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Abstract. The oxidative potential (OP) of particulate matter is a key driver of PM10-induced adverse health effects, triggering 

oxidative stress and inflammatory responses that increase respiratory and cardiovascular disease risks. To evaluate PM10 and 15 

its OP characteristics across China, samples were collected from twelve representative monitoring stations from June 2022 to 

May 2023. A deep learning model combining Convolutional Neural Networks and Long Short-Term Memory networks (CNN-

LSTM) was employed to reconstruct anomalous PM10 data, achieving R2 values of 0.8840 for test sets. Significant spatial 

variations in PM10 were observed, with highest concentrations in the northwestern regions (Xi’An: 98.20 ± 52.92 μg·m-3, 

Dunhuang: 90.36 ± 54.72 μg·m-3), the lowest in the northeast (Longfengshan: 40.04 ± 24.04 μg·m-3, Dalian: 40.35 ± 15.66 20 

μg·m-3), and elevated levels in suburban areas (average: 85.43 ± 46.69 μg·m-3). Urban sites showed the highest OP values 

(0.61±0.21 nmol H2O2·m-3), with significantly higher PM10 concentrations in northern regions compared to southern ones 

(p<0.05). Most sites exhibited peak PM10 and OP levels in winter and lowest in summer. Source apportionment using Positive 

Matrix Factorization (PMF) revealed dust (13.2-27.4%), secondary aerosols (6.9-36.2%), traffic (16.6-21.4%), and biomass 

burning (22-39.3%) as main contributors to PM10. Mass-normalized OP (OPm) analysis revealed traffic, biomass burning, and 25 

coal combustion sources showing consistently high values (0.008-0.022 nmol H2O2·μg-1). These findings highlight the need 

to control traffic, biomass burning, and coal combustion sources and other major sources to reduce OP and protect public 

health. 

1 Introduction 

Particulate matter (PM) is one of the main pollutants affecting air quality and human health. Among these, PM10, which refers 30 

to suspended particles with an aerodynamic diameter of 10 μm or less, has received considerable attention due to its complex 

sources, extensive environmental and health effects. The sources of PM10 are both complex and diverse, including 
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anthropogenic activities such as fossil fuel combustion, industrial production, traffic emissions and dust, as well as natural 

sources such as dust storms and volcanic eruptions (Xue et al., 2010). PM10 can remain suspended in the atmosphere for 

extended periods of time, significantly affecting atmospheric visibility while potentially exerting profound effects on regional 35 

and global climate change through both direct and indirect mechanism (Slanina and Zhang, 2004). More critically, PM10 poses 

a serious threat to human health. Upon entering the human body via the respiratory system, it can be deposited in the airways 

and lungs, triggering respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and even lung cancer 

(Cao et al., 2016). Furthermore, PM10 can penetrate the alveolar barrier and enter the circulatory system, inducing systemic 

diseases such as cardiovascular disease and diabetes (Huang, 2023). 40 

In the context of accelerating global industrialization and urbanization, PM10 pollution has emerged as a critical environmental 

concern. Research conducted by the World Health Organization (WHO) indicates that air pollution is responsible for millions 

of premature deaths worldwide each year, with PM10 being a major contributor (Cohen et al., 2005). The mechanisms by which 

PM10 affects human health are diverse and complex, one of the primary mechanisms being its ability to induce excessive 

production of reactive oxygen species (ROS), subsequently triggering oxidative stress (OS) effects. Components within PM10, 45 

such as transition metals and polycyclic aromatic hydrocarbons (PAHs), can directly or indirectly promote ROS generation, 

leading to cell membrane lipid peroxidation, protein denaturation, and DNA damage (Chirino et al., 2010). Furthermore, ROS 

can activate inflammatory signaling pathways, including nuclear factor κB (NF-κB), which amplify inflammatory responses 

and further leading to cellular dysfunction and tissue damage (Wang et al., 2017). This interplay between oxidative stress and 

inflammatory responses is considered a critical pathophysiological basis for various PM10-induced diseases. Several studies 50 

suggest that oxidative potential (OP) may be a more accurate indicator of PM health effects than its mass concentration, 

providing a new perspective for assessing PM health risks (Gao et al., 2020; Bates et al., 2019) . 

The OP of PM serves as a critical indicator for assessing its toxicity and is closely related to the generation of ROS. Research 

indicates that the OP of PM is strongly correlated with its physicochemical properties and sources (He and Zhang, 2023). In 

particular, PM of smaller size typically exhibits higher OP, possibly due to its larger specific surface area and enhanced 55 

bioavailability (Saffari et al., 2014; Yao et al., 2024). Water-soluble transition metals (e.g., iron and copper) and organic carbon 

(e.g., PAHs) in PM are considered to be the primary chemical components that influence OP. These components can induce 

ROS generation either by catalyzing Fenton reactions or by directly participating in redox processes (Saffari et al., 2014; Guo 

et al., 2020). Sources of OP in PM are varied and include primarily traffic emissions, fossil fuel combustion, and secondary 

organic aerosol formation (Bates et al., 2019; Saffari et al., 2014). Significantly, photochemical aging of PM in the atmosphere 60 

further alters its OP, possibly related to the formation of secondary organic aerosols, changes in oxidation states of metallic 

components during the aging process, and the oxidation degree of reactive organic compounds (An et al., 2022; Ma et al., 

2025). In addition, the oxygen content in the fuel has been shown to be a critical factor affecting OP, as exemplified by the 

typically high OP of PM generated from biomass combustion (Hedayat et al., 2016).  

However, an accurate assessment of the health risks associated with PM10 requires an accurate analysis of its sources and 65 

chemical compositions. High-quality, complete datasets are essential for reliable source apportionment and subsequent risk 
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assessment. Environmental monitoring data often contain missing values and anomalies due to instrument malfunction, 

maintenance periods, or extreme weather conditions, which can significantly affect the accuracy of subsequent analyses. In 

recent years, with the rapid development of deep learning technology, its application in handling environmental data quality 

issues has received increasing attention. Deep learning models, particularly the combination of Convolutional Neural Networks 70 

(CNN) and Long Short-Term Memory networks (LSTM), have demonstrated significant advantages in identifying and 

correcting anomalies and filling missing values in time series environmental data. CNNs effectively extract spatial features, 

while LSTMs excel at capturing long-term dependencies in time series (Huang and Kuo, 2018; Li et al., 2020). This hybrid 

model not only identifies anomalies, but also improves data completeness and reliability by predicting and replacing anomalous 

or missing values (Lee et al., 2019; Qin et al., 2019). Compared with traditional machine learning methods, CNN-LSTM 75 

models show superior performance in several evaluation metrics, such as Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE) (Huang and Kuo, 2018; Yang et al., 2020a; Li et al., 2020). CNN-LSTM models retain significant value in 

processing atmospheric particulate matter data for data quality improvement. Their spatial feature extraction capabilities 

effectively identify and correct anomalies caused by instrument malfunction or local pollution events, thereby improving data 

quality (Zhang and Zhou, 2023). Through training and learning, CNN-LSTM models can effectively predict and fill missing 80 

data, providing a high-quality data foundation for subsequent source apportionment and risk assessment analyses (Li et al., 

2020; Yang et al., 2020a). 

After data pre-processing, the Positive Matrix Factorization (PMF) model was used to analyse PM10 sources in this study. The 

PMF model can identify major pollution sources and their contribution rates by decomposing the observation data matrix 

without requiring prior information (Paatero and Tapper, 1994). In recent years, PMF models have been extensively applied 85 

in PM10 and PM2.5 source apportionment, often in combination with other techniques such as multiple linear regression (MLR) 

(Weber et al., 2018) . Based on the source contribution results from PMF analysis, MLR models can further quantify the 

contributions of different sources to the OP of PM, providing crucial evidence to reveal the association between PM sources 

and their health effects. Recent studies have innovatively introduced machine learning methods, such as multilayer perceptron 

(MLP), to model OP based on source contribution results from PMF analysis, significantly improving model predictive 90 

accuracy and explanatory power (Borlaza et al., 2022). 

In this study, we adopted a comprehensive approach to process PM10 data and evaluate its OP. First, we removed anomalies 

from PM10 data and used a deep learning model combining CNN and LSTM to predict and replace anomalous values. This 

method effectively captures spatial and temporal features in time-series data, thereby improving data completeness and 

prediction accuracy. Then, we employed the PMF model for PM10 source apportionment to identify its major sources. Finally, 95 

based on the PMF results, we calculated the OP per unit mass of PM10 (OPm) to investigate the intrinsic toxicity of different 

emission sources. Through this series of methods, this study aims to reveal the OP characteristics and sources of PM10 in 

typical regions of China. 
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2 Materials and Methods 

2.1 Sample Collections 100 

Daily ambient PM10 samples were collected every three days from June 2022 to May 2023 at the twelve stations of the  China 

Meteorological Administration Atmosphere Watch Network (CAWNET), with their distribution shown in Figure 1 and 

detailed information provided in Table 1. Remote sites were selected in areas far from anthropogenic pollution sources to 

ensure the representativeness of the background monitoring data. Rural sites were selected in typical areas, with sampling 

points located away from local pollution sources and elevated above the surrounding ground to minimize local disturbances. 105 

At urban sites, sampling points were typically located 50-100 m above the average urban elevation in order to collect mixed 

aerosol samples rather than aerosols from single sources. Suburban sites were located in transition zones between urban and 

rural areas to reflect aerosol characteristics under different environmental conditions. All aerosol samples were collected using 

MiniVolTM air samplers (Airmetrics, Oregon, USA) operating continuously for 24 hours from 9:00 AM to 9:00 AM the 

following day (Beijing time) at a flow rate of 5 L·min-1. Whatman 47 mm quartz fiber filters (QM/A) were used for sampling. 110 

To prevent contamination from affecting the experimental results, all filters were heated at 800°C for 3 hours prior to use to 

remove potential organic contaminants. 

