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Abstract. The oxidative potential (OP) of particulate matter is a key driver of PM¢-induced adverse health effects, triggering
oxidative stress and inflammatory responses that increase respiratory and cardiovascular disease risks. To evaluate PM; and
its OP characteristics across China, samples were collected from twelve representative monitoring stations from June 2022 to
May 2023. A deep learning model combining Convolutional Neural Networks and Long Short-Term Memory networks (CNN-
LSTM) was employed to reconstruct anomalous PMj, data, achieving R? values of 0.8840 for test sets. Significant spatial
variations in PM,o were observed, with highest concentrations in the northwestern regions (Xi'An: 98.20 + 52.92 ug'm>,
Dunhuang: 90.36 £ 54.72 pg-m™), the lowest in the northeast (Longfengshan: 40.04 + 24.04 pg-m, Dalian: 40.35 + 15.66
ug'm), and elevated levels in suburban areas (average: 85.43 + 46.69 ug'm). Urban sites showed the highest OP values
(0.61£0.21 nmol H>O,'m), with significantly higher PM;o concentrations in northern regions compared to southern ones
(p<0.05). Most sites exhibited peak PMjo and OP levels in winter and lowest in summer. Source apportionment using Positive
Matrix Factorization (PMF) revealed dust (13.2-27.4%), biomass burning (16.2-39.3%), traffic (16.6-21.4%), and agricultural
activities (13-22%) as main contributors to PMjo. Mass-normalized OP (OPy,) analysis revealed traffic sources showing
consistently high values (0.013-0.022 nmol H,O,-pg™). These findings highlight the need to control traffic emissions and other

major sources to reduce OP and protect public health.

1 Introduction

Particulate matter (PM) is one of the main pollutants affecting air quality and human health. Among these, PM o, which refers
to suspended particles with an aecrodynamic diameter of 10 pm or less, has received considerable attention due to its complex
sources, extensive environmental and health effects. The sources of PMio are both complex and diverse, including
anthropogenic activities such as fossil fuel combustion, industrial production, traffic emissions and dust, as well as natural

sources such as dust storms and volcanic eruptions (Xue et al., 2010). PM;y can remain suspended in the atmosphere for
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extended periods of time, significantly affecting atmospheric visibility while potentially exerting profound effects on regional
and global climate change through both direct and indirect mechanism (Slanina and Zhang, 2004). More critically, PMo poses
a serious threat to human health. Upon entering the human body via the respiratory system, it can be deposited in the airways
and lungs, triggering respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and even lung cancer
(Cao et al., 2016). Furthermore, PM¢ can penetrate the alveolar barrier and enter the circulatory system, inducing systemic
diseases such as cardiovascular disease and diabetes (Huang, 2023).

In the context of accelerating global industrialization and urbanization, PM o pollution has emerged as a critical environmental
concern. Research conducted by the World Health Organization (WHO) indicates that air pollution is responsible for millions
of premature deaths worldwide each year, with PM( being a major contributor (Cohen et al., 2005). The mechanisms by which
PM,o affects human health are diverse and complex, one of the primary mechanisms being its ability to induce excessive
production of reactive oxygen species (ROS), subsequently triggering oxidative stress (OS) effects. Components within PM o,
such as transition metals and polycyclic aromatic hydrocarbons (PAHs), can directly or indirectly promote ROS generation,
leading to cell membrane lipid peroxidation, protein denaturation, and DNA damage (Chirino et al., 2010). Furthermore, ROS
can activate inflammatory signaling pathways, including nuclear factor kB (NF-«kB), which amplify inflammatory responses
and further leading to cellular dysfunction and tissue damage (Wang et al., 2017). This interplay between oxidative stress and
inflammatory responses is considered a critical pathophysiological basis for various PMo-induced diseases. Several studies
suggest that oxidative potential (OP) may be a more accurate indicator of PM health effects than its mass concentration,
providing a new perspective for assessing PM health risks(Gao et al., 2020; Bates et al., 2019) .

The OP of PM serves as a critical indicator for assessing its toxicity and is closely related to the generation of ROS. Research
indicates that the OP of PM is strongly correlated with its physicochemical properties and sources (He and Zhang, 2023). In
particular, PM of smaller size typically exhibits higher OP, possibly due to its larger specific surface area and enhanced
bioavailability (Saffari et al., 2014; Yao et al., 2024). Water-soluble transition metals (e.g., iron and copper) and organic carbon
(e.g., PAHs) in PM are considered to be the primary chemical components that influence OP. These components can induce
ROS generation either by catalyzing Fenton reactions or by directly participating in redox processes (Saffari et al., 2014; Guo
et al., 2020). Sources of OP in PM are varied and include primarily traffic emissions, fossil fuel combustion, and secondary
organic aerosol formation (Bates et al., 2019; Saffari et al., 2014). Significantly, photochemical aging of PM in the atmosphere
further alters its OP, possibly related to the formation of secondary organic aerosols, changes in oxidation states of metallic
components during the aging process, and the oxidation degree of reactive organic compounds (An et al., 2022; Ma et al.,
2025). In addition, the oxygen content in the fuel has been shown to be a critical factor affecting OP, as exemplified by the
typically high OP of PM generated from biomass combustion (Hedayat et al., 2016).

However, an accurate assessment of the health risks associated with PM o requires an accurate analysis of its sources and
chemical compositions. High-quality, complete datasets are essential for reliable source apportionment and subsequent risk
assessment. Environmental monitoring data often contain missing values and anomalies due to instrument malfunction,

maintenance periods, or extreme weather conditions, which can significantly affect the accuracy of subsequent analyses. In
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recent years, with the rapid development of deep learning technology, its application in handling environmental data quality
issues has received increasing attention. Deep learning models, particularly the combination of Convolutional Neural Networks
(CNN) and Long Short-Term Memory networks (LSTM), have demonstrated significant advantages in identifying and
correcting anomalies and filling missing values in time series environmental data. CNNs effectively extract spatial features,
while LSTMs excel at capturing long-term dependencies in time series (Huang and Kuo, 2018; Li et al., 2020). This hybrid
model not only identifies anomalies, but also improves data completeness and reliability by predicting and replacing anomalous
or missing values (Lee et al., 2019; Qin et al., 2019). Compared with traditional machine learning methods, CNN-LSTM
models show superior performance in several evaluation metrics, such as Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) (Huang and Kuo, 2018; Yang et al., 2020a; Li et al., 2020). CNN-LSTM models retain significant value in
processing atmospheric particulate matter data for data quality improvement. Their spatial feature extraction capabilities
effectively identify and correct anomalies caused by instrument malfunction or local pollution events, thereby improving data
quality (Zhang and Zhou, 2023). Through training and learning, CNN-LSTM models can effectively predict and fill missing
data, providing a high-quality data foundation for subsequent source apportionment and risk assessment analyses (Li et al.,
2020; Yang et al., 2020a).

After data pre-processing, the Positive Matrix Factorization (PMF) model was used to analyse PM o sources in this study. The
PMF model can identify major pollution sources and their contribution rates by decomposing the observation data matrix
without requiring prior information (Paatero and Tapper, 1994). In recent years, PMF models have been extensively applied
in PMo and PM; s source apportionment, often in combination with other techniques such as multiple linear regression (MLR)
(Weber et al., 2018) . Based on the source contribution results from PMF analysis, MLR models can further quantify the
contributions of different sources to the OP of PM, providing crucial evidence to reveal the association between PM sources
and their health effects. Recent studies have innovatively introduced machine learning methods, such as multilayer perceptron
(MLP), to model OP based on source contribution results from PMF analysis, significantly improving model predictive
accuracy and explanatory power (Borlaza et al., 2022).

In this study, we adopted a comprehensive approach to process PM o data and evaluate its OP. First, we removed anomalies
from PM;o data and used a deep learning model combining CNN and LSTM to predict and replace anomalous values. This
method effectively captures spatial and temporal features in time-series data, thereby improving data completeness and
prediction accuracy. Then, we employed the PMF model for PM source apportionment to identify its major sources. Finally,
based on the PMF results, we calculated the OP per unit mass of PM;o (OPp) to investigate the intrinsic toxicity of different
emission sources. Through this series of methods, this study aims to reveal the OP characteristics and sources of PM ¢ in

typical regions of China.



