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Abstract. Accurate determination of the planetary boundary layer (PBL) height, mixing layer height (MLH), and aerosol layer 

top (ALT) is essential for air quality and climate studies, particularly in regions with complex aerosol dynamics such as Chiang 20 

Mai, northern Thailand. This study introduces a novel LiDAR-based retrieval method that integrates a temperature-dependent, 

dynamic maximum analysis altitude (MAA) into the traditional Haar Wavelet Covariance Transform (WCT) framework. 

Unlike conventional fixed-altitude WCT approaches, which often misclassify the ALT as the PBL—especially under stable 

nighttime or transitional conditions—this dynamic approach adapts the vertical search range for PBL detection in real time 

using observed surface temperature variations. The method is physically grounded in boundary layer thermodynamics, 25 

allowing for more accurate identification of the true PBL top while reducing contamination from residual aerosol layers and 

low clouds. Validation against radiosonde observations and comparison with previously validated WRF-Chem simulations 

demonstrate strong agreement, with the LiDAR-derived PBL heights capturing diurnal variations more reliably than traditional 

methods. The findings also reveal model biases during high aerosol events, highlighting the need for improved aerosol–

meteorology coupling in mesoscale models. This integrated retrieval framework represents a significant advancement in 30 

LiDAR-based boundary layer detection and offers a robust tool for enhancing pollutant dispersion analysis, air quality 

forecasting, and climate modeling across aerosol-rich regions in Southeast Asia. 
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1 Introduction 

The planetary boundary layer (PBL) height, mixing layer height (MLH), and aerosol layer top (ALT) are distinct atmospheric 

parameters essential for understanding air quality and weather dynamics. The PBL height represents the top of the lowest 35 

atmospheric layer influenced by surface interactions, encompassing layers such as the daytime mixing layer and the stable 

boundary layer at night (Stull, 1988). The MLH, a turbulent and well-mixed subset of the PBL, typically aligns with the PBL 

height under convective conditions but can diverge in stratified or stable atmospheres (Seibert et al., 2000). The ALT, marking 

the upper boundary of significant aerosol concentrations, often decouples from the PBL due to stratification, entrainment, or 

advection processes. Moreover, due to stronger vertical mixing over mountainous topography the aerosol can reach higher 40 

altitudes often resulting in significant aerosol loading above the PBL (De Wekker and Kossmann, 2015). Light Detection and 

Ranging (LiDAR) based techniques, despite offering high-resolution aerosol profiles, frequently face challenges in 

distinguishing these layers, particularly during nighttime or transitions (Ferrare et al., 2012). Emerging approaches that 

combine normalized relative backscatter (NRB) data with thermodynamic adjustments address these challenges, improving 

the accuracy of boundary layer height and ALT identification (Su et al., 2018; NASA DISCOVER-AQ Workshop, 2012). 45 

These developments are particularly relevant for regions like Southeast Asia, where high aerosol loads from industrial and 

biomass burning activities create complex vertical profiles. 

This study focuses on enhancing LiDAR-based boundary layer characterization by refining the detection of PBL height, MLH, 

and ALT. Traditional algorithms, such as the Haar Wavelet Covariance Transform (WCT), often misclassify the ALT as the 

PBL height, especially at night or during transitional periods when aerosol gradients are less distinct. Clouds and other 50 

atmospheric complexities make these measurements more challenging. By integrating normalized relative backscatter (NRB) 

profiles with dynamic thermodynamic adjustments, this approach addresses ambiguities in traditional methods and improves 

the reliability of boundary layer determinations. The novel method developed in this study was validated using radiosonde 

measurements and compared against WRF-Chem simulations. To support model–observation comparisons, we use a WRF-

Chem configuration that has been previously validated under similar regional conditions in northern Thailand for surface 55 

pollutant distributions, boundary layer dynamics, and optical turbulence (Bran et al., 2022; Macatangay et al., 2024; Bran et 

al., 2024), confirming its suitability as a benchmark. 