 

Figure 1. Locations of 12 CAWNET stations. The map base is from the Ministry of Natural Resources' Standard Map Service, 

review number GS (2019)1822. 115 
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Table 1. Information for twelve CAWNET stations. 

Station name Province Lat.&Long. Elev.(m) Type 

Changde (CHD) Hunan 29° 10.2' N, 111° 42.6' E 150.6 Rural 

Chengdu (CD) Sichuan 30° 39 'N, 104° 2.4' E 587.0 Urban 

Dalian (DL) Liaoning 38° 54' N, 121° 37.8' E 91.5 Urban 

Dunhuang (DH) Gansu 40° 9' N, 94° 40.8' E 1137.5 Suburban 

Gucheng (GC) Hebei 39° 7.8' N, 115° 48' E 15.2 Rural 

Jinsha (JS) Hubei 29° 37.8' N, 114° 12' E 751.4 Remote 

Lhasa (LS) Tibet 29° 40.2' N, 91° 7.8' E 3660.0 Urban 

Lin’An (LA) Zhejiang 30° 18' N, 119° 44' E 138.6 Remote 

Longfengshan (LFS) Heilongjiang 44° 43.8' N, 127° 36' E 331.0 Remote 

Nanning (NN) Guangxi 22° 49.2' N, 108° 21' E 159.0 Urban 

Xi’An (XA) Shaanxi 34° 25.8' N, 108° 58.2' E 363.0 Urban 

Zhengzhou (ZZ) Henan 34° 46.8' N, 113° 40.8' E 110.4 Suburban 

2.2 Chemical and OP analysis 

2.2.1 Chemical compositions analysis 

Quantitative measurements of OC and EC were performed using the DRI Model 2015A thermal/optical carbon analyzer 

developed by the Desert Research Institute, USA. After OC and EC analysis, ion chromatography (Dionex 600 series, USA) 120 

was used to analyze and determine various ions, including Na+, NH4
+, K+, Ca2+, Mg2+, F-, Cl-, NO3

-, and SO4
2-. This method 

has been widely used as a highly efficient and sensitive analytical technique for the determination of water-soluble ions in 

PM10 and PM2.5 (Domingos et al., 2012; Cui et al., 2008; Yan et al., 2006). 

2.2.2 OP analysis 

The 2',7'-Dichlorodihydrofluorescein (DCFH) method is widely used for detecting particle-bound ROS, mainly due to its lack 125 

of specificity and selectivity for various ROS species (Antonini et al., 1998; Cohn et al., 2008; Huang et al., 2016). In this 

study, the 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) probe method was employed to measure ROS levels induced 

by PM10. First, DCFH-DA (97%, Sigma-Aldrich, USA) was prepared as a 1 mmol·mL-1 stock solution using anhydrous ethanol 

and mixed with 0.01 mol·L-1 NaOH solution in a 1:4 (v/v) ratio. The mixture was kept at room temperature in the dark for 30 

min to ensure complete alkaline hydrolysis of DCFH-DA to DCFH. Phosphate buffer solution (PBS, 0.0067 mol·L-1, pH 7.2) 130 

was then added to adjust the pH to 7.0-7.4. The hydrolyzed DCFH solution was stored at 4°C in the dark and used within 2 

hours. Horseradish peroxidase (HRP) was dissolved in phosphate buffer to prepare a 10 unit·mL-1 HRP stock solution. It was 

mixed with the DCFH solution prior to use to achieve final concentrations of 10 μmol·L-1 DCFH and 0.5 units·mL-1 HRP in 
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the reaction system. To generate a standard curve, a 1000 μg·mL-1 H2O2 solution was diluted with ultrapure water to generate 

H2O2 standard solutions at concentrations of 20, 40, 80, 160, 200, 240, 320, 400, and 800 nmol·L-1. In a 96-well plate, 20 μL 135 

standard solution and 60 μL DCFH-HRP mixture were added, with three replicates for each concentration. After 15 minutes 

of dark incubation at 37°C, fluorescence intensity was measured using a multifunctional microplate reader (SynergyTMH1, 

BioTek America) at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. Quantification was done 

through converting the sample’s fluorescent intensity to the equivalent quantity of H2O2 (nmol H2O2·m-3). Before sample 

analysis, PM10 samples were extracted in phosphate buffer solution by sonication for 30 minutes. After centrifugation, the 140 

supernatant was collected for testing. In the 96-well plate, 20 μL of sample solution and 60 μL of DCFH-HRP mixture were 

added, with three replicates per sample. Water blanks, filter blanks, and DCFH-HRP background blanks were included to 

eliminate background interference. After 15 minutes of dark incubation at 37°C, fluorescence intensity was measured and 

converted to H2O2 equivalent concentrations using the H2O2 standard curve to characterize PM10-induced ROS levels. 

Throughout the experimental procedure, the microplate reader was preheated for 30 minutes before measurement to ensure a 145 

stable incubation temperature of 37°C. Background fluorescence values were subtracted from each measurement, and the 

relative standard deviation (RSD) of the replicates was controlled within 5% to ensure the accuracy and reliability of the data.  

2.3 Data analysis 

2.3.1 CNN 

One-dimensional convolutional neural networks (1D-CNN) have significant theoretical advantages and practical value in 150 

processing time series data. The core mechanism relies on local connectivity and weight sharing, where each neuron is 

connected only to a local region of the input data, while the convolution kernel weights are shared across the entire input 

sequence. This design significantly reduces the number of model parameters, improving computational efficiency while 

effectively mitigating overfitting problems. Moreover, 1D-CNN achieves translational invariance through convolution and 

pooling operations, ensuring robustness to input data translations and enabling stable capture of key patterns in time-series 155 

data. Crucially, 1D-CNN possesses automatic feature extraction capabilities, allowing the model to independently learn and 

extract multi-level feature representations from raw data through end-to-end training, thus reducing dependence on manual 

feature engineering. As illustrated in Figure 2, the input sequence x1~ x6 undergoes convolution operations to generate feature 

mappings y1 ~ y4, with purple, green, and yellow connections linking the input layer to the convolution layer. Each connection 

maintains its distinct weight value, with connections of the same color sharing identical weights. By stacking multiple 160 

convolutional layers, the model progressively learns higher-level feature representations, offering robust expressive 

capabilities for time-series data modeling and prediction. 
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Figure 2. The one-dimensional (1D) convolution operation process. 

2.3.2 LSTM 165 

Long Short-Term Memory (LSTM) networks are specialized recurrent neural networks that effectively address the long-term 

dependency problems inherent in traditional RNN (Hochreiter and Schmidhuber, 1997). LSTM introduces memory cells and 

gating mechanisms that selectively remember or forget information, enabling the capture of long-term dependencies in 

sequences (Okut, 2021). The network uses three primary gating mechanisms: the forgetting gate, the input gate, and the output 

gate. The operating principle of the LSTM is illustrated in Figure 3, where σ represents the sigmoid function as shown in Eq. 170 

(1). Compared to traditional RNNs, LSTM networks exhibit superior handling of the vanishing gradient problem and can learn 

dependencies over longer time steps (Sherstinsky, 2020). These capabilities have led to the widespread application of LSTM 

in various domains, including time series prediction and natural language processing (Vennerød et al., 2021). The specific 

mathematical formulations of LSTM are detailed in Eqs. (1) - (6): 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 175 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3) 

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑐̃𝑡 (4) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝑐𝑡) (6) 180 

Where 𝑊𝑓  represents the weight matrix of the forget gate, and 𝑏𝑓 denotes its bias term. ℎ𝑡−1 is the previous hidden state and 

𝑥𝑡 is the current input. The sigmoid activation function 𝜎 controls the proportion of information retention. 𝑖𝑡 represents the 

output of the input gate, while 𝑐̃𝑡 indicates the candidate memory value.  𝑊𝑖 and 𝑊𝑐 represent the weight matrices for the input 

gate and candidate memory respectively, while 𝑏𝑖 and 𝑏𝑐 denote their corresponding bias terms. 𝑐𝑡 represents the memory cell 

state at the current time step. 𝑊𝑜 denotes the weight matrix of the output gate, 𝑏𝑜 represents its bias term, and 𝑜𝑡 indicates the 185 

output of the output gate. 
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Figure 3. The schematic diagram of the Long Short-Term Memory (LSTM). 

