Supplement of

Measurement Report: Unraveling PM_{10} Sources and Oxidative Potential Across Chinese Regions Insights Analysis Based on CNN-LSTM and Receptor Model

Qinghe Cai¹, Dongqing Fang^{2,3}, Junli Jin³, Xiaoyu Hu⁴, Yuxuan Cao¹, Tianyi Zhao^{1,5}, Yang Bai¹, Yang Zhang^{1,6}

¹College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China

²Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing 100089, China

³Meteorological Observation Center, China Meteorological Administration, Beijing, 100081, China

⁴City University of Hong Kong, Hongkong, 999077, China

⁵Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China

⁶Beijing Yanshan Earth Critical Zone National Research Station, Beijing, 101408, China

Correspondence to: Dongqing Fang (fangdongqing@163.com) and Yang Zhang (zhangyang@ucas.ac.cn)

S1 Comparison between Northern and Southern sites of OP_v (nmol H₂O₂·m⁻³)

Due to the non-normal distribution of the data, a non-parametric Mann-Whitney U test was conducted to examine regional differences in ROS concentrations. The analysis revealed that OP_v levels were significantly higher in the Northern sites compared to the Southern sites (U = 168517.0, p = 0.025), with the difference exceeding the threshold for statistical significance (p < 0.05).

Table S1. The geographical division corresponding to the station.

Geographic region	Station name		
Northern sties	LFS, DL, GC, DH, XA, ZZ		
Southern sites	LA, CD, JS, NN, CHD		

S2 Source profiles from the PMF

Table S2. Specific tracers used in PM₁₀ source appointment in this study.

Identified factor	Specific tracers	
Sea Salt	Na ⁺ 、Mg ²⁺ 、Cl ⁻	
Dust	Na^{+} , Mg^{2+} , Ca^{2+}	
Traffic	OC, EC	
Biomass burning	K ⁺ 、Cl ⁻	
Secondary aerosol	NH ₄ ⁺ , NO ₃ ⁻ , SO ₄ ²⁻	
Agricultural activities	K^+ , Mg^{2+} , Ca^{2+}	
Coal combustion	Mg^{2+} , SO_4^{2-} , OC	

Table S3. Summary of error estimation diagnostic with PM₁₀-PMF at NN, LFS, ZZ and GC

station.

Diagnostics	NN	LFS	ZZ	GC
Number of base run	20	20	20	20
Qrobust	2338	2658.86	2043.86	2066.75
Q _{true}	2521.1	3160.89	2341.26	2249.16
Q_{true}/Q_{robust}	1.08	1.18	1.14	1.09

DISP % dQ	< 0.1 %	< 0.1 %	< 0.1 %	< 0.1 %
DISP swaps	0	0	0	0
Number of BS run	100	100	100	100
Min. Correlation	0.6	0.6	0.6	0.6
R-Value:	0.0	0.0	0.0	0.0