η_i as the 
event-mean residual and compute within-event residuals by subtracting η_i from record-level 
residuals; the corresponding dispersions will be summarized through τ (between-event), ϕ 
(within-event), and σ = √(τ² + ϕ²). We will clearly document definitions, computation steps, 
and the evaluation split used, to ensure transparency and reproducibility. 

 (ii) Benchmarking against published GMPE variability models (σ, τ, ϕ) 

We will benchmark the inferred variability levels of the MoE model against the published 
variability models of the reference GMPEs already included in our manuscript/baseline 
comparisons (Italian and/or pan-European models as used in the paper). The revised 



manuscript will present side-by-side comparisons of σ, τ, and ϕ (derived under the same 
residual definition and evaluation framework) to assess whether the resulting variability 
levels are consistent with established ranges and physically plausible. 

 (iii) Physical meaning versus methodological artifacts 

We will expand the discussion to interpret any observed reductions in overall dispersion 
(and/or in τ and ϕ) in a more cautious and physically informed manner. In particular, we will 
explicitly consider two complementary explanations: (a) potential physically meaningful 
improvements, e.g., improved representation of source/path/site proxies and/or better 
partitioning of systematic effects through the MoE framework that may reduce unmodeled 
structure in residuals; and (b) potential methodological contributors, e.g., smoothing effects 
or limited-sample artifacts that could reduce apparent scatter without corresponding physical 
justification. To support this discussion, we will also add residual diagnostics (e.g., 
distributional checks and trends with key predictors such as magnitude, distance, and site 
proxies) to verify that reduced dispersion is not masking systematic biases. 

Planned revisions to manuscript wording 

Finally, we will revise the abstract, results, and conclusions to ensure that statements regarding 
“aleatory variability reduction” are appropriately qualified and are supported by the above 
decomposition and GMPE benchmarking. Any claims about variability will be framed in terms 
of (a) overall residual dispersion versus (b) GMPE-style variability components (σ, τ, ϕ), and 
will be grounded in the independent evaluation framework adopted in the revised manuscript. 

  



Referee #1 – Comment 3 (Definition and documentation of predictors) 

The referee notes that the manuscript does not clearly and consistently document the full set of 
predictors used in the MoE-XGB model. While some variables are mentioned in different 
sections, an unambiguous and complete list of input features (with definitions, sources, and 
preprocessing) is missing, which limits reproducibility and makes it difficult to assess physical 
consistency. 

Author response (intended revisions) 

We thank the referee for highlighting this reproducibility issue. We agree that the current 
description of predictors is dispersed across sections and does not provide a single, complete, and 
unambiguous inventory of the model inputs. This can hinder readers’ ability to reproduce the 
workflow and to interpret the predictors in a physically consistent manner. 

Planned revisions 

 Predictor summary table (complete feature list). 

In the revised manuscript, we will add a dedicated table that lists all predictors used by the 
MoE-XGB model in a clear and consistent manner. For each predictor, the table will provide 
(i) the variable name (consistent with the model implementation), (ii) a brief definition and 
unit, (iii) the data source (as used in the manuscript), and (iv) a concise note on the main 
preprocessing step(s) applied (e.g., scaling/transformations and handling of missing values). 
This table will serve as the definitive reference for the model’s input specification. 

 Feature importance (relative roles). 

To address the referee’s request for discussing the relative roles of predictors, we will add a 
robust feature-importance analysis (e.g., model-based importance and/or permutation-based 
importance, as appropriate for the adopted learners). This analysis will be presented as a 
quantitative aid to interpretability, and we will explicitly clarify that it is intended to support 
transparency rather than to imply direct physical causality. 

  



Referee #1 – Comment 4 (Lack of interpretability analysis) 

The referee notes that, given the complexity of the proposed MoE-XGB framework and the 
strong performance claims, the manuscript would benefit from a systematic interpretability 
analysis. In particular, the referee requests explicit global interpretability results (e.g., SHAP-
based importance such as beeswarm/summary plots) to clarify which predictors dominate the 
predictions across different intensity measures and spectral periods. 

Author response (intended revisions) 

We thank the referee for this constructive suggestion. We agree that, for a complex framework 
such as MoE-XGB, reporting predictive accuracy alone is not sufficient to fully support 
scientific interpretation. Adding a dedicated interpretability analysis will improve transparency, 
strengthen the physical consistency discussion, and help distinguish physically meaningful 
patterns from purely data-driven behavior. 

Planned revisions 

 SHAP-based global interpretability. 

In the revised manuscript, we will include an explicit SHAP-based global interpretability 
analysis for the MoE-XGB model. We will present global importance results using standard 
SHAP summary visualizations (e.g., beeswarm/summary plots) to identify the predictors that 
most strongly control the model outputs. 

 Interpretability across IMs and periods. 