100

105

110

2 Materials and Methods
2.1 Sample Collections

Daily ambient PM o samples were collected every three days from June 2022 to May 2023 at the twelve stations of the CMA
Atmosphere Watch Network (CAWNET), with their distribution shown in Figure 1 and detailed information provided in
Table 1. Remote sites were selected in areas far from anthropogenic pollution sources to ensure the representativeness of the
background monitoring data. Rural sites were selected in typical areas, with sampling points located away from local pollution
sources and elevated above the surrounding ground to minimize local disturbances. At urban sites, sampling points were
typically located 50-100 m above the average urban elevation in order to collect mixed aerosol samples rather than aerosols
from single sources. Suburban sites were located in transition zones between urban and rural areas to reflect aerosol

characteristics under different environmental conditions. All aerosol samples were collected using MiniVol™

air samplers
(Airmetrics, Oregon, USA) operating continuously for 24 hours from 9:00 AM to 9:00 AM the following day (Beijing time)
at a flow rate of 5 L'min’'. Whatman 47 mm quartz fiber filters (QM/A) were used for sampling. To prevent contamination
from affecting the experimental results, all filters were heated at 800°C for 3 hours prior to use to remove potential organic
contaminants.
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Figure 1. Locations of 12 CAWNET stations. The map base is from the Ministry of Natural Resources' Standard Map Service,
review number GS (2019)1822.
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Table 1. Information for twelve CAWNET stations.

Station name Province Lat.&Long. Elev.(m) Type
Changde (CHD) Hunan 29°10.2'N, 111°42.6'E 150.6 Rural
Chengdu (CD) Sichuan 30°39 N, 104°2.4'E 587.0 Urban
Dalian (DL) Liaoning 38°54'N, 121°37.8' E 91.5 Urban
Dunhuang (DH) Gansu 40°9'N, 94°40.8' E 1137.5 Suburban
Gucheng (GC) Hebei 39°7.8'N, 115°48'E 15.2 Rural
Jinsha (JS) Hubei 29°37.8'N, 114° 12'E 751.4 Remote
Lhasa (LS) Tibet 29°40.2'N,91°7.8'E 3660.0 Urban
Lin’An (LA) Zhejiang 30° 18'N, 119°44'E 138.6 Remote
Longfengshan (LFS)  Heilongjiang 44°43.8'N, 127°36'E 331.0 Remote
Nanning (NN) Guangxi 22°49.2'N, 108°21'E 159.0 Urban
Xi’An (XA) Shaanxi 34°25.8'N, 108° 58.2'E 363.0 Urban
Zhengzhou (ZZ7) Henan 34°46.8'N, 113°40.8'E 110.4 Suburban

2.2 Chemical and OP analysis
2.2.1 Chemical compositions analysis

Quantitative measurements of OC and EC were performed using the DRI Model 2015A thermal/optical carbon analyzer
developed by the Desert Research Institute, USA. After OC and EC analysis, ion chromatography (Dionex 600 series, USA)
was used to analyze and determine various ions, including Na*, NH,*, K" Ca*", Mg?*, F, CI,, NOs, and SO4*. This method
has been widely used as a highly efficient and sensitive analytical technique for the determination of water-soluble ions in

PM,o and PM; s (Domingos et al., 2012; Cui et al., 2008; Yan et al., 2006).

2.2.2 OP analysis

The 2',7'-Dichlorodihydrofluorescein (DCFH) method is widely used for detecting particle-bound ROS, mainly due to its lack
of specificity and selectivity for various ROS species (Antonini et al., 1998; Cohn et al., 2008; Huang et al., 2016). In this
study, the 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) probe method was employed to measure ROS levels induced
by PMy. First, DCFH-DA (97%, Sigma-Aldrich, USA) was prepared as a 1 mmol-mL' stock solution using anhydrous ethanol
and mixed with 0.01 mol-L-! NaOH solution in a 1:4 (v/v) ratio. The mixture was kept at room temperature in the dark for 30
min to ensure complete alkaline hydrolysis of DCFH-DA to DCFH. Phosphate buffer solution (PBS, 0.0067 mol-L"!, pH 7.2)
was then added to adjust the pH to 7.0-7.4. The hydrolyzed DCFH solution was stored at 4°C in the dark and used within 2
hours. Horseradish peroxidase (HRP) was dissolved in phosphate buffer to prepare a 10 unit-mL"' HRP stock solution. It was

mixed with the DCFH solution prior to use to achieve final concentrations of 10 umol-L-! DCFH and 0.5 units-mL"! HRP in
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the reaction system. To generate a standard curve, a 1000 ug-mL"' H,O, solution was diluted with ultrapure water to generate
H,0» standard solutions at concentrations of 20, 40, 80, 160, 200, 240, 320, 400, and 800 nmol-L"". In a 96-well plate, 20 pL
standard solution and 60 pL. DCFH-HRP mixture were added, with three replicates for each concentration. After 15 minutes
of dark incubation at 37°C, fluorescence intensity was measured using a multifunctional microplate reader (SynergyTMHI1,
BioTek America) at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. Quantification was done
through converting the sample’s fluorescent intensity to the equivalent quantity of H,O> (nmol H,O,-m™). Before sample
analysis, PMio samples were extracted in phosphate buffer solution by sonication for 30 minutes. After centrifugation, the
supernatant was collected for testing. In the 96-well plate, 20 pL of sample solution and 60 pL. of DCFH-HRP mixture were
added, with three replicates per sample. Water blanks, filter blanks, and DCFH-HRP background blanks were included to
eliminate background interference. After 15 minutes of dark incubation at 37°C, fluorescence intensity was measured and
converted to H>O, equivalent concentrations using the H>O, standard curve to characterize PMo-induced ROS levels.
Throughout the experimental procedure, the microplate reader was preheated for 30 minutes before measurement to ensure a
stable incubation temperature of 37°C. Background fluorescence values were subtracted from each measurement, and the

relative standard deviation (RSD) of the replicates was controlled within 5% to ensure the accuracy and reliability of the data.

2.3 Data analysis
2.3.1 CNN

One-dimensional convolutional neural networks (1D-CNN) have significant theoretical advantages and practical value in
processing time series data. The core mechanism relies on local connectivity and weight sharing, where each neuron is
connected only to a local region of the input data, while the convolution kernel weights are shared across the entire input
sequence. This design significantly reduces the number of model parameters, improving computational efficiency while
effectively mitigating overfitting problems. Moreover, 1D-CNN achieves translational invariance through convolution and
pooling operations, ensuring robustness to input data translations and enabling stable capture of key patterns in time-series
data. Crucially, 1D-CNN possesses automatic feature extraction capabilities, allowing the model to independently learn and
extract multi-level feature representations from raw data through end-to-end training, thus reducing dependence on manual
feature engineering. As illustrated in Figure 2, the input sequence x;~ xs undergoes convolution operations to generate feature
mappings y; ~ y4, with purple, green, and yellow connections linking the input layer to the convolution layer. Each connection
maintains its distinct weight value, with connections of the same color sharing identical weights. By stacking multiple
convolutional layers, the model progressively learns higher-level feature representations, offering robust expressive

capabilities for time-series data modeling and prediction.
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Figure 2. The one-dimensional (1D) convolution operation process.
2.3.2 LSTM

Long Short-Term Memory (LSTM) networks are specialized recurrent neural networks that effectively address the long-term
dependency problems inherent in traditional RNN (Hochreiter and Schmidhuber, 1997). LSTM introduces memory cells and
gating mechanisms that selectively remember or forget information, enabling the capture of long-term dependencies in
sequences (Okut, 2021). The network uses three primary gating mechanisms: the forgetting gate, the input gate, and the output
gate. The operating principle of the LSTM is illustrated in Figure 3, where o represents the sigmoid function as shown in Eq.
(1). Compared to traditional RNNs, LSTM networks exhibit superior handling of the vanishing gradient problem and can learn
dependencies over longer time steps (Sherstinsky, 2020). These capabilities have led to the widespread application of LSTM
in various domains, including time series prediction and natural language processing (Vennerad et al., 2021). The specific

mathematical formulations of LSTM are detailed in Egs. (1) - (6):

fe= U(W} [he—q, xe] + bf) €9
i = o(W; * [he—q, x] + by) (2)
¢, = tanh(W, - [hy_4, x;] + b.) 3
€t = fe X Cpoq +ip X & 4)

0p = oWy, " [he—1, %] + b,) (5)
hy = o, X tanh(c;) (6)

Where Wy represents the weight matrix of the forget gate, and by denotes its bias term. h,_, is the previous hidden state and
X, is the current input. The sigmoid activation function ¢ controls the proportion of information retention. i; represents the
output of the input gate, while ¢; indicates the candidate memory value. W; and W, represent the weight matrices for the input
gate and candidate memory respectively, while b; and b, denote their corresponding bias terms. ¢, represents the memory cell
state at the current time step. W, denotes the weight matrix of the output gate, b, represents its bias term, and o, indicates the

output of the output gate.
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Figure 3. The schematic diagram of the Long Short-Term Memory (LSTM).
2.3.3 CNN-LSTM

