
Response to the reviewer:  

We are grateful to the reviewers for their comprehensive evaluation and 

constructive feedback on our manuscript. Their insightful comments have led to 

substantial improvements in our work. Below, we provide point-by-point responses to 

each reviewer's comments, with the original comments in black and our responses in 

blue. All revisions made to the manuscript are highlighted accordingly. 

 

Major comments: 

1. The title and introduction suggest that CNN-LSTM analysis supports PM10 source 

apportionment, whereas it is actually used only for replacing anomalous data. It should 

be clearly emphasized what is the added value of such pre-processing step for the 

subsequent source apportionment. 

Response: We sincerely appreciate your valuable suggestion. In this study, the CNN-

LSTM model was applied exclusively during data preprocessing, where its primary 

function was to detect and replace PM10 outliers, thereby enhancing the overall dataset 

quality. We clarify that this step does not directly contribute to the PMF source 

apportionment analysis but serves to ensure the reliability of input data for subsequent 

modeling. By improving data integrity, the preprocessing step facilitates more robust 

identification of pollution sources and more accurate quantification of their 

contributions in the PMF results. To better reflect this methodological distinction, we 

have revised the manuscript’s title to explicitly highlight the preprocessing role of 

CNN-LSTM. The updated title is: “Measurement Report: Unraveling PM10 Sources and 

Oxidative Potential Across Chinese Regions Based on CNN-LSTM Data Preprocessing 

and Receptor Model”  

2. The used PMF approach lacks a proper statistical description. Key aspects such as 

number of factors selection, residuals and error estimation should be presented, at least 

in the supplement section. Moreover, PMF analysis was conducted for only 4 sites, 

despite data being available for 12. Performing PMF across all sites could yield more 



robust results, highlighting the contrasts between urban, suburban, rural and remote 

areas. Otherwise, the authors should clearly demonstrate that the selected sites are fully 

representative of the different typologies. 

Response: Thanks for these important and constructive comments regarding the 

PMF analysis. We have made substantial improvements to address these concerns. 

(1) Statistical description of PMF approach 

We completely agree that the PMF analysis requires more comprehensive statistical 

documentation. In the supplement, we have added in “S3 Source profiles from the PMF” 

that includes: 

 

Figure S1. Changes in Qtrue/Qrobust and uncorrelated bootstrap (BS) mapping calculated by the 

PMF model for varying numbers of factors (3-8). Black dots represent the optimum solution factors 

at each station. 

 

 



Table S4. Summary of error estimation diagnostic with PMF at NN, LFS, ZZ and GC station. 

Diagnostics NN LFS ZZ GC 

 Number of base run 20 20 20 20 

 Qrobust 2338 2658.86 2043.86 2066.75 

 Qtrue 2521.1 3160.89 2341.26 2249.16 

 Qtrue/Qrobust 1.08 1.18 1.14 1.09 

DISP 
% dQ < 0.1 % < 0.1 % < 0.1 % < 0.1 % 

swaps 0 0 0 0 

BS 

Number of run 100 100 100 100 

Extra modeling 

uncertainty (%) 
0 0 0 0 

Min. Correlation R-

Value 
0.6 0.6 0.6 0.6 

Mapping 

Dust: 94% 

Biomass burning: 99% 

Others: 100% 

Secondary aerosol: 88% 

Traffic: 97% 

Agricultural activities:95% 

Others: 100% 

Coal combustion: 87% 

Secondary aerosol: 97% 

Agricultural activities: 98% 

Others: 100% 

Agricultural activities: 90% 

Coal combustion: 85% 

Others: 100% 

BS-DISP 

#of Cases Accepted 89 78 80 71 

% cases with swaps 9% 18% 15% 25% 



(2) PMF analysis site representativeness 

The selection of these four sites was based on the following considerations: First, 

these four sites possess good representativeness in terms of geographical location and 

environmental characteristics. Second, considering the data quality requirements for 

PMF model analysis, we selected sites with high data completeness and reliability. 

Specifically, Nanning represents the southern inland urban environment (located 

relatively close to the coast), Longfengshan is located in the northeastern region and 

serves as a background site reference, Zhengzhou, as an important transportation hub, 

exhibits typical suburban characteristics, and Gucheng is situated in the key pollution 

area of the Beijing-Tianjin-Hebei region, representing the rural environmental 

characteristics of this area. We have added detailed explanations for the site selection 

criteria in the revised manuscript (Lines 451-458): “This study employed the PMF 

model to conduct a detailed analysis of PM10 sources at four representative sites 

selected based on distinct geographical and environmental characteristics. Specific 

tracers used in PM10 source apportionment in this study are shown in Table S3. The 

selection criteria considered regional representativeness, pollution characteristics, and 

geographical diversity across China. The selected sites include: NN, an urban site in 

southern China with coastal proximity; LFS, a remote site located in the northeastern 

region of Heilongjiang Province; ZZ, a suburban site serving as a major transportation 

hub in central China; and GC, a rural site situated in the heavily polluted Beijing-

Tianjin-Hebei region. These four sites collectively represent different pollution source 

characteristics and regional environmental conditions, enabling a comprehensive 

understanding of PM10 source apportionment across diverse geographical and climatic 

zones in China.” 