We will report SHAP global importance separately for different intensity measures and 
spectral periods considered in the manuscript (e.g., PGA/PGV and Sa at multiple periods).  

  



Referee #1 – Comment 5 (Dataset definition and currency: ITACA) 

The referee notes that the manuscript refers to the ITACA dataset but does not clearly specify 
which version of the ITACAext flatfile is used. Given that recent releases (e.g., ITACAext 
flatfile 2.0; Lanzano et al., 2024) include updated metadata and intensity measures, the referee 
requests that we explicitly state the exact dataset version and provide a precise data citation to 
ensure transparency and reproducibility. 

Author response (intended revisions) 

We thank the referee for raising this important transparency and reproducibility issue. We agree 
that, for strong-motion flatfiles, versioning can affect metadata completeness and intensity-
measure definitions, and therefore the exact dataset release must be reported explicitly. 

Planned revisions 

 Explicit dataset version statement. 

In the revised manuscript, we will explicitly state that we use the ITACAext flatfile version 
2.0 and cite the corresponding reference (Lanzano et al., 2024). We will also specify the 
dataset access information (including the download/access date) in the data section to make 
the dataset provenance fully traceable. 

 Consistent data citation and documentation. 

We will ensure that the ITACAext v2.0 citation is consistently included wherever the dataset 
is introduced or used (data description and any data-availability statement), and that the 
manuscript clearly links all reported analyses and results to this specific dataset release. 

  



 

Referee #1 – Comment 6 (Overstatement of applicability to seismic hazard) 

The referee notes that the manuscript repeatedly suggests applicability to seismic hazard 
assessment and PSHA, while no hazard-oriented application is demonstrated and key aspects 
(e.g., spatial correlation, rupture geometry, and PSHA workflow integration) are not addressed. 
The referee requests that we either substantially tone down these claims or explicitly demonstrate 
PSHA integration. 

Author response (intended revisions) 

We thank the referee for this important comment and agree that our current wording may 
overstate PSHA readiness relative to what is explicitly demonstrated in the discussion paper. In 
the revised manuscript, we will ensure that all statements about seismic-hazard applicability are 
aligned with the analyses presented and are framed with appropriate scope and limitations. 

Planned revisions 

 Tone down and scope PSHA-related claims. 

We will systematically revise the abstract, introduction, discussion, and conclusions to avoid 
strong statements implying direct, end-to-end PSHA application. Where PSHA is mentioned, 
we will rephrase it as a potential application and clearly state that the primary contribution of 
this work is the development and validation of a regional ground-motion prediction model, 
while a full hazard application requires additional components and assumptions. 

 Document a concrete integration pathway (methodological description). 

To support the (more cautious) PSHA-related statements, we will add a concise 
methodological description outlining how the proposed MoE-XGB model can be packaged 
and used as a GMPE/GSIM within a PSHA workflow. This description will clarify: (i) 
required inputs and outputs (median prediction and an associated variability specification 
suitable for PSHA use), (ii) how the model would be called within a standard PSHA engine 
(e.g., OpenQuake) at the workflow level, and (iii) which additional elements are outside the 
scope of the present paper but are necessary for a complete hazard implementation (e.g., 
rupture geometry and distance metrics selection, spatial correlation models, and interfaces 
with source models/logic trees). 

  



Referee #1 – Comment 7 (Minor comments and technical issues) 

We thank the referee for these helpful editorial and technical suggestions. We agree that 
addressing them will improve clarity, reduce redundancy, and strengthen the readability and 
engineering interpretability of the manuscript. 

Planned revisions 

 Reduce redundancy in the Results section and consolidate figures. 

We agree that several figures convey overlapping information. In the revised manuscript, we 
will streamline the Results section by consolidating highly similar figures, retaining only 
those that provide distinct insight, and moving secondary or repetitive material to the 
Supplement (or removing it where appropriate). We will also revise the associated text and 
captions to clarify the specific purpose and added value of each remaining figure. 

 Clarify the meaning of performance averages across periods/IMs. 

Where performance metrics are averaged across spectral periods and/or intensity measures, 
we will either (i) provide a clear justification for why such averaging is informative (as a 
high-level summary only), or (ii) avoid presenting averaged values as primary engineering 
evidence. In all cases, we will emphasize period-specific and IM-specific results as the main 
basis for interpretation. 

 Replace potentially misleading terminology (“MORI dataset”). 

We agree that the term “MORI dataset” may be confusing. In the revised manuscript, we will 
replace it with a clearer description (e.g., a compiled Italian strong-motion dataset) and will 
explicitly state the contributing data sources and compilation/selection criteria in the data 
section to avoid ambiguity. 

 Correct typographical/grammatical issues and improve consistency. 

We will perform a thorough language and technical consistency check throughout the 
manuscript, correcting typographical and grammatical errors and harmonizing terminology, 
symbols, abbreviations, figure/table references, and units. 