Several studies have shown that CNN-LSTM models have excellent performance in PM prediction, with low error rates and
reduced training times (Li et al., 2020; Huang and Kuo, 2018). In this study, PMo concentration data were preprocessed for
11 chemical components: OM, EC, Na*, NH4*, K™ Ca?", Mg?*, F, Cl,, NOj5", and SO4>. Specifically, if the sum of the chemical
components in a data set exceeded the PM o mass concentration or fell below 50% of the PM o mass concentration, the PM g
concentration in that data set was considered anomalous and removed. After screening, the remaining data were retained and
included in the training set. A hybrid model combining CNN and LSTM was used to predict PM o concentrations based on the
training set. The model first extracts local features from the data through two CNN layers: the first CNN layer uses 16 channels
and a kernel size of 2, while the second CNN layer uses 32 channels and the same kernel size, capturing local feature patterns
through a sliding window with a stride of 1. Each CNN layer is followed by a ReLU activation function to introduce non-
linearity, and a Dropout layer with a probability of 0.2 to enhance generalization capability. Subsequently, a 2-layer LSTM
network (with 64 hidden units) captures long-term dependencies in the time series, with the LSTM layers also applying the
same Dropout mechanism; finally, the prediction results are output through a fully connected layer. During the training process,
Mean Squared Error (MSE) was used as the loss function, and the Adam optimizer was employed for parameter optimization,
with an initial learning rate set to 0.0005. When training the model, a total of 3000 training epochs were set, while dynamically
monitoring the loss value, with early stopping when the loss value fell below a preset threshold of 0.0007. Upon completion
of training, the model was evaluated on both training and test sets by calculating MAE, RMSE, and Coefficient of

Determination (R?) to comprehensively evaluate the predictive performance of the model.
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Figure 4. The architecture of the CNN-LSTM in this study.

2.4 Source apportionment

In this study, the US Environmental Protection Agency (US-EPA) EPA PMF 5.0 software (US-EPA, 2017) was used to
perform source apportionment of PMo. PMF is a multivariate statistical method based on factor analysis that has been widely
applied in source apportionment studies of atmospheric particulate matter (Paatero and Tapper, 1994). The PMF model
identifies pollution sources and their contribution rates by decomposing the observed data matrix into two non-negative
matrices - the factor contribution matrix (G) and the factor profile matrix (F). The mathematical model can be expressed as:
X=GF+E (7)
Where X is the observation data matrix (nxm), G is the factor contribution matrix (nxp), F is the factor profile matrix (pxm),
and E is the residual matrix. Here, n represents the number of samples, m represents the number of chemical species, and p

represents the number of factors. The PMF model optimizes the decomposition results by minimizing the objective function

Q:
S Xij — ZZ:l gikfkj
Z < Uij ) ®

n
i=1j

Q:

Where x;; is the concentration of chemical component j in sample i, u;; is the corresponding uncertainty, g, is the

contribution of factor £ in sample 7, and f}; is the proportion of chemical component j in factor k. By introducing non-negative
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constraints, the PMF model can more reasonably explain the physical significance of pollution sources (Paatero, 1997). The

uncertainty (Unc) of the sample data is calculated using Eqgs. (9) and (10):

5
Unc = e MDL(x;; < MDL) ©)

Unc = \/(EFU x x;;)" + (0.5 X MDL)?(x;; = MDL) (10)

Where MDL represents the method detection limit, and EF;; denotes the error fraction of component j in sample i. In this study,
the EF values for OP, were set as the standard deviation during analysis (Verma et al., 2015), while the other components

were set at 10%.

3 Results and discussion
3.1 CNN-LSTM prediction results

The CNN-LSTM model was trained using non-outlier datasets consisting of PMjo concentration measurements and their
corresponding eleven chemical constituents, including OM, EC, Na*, NH,", K*, Ca?", Mg?*, F, Cl,, NOs", and SO4*-. To ensure
the integrity of the data quality, outlier elimination was performed based on the sum of the chemical components. After the
outlier screening process described in Section 2.3.3, 471 non-outlier datasets meeting the quality criteria were retained for
model training and evaluation, with 85% allocated to the training set and 15% to the test set. The trained CNN-LSTM model
was then used to predict PMjo concentrations for the 766 outlier datasets by using their eleven chemical constituent
concentrations as input features, with the predicted values replacing the original outlier measurements to maintain data
completeness. Model performance was evaluated independently on both the training and test sets using three metrics: MAE,
RMSE, and R2. These performance metrics are mathematically expressed in Egs. (11) - (13). In these equations,y; represents

the actual value, ¥, denotes the predicted value, n indicates the sample size, and y represents the mean of the actual values.

n
1
MAE == [y =3 (11)
i=1

n
1
RMSE = |~ (= 9)° (12)
i=1

2im (i — 7)?

R?=1-2
L (i —»)?

(13)

3.1.1 Comparison with Conventional Gap-filling Techniques

The model was evaluated on both the training and test sets after completion of training, with results presented in Table 2 and

Figure 5. As shown in Figure S (a), the training process converged effectively, with the loss function decreasing steadily and

10
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stabilizing at approximately 0.0007, indicating successful model optimization without overfitting. For the training set, the
CNN-LSTM model achieved a MAE of 6.6614 pg-m, a RMSE of 8.7162 pg-m, and a R? of 0.9670. When evaluated on the
test set, the model demonstrated an MAE of 12.6705 pug-m, a RMSE of 17.4965 pg-m™, and an R? of 0.8840.

Table 2. Comparison of MAE, RMSE, and R? among different models.

Model Type MAE (ug-m) RMSE (ng-m3) R?
Linear Regression 12.6852 17.8804 0.8028
RF 14.6494 20.0135 0.8482
KNN 15.6263 24.2398 0.8135
CNN-LSTM 12.6705 17.4935 0.8840
0.0200] (a) 4007 e Predicted PM;q (ug'm™3) (b,),'- 2501 ¢ Predicted PM;ig (ug'm~3) (c),’.
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Figure 5. (a) LOSS trends for the training sets; comparison of predictions and observations for the (b) training and (c) test sets by
the CNN-LSTM.

Traditional gap-filling techniques in air quality data reconstruction commonly include Linear Regression, Random Forest (RF),
and k-nearest neighbors (KNN) methods, which have been widely applied in environmental data analysis (Méndez et al., 2023).
To evaluate the effectiveness of our CNN-LSTM approach, we conducted a comprehensive comparison with these
conventional methods and individual deep learning components, with detailed results presented in Table 2.

In the ranking of MAE performance, from low to high, the results are: CNN-LSTM (12.6705 pg-m™), Linear Regression
(12.6852 ug'm™), RF (14.6494 pg-m), and KNN (15.6263 pg-m). While in the ranking of RMSE, from low to high, the
performance follows: CNN-LSTM (17.4935 pg-m), Linear Regression (17.8804 ug-m™), RF (20.0135 pg-m), and KNN
(24.2398 pg'm). In terms of R2, from high to low, the algorithms perform as follows: CNN-LSTM (0.8840), RF (0.8482),
KNN (0.8135), and Linear Regression (0.8028).

This study shows that the CNN-LSTM model proposed in this paper demonstrates good performance across all evaluation
metrics. Linear regression, despite achieving competitive MAE values, shows limitations in capturing complex non-linear

relationships, as evidenced by its lower R? value. This can be attributed to the linear model's relative inability to capture the

11
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complex non-linear relationships inherent in atmospheric particulate matter dynamics (Singh et al., 2012; Dragomir and Oprea,
2014). RF demonstrated moderate performance with balanced metrics across MAE, RMSE, and R?2. KNN showed the least
effective overall performance, particularly evident in its highest RMSE value of 24.2398 pg-m™,

Overall, CNN-LSTM is the strongest performer among all tested models. This result confirms that the combination of CNN
and LSTM is quite effective for PMo gap-filling applications. We conducted ablation experiments in Section S1. As shown
in Table S1, the performances of CNN and LSTM are both good, but that of CNN-LSTM is even more outstanding. It is
indicated that for PM;o data reconstruction, it is beneficial to first perform feature extraction using CNN, and then input the

feature values into the LSTM architecture for temporal pattern recognition.

3.1.2 Leave-One-Site-Out Cross-Validation

To validate the model's generalization capability and ensure it captures physically meaningful variability rather than site-
specific biases, we employed a site-type-based Leave-One-Site-Out (LOSO) cross-validation strategy. The monitoring sites
within the study area were categorized into four types based on their functional characteristics and geographical environment:
urban sites, rural sites, suburban sites, and remote sites. LOSO cross-validation was performed separately for each site type.
For each iteration, one site of a particular type was withheld during model training. The model was then trained using data

from the remaining sites and tested on the withheld site.