2.3.3 CNN-LSTM  

Several studies have shown that CNN-LSTM models have excellent performance in PM prediction, with low error rates and 190 

reduced training times (Li et al., 2020; Huang and Kuo, 2018). In this study, PM10 concentration data were preprocessed for 

11 chemical components: OM, EC, Na+, NH4
+, K+, Ca2+, Mg2+, F-, Cl-, NO3

-, and SO4
2-. Specifically, if the sum of the chemical 

components in a data set exceeded the PM10 mass concentration or fell below 50% of the PM10 mass concentration, the PM10 

concentration in that data set was considered anomalous and removed. After screening, the remaining data were retained and 

included in the training set. A hybrid model combining CNN and LSTM was used to predict PM10 concentrations based on the 195 

training set. The model first extracts local features from the data through two CNN layers: the first CNN layer uses 16 channels 

and a kernel size of 2, while the second CNN layer uses 32 channels and the same kernel size, capturing local feature patterns 

through a sliding window with a stride of 1. Each CNN layer is followed by a ReLU activation function to introduce non-

linearity, and a Dropout layer with a probability of 0.2 to enhance generalization capability. Subsequently, a 2-layer LSTM 

network (with 64 hidden units) captures long-term dependencies in the time series, with the LSTM layers also applying the 200 

same Dropout mechanism; finally, the prediction results are output through a fully connected layer. During the training process, 

Mean Squared Error (MSE) was used as the loss function, and the Adam optimizer was employed for parameter optimization, 

with an initial learning rate set to 0.0005. When training the model, a total of 3000 training epochs were set, while dynamically 

monitoring the loss value, with early stopping when the loss value fell below a preset threshold of 0.0007. Upon completion 

of training, the model was evaluated on both training and test sets by calculating MAE, RMSE, and Coefficient of 205 

Determination (R2) to comprehensively evaluate the predictive performance of the model.  
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Figure 4. The architecture of the CNN-LSTM in this study. 

2.4 Source apportionment 

In this study, the US Environmental Protection Agency (US-EPA) EPA PMF 5.0 software (US-EPA, 2017) was used to 210 

perform source apportionment of PM10. PMF is a multivariate statistical method based on factor analysis that has been widely 

applied in source apportionment studies of atmospheric particulate matter (Paatero and Tapper, 1994). The PMF model 

identifies pollution sources and their contribution rates by decomposing the observed data matrix into two non-negative 

matrices - the factor contribution matrix (𝐺) and the factor profile matrix (𝐹). The mathematical model can be expressed as: 

𝑋 = 𝐺𝐹 + 𝐸 (7) 215 

Where 𝑋 is the observation data matrix (n×m), 𝐺 is the factor contribution matrix (n×p), 𝐹 is the factor profile matrix (p×m), 

and 𝐸 is the residual matrix. Here, n represents the number of samples, m represents the number of chemical species, and p 

represents the number of factors. The PMF model optimizes the decomposition results by minimizing the objective function 

𝑄: 

𝑄 = ∑ ∑ (
𝑥𝑖𝑗 − ∑ 𝑔𝑖𝑘𝑓𝑘𝑗

𝑝
𝑘=1

𝑢𝑖𝑗

) 

𝑚

𝑗=1

𝑛

𝑖=1

(8) 220 

Where 𝑥𝑖𝑗  is the concentration of chemical component j in sample i, 𝑢𝑖𝑗  is the corresponding uncertainty, 𝑔𝑖𝑘  is the 

contribution of factor k in sample i, and 𝑓𝑘𝑗 is the proportion of chemical component j in factor k. By introducing non-negative 
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constraints, the PMF model can more reasonably explain the physical significance of pollution sources (Paatero, 1997). The 

uncertainty (𝑈𝑛𝑐) of the sample data is calculated using Eqs. (9) and (10): 

𝑈𝑛𝑐 =
5

6
× 𝑀𝐷𝐿(𝑥𝑖𝑗 < 𝑀𝐷𝐿) (9) 225 

𝑈𝑛𝑐 = √(𝐸𝐹𝑖𝑗 × 𝑥𝑖𝑗)
2

+ (0.5 × 𝑀𝐷𝐿)2(𝑥𝑖𝑗 ≥ 𝑀𝐷𝐿) (10) 

Where 𝑀𝐷𝐿 represents the method detection limit, and 𝐸𝐹𝑖𝑗 denotes the error fraction of component j in sample i. In this study, 

the 𝐸𝐹 values for OPv were set as the standard deviation during analysis (Verma et al., 2015), while the other components 

were set at 10%. 

3 Results and discussion 230 

3.1 CNN-LSTM prediction results 

The CNN-LSTM model was trained using non-outlier datasets consisting of PM10 concentration measurement and their 

corresponding eleven chemical constituents, including OM, EC, Na+, NH4
+, K+, Ca2+, Mg2+, F-, Cl-, NO3

-, and SO4
2-. To ensure 

the integrity of the data quality, outlier elimination was performed based on the sum of the chemical components. After the 

outlier screening process described in Section 2.3.3, 471 non-outlier datasets meeting the quality criteria were retained for 235 

model training and evaluation, with 85% allocated to the training set and 15% to the test set. The trained CNN-LSTM model 

was then used to predict PM10 concentrations for the 766 outlier datasets by using their eleven chemical constituent 

concentrations as input features, with the predicted values replacing the original outlier measurements to maintain data 

completeness. Model performance was evaluated independently on both the training and test sets using three metrics: MAE, 

RMSE, and R2. These performance metrics are mathematically expressed in Eqs. (11) - (13). In these equations,𝑦𝑖  represents 240 

the actual value, 𝑦𝑖̂ denotes the predicted value, n indicates the sample size, and 𝑦 represents the mean of the actual values. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

(11) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

(12) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

(13) 

3.1.1 Comparison with Conventional Gap-filling Techniques 245 

The model was evaluated on both the training and test sets after completion of training, with results presented in Table 2 and 

Figure 5. As shown in Figure 5 (a), the training process converged effectively, with the loss function decreasing steadily and 
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stabilizing at approximately 0.0007, indicating successful model optimization without overfitting. For the training set, the 

CNN-LSTM model achieved a MAE of 6.6614 μg·m-3, a RMSE of 8.7162 μg·m-3, and a R2 of 0.9670. When evaluated on the 

test set, the model demonstrated an MAE of 12.6705 μg·m-3, a RMSE of 17.4965 μg·m-3, and an R2 of 0.8840. 250 

Table 2. Comparison of MAE, RMSE, and R2 among different models. 

Model Type MAE (μg·m-3) RMSE (μg·m-3) R2 

Linear Regression 12.6852 17.8804 0.8028 

RF 14.6494 20.0135 0.8482 

KNN 15.6263 24.2398 0.8135 

CNN-LSTM 12.6705 17.4935 0.8840 

 

 

Figure 5. (a) LOSS trends for the training sets; comparison of predictions and observations for the (b) training and (c) test sets by 

the CNN-LSTM. 255 

Traditional gap-filling techniques in air quality data reconstruction commonly include Linear Regression, Random Forest (RF), 

and k-nearest neighbors (KNN) methods, which have been widely applied in environmental data analysis (Méndez et al., 2023). 

To evaluate the effectiveness of our CNN-LSTM approach, we conducted a comprehensive comparison with these 

conventional methods and individual deep learning components, with detailed results presented in Table 2.  

In the ranking of MAE performance, from low to high, the results are: CNN-LSTM (12.6705 μg·m-3), Linear Regression 260 

(12.6852 μg·m-3), RF (14.6494 μg·m-3), and KNN (15.6263 μg·m-3). While in the ranking of RMSE, from low to high, the 

performance follows: CNN-LSTM (17.4935 μg·m-3), Linear Regression (17.8804 μg·m-3), RF (20.0135 μg·m-3), and KNN 

(24.2398 μg·m-3). In terms of R2, from high to low, the algorithms perform as follows: CNN-LSTM (0.8840), RF (0.8482), 

KNN (0.8135), and Linear Regression (0.8028). 

This study shows that the CNN-LSTM model proposed in this paper demonstrates good performance across all evaluation 265 

metrics. Linear regression, despite achieving competitive MAE values, shows limitations in capturing complex non-linear 

relationships, as evidenced by its lower R2 value. This can be attributed to the linear model's relative inability to capture the 



12 

 

complex non-linear relationships inherent in atmospheric particulate matter dynamics (Singh et al., 2012; Dragomir and Oprea, 

2014). RF demonstrated moderate performance with balanced metrics across MAE, RMSE, and R2. KNN showed the least 

effective overall performance, particularly evident in its highest RMSE value of 24.2398 μg·m-3.  270 

Overall, CNN-LSTM is the strongest performer among all tested models. This result confirms that the combination of CNN 

and LSTM is quite effective for PM10 gap-filling applications. We conducted ablation experiments in Section S1. As shown 

in Table S1, the performances of CNN and LSTM are both good, but that of CNN-LSTM is even more outstanding. It is 

indicated that for PM10 data reconstruction, it is beneficial to first perform feature extraction using CNN, and then input the 

feature values into the LSTM architecture for temporal pattern recognition. 275 

3.1.2 Leave-One-Site-Out Cross-Validation 

To validate the model's generalization capability and ensure it captures physically meaningful variability rather than site-

specific biases, we employed a site-type-based Leave-One-Site-Out (LOSO) cross-validation strategy. The monitoring sites 

within the study area were categorized into four types based on their functional characteristics and geographical environment: 

urban sites, rural sites, suburban sites, and remote sites. LOSO cross-validation was performed separately for each site type. 280 

For each iteration, one site of a particular type was withheld during model training. The model was then trained using data 

from the remaining sites and tested on the withheld site. 