Numerous studies have significantly advanced the methods for estimating planetary boundary layer (PBL) height using 

LiDAR, addressing challenges posed by complex meteorological conditions, aerosol stratification, and limitations in 

traditional methodologies. For example, Toledo et al. (2017) explored numerical methods under sea–land breeze regimes, 60 

revealing discrepancies in residual layers that affect accurate PBL height detection, while Vishnu et al. (2017) highlighted the 

difficulty of applying a universal method for estimating the mixing layer height (MLH), which varies under different 

atmospheric conditions. Li et al. (2017) contributed to improving convective boundary layer height (CBLH) retrievals by 

developing a convective condensation level algorithm, and Dang et al. (2019) reviewed various aerosol LiDAR techniques and 
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developed a robust method (Dang et al., 2019), achieving strong correlations with radiosonde data to enhance accuracy. In 65 

addition, Zhong et al.'s (2020) MLHI-RR technique, Zhang et al.'s (2020) Cluster Analysis of the Gradient Method, and 

Macatangay et al.'s (2021) TDMMAA method for Haar wavelet techniques improved the precision of PBL measurements, 

while machine learning approaches, such as Liu et al.'s (2022) MKnm algorithm, and other methods like Pan et al.'s (2022) 

MR-IP and Han et al.'s (2022) ADEILP, have addressed multilayer conditions and diurnal variations in aerosol profiles.  

 70 

A critical challenge remains in fully distinguishing the PBL height, MLH, and ALT, particularly in regions with high aerosol 

variability, such as Northern Thailand. Diverse pollution sources, including biomass burning, anthropogenic, and biogenic 

emissions, contribute to intricate vertical aerosol distributions. This study attempts to overcome the limitations of WCT, 

improving the separation of PBL, MLH, and ALT through a novel integrated NRB and surface temperature approach. The 

enhanced accuracy of boundary layer detection is pivotal for improving air quality and mesoscale meteorological models, 75 

particularly in Southeast Asia, where aerosol concentrations are highly variable and challenging to characterize. This work 

provides new insights into the vertical aerosol distribution and its implications for air quality, aerosol-meteorology interactions, 

and public health in regions heavily impacted by agricultural and industrial emissions. 

2 Methodology 

To estimate the planetary boundary layer (PBL) height using micropulse LiDAR, normalized relative backscatter (NRB) 80 

profiles were analyzed, as NRB is proportional to aerosol concentration (Campbell et al., 2002). Conventional methods, such 

as the Haar WCT with a fixed maximum analysis altitude (e.g., 4 km), often yield the top of the aerosol layer rather than the 

actual PBL height. These methods can overestimate the PBL height during nighttime by identifying the residual layer top, and 

during transitional periods (morning growth or evening decay), they fail to capture diurnal PBL variations accurately (Brooks 

et al., 2003). Moreover, low clouds can lead to incorrect identification of either their base or top as the PBL height. To address 85 

these limitations, a robust algorithm that adapts dynamically to atmospheric conditions is necessary. 

The study was conducted at the headquarters of the National Astronomical Research Institute of Thailand (NARIT), situated 

at the Princess Sirindhorn AstroPark in Chiang Mai, northern Thailand (18.85° N, 98.96° E, 332 mASL), a region known for 

its complex aerosol dynamics driven by mountainous topography, biomass burning (forest and agricultural fires), 

anthropogenic pollution, and biogenic emissions from forested areas. The site experiences significant seasonal variations in 90 

aerosol concentrations, influencing the vertical distribution of particulate matter. To monitor these dynamics, a Mini Micro 

Pulse LiDAR (MiniMPL) system was deployed at the site and remained fixed throughout the measurement campaign to ensure 

spatial consistency. The instrument operated at a pulse repetition frequency of 2500 Hz, with each vertical profile averaged 

over 30 seconds. For analysis, the data were grouped into 5-minute intervals to balance temporal resolution with noise 

reduction, in line with standard practices in boundary layer studies, including those at this site (Solanki et al., 2019). The 95 

LiDAR was continuously pointed at the zenith, ensuring consistent spatiotemporal overlap for robust monitoring of the vertical 
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aerosol structure and planetary boundary layer (PBL) evolution. The study period, from December 2023 to February 2024, 

coincides with the beginning of the dry season in northern Thailand, when agricultural and forest fires begin to elevate aerosol 

concentrations (Bran et al., 2024), complicating the identification of the PBL and aerosol layers. This period provides a unique 

opportunity to evaluate the performance of the proposed LiDAR-based approach under high aerosol loading and variable 100 

meteorological conditions. A more comprehensive description of the study site is given in Solanki et al., 2019. 