Table 3. Results of Leave-One-Site-Out (LOSQO) cross-validation for different site types.

Site Type MAE (pg-m>) RMSE (pg-m3) R?
Urban 10.9436 15.2544 0.9235
Rural 12.5448 17.6598 0.8297

Suburban 14.5934 19.0105 0.8450

Remote 7.8523 9.3182 0.7892

Table 3 presents the model performance metrics for different site types in the LOSO cross-validation, including MAE, RMSE,
and R2. The cross-validation results demonstrate that the established neural network model exhibits good predictive
performance across different site types, with R? values exceeding 0.78 for all site types. This confirms that the model can
effectively reproduce the physically meaningful variability in pollutant concentrations rather than merely fitting site-specific

characteristics.

Remote stations exhibit the lowest MAE (7.8523 ug-m) and RMSE (9.3182 ug'm™), indicating minimal prediction errors at
these site types. This is primarily attributed to remote stations being located far from major pollution sources, resulting in
relatively low pollutant concentrations with gradual variations that reduce absolute prediction errors. However, Remote
stations show a relatively low R? value (0.7892), which may be related to their smaller concentration variation range, making

the correlation coefficient more sensitive to minor prediction deviations. Urban stations demonstrate the highest R? value

12
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(0.9235), while maintaining moderate MAE (10.9436 pg-m) and RMSE (15.2544 pg-m) levels. This result indicates that
the model can effectively capture pollutant concentration trends in urban environments. Urban areas feature dense and diverse
pollution sources, including vehicle emissions and industrial emissions, which increase prediction complexity but provide
larger concentration variation ranges that facilitate the establishment of robust predictive relationships. Rural stations show
moderate performance across all metrics, with MAE of 12.5448 pg-m, RMSE of 17.6598 pg-m>, and R? of 0.8297. Rural
areas are primarily influenced by relatively simple pollution sources such as regional transport and agricultural activities,
resulting in more regular spatiotemporal variation patterns of pollutant concentrations that the model can effectively learn.
Suburban stations display the highest MAE (14.5934 pg-m™) and RMSE (19.0105 pg-m), but with an R? value (0.8450)
similar to rural stations. As transitional zones between urban and rural areas, suburban regions are simultaneously influenced
by urban pollution dispersion and rural pollution sources, exhibiting distinct transitional and complex pollution characteristics.

This composite pollution environment increases the difficulty of model prediction and may result in higher prediction errors.

3.2 PMio mass and chemical composition concentrations
3.2.1 Annual average

The analysis of PM o concentrations across diverse locations in China shows a remarkable spatial variation in the annual mean
concentrations of PMo and its chemical constituents from June 2022 to May 2023, as shown in Table 3. Significantly elevated
PM)y levels were observed at northwestern sites, with Xi'An (XA) and Dunhuang (DH) recording concentrations of 98.20
pg-m=and 90.36 ug-m>, respectively, while other sites had concentrations ranging from 40 to 80 pg-m. These spatial patterns
suggest complex interactions between natural and anthropogenic factors. The elevated PM o concentrations observed in XA,
a major industrial city and densely populated metropolitan area, are primarily due to industrial emissions and substantial high
traffic volumes. Due to its location in an arid region, DH is likely influenced by dust storm events, as evidenced by higher
concentrations of crustal elements such as Ca?" (Yu et al., 2020). While Na* is typically associated with sea salt spray, its
presence at inland sites such as DH may indicate contributions from crustal material or other local sources(Zhang et al., 2014b).
In contrast, the lowest PM o concentrations were observed at Longfengshan (LFS) and Dalian (DL) in the northeastern region,
with values of 40.04 ug-m and 40.35 pg-m>, respectively. These relatively lower concentrations may be due to relatively less
anthropogenic activities and better air quality in these regions. LFS, located at the interface of agricultural and forested
landscapes, primarily receives PM o contributions from natural sources, such as soil dust resuspension and biomass burning
reported in previous research (Yu et al., 2012). Meanwhile, Dalian's coastal location likely contributes to its lower PMq
concentrations. The observed Na* concentration of 2.36 pg-m™ in DL may reflect the influence of marine aerosols (Shi et al.,
2022). In addition, air quality in DL is likely modulated by meteorological conditions, especially sea breezes, which facilitate
the dispersion and dilution of pollutants, thereby reducing PM o concentrations (Wang et al., 2002).

In the densely populated regions of Gucheng (GC) and Zhengzhou (ZZ), where anthropogenic pollution sources are abundant,

the annual mean PM,o concentrations were 79.18 pg-m and 80.50 pg-m, respectively. These elevated PMo levels are
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strongly correlated with intensive anthropogenic sources in these regions, including industrial activities, traffic emissions, and
construction dust. As major industrial and transportation hubs, GC and ZZ have particularly high concentrations of organic
matter (OM=1.2*0OC) and elemental carbon (EC), specifically 19.67 ug-m and 4.89 pg-m> in GC, 17.35 ug-m= and 4.12
ug-m?in ZZ. Additionally, the concentrations of sulfate (SO4>) and nitrate (NO3") concentrations in ZZ and GC were measured
to be 8.70 ug'm, 13.71 pg'm= and 6.00 pg-m=, 10.94 pg-m, respectively. These values, which are significantly higher than
in other regions, indicate particularly active secondary aerosol formation processes in these areas (Yang et al., 2020b).

In the southwestern region, Chengdu (CD), located in the Sichuan Basin, recorded an annual mean PM o concentration of
59.56 pg-m. This region is characterized by high aerosol optical depth and reduced visibility, attributed to poor dispersion
conditions and significant local industrial emissions (Li et al., 2003; Zhang et al., 2012).

The central Chinese sites of Jinsha (JS), Changde (CHD), and Lin'An (LA) showed relatively lower annual mean

3 3

concentrations of PMjo which are 47.17 ug-m, 46.59 pug:m>, and 48.16 ug-m>, respectively. Despite these lower
concentrations, the chemical composition shows distinct regional characteristics. Ca®" concentrations of 2.48 ug-m and 2.19
pug'm in JS and LA, respectively, likely reflect contributions from soil dust resuspension (Shen, 2016). K* concentration of
0.44 ug-m observed in CHD may be related to agricultural activities in the region (Liu et al., 2016).

Lhasa (LS), located in the center of the Tibetan Plateau at an elevation of 3,663 meters, has PM o concentrations that are
primarily influenced by natural factors due to its relatively sparse population and limited industrial emissions. Nevertheless,
LS maintained an average PMj, concentration of 47.82 pg-m>, mainly due to extensive dust resuspension from arid and
exposed terrain, coupled with regional dust storm events. The plateau's climatic conditions, characterized by particularly strong
winds and low humidity, enhance the dispersal of soil dust and maintain relatively high PM o levels despite the absence of
significant anthropogenic sources.

The annual mean PM o concentrations for urban, rural, suburban, and remote sites were 59.99 +29.38 ug-m3, 62.88 = 27.58
pug'm, 85.43 £ 39.43 ug'm, and 45.12 + 14.67 pg-m™, respectively. These data show that urban-rural transition zones had
the highest PM;y concentrations, which may be due to the simultaneous influence of multiple pollution sources from both
urban and rural areas, including industrial emissions, traffic pollution, and agricultural activities (Li et al., 2014). In contrast,

remote sites had the lowest PM o concentrations, reflecting minimal anthropogenic influence in these regions, with primary

pollution sources consisting of natural dust resuspension and long-range transported pollutants (Jiao et al., 2021).
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Table 3. Annual average concentrations (ug-m->) of PMyo and its chemical composition in different regions of China
from June 2022 to May 2023.

Station Type PMiwy OM EC Na* NHs K'  Mg¥? Ca* F Cl SO NOs
Chengdu Urban 59.56 17.09 397 2.18 2.11 0.30 023 2,67 0.15 0.58 6.29 9.36
Dalian Urban 4035 935 230 236 0.74 025 025 1.89 0.04 069 3.19 5.00
Lhasa Urban 4782 16.85 4.16 251 0.07 032 026 1.75 005 1.18 1.55 1.12
Nanning Urban 5423 12.87 350 2.03 120 037 021 289 0.07 064 721 5.09
Xi’An Urban 98.20 19.13 487 250 264 0.76 037 497 0.15 167 8.67 12.82
Changde Rural 46.59 9.05 217 044 276 044 0.08 1.02 0.03 027 6.16 6.18
Gucheng Rural 79.18 19.67 4.89 2.08 1.78 0.35 046 4.01 0.09 1.21 6.00 10.94
Dunhuang Suburban 90.36 2324 478 443 0.16 036 046 631 006 257 590 229
Zhengzhou Suburban 80.50 17.35 4.12 1.71 343 045 032 3.03 021 0.86 8.70 13.71
Jinsha Remote 4717 12.14 2.07 1.52 145 040 020 248 0.08 0.58 5.82 6.89
Lin’An Remote 48.16 13.02 292 137 146 034 022 219 0.04 066 537 7.42
Longfengshan Remote  40.04 1231 252 121 114 036 015 161 006 050 4.04 425
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3.2.2 Seasonal variation
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355  Figure 6. Stacked Representation of Monthly averaged PMio Concentrations and Chemical Composition (ug-m=) across Chinese
Regions, Including Unknown Components from June 2022 to May 2023 (n.d: Unknown Components). The map base is from the
Ministry of Natural Resources' Standard Map Service, review number GS (2019)1822.