3. The discussion about OP might be improved. For example, in section 3.3, the link 

between the chemical composition and OP is not addressed. This could help to 

understand the elevated OP level observed in Chengdu during summer or in Jinsha 

during spring. Conducting PMF at these sites might provide further insight. 

Additionally, the sources contributions to OP were obtained from the PMF analyses, 



but the reported percentages should be clarified. Do they account for the explained 

variability of the model? What are the contributions to the unexplained part? Moreover, 

given that OP concentrations are often known to be associated with biomass burning 

(Daellenbach et al., 2020), the absence of any such contribution for LFS and ZZ is 

surprising and should be discussed. 

Daellenbach, K.R., Uzu, G., Jiang, J., Cassagnes, L.-E., Leni, Z., Vlachou, A., Stefenelli, 

G., Canonaco, F., Weber, S., Segers, A., Kuenen, J.J.P., Schaap, M., Favez, O., Albinet, 

A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., El Haddad, I., Jaffrezo, 

J.-L., Prévôt, A.S.H., 2020. Sources of particulate-matter air pollution and its oxidative 

potential in Europe. Nature 587, 414–419. https://doi.org/10.1038/s41586-020-2902-8     

Response：We appreciate the reviewer’s insightful suggestions.  

(1) Correlation analysis between OP and chemical composition at CD and JS 

Thank you for your valuable comment regarding the discussion of OP in section 

3.3. We appreciate your suggestion to strengthen the link between chemical 

composition and OP. Following your recommendation, we have conducted Spearman 

correlation analysis between OP and other chemical components at both Chengdu in 

summer and Jinsha in spring. As shown in Figure R1, the results reveal strong positive 

correlations (r > 0.5, P <= 0.001) between OP and various chemical constituents at both 

locations. Based on these correlation findings, we believe that the elevated OP levels 

observed in Chengdu during summer and in Jinsha during spring can be attributed to 

the complex mixture of pollutants at these sites. The strong correlations suggest that co-

pollution from multiple sources contributes synergistically to the enhanced oxidative 

potential. The seasonal variations in OP likely reflect the combined effects of 

meteorological conditions, emission patterns, and chemical transformation processes 

that influence the concentration and composition of these reactive species. 

https://doi.org/10.1038/s41586-020-2902-8


 

Figure R1. Spearman correlation coefficients between OPv and the chemical species observed 

at (a) CD in summer and (b) JS in spring. 

(2) Explained variability of the model 

Thank you for your insightful comment regarding the PMF analysis and source 

contributions to OP. We acknowledge that providing detailed metrics for explained 

variability would enhance the interpretation of our PMF results. However, we would 

like to clarify our approach following established practices in the field. It should be 

noted that OPv was set as "weak" in the PMF input parameters, which resulted in a 

lower r2 value compared to other chemical components. As noted in numerous PMF 

studies, the primary objective is to reproduce the observed mass concentrations with 

reasonable reconstruction accuracy. The main criterion for model validation is 

achieving satisfactory mass reconstruction with r2 > 0.8, which indicates that the 

identified sources can adequately explain the observed variability in the dataset. In our 

study, the PMF results demonstrate that most chemical components achieved r2 values 

above 0.8, suggesting robust source identification and apportionment. The reported 

percentages for source contributions to OP represent the relative importance of each 

identified source in explaining the observed OP values based on this validated model 

framework. 

We believe that the strong mass reconstruction performance (r2 > 0.8 for most 

components) provides confidence in the reliability of our source apportionment results 

and the subsequent OP source contributions. This approach is consistent with standard 

practices in PMF applications for aerosol source apportionment studies. 



(3) Contribution of biomass combustion to no OP at LFS and ZZ 

Thank you for this valuable observation and for bringing the Daellenbach et al. 

(2020) study to our attention, which indeed highlights the typical association between 

OP and biomass burning. This reference provides important context for interpreting our 

results. 