The dynamic maximum analysis altitude (MAA) method introduced in this study is grounded in boundary layer 

thermodynamics and turbulence theory. It addresses a key limitation in conventional planetary boundary layer (PBL) detection 

approaches — namely, the use of a fixed maximum altitude for analysis regardless of prevailing atmospheric conditions. By 

leveraging real-time surface temperature variations, this method introduces a thermodynamically responsive upper boundary 105 

for LiDAR-based boundary layer retrievals.  The physical rationale stems from the well-established relationship between 

surface heating, buoyant turbulence generation, and boundary layer growth. Under convective conditions, surface warming 

leads to rising thermals that entrain air and deepen the boundary layer (Stull, 1988). Conversely, cooler surface temperatures 

typically indicate stable stratification or residual layer conditions in the early morning or late evening (Seibert et al., 2000). 

These thermal variations strongly influence the height and structure of the PBL, as described in classic boundary layer 110 

turbulence models such as the Mixed Layer Model (Tennekes, 1973; Garratt, 1994) and first-order closure turbulence schemes 

implemented in models like WRF-Chem (Skamarock et al., 2008).  This dynamic parameter, unlike the fixed altitudes used in 

conventional methods, is calculated using Equation (1): 

𝑀𝐴𝐴(𝑡)  =  𝐿𝐴𝐴 + (𝐻𝐴𝐴 − 𝐿𝐴𝐴) (
𝑇(𝑡) − 𝑚𝑖𝑛(𝑇)

𝑚𝑎𝑥[𝑇−𝑚𝑖𝑛(𝑇)]
)  (1) 

where MAA(t) is the time-varying surface temperature-based maximum analysis altitude 115 

LAA and HAA, represent the lowest and highest allowable maximum analysis altitudes.  These are set to 0.5 and 2.5 

km, respectively, based on Solanki et al., 2019 

            T(t) is the observed surface temperature (in °C) 

            min(T) is the minimum temperature of the day (or the previous day for operational use) 

            max[ ] is the maximum of the expression inside the brackets 120 

t is time, representing temporal variation for all T, with data recorded every 5 minutes. The normalization ensures that MAA 

is low under cooler conditions (e.g., early morning residual layer regimes) and higher under warmer, convectively unstable 

conditions typical of late morning and afternoon boundary layer growth. This dynamic framework enhances robustness when 

detecting the PBL top using the Haar wavelet covariance transform (WCT) method (Brooks, 2003), as implemented in the 
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Ceilometer Layer Identification and Optimization (Ceilo) code.  Following the WCT detection, a 6-hour moving average is 125 

applied to the raw PBL height time series to suppress high-frequency variability associated with short-lived turbulence bursts 

or instrumental noise. The resulting PBL height estimates are subsequently validated against radiosonde measurements and 

WRF-Chem model outputs to assess performance and reproducibility.  This methodology contributes to a growing body of 

literature advocating adaptive and physically-informed PBL detection methods (Hennemuth & Lammert, 2006), particularly 

under complex aerosol and meteorological regimes like those encountered in Southeast Asia. 130 

Data from radiosondes launched by the Thai Meteorological Department (TMD) at the Chiang Mai International Airport 

(18.77° N, 98.96° E, 311 mASL; approximately 9 km in distance from the study site) were retrieved from the University of 