Monthly variations in PMjo concentrations are shown in Figure 6. Overall, the study area shows a significant seasonal
differentiation of PM ;o concentrations, characterized by minimum levels in summer (June-August), maximum levels in winter
360 (December-February), and a secondary peak in spring (March-May). Multiple studies have also identified distinct seasonal
patterns in PMo concentrations, with minimal concentrations in summer and maximal concentrations in winter (Yang, 2009;
Quetal., 2010; Li et al., 2009). The lower PM concentrations observed in summer may be attributed to increased precipitation,
which effectively scavenges atmospheric particulate matter (Yang, 2009). In addition, research has shown significant negative
correlations between PM( concentrations and temperature, as well as positive correlations with atmospheric pressure (Han et
365 al, 2015; Li et al., 2019). Elevated PM;o concentrations in winter are primarily associated with increased solid fuel
consumption during the heating season (Tsvetanova et al., 2017). Additionally, unfavorable meteorological conditions in

winter, including high atmospheric stability, reduced atmospheric boundary layer height, and frequent temperature inversions,
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exacerbate the accumulation of pollutants (Zhao et al., 2014). Five monitoring stations including GC, LFS, DH, LA, and
Nanning (NN) exhibited significantly elevated concentrations during spring, which can be attributed to multiple factors. Firstly,
the frequent occurrence of dust events during spring increases atmospheric particulate matter concentrations. Secondly, weak
wind conditions and local circulation patterns establish local emissions as the primary source of PM o (Park et al., 2019).
Moreover, regional transport represents a significant influencing factor, with studies indicating substantial contributions to
PMio concentrations from dust transport from northwestern regions and pollutant transport from surrounding urban
agglomerations in spring (Ham et al., 2017).

The results indicate significant seasonal variations in monthly mean concentrations of OM and EC in urban, rural, and suburban
sites. All three functional site types showed the lowest concentrations in summer and the highest in winter, consistent with
previous studies confirming the widespread winter-high and summer-low seasonal pattern of carbonaceous components in
PMp across China (Tian et al., 2013). The elevated concentrations of OM and EC in winter correlate primarily with increased
fossil fuel and biomass combustion emissions during the heating season, coupled with unfavorable meteorological dispersion
conditions. Conversely, the decrease concentrations in summer are attributed to increased precipitation, increased mixing layer
height, and reduced stationary source emissions due to higher temperatures. However, remote sites showed different seasonal
patterns than other sites, with OM and EC concentration peaks occurring in spring and fall. This phenomenon may be
associated with regional-scale dust transport, biomass burning activities, and increased open-source emissions, while also
reflecting minimal local anthropogenic influence at remote sites, better representing regional background concentration
variations.

We observed generally higher concentrations of SO4> and NO;™ in winter compared to lower concentrations in summer. This
seasonal pattern is primarily due to increased SO, and NOy emissions from extensive fossil fuel combustion, especially coal,
during the winter heating season, which provides abundant precursors for the formation of sulfate and nitrate. In addition,
stable atmospheric stratification and frequent temperature inversions in winter inhibit the dispersion of pollutants, leading to
near-surface accumulation of these secondary inorganic ions. Furthermore, the relatively lower temperatures in winter facilitate
the gas-to-particle conversion of gaseous precursors, promoting the partitioning of semi-volatiles such as ammonium sulfate
and ammonium nitrate to the particulate phase (Wang et al., 2020). In contrast, higher summer temperatures favor the gaseous
state of these semi-volatile substances, while frequent convection and stronger atmospheric dispersion conditions significantly
reduce sulfate and nitrate concentrations in PMo (Simonich and Hites, 1994). This seasonal pattern is consistent with
observations from other regional studies and reflects the close relationship between secondary inorganic ion formation

mechanisms and meteorological conditions (Liu et al., 2017a; Wang et al., 2023a) .

3.3 OP concentrations

As shown in Figure 7, OP measurements conducted at twelve different sampling sites across China from June 2022 to May
2023 revealed significant temporal and spatial variability in OP,. Further analysis revealed a strong correlation between OP,

and the degree of urbanization at the sampling sites. During the sampling period, the urban site in Chengdu had significantly
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higher OP, levels compared to the other sites, while the rural site in CHD had the lowest OP, levels. However, the study
revealed unexpectedly high average OPy levels at the rural site in GC, ranking second highest among all sites. This finding is
consistent with the high PM;o mass concentrations observed at this site, suggesting a strong correlation between particulate
matter loading and OP, levels. GC, located in the Beijing-Tianjin-Hebei region characterized by high population density and
typical pollution concentration, experiences elevated OP, levels likely due to the combined influence of high PMio
concentrations, pollutant transport from surrounding urban areas, and local emissions (Han et al., 2015). In contrast, the urban
site in DL demonstrated relatively low average OP, levels, ranking second lowest. This phenomenon may be attributed to the
coastal location of DL, which benefits from strong marine air mass modulation and favorable atmospheric dispersion

conditions (Meng et al., 2019), resulting in comparatively lower OP, levels.
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Figure 7. Seasonal variations of (a) PMio concentrations (ug-m=) and (b) OPy (nmol H20:-m™) across different regions of China.
The map bases are from the Ministry of Natural Resources' Standard Map Service, review number GS (2019)1822.

As shown in Figure 7 (a) and (b), sites located in northern China exhibited significantly elevated PM o concentrations and
OP, levels during the autumn and winter seasons. This phenomenon in northern Chinese sites can be attributed to several
factors unique to northern China's regional characteristics. Firstly, the widespread reliance on coal-based central heating
systems and biomass burning for residential heating in northern China during the heating season (typically from November to
March) (Liu et al., 2017b; Li et al., 2017) sharply contrasts with southern China where heating demand is minimal due to
milder winter temperatures. In addition, northern China's continental climate creates more severe winter meteorological
conditions, including prolonged periods of low wind speeds, frequent temperature inversions, and significantly reduced
atmospheric boundary layer heights compared to the more temperate conditions in southern regions, which severely inhibited
pollutant dispersion (Li et al., 2017). Despite lower levels of urbanization in rural areas, PM o concentrations were comparable

to urban areas due to the widespread use of solid fuels (Li et al., 2014). Figure 7 (b) shows that nine of the twelve sites had
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lower OP, values in summer. This may be due to more frequent rainfall, which reduces PM o concentrations and subsequently
leads to lower OPy levels. However, sites such as LS and CD maintained relatively high OP, levels during the summer. This
phenomenon may be related to the enhanced of photochemical reactions during summer, especially under conditions of high
temperature and strong solar radiation, resulting in a significant increase in secondary organic aerosol (SOA) formation (Zhou
etal.,2019; Saffari et al., 2014). In particular, Lhasa's high-altitude location, characterized by minimal precipitation and intense
solar radiation, further promoted photochemical reactions, resulting in elevated OP, levels.

We observed elevated OP, levels at remote stations (such as LFS, JS, and LA stations) in spring. This phenomenon may be
attributed to the minimal influence of anthropogenic pollution sources at remote stations, which typically exhibit more
homogeneous mixing states and consequently have relatively lower and more stable OP, levels during other seasons. However,
the frequent occurrence of dust storms and increased temperature inversion events during spring can lead to elevated particulate
matter concentrations. In addition, the potential metal components carried by dust particles and the formation of secondary
aerosols further enhance OP, levels (Saffari et al., 2014), resulting in significantly elevated OP, levels during spring.

Table 4. Annual averaged OPy (nmol H202-m™) for PM across different regions of China from June 2022 to May 2023.