Table 3. Results of Leave-One-Site-Out (LOSO) cross-validation for different site types. 

Site Type MAE (μg·m-3) RMSE (μg·m-3) R2 

Urban 10.9436 15.2544 0.9235 

Rural 12.5448 17.6598 0.8297 

Suburban 14.5934 19.0105 0.8450 

Remote 7.8523 9.3182 0.7892 

Table 3 presents the model performance metrics for different site types in the LOSO cross-validation, including MAE, RMSE, 

and R2. The cross-validation results demonstrate that the established neural network model exhibits good predictive 285 

performance across different site types, with R2 values exceeding 0.78 for all site types. This confirms that the model can 

effectively reproduce the physically meaningful variability in pollutant concentrations rather than merely fitting site-specific 

characteristics. 

Remote stations exhibit the lowest MAE (7.8523 μg·m-3) and RMSE (9.3182 μg·m-3), indicating minimal prediction errors at 

these site types. This is primarily attributed to remote stations being located far from major pollution sources, resulting in 290 

relatively low pollutant concentrations with gradual variations that reduce absolute prediction errors. However, Remote 

stations show a relatively low R2 value (0.7892), which may be related to their smaller concentration variation range, making 

the correlation coefficient more sensitive to minor prediction deviations. Urban stations demonstrate the highest R2 value 
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(0.9235), while maintaining moderate MAE (10.9436 μg·m-3) and RMSE (15.2544 μg·m-3) levels. This result indicates that 

the model can effectively capture pollutant concentration trends in urban environments. Urban areas feature dense and diverse 295 

pollution sources, including vehicle emissions and industrial emissions, which increase prediction complexity but provide 

larger concentration variation ranges that facilitate the establishment of robust predictive relationships. Rural stations show 

moderate performance across all metrics, with MAE of 12.5448 μg·m-3, RMSE of 17.6598 μg·m-3, and R2 of 0.8297. Rural 

areas are primarily influenced by relatively simple pollution sources such as regional transport and agricultural activities, 

resulting in more regular spatiotemporal variation patterns of pollutant concentrations that the model can effectively learn. 300 

Suburban stations display the highest MAE (14.5934 μg·m-3) and RMSE (19.0105 μg·m-3), but with an R2 value (0.8450) 

similar to rural stations. As transitional zones between urban and rural areas, suburban regions are simultaneously influenced 

by urban pollution dispersion and rural pollution sources, exhibiting distinct transitional and complex pollution characteristics. 

This composite pollution environment increases the difficulty of model prediction and may result in higher prediction errors. 

3.2 PM10 mass and chemical composition concentrations  305 

3.2.1 Annual average 

The analysis of PM10 concentrations across diverse locations in China shows a remarkable spatial variation in the annual mean 

concentrations of PM10 and its chemical constituents from June 2022 to May 2023, as shown in Table 3. Significantly elevated 

PM10 levels were observed at northwestern sites, with Xi'An (XA) and Dunhuang (DH) recording concentrations of 98.20 

μg·m-3 and 90.36 μg·m-3, respectively, while other sites had concentrations ranging from 40 to 80 μg·m-3. These spatial patterns 310 

suggest complex interactions between natural and anthropogenic factors. The elevated PM10 concentrations observed in XA, 

a major industrial city and densely populated metropolitan area, are primarily due to industrial emissions and substantial high 

traffic volumes. Due to its location in an arid region, DH is likely influenced by dust storm events, as evidenced by higher 

concentrations of crustal elements such as Ca2+ (Yu et al., 2020). While Na+ is typically associated with sea salt spray, its 

presence at inland sites such as DH may indicate contributions from crustal material or other local sources(Zhang et al., 2014b). 315 

In contrast, the lowest PM10 concentrations were observed at Longfengshan (LFS) and Dalian (DL) in the northeastern region, 

with values of 40.04 μg·m-3 and 40.35 μg·m-3, respectively. These relatively lower concentrations may be due to relatively less 

anthropogenic activities and better air quality in these regions. LFS, located at the interface of agricultural and forested 

landscapes, primarily receives PM10 contributions from natural sources, such as soil dust resuspension and biomass burning 

reported in previous research (Yu et al., 2012). Meanwhile, Dalian's coastal location likely contributes to its lower PM10 320 

concentrations. The observed Na+ concentration of 2.36 μg·m-3 in DL may reflect the influence of marine aerosols (Shi et al., 

2022). In addition, air quality in DL is likely modulated by meteorological conditions, especially sea breezes, which facilitate 

the dispersion and dilution of pollutants, thereby reducing PM10 concentrations (Wang et al., 2002). 

In the densely populated regions of Gucheng (GC) and Zhengzhou (ZZ), where anthropogenic pollution sources are abundant, 

the annual mean PM10 concentrations were 79.18 μg·m-3 and 80.50 μg·m-3, respectively. These elevated PM10 levels are 325 
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strongly correlated with intensive anthropogenic sources in these regions, including industrial activities, traffic emissions, and 

construction dust. As major industrial and transportation hubs, GC and ZZ have particularly high concentrations of organic 

matter (OM=1.2*OC) and elemental carbon (EC), specifically 19.67 μg·m-3 and 4.89 μg·m-3 in GC, 17.35 μg-m-3 and 4.12 

μg·m-3 in ZZ. Additionally, the concentrations of sulfate (SO4
2-) and nitrate (NO3

-) concentrations in ZZ and GC were measured 

to be 8.70 μg·m-3, 13.71 μg·m-3 and 6.00 μg·m-3, 10.94 μg·m-3, respectively. These values, which are significantly higher than 330 

in other regions, indicate particularly active secondary aerosol formation processes in these areas (Yang et al., 2020b). 

In the southwestern region, Chengdu (CD), located in the Sichuan Basin, recorded an annual mean PM10 concentration of 

59.56 μg·m-3. This region is characterized by high aerosol optical depth and reduced visibility, attributed to poor dispersion 

conditions and significant local industrial emissions (Li et al., 2003; Zhang et al., 2012). 

The central Chinese sites of Jinsha (JS), Changde (CHD), and Lin'An (LA) showed relatively lower annual mean 335 

concentrations of PM10 which are 47.17 μg·m-3, 46.59 μg·m-3, and 48.16 μg·m-3, respectively. Despite these lower 

concentrations, the chemical composition shows distinct regional characteristics. Ca2+ concentrations of 2.48 μg·m-3 and 2.19 

μg·m-3 in JS and LA, respectively, likely reflect contributions from soil dust resuspension (Shen, 2016). K+ concentration of 

0.44 μg·m-3 observed in CHD may be related to agricultural activities in the region (Liu et al., 2016). 

Lhasa (LS), located in the center of the Tibetan Plateau at an elevation of 3,663 meters, has PM10 concentrations that are 340 

primarily influenced by natural factors due to its relatively sparse population and limited industrial emissions. Nevertheless, 

LS maintained an average PM10 concentration of 47.82 μg·m-3, mainly due to extensive dust resuspension from arid and 

exposed terrain, coupled with regional dust storm events. The plateau's climatic conditions, characterized by particularly strong 

winds and low humidity, enhance the dispersal of soil dust and maintain relatively high PM10 levels despite the absence of 

significant anthropogenic sources. 345 

The annual mean PM10 concentrations for urban, rural, suburban, and remote sites were 59.99 ± 29.38 μg·m-3, 62.88 ± 27.58 

μg·m-3, 85.43 ± 39.43 μg·m-3, and 45.12 ± 14.67 μg·m-3, respectively. These data show that urban-rural transition zones had 

the highest PM10 concentrations, which may be due to the simultaneous influence of multiple pollution sources from both 

urban and rural areas, including industrial emissions, traffic pollution, and agricultural activities (Li et al., 2014). In contrast, 

remote sites had the lowest PM10 concentrations, reflecting minimal anthropogenic influence in these regions, with primary 350 

pollution sources consisting of natural dust resuspension and long-range transported pollutants (Jiao et al., 2021). 
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Table 3. Annual average concentrations (µg·m-3) of PM10 and its chemical composition in different regions of China 

from June 2022 to May 2023. 