Wyoming's atmospheric sounding archive (https://weather.uwyo.edu/upperair/sounding.html). These data were interpolated to 

a vertical grid with 30-meter spacing from 100 m to 2 km, corresponding to the LiDAR minimum detection height or overlap 

region and the typical aerosol layer top (Solanki et al., 2019), respectively. Although the radiosonde data were interpolated 135 

only up to 2 km for consistency with the LiDAR’s effective detection range and overlap region, the dynamic maximum analysis 

altitude (MAA) used in our retrieval method was permitted to extend up to 2.5 km. This was done to allow for the detection 

of elevated convective boundary layers on warm days, which may rise above 2 km, as observed in prior studies (e.g., Solanki 

et al., 2019). Thus, the MAA range (0.5–2.5 km) enables flexible detection without being constrained by the radiosonde's 

upper limit, while validation comparisons remain within the common 2 km vertical range. PBL heights were determined using 140 

the method of Wang and Wang (2014), which identifies the planetary boundary layer height by analyzing the first derivatives 

of key meteorological variables—specifically, temperature, wind speed, wind direction, potential temperature, dewpoint, and 

relative humidity. This approach considers both the maxima and minima in these gradients to detect significant atmospheric 

transitions associated with the top of the mixing layer. The final PBL height was computed as the average of the estimates 

derived from these parameters. This method was selected over traditional single-variable approaches because it integrates 145 

multiple physical parameters and accounts for cloud presence and stable stratification, providing more robust and consistent 

results under diverse atmospheric conditions. Earlier methods that rely solely on individual gradients (e.g., of potential 

temperature or humidity) are prone to inaccuracies, particularly in regions with residual layers, cloud-capped boundaries, or 

complex moisture profiles (Seibert et al., 2000; Liu and Liang, 2010). In contrast, the Wang and Wang method aligns 

discontinuities across multiple variables to better identify the true extent of turbulent mixing. Its integrative design makes it 150 

especially suitable for the complex atmospheric dynamics observed in this study over northern Thailand.  However, a 

significant limitation is that the radiosondes were launched only once daily at 07:00 local time (00 UTC), coinciding with the 

early morning minimum PBL height. This constraint—stemming from the operational limitations of the Thai Meteorological 

Department—means that diurnal variations in the PBL height, especially during its daytime growth and decay phases, cannot 

be captured, potentially reducing the representativeness of radiosonde-derived estimates for broader atmospheric analyses. To 155 

address this limitation, future studies should incorporate higher temporal resolution datasets—such as those obtained from 

unmanned aerial vehicles (UAVs)—which can capture the full diurnal evolution of the boundary layer. Recent studies (e.g., 

https://weather.uwyo.edu/upperair/sounding.html
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Shen et al., 2023) have demonstrated the utility of UAV-based profiling for validating LiDAR-derived PBL heights under 

complex atmospheric conditions. Integrating UAV observations will strengthen validation and improve confidence in the 

performance of the proposed retrieval method across a wider range of temporal and meteorological regimes. 160 

The simulations used in this study were run in forecast mode to reflect real operational conditions, with model output averaged 

over overlapping time periods in the forecast cycle to align with LiDAR data timestamps. Here, "overlapping time periods" 

refers specifically to the temporal matching between forecast outputs and observational sampling windows, and not to overlap 

correction in the LiDAR signal. WRF-Chem simulations were configured and optimized for mainland Southeast Asia (Bran 

et al., 2024) using version 4.3.3, with the Mellor-Yamada Nakanishi and Niino (MYNN) Level 3 PBL scheme (Olson et al., 165 

2019). The simulations incorporated updated terrestrial data (Manomaiphiboon et al., 2017), anthropogenic emissions for 

northern Thailand (Jansakoo et al., 2019), and biogenic and fire emissions from MEGAN (Guenther et al., 2006) and FINNv1.5 

(Wiedinmyer et al., 2011). To project fire emissions into the future (forecast mode), the assumption of persistent fire emissions 

was applied (Kumar et al., 2020). Initial and boundary conditions for meteorology and chemistry were derived from GFS 

(NCEP, 2024) and CESM2-WACCM (Gettelman et al., 2019), respectively. The horizontal spatial resolution used in the WRF-170 

Chem simulation was 9-km covering mainland Southeast Asia.  Since WRF-Chem uses a hybrid, sigma-pressure, terrain-

following coordinate system, the vertical resolution used in this study with 38 vertical levels varies with altitude. Near the 

surface (0 to ~1,100 meters AGL; 24 vertical levels), it ranges from about 45–50 meters, increasing to approximately 70–250 

meters in the lower troposphere (~1,100 to 2,000 meters AGL; 4 vertical levels). From the aerosol layer top to the mid 

troposphere (~2,000 to 7,000 meters AGL; 4 vertical levels), the resolution becomes coarser, ranging from 500 to 2,000 meters, 175 

and further coarsens to over 2,000 meters from the mid to the upper troposphere and stratosphere (~7,000 to 20,000 meters 