OP,

Station Average Median
Chengdu 0.85 0.57
Dalian 0.30 0.14
Lhasa 0.60 0.57
Nanning 0.56 0.50
Xi'An 0.73 0.74
Changde 0.22 0.21
Gucheng 0.83 0.75
Dunhuang 0.76 0.50
Zhengzhou 0.42 0.40
Jinsha 0.54 0.40
Lin'An 0.46 0.45
Longfengshan 0.57 0.52

We conducted a discussion on the differences between northern and southern sites across these 11 stations (excluding LS) in
China. The geographical division corresponding to the station is shown in Table S2. The distinction between northern and
southern sites and the specific analytical methods are detailed in S2. As shown in Figure 8(a), OP, concentrations in northern
regions exhibited higher levels during the winter, primarily due to increased pollutant emissions associated with coal-based

heating activities. In contrast, southern regions exhibited peak OP, concentrations in June, possibly due to enhanced
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photochemical reactions facilitated by stronger solar radiation intensity. However, a significant decrease was observed in July
and August, which may be attributed to the increased frequency of precipitation events leading to enhanced wet deposition
and the removal of particulate matter. Figure 8 (b) shows that the annual mean OP, concentrations in northern regions were
significantly higher than those in southern regions (p < 0.05). This spatial variation can be attributed to several factors,

including lower precipitation rates, frequent dust weather events, and emissions of coal combustion emissions in northern

regions.
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Figure 8. Comparison of (a) monthly and (b) annual average OPy between sites in northern and southern China.

3.4 Source apportionment

3.4.1 Source apportionment of PMio

This study employed the PMF model to conduct a detailed analysis of PM o sources at four representative sites selected based
on distinct geographical and environmental characteristics. The selection criteria considered regional representativeness,
pollution characteristics, and geographical diversity across China. The selected sites include: NN, an urban site in southern
China with coastal proximity; Longfengshan (LFS), a remote site located in the northeastern region of Heilongjiang Province;
ZZ, a suburban site serving as a major transportation hub in central China; and GC, a rural site situated in the heavily polluted
Beijing-Tianjin-Hebei region. These four sites collectively represent different pollution source characteristics and regional
environmental conditions, enabling a comprehensive understanding of PM;o source apportionment across diverse geographical
and climatic zones in China. The optimal number of factors for PMF analysis was determined based on Que/Qrobust Values and
BS mapping evaluation, as illustrated in Figure S1. The PMF results in this study were subjected to BS, DISP, and BS-DISP
error estimation analyses. Summary of error estimation diagnostics with PMF at NN, LFS, ZZ and GC stations are shown in

Table S3. Results indicate that PMo in NN likely originates primarily from biomass burning, traffic, dust, secondary aerosols,

20



and sea salt emissions. Sources of PM;¢ in LFS may include biomass burning, traffic, dust, agricultural activities, and secondary

aerosols. The ZZ site showed industry, agricultural activities, traffic, coal combustion, dust, and secondary aerosols as the

main sources. PM g sources in GC are biomass burning, traffic, dust, agricultural activity emissions, secondary aerosols, and

465 coal combustion. Figure 9 summarizes the distribution of PM o mass concentrations among the major sources at the four sites.

[ Seasalt Dust
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Figure 9. The contributions of Biomass burning, Traffic, Dust, Secondary aerosol, Sea salt, Agricultural activities, Coal combustion,
and Industry to the atmospheric concentration of PM1o mass (%) as derived by PMF modelling at NN, LFS, ZZ, and GC.
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As a typical urban site, the PMo source apportionment results at the NN site indicate that biomass burning, dust, and traffic
are likely the main contributors, accounting for 39.3%, 27.4%, and 21.4% of total sources, respectively. As shown in Figure
10, the first factor contained high levels of CI- (76.9%), Mg?" (27.6%), and Na* (14.3%), elements typically associated with
sea salt (Viana et al., 2008), contributing approximately 5% to PMo. Sea salt as a source of PMjo in NN likely enters urban
areas primarily through coastal air mass transport. NN is about 110 kilometers from the Beibu Gulf, and when prevailing
southerly winds occur, sea salt acrosols from the South China Sea may migrate to inland cities through atmospheric circulation.
The second factor contained high levels of Na* (66.7%), Ca*"(48.1%) and Mg?" (17.5%), contributing approximately 26% to
PM . This likely represents dust sources (Sharma et al., 2016), indicating that human activities such as urban construction
may have some impact on particulate emissions. The third factor had high levels of NH4" (84.2%), SO4* (45.7%), and NO3
(44.4%), contributing approximately 6.9% to PM o, possibly representing secondary aerosols. This suggests that the process
of gaseous precursors (such as SO,, NOy, and VOCs) in the atmosphere forming secondary particles through photochemical
reactions may have a certain impact on PMjo concentrations (Yue et al., 2015). The fourth factor contained high levels of Mg?*
(54.8%), EC (50.7%) and OC (38.2%), contributing approximately 20.2% to PM o, possibly related to traffic. EC and OC have
long been considered the main tracer elements for traffic emission sources, particularly vehicle exhaust emissions (Saarikoski
et al., 2008; Sowlat et al., 2016; Esmaeilirad et al., 2020). Research has shown that Mg is one of the elements present in high
concentrations in brake pad materials. Mg is typically used as a filler material in brake pads, and along with Fe, Ba and Cu,
serves as a characteristic element of brake wear (Mckenzie et al., 2009). At the NN urban site, which is heavily influenced by
traffic, brake wear is likely the primary source of these elements. The fifth factor had high levels of K* (74.9%), OC (37.2%),
and EC (35.1%), substances typically associated with biomass burning (Stracquadanio et al., 2019). This factor made a
significant contribution to urban PMo in NN, approximately 39.3%, indicating that biomass burning may be one of the
important sources of atmospheric particulate pollution in NN. Although the observation point is located in the urban area of
NN, which may be at some distance from areas where straw burning occurs, studies have shown that particulate matter
produced by biomass burning may undergo long-distance transport (Uranishi et al., 2019).

The PM | source apportionment results for LFS indicate that secondary aerosols may be the main contributor, accounting for
36.2% of total sources. Source analysis identified five potential major factors: In the first factor, NH4* (71.0%), Mg?* (26.5%),
and NOj; (18.0%) were present in high concentrations. NH4* and NOs™ are the main nitrogen components in agricultural
fertilizers (Cao et al., 2018), while Mg?* is commonly added to fertilizers as a supplementary element (Sun et al., 2018). This
factor may be related to agricultural activities, particularly fertilizer application processes. The second factor contained high
levels of Na* (74.6%), Mg?" (46.2%), and Ca®* (50.8%), elements typically associated with dust sources (Zhang et al., 2014a;
Sharma et al., 2016), contributing approximately 16.9% to PMjo. The third factor had high levels of EC (74.0%) and OC
(38.3%), components typically associated with traffic (Esmaeilirad et al., 2020), contributing approximately 17.6%. The fourth
factor contained high levels of Cl- (79.2%), Mg?" (22.7%), OC (22.5%), and K* (15.2%), among them, K* and CI- have been
identified as reliable indicators of biomass burning (Saggu and Mittal, 2020), contributing approximately 13% to PMjo. The
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fifth factor had high levels of SO4* (70.7%) and NOj5" (71.9%), with NH4* (27.3%) also making a considerable contribution,
these components are typically associated with secondary aerosol formation processes (Yue et al., 2015).

77 is located in a suburban area, and the diversity of its PM o sources may reflect the complex environmental characteristics
of this region. Source apportionment results suggest that there may be six major pollution sources in this area, with their
respective contribution proportions as follows: The first factor had high contribution of K* (21.7%) and C1 (83.9%), but low
contribution of OC (4.6%) and EC (2.8%), possibly indicating the influence of industrial emissions, such as food
manufacturing, cement manufacturing, salt production, or industrial activities involving potassium chloride compounds (Yin
et al., 2019; Seo et al., 2019), with a contribution proportion of approximately 9.5%.The second factor contained high levels
of Na* (77.6%), Mg?" (35.3%), and Ca®" (43.2%), elements typically associated with dust sources (Sharma et al., 2016),
contributing approximately 13.2% to PMjo. In the third factor, Mg?" (42.1%) and SOs* (46.9%) had relatively high
concentrations. Since SO4> primarily originates from fuel combustion (Schwartz, 1993), and Mg is specifically mentioned as
an element enriched in the magnetic separation of coal fly ash (Strzatkowska, 2021), this factor is associated with emissions
from coal combustion when regional characteristics are considered. Coal combustion accounts for around 15.5% of PM g
emissions and is likely to be associated with combined heat and power facilities in the surrounding area. The fourth factor had
high levels of EC (49.2%) and OC (22.1%), components typically associated with traffic (Esmaeilirad et al., 2020), contributing
approximately 16.6%. The fifth factor contained high levels of NH4" (80.1%), SO4* (33.0%), and NO3™ (52.6%), components
typically associated with secondary aerosol formation processes (Yue et al., 2015), accounting for approximately 23.2% of
total PM o sources. The sixth factor had high levels of K* (60.6%), Ca*" (38.4%), EC (39.3%), OC (28.8%), and NO5" (25.0%),
based on comprehensive analysis of these characteristic species, this factor may be related to agricultural activity emissions,
contributing approximately 22% to PMo. Ca?*, OC and EC may be related to surface soil dust (Yu and Cao, 2023), Jung et al.
found elevated K* concentrations at schools near corn farms, supporting the agricultural source attribution (Jung et al., 2024),
while NO3” would be related to fertilizer application (Cao et al., 2018).