Station Type PM10 OM EC Na+ NH4
+ K+ Mg2+ Ca2+ F- Cl- SO4

2- NO3
- 

Chengdu Urban 59.56 17.09 3.97 2.18 2.11 0.30 0.23 2.67 0.15 0.58 6.29 9.36 

Dalian Urban 40.35 9.35 2.30 2.36 0.74 0.25 0.25 1.89 0.04 0.69 3.19 5.00 

Lhasa Urban 47.82 16.85 4.16 2.51 0.07 0.32 0.26 1.75 0.05 1.18 1.55 1.12 

Nanning Urban 54.23 12.87 3.50 2.03 1.20 0.37 0.21 2.89 0.07 0.64 7.21 5.09 

Xi’An Urban 98.20 19.13 4.87 2.50 2.64 0.76 0.37 4.97 0.15 1.67 8.67 12.82 

Changde Rural 46.59 9.05 2.17 0.44 2.76 0.44 0.08 1.02 0.03 0.27 6.16 6.18 

Gucheng Rural 79.18 19.67 4.89 2.08 1.78 0.35 0.46 4.01 0.09 1.21 6.00 10.94 

Dunhuang Suburban 90.36 23.24 4.78 4.43 0.16 0.36 0.46 6.31 0.06 2.57 5.90 2.29 

Zhengzhou Suburban 80.50 17.35 4.12 1.71 3.43 0.45 0.32 3.03 0.21 0.86 8.70 13.71 

Jinsha Remote 47.17 12.14 2.07 1.52 1.45 0.40 0.20 2.48 0.08 0.58 5.82 6.89 

Lin’An Remote 48.16 13.02 2.92 1.37 1.46 0.34 0.22 2.19 0.04 0.66 5.37 7.42 

Longfengshan Remote 40.04 12.31 2.52 1.21 1.14 0.36 0.15 1.61 0.06 0.50 4.04 4.25 
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3.2.2 Seasonal variation 355 

 

Figure 6. Stacked Representation of Monthly averaged PM10 Concentrations and Chemical Composition (μg·m-3) across Chinese 

Regions, Including Unknown Components from June 2022 to May 2023 (n.d: Unknown Components). The map base is from the 

Ministry of Natural Resources' Standard Map Service, review number GS (2019)1822. 

Monthly variations in PM10 concentrations are shown in Figure 6. Overall, the study area shows a significant seasonal 360 

differentiation of PM10 concentrations, characterized by minimum levels in summer (June-August), maximum levels in winter 

(December-February), and a secondary peak in spring (March-May). Multiple studies have also identified distinct seasonal 

patterns in PM10 concentrations, with minimal concentrations in summer and maximal concentrations in winter (Yang, 2009; 

Qu et al., 2010; Li et al., 2009). The lower PM10 concentrations observed in summer may be attributed to increased precipitation, 

which effectively scavenges atmospheric particulate matter (Yang, 2009). In addition, research has shown significant negative 365 

correlations between PM10 concentrations and temperature, as well as positive correlations with atmospheric pressure (Han et 

al., 2015; Li et al., 2019). Elevated PM10 concentrations in winter are primarily associated with increased solid fuel 

consumption during the heating season (Tsvetanova et al., 2017). Additionally, unfavorable meteorological conditions in 

winter, including high atmospheric stability, reduced atmospheric boundary layer height, and frequent temperature inversions, 
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exacerbate the accumulation of pollutants (Zhao et al., 2014). Five monitoring stations including GC, LFS, DH, LA, and 370 

Nanning (NN) exhibited significantly elevated concentrations during spring, which can be attributed to multiple factors. Firstly, 

the frequent occurrence of dust events during spring increases atmospheric particulate matter concentrations. Secondly, weak 

wind conditions and local circulation patterns establish local emissions as the primary source of PM10 (Park et al., 2019). 

Moreover, regional transport represents a significant influencing factor, with studies indicating substantial contributions to 

PM10 concentrations from dust transport from northwestern regions and pollutant transport from surrounding urban 375 

agglomerations in spring (Ham et al., 2017). 

The results indicate significant seasonal variations in monthly mean concentrations of OM and EC in urban, rural, and suburban 

sites. All three functional site types showed the lowest concentrations in summer and the highest in winter, consistent with 

previous studies confirming the widespread winter-high and summer-low seasonal pattern of carbonaceous components in 

PM10 across China (Tian et al., 2013). The elevated concentrations of OM and EC in winter correlate primarily with increased 380 

fossil fuel and biomass combustion emissions during the heating season, coupled with unfavorable meteorological dispersion 

conditions. Conversely, the decrease concentrations in summer are attributed to increased precipitation, increased mixing layer 

height, and reduced stationary source emissions due to higher temperatures. However, remote sites showed different seasonal 

patterns than other sites, with OM and EC concentration peaks occurring in spring and fall. This phenomenon may be 

associated with regional-scale dust transport, biomass burning activities, and increased open-source emissions, while also 385 

reflecting minimal local anthropogenic influence at remote sites, better representing regional background concentration 

variations. 

We observed generally higher concentrations of SO4
2- and NO3

- in winter compared to lower concentrations in summer. This 

seasonal pattern is primarily due to increased SO2 and NOx emissions from extensive fossil fuel combustion, especially coal, 

during the winter heating season, which provides abundant precursors for the formation of sulfate and nitrate. In addition, 390 

stable atmospheric stratification and frequent temperature inversions in winter inhibit the dispersion of pollutants, leading to 

near-surface accumulation of these secondary inorganic ions. Furthermore, the relatively lower temperatures in winter facilitate 

the gas-to-particle conversion of gaseous precursors, promoting the partitioning of semi-volatiles such as ammonium sulfate 

and ammonium nitrate to the particulate phase (Wang et al., 2020). In contrast, higher summer temperatures favor the gaseous 

state of these semi-volatile substances, while frequent convection and stronger atmospheric dispersion conditions significantly 395 

reduce sulfate and nitrate concentrations in PM10 (Simonich and Hites, 1994). This seasonal pattern is consistent with 

observations from other regional studies and reflects the close relationship between secondary inorganic ion formation 

mechanisms and meteorological conditions (Liu et al., 2017a; Wang et al., 2023a) . 

3.3 OP concentrations 

As shown in Figure 7, OP measurements conducted at twelve different sampling sites across China from June 2022 to May 400 

2023 revealed significant temporal and spatial variability in OPv. Further analysis revealed a strong correlation between OPv 

and the degree of urbanization at the sampling sites. During the sampling period, the urban site in Chengdu had significantly 
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higher OPv levels compared to the other sites, while the rural site in CHD had the lowest OPv levels. However, the study 

revealed unexpectedly high average OPv levels at the rural site in GC, ranking second highest among all sites. This finding is 

consistent with the high PM10 mass concentrations observed at this site, suggesting a strong correlation between particulate 405 

matter loading and OPv levels. GC, located in the Beijing-Tianjin-Hebei region characterized by high population density and 

typical pollution concentration, experiences elevated OPv levels likely due to the combined influence of high PM10 

concentrations, pollutant transport from surrounding urban areas, and local emissions (Han et al., 2015). In contrast, the urban 

site in DL demonstrated relatively low average OPv levels, ranking second lowest. This phenomenon may be attributed to the 

coastal location of DL, which benefits from strong marine air mass modulation and favorable atmospheric dispersion 410 

conditions (Meng et al., 2019), resulting in comparatively lower OPv levels. 

 

Figure 7. Seasonal variations of (a) PM10 concentrations (μg·m-3) and (b) OPv (nmol H2O2·m-3) across different regions of China. 

The map bases are from the Ministry of Natural Resources' Standard Map Service, review number GS (2019)1822. 

As shown in Figure 7 (a) and (b), sites located in northern China exhibited significantly elevated PM10 concentrations and 415 

OPv levels during the autumn and winter seasons. This phenomenon in northern Chinese sites can be attributed to several 

factors unique to northern China's regional characteristics. Firstly, the widespread reliance on coal-based central heating 

systems and biomass burning for residential heating in northern China during the heating season (typically from November to 

March) (Liu et al., 2017b; Li et al., 2017) sharply contrasts with southern China where heating demand is minimal due to 

milder winter temperatures. In addition, northern China's continental climate creates more severe winter meteorological 420 

conditions, including prolonged periods of low wind speeds, frequent temperature inversions, and significantly reduced 

atmospheric boundary layer heights compared to the more temperate conditions in southern regions, which severely inhibited 

pollutant dispersion (Li et al., 2017). Despite lower levels of urbanization in rural areas, PM10 concentrations were comparable 

to urban areas due to the widespread use of solid fuels (Li et al., 2014). Figure 7 (b) shows that nine of the twelve sites had 
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lower OPv values in summer. This may be due to more frequent rainfall, which reduces PM10 concentrations and subsequently 425 

leads to lower OPv levels. However, sites such as LS and CD maintained relatively high OPv levels during the summer. This 

phenomenon may be related to the enhanced of photochemical reactions during summer, especially under conditions of high 

temperature and strong solar radiation, resulting in a significant increase in secondary organic aerosol (SOA) formation (Zhou 

et al., 2019; Saffari et al., 2014). In particular, Lhasa's high-altitude location, characterized by minimal precipitation and intense 

solar radiation, further promoted photochemical reactions, resulting in elevated OPv levels. 430 

We observed elevated OPv levels at remote stations (such as LFS, JS, and LA stations) in spring. This phenomenon may be 

attributed to the minimal influence of anthropogenic pollution sources at remote stations, which typically exhibit more 

homogeneous mixing states and consequently have relatively lower and more stable OPv levels during other seasons. However, 

the frequent occurrence of dust storms and increased temperature inversion events during spring can lead to elevated particulate 

matter concentrations. In addition, the potential metal components carried by dust particles and the formation of secondary 435 

aerosols further enhance OPv levels (Saffari et al., 2014), resulting in significantly elevated OPv levels during spring. 