AGL; 6 vertical levels), with finer resolution near the surface to capture smaller-scale processes and coarser resolution at 

higher altitudes where larger-scale dynamics dominate. The WRF-Chem simulations used in this study have been previously 

validated under similar regional conditions in northern Thailand. Prior work has demonstrated the model's reliability in 

capturing key atmospheric dynamics, including surface PM₂.₅ distributions, optical turbulence, and boundary layer processes. 180 

Notably, the model has been successfully applied in the following studies: Bran et al. (2022), Macatangay et al. (2024), and 

Bran et al. (2024). These validations support the robustness of WRF-Chem for use as a benchmark in our comparison with 

LiDAR-derived PBL heights. 

This integrated methodology ensures better alignment of LiDAR-derived PBL heights with thermodynamic and aerosol 

boundaries, enhancing the reliability of boundary layer characterizations. 185 

3 Results and Discussion 

Figure 1 shows the NRB signal as a colored curtain plot, where the aerosol layer top (ALT) is marked as a white line, the time-

varying maximum analysis altitude (MAA) as a gray line, and the refined PBL estimate as a red line. It is important to note 
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that the MAA does not represent the PBL height, but rather defines the maximum vertical range within which the wavelet 

covariance transform (WCT) analysis is conducted to detect the PBL height. For instance, if the MAA is set at 2.5 km AGL, 190 

the WCT algorithm only searches for the PBL height below that altitude. This adaptive constraint prevents overestimation of 

the PBL height, particularly during nighttime or during the growth and decay phases of the boundary layer. The MAA is 

defined dynamically and follows the diurnal variation of surface temperature, providing a physically realistic ceiling for 

analysis that adjusts with expected atmospheric mixing. 

During 00:00–06:00 LT, conventional PBL detection methods often mischaracterize the PBL height by incorrectly identifying 195 

the residual layer top or aerosol layer top as the PBL. However, during the well-mixed part of the day and under cloud-free 

conditions (12:00–16:00 LT on January 27), the red PBL line closely aligns with the white ALT line. This alignment indicates 

a well-defined mixing layer, allowing for an accurate determination of the mixing layer height (MLH).   

Under partly cloudy conditions (such as on January 28 during the afternoon between 12:00–16:00 LT), conventional algorithms 

misclassify the cloud base as the PBL height. In contrast, the refined red PBL line successfully separates from the white ALT 200 

line and follows the expected diurnal development, demonstrating improved reliability in characterizing the boundary layer, 

especially in aerosol-rich and meteorologically complex environments. 

Transitional periods, such as the morning PBL growth phase (06:00–12:00) and evening decay (16:00–00:00), pose challenges 

due to aerosol accumulation in residual layers, which creates ambiguous gradients in the NRB signal. By incorporating the 

novel time-varying MAA and refining the PBL estimates, these limitations are mitigated. 205 

 

Figure 1. The normalized relative backscatter (NRB) signal from the LiDAR is shown as a colored curtain plot, illustrating variations 

in aerosol number concentration over time. The aerosol layer top (ALT) is marked as a white line, the time-varying maximum 

analysis altitude (MAA) as a gray line, and the refined planetary boundary layer (PBL) estimate is shown in red. The MAA does not 
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represent the PBL height; rather, it defines the maximum altitude (in km AGL) up to which the WCT algorithm is applied to detect 210 
the PBL height. The MAA is dynamically adjusted based on surface temperature to follow the expected diurnal evolution of the 

boundary layer and to avoid overestimating the PBL height, particularly during nighttime and transitional phases. Data shown here 

were collected on January 27–29, 2024. 

Figures 2 and 3 demonstrate the improved alignment of these estimates with radiosonde data and highlight discrepancies with 

the WRF-Chem model simulations, respectively. Radiosonde-derived PBL heights, computed using first derivatives of 215 

meteorological parameters, provide a baseline comparison but are limited to once-daily measurements at 7 AM local time, 

often capturing the minimum PBL height. The temperature-based MAA method offers greater temporal resolution and 

adaptability, enhancing its reliability in capturing diurnal variations and transitions between the PBL and the ALT. 