The PM ) source apportionment results for the GC show that agricultural activities, traffic emissions, secondary aerosols, and
biomass burning are the main contributors, accounting for 20.5%, 20%, 18.5%, and 18.1% of total sources, respectively. The
factor with K (42.7%), NO;™ (38.4%), and Ca*" (29.2%) as primary characteristic species may be related to agricultural
activities, accounting for 20.5%. This likely reflects the contribution of corn, wheat, and other farming activities around the
site to PMjo, potentially associated with the agricultural-dominant economic structure of this rural area. Ca®>* and NOs™ may
originate from agricultural soil dust during tillage and other agricultural processes, and NOs™ could be related to fertilizer
application (Yu and Cao, 2023; Cao et al., 2018). Similar to the ZZ site, this agricultural source attribution is supported by
Jung et al., who found elevated K+ concentrations at schools near corn farms (Jung et al., 2024). The factor characterized by
EC (65.1%) and OC (48.1%) likely comes from traffic (Esmaeilirad et al., 2020), representing the second-largest contributor
to PM¢ at 20%. This indicates that transportation activities in rural areas may have a significant impact on PM;( concentrations.
The GC is relatively close to National Highway 107, and traffic emissions from the highway may contribute to the site's PMg

concentration through transport. Additionally, the increasing vehicle ownership in rural areas may be a contributing factor.
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Secondary aerosols, characterized by NHs" (93.0%), SOs* (45.6%), and NOs™ (52.3%), account for 18.5%, indicating the
important role of atmospheric secondary transformation processes in PMjo formation in this region (Yue et al., 2015). The
factor characterized by K* (22.3%) and CI" (76.2%) may be related to biomass burning (Saggu and Mittal, 2020), accounting
for 18.1%. This could be associated with activities such as straw burning and residential fuel use, particularly during crop
harvest seasons and winter heating periods when such activities may increase. The factor characterized by Na* (75.2%) and
Ca?" (44.6%) may be related to dust (Sharma et al., 2016), accounting for 14.7%, potentially reflecting the impact of
agricultural cultivation and road dust on PMj(. The factor characterized by Mg?* (43.0%) and SO4* (47.8%) may be related to
coal combustion emissions, accounting for 8.3%. This suggests that industrial activities and residential coal use in rural areas
may have some impact on PM, especially during the winter heating season when such emissions may become more prominent.
The contrasting OC/EC loadings in the agricultural activities factor between the suburban ZZ site and rural GC site reveal
important insights into the spatial heterogeneity of agricultural emissions. The suburban ZZ site, located in the intensively
cultivated Central Plains, experiences higher carbonaceous aerosol loadings from mechanized farming operations, which
contribute significantly to EC emissions through diesel exhaust from agricultural machinery (Liu et al., 2018). In contrast, the
rural GC site in Baoding represents areas with traditional, less mechanized farming practices, resulting in minimal EC
contributions from agricultural activities.

A notable pattern observed among the three sites with agricultural activities (LFS, ZZ, and GC) is the differential contribution
of NH4" within agricultural emission factors, with NH4" being exclusively associated with agricultural activities at the LFS
site. This spatial variation reflects the complex interplay between regional meteorological conditions, agricultural practices,
and atmospheric chemistry processes. At the LFS site in northeastern China, cooler climate conditions favor the stability of
particulate NH4", allowing its direct retention within agricultural emission factors (Wang et al., 2020). The concentrated
fertilizer application during the spring planting season, combined with lower ambient temperatures that minimize NH4"
volatilization, preserves the distinct agricultural source signature at this remote location (Huo et al., 2025). Conversely, at the
warmer ZZ and GC sites in central and northern China, NH4" undergoes more extensive atmospheric processing due to higher
ambient temperatures. These conditions promote the volatilization of NH4" to gaseous NHs, which subsequently undergoes
secondary reactions with acidic species (SO4> and NOj3’) to form ammonium-containing secondary aerosols (Stelson and

Seinfeld, 1982; Wang et al., 2015).

3.4.2 Source apportionment of OP in PMio

In this study, the PMF model was applied to identify the sources of OP, in PM;o samples collected from four sites. Through
comparison of OPy, across different pollution sources, insights into the differential toxic efficiencies of various sources were

obtained.
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Figure 11. Comparison of OPm contributions from different emission sources across NN, LFS, ZZ and GC sites.
Traffic

Traffic emission is a common important contributing source to OP, at the four sites NN, LFS, ZZ and GC. The high OP of
traffic emissions is mainly attributed to the oxidative components in their particulate matter emissions, including organic
carbon as well as potentially present PAHs and transition metals (TMs) (Valavanidis et al., 2008). Traffic sources showed high
OPy, (0.013-0.022 nmol H,0,-pg™) at all monitoring sites, indicating that the particulate matter they generate has significant
toxic efficiency. The high oxidative activity of traffic-emitted particulate matter may be related to its complex chemical
composition. PAHs emitted from traffic sources can form quinone compounds and other oxygen-containing organic
compounds, which can promote reactive oxygen species generation through redox reactions (Nielsen, 1996; Libalova et al.,

2018).
Biomass burning

Biomass burning sources were only detected to contribute to OP at NN and GC sites, with OPy, of 0.019 and 0.006 nmol
H,0,-ug™!, respectively. Notably, biomass burning has the highest OP,, in NN. This is closely related to the frequent crop
straw burning activities in the region. Particulate matter emitted from biomass burning has complex chemical compositions,

and its OP primarily originates from various organic compounds produced during the combustion process. The higher toxic
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efficiency of biomass burning at the NN site may be related to multiple oxidatively active components generated from
incomplete combustion. Additionally, biomass burning produces substantial amounts of PAHs, which can form quinone
intermediates through metabolic activation within cells, subsequently participating in ROS generation processes (Zhu et al.,
2024; Libalova et al., 2018). The biomass burning process also releases water-soluble organic carbon (WSOC), which contains
humic-like substances (HULIS) with significant oxidative activity (Yan etal., 2015; Salma et al., 2010). These macromolecular
organic compounds contain abundant functional groups such as hydroxyl, carbonyl, and carboxyl groups, which can generate
reactive oxygen species like hydroxyl radicals and hydrogen peroxide through photochemical reactions and metal-catalyzed
reactions (Verma et al., 2015; Lin and Yu, 2011). The biomass burning at LFS sites, despite contributing to PM,o, lacks
oxidative activity, which may be related to different combustion conditions or degrees of combustion completeness leading to
reduced generation of oxidatively active components. Differences in combustion temperature and oxygen supply conditions
significantly affect the formation and transformation of organic compounds, under high-temperature complete combustion
conditions, most organic compounds are oxidatively decomposed, thereby reducing the oxidative activity of particulate matter

(Tuet et al., 2017).
Secondary aerosols

Secondary aerosols exhibited distinctly different patterns at different sites. At the LFS and GC sites, OPy, values of secondary
aerosols are 0.005 and 0.014 nmol H2O,-ug™, respectively, while the OP contributions of secondary aerosols were completely
absent at NN and ZZ sites. This spatial heterogeneity may be related to the formation mechanisms, aging degree, and precursor
composition of secondary aerosols. The photochemical oxidation processes of volatile organic compounds (VOCs) in the
atmosphere play an important role in the oxidative activity of secondary aerosols (Kong et al., 2023). In atmospheric
photochemical reactions, precursors such as benzene compounds and terpenes undergo complex chemical transformations
under the action of oxidants like -‘OH and ozone, forming products with strong oxidative activity (Chen et al., 2022). These
reaction products include various oxygen-containing organic compounds, such as aldehydes, ketones, carboxylic acids, and
peroxides, which can participate in ROS generation through multiple pathways like photochemical reactions and Fenton
reactions (Wei et al., 2022; Lin and Yu, 2011). The absence of secondary aerosol OP contributions at NN and ZZ sites may be
related to multiple factors. First, the concentrations and compositions of VOC precursors at these two sites may not be favorable
for forming secondary organic aerosols with high oxidative activity, or the concentrations of atmospheric oxidants may be low,
limiting the generation of oxidatively active products (Chen et al., 2022; Kalbande et al., 2022). Additionally, differences in
meteorological conditions such as relative humidity, temperature, and solar radiation intensity significantly affect the formation
and aging processes of secondary aerosols, and unfavorable meteorological conditions may lead to the formation of products

with weaker oxidative activity (Xu et al., 2017; Wu et al., 2022).