Table 4. Annual averaged OPv (nmol H2O2·m-3) for PM10 across different regions of China from June 2022 to May 2023. 

 OPv 

Station Average Median 

Chengdu 0.85 0.57 

Dalian 0.30 0.14 

Lhasa 0.60 0.57 

Nanning 0.56 0.50 

Xi'An 0.73 0.74 

Changde 0.22 0.21 

Gucheng 0.83 0.75 

Dunhuang 0.76 0.50 

Zhengzhou 0.42 0.40 

Jinsha 0.54 0.40 

Lin'An 0.46 0.45 

Longfengshan 0.57 0.52 

We conducted a discussion on the differences between northern and southern sites across these 11 stations (excluding LS) in 

China. The geographical division corresponding to the station is shown in Table S2. The distinction between northern and 

southern sites and the specific analytical methods are detailed in S2. As shown in Figure 8(a), OPv concentrations in northern 440 

regions exhibited higher levels during the winter, primarily due to increased pollutant emissions associated with coal-based 

heating activities. In contrast, southern regions exhibited peak OPv concentrations in June, possibly due to enhanced 
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photochemical reactions facilitated by stronger solar radiation intensity. However, a significant decrease was observed in July 

and August, which may be attributed to the increased frequency of precipitation events leading to enhanced wet deposition 

and the removal of particulate matter. Figure 8 (b) shows that the annual mean OPv concentrations in northern regions were 445 

significantly higher than those in southern regions (p < 0.05). This spatial variation can be attributed to several factors, 

including lower precipitation rates, frequent dust weather events, and emissions of coal combustion emissions in northern 

regions. 

 

Figure 8. Comparison of (a) monthly and (b) annual average OPv between sites in northern and southern China. 450 

3.4 Source apportionment 

3.4.1 Source apportionment of PM10 

This study employed the PMF model to conduct a detailed analysis of PM10 sources at four representative sites selected based 

on distinct geographical and environmental characteristics. The selection criteria considered regional representativeness, 

pollution characteristics, and geographical diversity across China. The selected sites include: NN, an urban site in southern 455 

China with coastal proximity; Longfengshan (LFS), a remote site located in the northeastern region of Heilongjiang Province; 

ZZ, a suburban site serving as a major transportation hub in central China; and GC, a rural site situated in the heavily polluted 

Beijing-Tianjin-Hebei region. These four sites collectively represent different pollution source characteristics and regional 

environmental conditions, enabling a comprehensive understanding of PM10 source apportionment across diverse geographical 

and climatic zones in China. The optimal number of factors for PMF analysis was determined based on Qtrue/Qrobust values and 460 

BS mapping evaluation, as illustrated in Figure S1. The PMF results in this study were subjected to BS, DISP, and BS-DISP 

error estimation analyses. Summary of error estimation diagnostics with PMF at NN, LFS, ZZ and GC stations are shown in 

Table S3. Results indicate that PM10 in NN likely originates primarily from biomass burning, dust, traffic, secondary aerosols, 
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and sea salt emissions. Sources of PM10 in LFS may include secondary aerosols, traffic, dust, chloride-rich combustion, and 

agricultural activities. The ZZ site showed secondary aerosols, biomass burning, traffic, coal combustion, dust, and industry 465 

as the main sources. PM10 sources in GC are agricultural activities, traffic, biomass burning, secondary aerosols, chloride-rich 

combustion, dust, and coal combustion. Figure 9 summarizes the distribution of PM10 mass concentrations among the major 

sources at the four sites. 

 

Figure 9. The contributions of Traffic, Biomass burning, Secondary aerosol, Dust, Coal combustion, Agricultural activities, 470 
Chloride-rich combustion, Sea salt, and Industry to the atmospheric concentration of PM10 mass (%) as derived by PMF modelling 

at NN, LFS, ZZ, and GC. 
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Figure 10. Chemical profiles of the source factors identified at NN, LFS, ZZ and GC. The bars represent the chemical composition 

profiles (left y-axis) and the dots indicate the contribution values (right y-axis). 475 
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As a typical urban site, the PM10 source apportionment results at the NN site indicate that biomass burning, dust, and traffic 

are likely the main contributors, accounting for 39.3%, 27.4%, and 21.4% of total sources, respectively. As shown in Figure 

10, the first factor contained high levels of Cl- (76.9%), Mg2+ (27.6%), and Na+ (14.3%), elements typically associated with 

sea salt (Viana et al., 2008), contributing approximately 5% to PM10. Sea salt as a source of PM10 in NN likely enters urban 

areas primarily through coastal air mass transport. NN is about 110 kilometers from the Beibu Gulf, and when prevailing 480 

southerly winds occur, sea salt aerosols from the South China Sea may migrate to inland cities through atmospheric circulation. 

The second factor contained high levels of Na+ (66.7%), Ca2+(48.1%) and Mg2+ (17.5%), contributing approximately 26% to 

PM10. This likely represents dust sources (Sharma et al., 2016), indicating that human activities such as urban construction 

may have some impact on particulate emissions. The third factor had high levels of NH4
+ (84.2%), SO4

2- (45.7%), and NO3
- 

(44.4%), contributing approximately 6.9% to PM10, possibly representing secondary aerosols. This suggests that the process 485 

of gaseous precursors (such as SO2, NOx, and VOCs) in the atmosphere forming secondary particles through photochemical 

reactions may have a certain impact on PM10 concentrations (Yue et al., 2015). The fourth factor contained high levels of Mg2+ 

(54.8%), EC (50.7%) and OC (38.2%), contributing approximately 20.2% to PM10, possibly related to traffic. EC and OC have 

long been considered the main tracer elements for traffic emission sources, particularly vehicle exhaust emissions (Saarikoski 

et al., 2008; Sowlat et al., 2016; Esmaeilirad et al., 2020). Research has shown that Mg is one of the elements present in high 490 

concentrations in brake pad materials. Mg is typically used as a filler material in brake pads, and along with Fe, Ba and Cu, 

serves as a characteristic element of brake wear (Mckenzie et al., 2009). At the NN urban site, which is heavily influenced by 

traffic, brake wear is likely the primary source of these elements. The fifth factor had high levels of K+ (74.9%), OC (37.2%), 

and EC (35.1%), substances typically associated with biomass burning (Stracquadanio et al., 2019). This factor made a 

significant contribution to urban PM10 in NN, approximately 39.3%, indicating that biomass burning may be one of the 495 

important sources of atmospheric particulate pollution in NN. Although the observation point is located in the urban area of 

NN, which may be at some distance from areas where straw burning occurs, studies have shown that particulate matter 

produced by biomass burning may undergo long-distance transport (Uranishi et al., 2019). 

The PM10 source apportionment results for LFS indicate that secondary aerosols may be the main contributor, accounting for 

36.2% of total sources. Source analysis identified five potential major factors: In the first factor, NH4
+ (71.0%), Mg2+ (26.5%), 500 

and NO3
- (18.0%) were present in high concentrations. NH4

+ and NO3
- are the main nitrogen components in agricultural 

fertilizers (Cao et al., 2018), while Mg2+ is commonly added to fertilizers as a supplementary element (Sun et al., 2018). This 

factor may be related to agricultural activities, particularly fertilizer application processes. The second factor contained high 

levels of Na+ (74.6%), Mg2+ (46.2%), and Ca2+ (50.8%), elements typically associated with dust sources (Zhang et al., 2014a; 

Sharma et al., 2016), contributing approximately 16.9% to PM10. The third factor had high levels of EC (74.0%) and OC 505 

(38.3%), components typically associated with traffic (Esmaeilirad et al., 2020), contributing approximately 17.6%. The fourth 

factor is dominated by Cl- (79.2%) with concentrations approximately one order of magnitude higher than K+ (22.7%), 

indicating a chloride-rich combustion source. This pattern suggests combustion of chloride-containing materials or waste 

burning, which can produce elevated chloride emissions. The fifth factor had high levels of SO4
2- (70.7%) and NO3

- (71.9%), 
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with NH4
+ (27.3%) also making a considerable contribution, these components are typically associated with secondary aerosol 510 

formation processes (Yue et al., 2015). 