Figure 2 illustrates the variability of the PBL height and ALT under different atmospheric conditions for December 2023, 

January 2024, and February 2024. The LiDAR-derived PBL height (red curve) exhibits a pronounced diurnal cycle, peaking 220 

during the day due to solar-driven convection and decreasing at night under stable conditions. The radiosonde measurements 

(black points) closely align with the LiDAR-derived PBL heights, providing independent validation. However, their 

representativeness is limited by the once-daily launch at 7 AM local time (00 UTC), coinciding with the early morning 

minimum PBL height. In December 2023, the LiDAR-derived PBL height ranges between 0.1 km and 1.5 km AGL, with 

radiosonde values exhibiting strong agreement and a correlation coefficient of r = 0.85 and %RMSE of 10.0%. In January 225 

2024, the LiDAR PBL height varied between 0.1 km and 1.6 km AGL, with excellent correlation to radiosonde measurements 

(r = 0.88; %RMSE = 7.2%). Similarly, in February 2024, the LiDAR-derived PBL height ranges from 0.1 km to 1.4 km AGL, 

maintaining a strong correlation with radiosonde data (r = 0.94; %RMSE = 19.6%), despite some divergence under complex 

atmospheric conditions.  The ALT (green dashed line), representing the upper boundary of significant aerosol backscatter, 

often exceeds the PBL height during stable nighttime conditions, the presence of residual aerosol layers, or during aerosol 230 

entrainment into the free troposphere. By incorporating surface temperature variations, the proposed method effectively 

distinguishes the PBL height from the ALT, addressing challenges during transitions between daytime and nighttime 

conditions. While the PBL height is primarily governed by thermodynamic properties and turbulent mixing, the ALT reflects 

aerosol stratification and distribution. These layers typically align during well-mixed daytime conditions (mixing layer height), 

but they diverge under stratified or complex layering scenarios, emphasizing the necessity of distinguishing between them for 235 

accurate air quality modeling and pollutant transport analysis. 
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Figure 2.  Comparison of planetary boundary layer (PBL) height estimates derived from this study’s LiDAR retrievals (red curve), 

TMD radiosonde measurements at Chiang Mai Airport (black points), and aerosol layer top (ALT) heights calculated using 

commercial LiDAR software (green dashed line) for (a) December 2023, (b) January 2024, and (c) February 2024 at NARIT 240 
AstroPark, Chiang Mai, northern Thailand. The right panels show the correlations between LiDAR-based PBL estimates and 

radiosonde-derived heights, with Pearson correlation coefficients (r-values) and %RMSEs ranging from 0.85 to 0.94 and 7.2% to 

19.6%, respectively, for each month. 

 

Figure 3 compares PBL height estimates from LiDAR retrievals (red line) and WRF-Chem forecasts (black line) for December 245 

2023, January 2024, and February 2024 at NARIT AstroPark in Chiang Mai, northern Thailand. While the WRF-Chem model 

generally captures seasonal and diurnal variations in PBL height, it tends to overestimate daytime PBL heights during periods 

of elevated aerosol loading. This behavior persisted across simulations using different PBL parameterizations (e.g., MYNN2.5, 

MYNN3, and YSU) and varied fire and anthropogenic emission inputs, suggesting a consistent model response to aerosol–

meteorology coupling. The overestimation likely stems from limitations in how current model configurations, particularly 250 

those using the MYNN Level 3 scheme, represent aerosol–meteorology–radiation interactions and their feedbacks on 

turbulence generation and vertical mixing (Du et al., 2020; Petäjä et al., 2016). Correlation coefficients (r = 0.85, 0.86, and 

0.81 for December, January, and February, respectively) indicate strong agreement between LiDAR retrievals and model 

outputs. However, the root mean square error (RMSE) and percentage RMSE (%RMSE) increased from December (0.28 km, 

21%) to February (0.46 km, 33%), coinciding with peak fire activity. This degradation in model performance further supports 255 

the hypothesis that persistent fire emissions amplify the aerosol burden, modifying radiative transfer and boundary layer 
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stability in ways that are not fully captured by current parameterizations (Kumar et al., 2020). These findings underscore the 

need to refine PBL schemes and improve aerosol–radiation feedback representation in regional models operating under high 

aerosol loading conditions. 