Dust
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The minerals contained in dust can participate in the ROS generation process (Nishita-Hara et al., 2019; Lodovici and Bigagli,
2011). The OPy, values of dust at NN, LFS, and GC, are 0.004, 0.009, and 0.016 nmol H,O,-ug’!, respectively. The dust source
at the GC site exhibited the highest toxic efficiency, whereas the NN site showed relatively lower OP,, indicating weaker
intrinsic toxicity of local dust. Notably, the ZZ site demonstrated zero OP contribution from dust sources, which may be
attributed to distinct chemical characteristics of dust particles resulting from regional soil composition, geological background,
or urbanization level. The oxidative activity of dust particles is primarily associated with their complex mineral composition
and surface chemical properties. Due to varying geological backgrounds, dust from different regions exhibits significant
differences in mineral composition, consequently affecting its OP. Quartz particles demonstrate certain oxidative activity
through surface-catalyzed reactions that generate hydroxyl radicals, facilitated by surface silanol groups and defect sites
(Konecny et al., 2001). Meteorological conditions also significantly influence the oxidative activity of dust (Joshi et al., 2017;
Ma et al., 2023). The NN site is located in southern China, where higher precipitation levels compared to northern regions may

contribute to reduced oxidative reactivity.
Coal combustion

PM emitted from coal combustion may contain numerous TMs and PAHs, which can promote ROS generation through
pathways such as the Fenton reaction, thereby enhancing the OP of the particles (Pardo et al., 2020). Notably, coal combustion
sources exhibit significant differences in OP,, contributions at the ZZ and GC sites (0.008 and 0.017 nmol H,Os-pg!,
respectively). This disparity in mass-specific toxicity may reflect variations in coal types or pollution control technologies
across different regions, ultimately influencing the chemical composition and toxicological characteristics of the emitted
particles. The organic carbon fraction of coal combustion emissions contains substantial amounts of oxygenated organic
compounds, such as aldehydes and ketones, which can directly participate in oxidative stress reactions or act as precursors for
generating stronger oxidants (Wang et al., 2023b). Different coal types produce particles with distinct oxidative properties.
For instance, lignite combustion, due to its higher volatile matter content, tends to generate more organic compounds, resulting
in relatively higher oxidative activity (Martens et al., 2021). Combustion technologies and pollution control measures also
significantly influence the OP of coal-derived particles. Modern coal-fired power plants equipped with desulfurization (FGD),
denitrification (SCR/SNCR), and particulate removal systems can effectively reduce certain redox-active components, thereby
lowering the toxic efficiency of the emitted particles (Tao et al., 2020; Asif et al., 2022). The observed differences in oxidative
activity between the ZZ and GC sites may be closely linked to local coal quality, combustion facility technologies, and the

implementation level of environmental protection measures.
Agricultural activity

The OP of agricultural activities was only detected at the ZZ and GC sites, with OPy, of 0.012 and 0.004 nmol H>O,-pg™!,

respectively, while no OP contribution from agricultural activities was observed at the LFS site. The source of agricultural
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activities at ZZ exhibited relatively higher toxic efficiency, indicating that agricultural-derived particulate matter in this region
possesses stronger oxidative activity. In contrast, the toxic efficiency of agricultural sources at GC was comparatively weaker.
This regional disparity may be attributed to variations in agricultural practices, types of fertilizers or pesticides used, and
agricultural waste management methods across different areas, leading to significant differences in the chemical composition
and oxidative activity of agricultural-derived particles. NOs~ formed during fertilizer application can influence particle
oxidative properties through ionic strength effects and acidification processes (Lodovici and Bigagli, 2011). Pesticide usage
constitutes another critical source of agricultural OP. Degradation products of organophosphorus pesticides often demonstrate
strong oxidative activity (Lukaszewicz-Hussain, 2010). Fine particles generated during pesticide spraying may carry these
reactive components into the atmosphere, enhancing the overall OP of agricultural-derived particulate matter. The absence of
agricultural OP at LFS could be related to the intensity and type of farming practices in this northern urban area. The
surrounding agriculture likely adopts extensive farming methods with lower fertilizer and pesticide application rates, resulting

in insufficient concentrations of oxidative components in agricultural-sourced particles.
Sea salt

Although NN is located inland, it is influenced by air masses originating from the South China Sea, enabling long-range
transport of sea salt aerosols that affect local atmospheric OP. Halogen compounds (e.g., Cl, Br’) in sea salt can catalyze the
generation of radicals such as ‘OH and Cl-, thereby participating in atmospheric oxidation processes (Cao et al., 2024;

Knipping et al., 2000). At the NN site, the OPy, of sea salt aerosols was measured at 0.016 nmol H,Oz-ug™.
Industry

The PMF results revealed that industrial emissions at ZZ were dominated by Cl~ and K* with negligible contributions from
OC and EC. OC typically serves as the primary contributor to particle oxidative activity through redox-active organic species,
including quinones and phenolic compounds that can participate in electron transfer reactions and generate reactive oxygen
species (Libalova et al., 2018; Jiang and Jang, 2018). The absence of organic carbon compounds provides a mechanistic

explanation for the zero OP observed in this source profile.

4 Conclusions

This study utilized a comprehensive approach to analyze the characteristics and sources of PM o and its OP at 12 representative
sites in China. The main findings are summarized as follows:

1. Performance of CNN-LSTM deep learning model
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The CNN-LSTM deep learning model exhibited robust performance in reconstructing missing data for PM;o mass
concentrations and outliers in chemical components. The model achieved R? values of 0.9670 and 0.8840 for the training and
testing sets, respectively. These results highlight the potential of the model to address missing data issues in PM i research.
2. Spatiotemporal variations in PM;o and OP levels

PMio and OP concentrations showed remarkable spatial and temporal variations:

- PMi¢ concentrations were relatively higher in XA and DH in the northwestern region, while lower in LFS and DL in the
northeastern region.

- Suburban sites generally exhibited higher PM ¢ concentrations compared to other site types.

- OP levels were relatively higher in CD and GC, with urban sites having higher OP, values than other sites.

- Annual average PM concentrations in northern regions were typically higher than in southern regions.

- Seasonally, PM;o and OP levels were higher in winter and lower in summer, suggesting the potential benefits of implementing
targeted control measures during high-risk periods to mitigate adverse health impacts.

3. Source Apportionment Findings

Source apportionment using PMF indicated that dust, biomass burning, traffic emissions, and agricultural activities were likely
the main contributing sources to PM o mass concentrations at the study sites. Understanding the contributions of these sources
is crucial for developing more effective PM o reduction strategies.

4. OP Source Analysis

OPy, analysis revealed significant spatial variations in toxic efficiency across different sources. Traffic sources demonstrated
consistently high OPy (0.013-0.022 nmol H,O,-ug™) at four sites, indicating significant toxic efficiency of traffic-generated
particulate matter. Biomass burning showed the highest OPy, at NN (0.019 nmol H,O»-ug™), closely related to frequent crop
straw burning activities. Secondary aerosols exhibited the highest OP,, value at GC (0.014 nmol H,O,-pg™"). Dust sources
showed regional differences, with highest toxic efficiency at GC (0.016 nmol H>O,-ug™!) and zero contribution at ZZ. Coal
combustion sources exhibited significant differences between ZZ and GC (0.008 and 0.017 H20,'ug™), reflecting variations
in coal types and pollution control technologies. Sea salt aerosols at NN demonstrated OP,, of 0.016 nmol H>O,-ug™! through
long-range transport from coastal regions. Industrial emissions at ZZ showed zero OP due to the absence of organic carbon
compounds in the source profile.

The study results underscore the importance of identifying and quantifying OP sources to assess and mitigate health risks
associated with PM o exposure. The source apportionment findings suggest that emission reduction measures targeting traffic,
biomass burning, dust, agricultural activities, and coal combustion may help lower OP levels and protect public health. This
research employed deep learning techniques to analyze the spatiotemporal distribution characteristics, source apportionment,
and influencing factors of PMjy and its OP in different typical regions of China from multiple perspectives. The findings
provide a scientific basis for better understanding the causes of PM o pollution, formulating control strategies, and mitigating

health risks. Future studies should focus on further investigating the identification and health risk assessment of toxic and
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harmful components in PMo, exploring the toxicological mechanisms of OP, and developing integrated indicators that
combine chemical components and toxicity for characterizing and evaluating PM o pollution.
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