ZZ is located in a suburban area, and the diversity of its PM10 sources may reflect the complex environmental characteristics 

of this region. Source apportionment results suggest that there may be six major pollution sources in this area, with their 

respective contribution proportions as follows: The first factor had high contribution of K+ (21.7%) and Cl- (83.9%), but low 

contribution of OC (4.6%) and EC (2.8%), possibly indicating the influence of industrial emissions, such as food 515 

manufacturing, cement manufacturing, salt production, or industrial activities involving potassium chloride compounds (Yin 

et al., 2019; Seo et al., 2019), with a contribution proportion of approximately 9.5%.The second factor contained high levels 

of Na+ (77.6%), Mg2+ (35.3%), and Ca2+ (43.2%), elements typically associated with dust sources (Sharma et al., 2016), 

contributing approximately 13.2% to PM10. In the third factor, Mg2+ (42.1%) and SO4
2- (46.9%) had relatively high 

concentrations. Since SO4
2- primarily originates from fuel combustion (Schwartz, 1993), and Mg is specifically mentioned as 520 

an element enriched in the magnetic separation of coal fly ash (Strzałkowska, 2021), this factor is associated with emissions 

from coal combustion when regional characteristics are considered. Coal combustion accounts for around 15.5% of PM10 

emissions and is likely to be associated with combined heat and power facilities in the surrounding area. The fourth factor had 

high levels of EC (49.2%) and OC (22.1%), components typically associated with traffic (Esmaeilirad et al., 2020), contributing 

approximately 16.6%. The fifth factor contained high levels of NH4
+ (80.1%), SO4

2- (33.0%), and NO3
- (52.6%), components 525 

typically associated with secondary aerosol formation processes (Yue et al., 2015), accounting for approximately 23.2% of 

total PM10 sources. The sixth factor had high levels of K+ (60.6%), EC (39.3%), Ca2+ (38.4%), and OC (28.8%), contributing 

approximately 22% to PM10. K+, EC, and OC are tracers for biomass burning emissions (Stracquadanio et al., 2019). Given 

ZZ’s location in a suburban of Zhengzhou, this factor likely represents crop residue burning and residential biomass 

combustion common in central China’s agricultural regions. 530 

The PM10 source apportionment results for the GC show that agricultural activities, traffic emissions, secondary aerosols, and 

Chloride-rich combustion are the main contributors, accounting for 20.5%, 20%, 18.5%, and 18.1% of total sources, 

respectively. The factor with K+ (42.7%), NO3
- (38.4%), and Ca2+ (29.2%) as primary characteristic species may be related to 

agricultural activities, accounting for 20.5%. This likely reflects the contribution of corn, wheat, and other farming activities 

around the site to PM10, potentially associated with the agricultural-dominant economic structure of this rural area. Ca2+ and 535 

NO3
- may originate from agricultural soil dust during tillage and other agricultural processes, and NO3

- could be related to 

fertilizer application (Yu and Cao, 2023; Cao et al., 2018). Similar to the ZZ site, this agricultural source attribution is supported 

by Jung et al., who found elevated K+ concentrations at schools near corn farms (Jung et al., 2024). The factor characterized 

by EC (65.1%) and OC (48.1%) likely comes from traffic (Esmaeilirad et al., 2020), representing the second-largest contributor 

to PM10 at 20%. This indicates that transportation activities in rural areas may have a significant impact on PM10 concentrations. 540 

The GC is relatively close to National Highway 107, and traffic emissions from the highway may contribute to the site’s PM10 

concentration through transport. Additionally, the increasing vehicle ownership in rural areas may be a contributing factor. 

Secondary aerosols, characterized by NH4
+ (93.0%), SO4

2- (45.6%), and NO3
- (52.3%), account for 18.5%, indicating the 
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important role of atmospheric secondary transformation processes in PM10 formation in this region (Yue et al., 2015). The 

fourth factor characterized by Cl⁻ (76.2%) represents chloride-rich combustion, accounting for 18.1%. Similar to LFS, this 545 

factor is dominated by Cl- with concentrations, indicating a specific chloride-rich combustion source. The factor characterized 

by Na+ (75.2%) and Ca2+ (44.6%) may be related to dust (Sharma et al., 2016), accounting for 14.7%, potentially reflecting 

the impact of agricultural cultivation and road dust on PM10. The factor characterized by Mg2+ (43.0%) and SO4
2- (47.8%) may 

be related to coal combustion emissions, accounting for 8.3%. This suggests that industrial activities and residential coal use 

in rural areas may have some impact on PM10, especially during the winter heating season when such emissions may become 550 

more prominent. 

The contrasting OC/EC loadings in the agricultural activities factor between the suburban ZZ site and rural GC site reveal 

important insights into the spatial heterogeneity of agricultural emissions. The suburban ZZ site, located in the intensively 

cultivated Central Plains, experiences higher carbonaceous aerosol loadings from mechanized farming operations, which 

contribute significantly to EC emissions through diesel exhaust from agricultural machinery (Liu et al., 2018). In contrast, the 555 

rural GC site in Baoding represents areas with traditional, less mechanized farming practices, resulting in minimal EC 

contributions from agricultural activities.  

A notable pattern observed among the two sites with agricultural activities (LFS and GC) is the differential contribution of 

NH4
+ within agricultural emission factors, with NH4

+ being exclusively associated with agricultural activities at the LFS site. 

This spatial variation reflects the complex interplay between regional meteorological conditions, agricultural practices, and 560 

atmospheric chemistry processes. At the LFS site in northeastern China, cooler climate conditions favor the stability of 

particulate NH4
+, allowing its direct retention within agricultural emission factors (Wang et al., 2020). The concentrated 

fertilizer application during the spring planting season, combined with lower ambient temperatures that minimize NH4
+  

volatilization, preserves the distinct agricultural source signature at this remote location (Huo et al., 2025). Conversely, at the 

warmer GC site in central and northern China, NH4
+ undergoes more extensive atmospheric processing due to higher ambient 565 

temperatures. These conditions promote the volatilization of NH4
+ to gaseous NH3, which subsequently undergoes secondary 

reactions with acidic species (SO4
2- and NO3

-) to form ammonium-containing secondary aerosols (Stelson and Seinfeld, 1982; 

Wang et al., 2015).  

3.4.2 Source apportionment of OP in PM10  

In this study, the PMF model was applied to identify the sources of OPv in PM10 samples collected from four sites. Through 570 

comparison of OPm across different pollution sources, insights into the differential toxic efficiencies of various sources were 

obtained. 
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Figure 11. Comparison of OPm contributions from different emission sources across NN, LFS, ZZ and GC sites. 

Traffic  575 

Traffic emission is a common important contributing source to OP at the four sites NN, LFS, ZZ and GC. The high OP of 

traffic emissions is mainly attributed to the oxidative components in their particulate matter emissions, including organic 

carbon as well as potentially present PAHs and transition metals (TMs) (Valavanidis et al., 2008). Traffic sources showed high 

OPm (0.013-0.022 nmol H2O2·μg-1) at all monitoring sites, indicating that the particulate matter they generate has significant 

toxic efficiency. The high oxidative activity of traffic-emitted particulate matter may be related to its complex chemical 580 

composition. PAHs emitted from traffic sources can form quinone compounds and other oxygen-containing organic 

compounds, which can promote reactive oxygen species generation through redox reactions (Nielsen, 1996; Libalova et al., 

2018).  

Biomass burning 

Biomass burning sources were highly detected to contribute to OP at NN and ZZ sites, with OPm of 0.019 and 0.012 nmol 585 

H2O2·μg-1, respectively. This is closely related to the frequent crop straw burning activities in the region. Particulate matter 

emitted from biomass burning has complex chemical compositions, and its OP primarily originates from various organic 
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compounds produced during the combustion process. Biomass burning produces substantial amounts of PAHs, which can form 

quinone intermediates, subsequently participating in ROS generation processes (Zhu et al., 2024; Libalova et al., 2018). The 

biomass burning process also releases water-soluble organic carbon (WSOC), which contains humic-like substances (HULIS) 590 

with significant oxidative activity (Yan et al., 2015; Salma et al., 2010). These macromolecular organic compounds contain 

abundant functional groups such as hydroxyl, carbonyl, and carboxyl groups, which can generate reactive oxygen species like 

hydroxyl radicals and hydrogen peroxide through photochemical reactions and metal-catalyzed reactions (Verma et al., 2015; 

Lin and Yu, 2011).  

Secondary aerosols 595 

Secondary aerosols exhibited distinctly different patterns at different sites. At the LFS and GC sites, OPm values of secondary 

aerosols are 0.005 and 0.014 nmol H2O2·μg-1, respectively, while the OP contributions of secondary aerosols were completely 

absent at NN and ZZ sites. PMF analysis revealed that OC at NN and ZZ sites was dominated by primary emissions with 

negligible SOA contributions, explaining their zero OP values. The photochemical oxidation of volatile organic compounds 

(VOCs) generates redox-active products (aldehydes, ketones, peroxides) that contribute to aerosol OP through ROS generation 600 

(Kong et al., 2023; Chen et al., 2022; Wei et al., 2022; Lin and Yu, 2011). The absence of secondary aerosol OP at NN and 

ZZ sites reflects their PMF-resolved source profiles: these sites were characterized by primary sources with low oxidation 

states, indicating limited photochemical processing.  