 260 

Figure 3.  Comparison of planetary boundary layer (PBL) height estimates from LiDAR retrievals (red line) and WRF-Chem 

forecasts (black line) at NARIT AstroPark, Chiang Mai, Thailand, for (a) December 2023, (b) January 2024, and (c) February 2024 

(left column). The middle column shows time series of differences between WRF-Chem and LiDAR estimates (WRF – LiDAR), while 

the right column presents scatter plots with correlation coefficients (r), root mean square error (RMSE), percentage RMSE 

(%RMSE), and number of matched data points (n). The WRF-Chem model configuration used in this comparison has been 265 
previously validated under similar regional conditions in northern Thailand, supporting its use as a reference for PBL height 

estimation. 

 

These results underscore the significance of dynamic adjustments in LiDAR analyses for improved boundary layer 

characterization and the critical need to address limitations in both observational and modeling techniques for regions with 270 

complex atmospheric conditions. 

 

4 Conclusions and Recommendations 

 

This study successfully demonstrated the decoupling of the planetary boundary layer (PBL) height, mixing layer height (MLH), 275 

and aerosol layer top (ALT) using high-resolution LiDAR measurements in Chiang Mai, northern Thailand. By applying a 

novel temperature-based dynamic maximum analysis altitude (MAA) approach, the research overcame limitations of 

conventional methods, such as the Haar Wavelet Covariance Transform (WCT), which often misinterprets the ALT as the 
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PBL height, particularly during nighttime or transitional periods. The proposed method, integrating normalized relative 

backscatter (NRB) profiles with surface temperature observations, improves the accuracy of PBL height estimations by 280 

accounting for variations in thermodynamic and atmospheric conditions. The results showed good agreement with both 

radiosonde data and WRF-Chem simulations (up to moderate aerosol loads), emphasizing the value of dynamic adjustments 

in refining boundary layer characterizations. 

 

This study highlights the complexities of aerosol layering and PBL identification in regions with high aerosol loading, such as 285 

Chiang Mai, where seasonal forest fires and agricultural burning contribute to significant atmospheric pollution. By enhancing 

the accuracy of LiDAR-based PBL height estimations, the research provides critical insights for improving air quality 

modeling and understanding pollutant transport under complex meteorological conditions. The results demonstrate a generally 

consistent relationship between LiDAR-derived and model-based PBL height estimates, with seasonal variations in agreement 

metrics. The WRF-Chem model configuration, previously validated over northern Thailand for air quality, turbulence, and 290 

PBL structure, continues to perform reliably as a comparison benchmark. These findings support the value of integrating high-

resolution LiDAR retrievals with regional models to evaluate boundary layer processes and diagnose modeling uncertainties 

across different seasons. 

 

Future research should focus on refining the dynamic MAA approach to LiDAR methodology for better handling of extreme 295 

atmospheric conditions, such as high aerosol loads and abrupt meteorological changes, while expanding its applicability to 

regions with diverse aerosol profiles to validate robustness. Integrating LiDAR with other remote sensing tools like radar or 

satellite-based sensors could enhance the accuracy and spatial resolution of PBL and aerosol layer measurements, particularly 

in areas with dense cloud cover or frequent atmospheric transitions. To address the limitations of once-daily radiosonde 

measurements, more frequent launches or the adoption of continuous vertical profiling instruments is recommended to capture 300 

diurnal variations more effectively, providing a richer dataset for model validation. Comparisons of LiDAR-derived PBL 

estimates with simulations from models like WRF-Chem are essential to evaluate model accuracy under high-aerosol 

conditions and to improve parameterizations for aerosol transport and mixing. Finally, refined PBL height estimation methods 

can enhance air quality forecasting systems, improving pollutant dispersion predictions and supporting more effective public 

health advisories and mitigation strategies in regions such as northern Thailand with significant seasonal aerosol emissions. 305 
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