Dust 

The minerals contained in dust can participate in the ROS generation process (Nishita-Hara et al., 2019; Lodovici and Bigagli, 605 

2011). The OPm values of dust at NN, LFS, and GC, are 0.004, 0.009, and 0.016 nmol H2O2·μg-1, respectively. The dust source 

at the GC site exhibited the highest toxic efficiency, which may be attributed to its location in the highly industrialized Beijing-

Tianjin-Hebei region, resulting in elevated TMs emissions (Li et al., 2022). Notably, the dust source at the ZZ site contributed 

zero to the OP, suggesting the possible presence of chemically inert mineral phases in this region. This absence of oxidative 

activity may be attributed to limited TMs content in the local soil and the unique chemical characteristics of dust particles. The 610 

oxidative activity of dust particles is primarily associated with their complex mineral composition and surface chemical 

properties. Specifically, iron-containing minerals can catalyze ROS formation through Fenton reactions, while clay minerals 

provide large specific surface areas that facilitate metal ion adsorption and subsequent redox reactions (Saffari et al., 2014; 

Guo et al., 2020; Liu et al., 2022). Due to differences in geological background, dust from different regions exhibits significant 

variations in mineral composition, leading to differences in their oxidative activity (Gonçalves Ageitos et al., 2023; Jeong, 615 

2024; Nishita-Hara et al., 2023). Furthermore, quartz particles demonstrate certain oxidative activity through surface catalytic 

reactions, with surface silanol groups and defect sites promoting the generation of ·OH (Konecny et al., 2001).  
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Coal combustion 

PM emitted from coal combustion may contain numerous TMs and PAHs, which can promote ROS generation through 

pathways such as the Fenton reaction, thereby enhancing the OP of the particles (Pardo et al., 2020). Notably, coal combustion 620 

sources exhibit significant differences in OPm contributions at the ZZ and GC sites (0.008 and 0.017 nmol H2O2·μg-1, 

respectively). This disparity in mass-specific toxicity may reflect variations in coal types or pollution control technologies 

across different regions, ultimately influencing the chemical composition and toxicological characteristics of the emitted 

particles. The organic carbon fraction of coal combustion emissions contains substantial amounts of oxygenated organic 

compounds, such as aldehydes and ketones, which can directly participate in oxidative stress reactions or act as precursors for 625 

generating stronger oxidants (Wang et al., 2023b). Different coal types produce particles with distinct oxidative properties. 

For instance, lignite combustion, due to its higher volatile matter content, tends to generate more organic compounds, resulting 

in relatively higher oxidative activity (Martens et al., 2021). Combustion technologies and pollution control measures also 

significantly influence the OP of coal-derived particles. Modern coal-fired power plants equipped with desulfurization (FGD), 

denitrification (SCR/SNCR), and particulate removal systems can effectively reduce certain redox-active components, thereby 630 

lowering the toxic efficiency of the emitted particles (Tao et al., 2020; Asif et al., 2022). The observed differences in oxidative 

activity between the ZZ and GC sites may be closely linked to local coal quality, combustion facility technologies, and the 

implementation level of environmental protection measures. 

Agricultural activity  

The OP of agricultural activities was only detected at the GC site, with OPm of 0.004 nmol H2O2·μg-1, while no OP contribution 635 

from agricultural activities was observed at the LFS site. PMF analysis showed contrasting patterns: agricultural factors at LFS 

were dominated by NH4
+ while GC showed minimal NH4

+ contributions. At LFS, the predominance of NH4
+ in agricultural 

factors likely forms stable ammonium salts that neutralize particle acidity and reduce redox activity. In contrast, the lower 

NH4
+ at GC may allow agricultural particles to maintain higher acidity and preserve the redox activity of trace metal 

components or organic matter (Tong et al., 2017; Wei et al., 2022). The presence of NH4
+ can alter particle pH and ionic 640 

strength, affecting the solubility and reactivity of redox-active species (Zhang et al., 2021; Zhang et al., 2025).  

Chloride-rich combustion 

The OP of chloride-rich combustion was only detected at the GC site, with an OPm of 0.006 nmol H2O2·μg-1, while no OP was 

observed at the LFS site. This difference may be mainly attributed to the different pollution source characteristics and 

geographical locations of the two sites. The GC site is located in the Beijing-Tianjin-Hebei atmospheric pollution transport 645 

corridor and, as an industrial agglomeration area, the chlorine-rich combustion processes may be accompanied by co-emission 

or formation of more transition metals and other catalytically active components (Li et al., 2022). These metal ions can catalyze 
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the generation of ROS through Fenton reactions and other pathways, thereby possibly exhibiting significant OP (Saffari et al., 

2014; Guo et al., 2020). In contrast, LFS as a remote site may lack catalytically active metal components, and therefore showed 

no detectable OP.  650 

Sea salt 

Although NN is located inland, it is influenced by air masses originating from the South China Sea, enabling long-range 

transport of sea salt aerosols that affect local atmospheric OP. Halogen compounds (e.g., Cl-, Br-) in sea salt can catalyze the 

generation of radicals such as ·OH and Cl·, thereby participating in atmospheric oxidation processes (Cao et al., 2024; 

Knipping et al., 2000). At the NN site, the OPm of sea salt aerosols was measured at 0.016 nmol H2O2·μg-1. 655 

Industry 

The PMF results revealed that industrial emissions at ZZ were dominated by Cl⁻ and K⁺ with negligible contributions from 

OC and EC. OC typically serves as the primary contributor to particle oxidative activity through redox-active organic species, 

including quinones and phenolic compounds that can participate in electron transfer reactions and generate ROS (Libalova et 

al., 2018; Jiang and Jang, 2018). The absence of organic carbon compounds provides a mechanistic explanation for the zero 660 

OP observed in this source profile. 

4 Conclusions 

This study utilized a comprehensive approach to analyze the characteristics and sources of PM10 and its OP at 12 representative 

sites in China. The main findings are summarized as follows: 

1. Performance of CNN-LSTM deep learning model 665 

The CNN-LSTM deep learning model exhibited robust performance in reconstructing missing data for PM10 mass 

concentrations and outliers in chemical components. The model achieved R2 values of 0.9670 and 0.8840 for the training and 

testing sets, respectively. These results highlight the potential of the model to address missing data issues in PM10 research. 

2. Spatiotemporal variations in PM10 and OP levels  

PM10 and OP concentrations showed remarkable spatial and temporal variations: 670 

- PM10 concentrations were relatively higher in XA and DH in the northwestern region, while lower in LFS and DL in the 

northeastern region.  

- Suburban sites generally exhibited higher PM10 concentrations compared to other site types. 

- OP levels were relatively higher in CD and GC, with urban sites having higher OPv values than other sites. 

- Annual average PM10 concentrations in northern regions were typically higher than in southern regions.   675 
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- Seasonally, PM10 and OP levels were higher in winter and lower in summer, suggesting the potential benefits of implementing 

targeted control measures during high-risk periods to mitigate adverse health impacts. 

3. PM10 Source Apportionment 

Source apportionment using PMF indicated that dust (13.2-27.4%), secondary aerosols (6.9-36.2%), traffic (16.6-21.4%), and 

biomass burning (22-39.3%) were likely the main contributing sources to PM10 mass concentrations at the study sites. 680 

Understanding the contributions of these sources is crucial for developing more effective PM10 reduction strategies. 

4. OP Source Analysis 

OPm analysis revealed significant spatial variations in toxic efficiency across different sources. Traffic sources demonstrated 

consistently high OPm values (0.013-0.022 nmol H2O2·μg-1) across all four sampling sites, while biomass burning exhibited 

elevated OPm at NN and ZZ sites (0.012 and 0.019 nmol nmol H2O2·μg-1, respectively). Coal combustion also showed high 685 

OPm values at both ZZ and GC sites (0.008 and 0.017 nmol nmol H2O2·μg-1, respectively), indicating the substantial toxic 

efficiency of particulate matter from these three major sources. Other sources displayed notable regional variations. Secondary 

aerosols contributed zero OP at NN and ZZ sites, likely due to local VOC emission patterns and oxidation processes. Dust 

sources showed zero contribution at ZZ, potentially related to the inherent composition of local dust particles. Agricultural 

activities exhibited zero OP at LFS, possibly due to NH4
+ neutralization effects that reduced redox activity. At GC, chloride-690 

rich combustion demonstrated OP contribution (0.006 nmol H2O2·μg-1), likely attributed to elevated TMs emissions in Beijing-

Tianjin-Hebei region that promote ROS formation. Sea salt aerosols at NN showed an OPm of 0.016 nmol H2O2·μg-1, which 

was attributed to the catalytic effect of halogen compounds on ROS. In contrast, industrial emissions at ZZ exhibited zero OP 

due to minimal organic carbon content. 

The study results underscore the importance of identifying and quantifying OP sources to assess and mitigate health risks 695 

associated with PM10 exposure. The source apportionment findings suggest that emission reduction measures targeting traffic, 

biomass burning, and coal combustion may help lower OP levels and protect public health. This research employed deep 

learning techniques to analyze the spatiotemporal distribution characteristics, source apportionment, and influencing factors 

of PM10 and its OP in different typical regions of China from multiple perspectives. The findings provide a scientific basis for 

better understanding the causes of PM10 pollution, formulating control strategies, and mitigating health risks. Future studies 700 

should focus on further investigating the identification and health risk assessment of toxic and harmful components in PM10, 

exploring the toxicological mechanisms of OP, and developing integrated indicators that combine chemical components and 

toxicity for characterizing and evaluating PM10 pollution. 
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