However, our results do show that the LFS site exhibits no contributions of OP in 

the biomass burning factor, which may be attributed to specific local combustion 

conditions. High-temperature complete combustion leads to oxidative decomposition 

of organic compounds, thereby reducing the oxidative potential of particulate matter 

despite contributing to PM10 levels. We have added in Lines 592-597: “The biomass 

burning at LFS sites, despite contributing to PM10, lacks oxidative activity, which may 

be related to different combustion conditions or degrees of combustion completeness 

leading to reduced generation of oxidatively active components. Differences in 

combustion temperature and oxygen supply conditions significantly affect the 

formation and transformation of organic compounds, under high-temperature complete 

combustion conditions, most organic compounds are oxidatively decomposed, thereby 

reducing the oxidative activity of particulate matter (Tuet et al., 2017).” 

For the ZZ site, upon further examination of the PMF results in conjunction with 

local emission characteristics and considering the reviewer's insight, we have refined 

our factor identification from biomass burning to industrial emission, which better 

aligns with the observed chemical profile and local source conditions at this location. 

The manuscript has been revised accordingly with additional discussion. We have 

corrected in Lines 509-512 and Lines 664-669. 

 Lines 509-512: “The first factor had high contribution of K+ (21.7%) and Cl- 

(83.9%), but low contribution of OC (4.6%) and EC (2.8%), possibly indicating the 

influence of industrial emissions, such as food manufacturing, cement manufacturing, 

salt production, or industrial activities involving potassium chloride compounds (Yin 

et al., 2019; Seo et al., 2019), with a contribution proportion of approximately 9.5%.” 

 Lines 664-669: “Industry 

The PMF results revealed that industrial emissions at ZZ were dominated by Cl⁻ 



and K⁺ with negligible contributions from OC and EC. OC typically serves as the 

primary contributor to particle oxidative activity through redox-active organic species, 

including quinones and phenolic compounds that can participate in electron transfer 

reactions and generate reactive oxygen species (Libalova et al., 2018; Jiang and Jang, 

2018). The absence of organic carbon compounds provides a mechanistic explanation 

for the zero oxidative potential observed in this source profile.” 

4. The authors are encouraged to carefully revise the text as there is no mention of 

supplementary materials (Tables S1, S2, S3) in the main text. 

 Response: Thank you for your careful review. We have now revised the manuscript 

to include appropriate citations to these supplementary tables at the relevant sections in 

Line 271 (Table S1), Line 437 (Table S2), and Line 461 (Table S3).  

Specific comments: 

5. All acronyms must be clearly defined before being used for the first time, even in the 

abstract, and not re-defined after it (ex: lines 52, 211, 238, 337, 361). Please revise it 

carefully. 

Response: Thanks for your suggestion. We have systematically reviewed the 

manuscript and standardized the use of acronyms. All acronyms are now properly 

defined upon their first appearance and not re-defined afterwards.  

6. Line 21: Please indicate these “highest OP values”. 

Response: We are grateful for your constructive feedback. We have revised Line 21 

to include the precise numerical values. The updated manuscript reads: “Urban sites 

showed the highest OP values (0.61±0.21 nmol H2O2·m
-3), with significantly higher 

PM10 concentrations in northern regions compared to southern ones (p<0.05).” 

7. Line 48: spaces are missing several times in the text: lines 48, 51, 54, 74, 86, 165, 

239, 324, 371. 

Response: Thanks for pointing out these formatting issues. We have corrected all 

the missing spaces. 



8. Lines 60-61: These health effects are already stated earlier (line 46). 

Response: Thank you for your careful review. The health effects mentioned in Lines 

60-61 were indeed already stated earlier in Line 46. We have deleted this duplicated 

information to eliminate redundancy and enhance the clarity of the text. 

9. Lines 66-81: It is mentioned here that to face challenges in source apportionment 

methods, deep learning technics can be used to deal with anomalous data. However, 

the CNN/LTSM model was only applied for correcting the total PM10 data, and not the 

data inputs used for PMF. This should be clarified.   

Response: Thanks for pointing out this important issue. We agree that our original 

statement could have been misleading. In our study, the CNN-LSTM model is 

specifically used to handle missing data and anomalies to improve data quality. We 

have revised the manuscript to make this clear: (1) the CNN-LSTM approach is applied 

for data preprocessing to ensure high-quality, complete datasets; (2) this data quality 

improvement step is essential before conducting source apportionment analyses; and 

(3) we have removed the misleading reference to traditional source attribution methods 

in this context. The revised text now clearly distinguishes between data quality 

improvement (using CNN-LSTM) and subsequent source apportionment analyses, 

providing a more accurate representation of our methodology. The detailed revisions 

can be found in Lines 63-80 of the revised manuscript. 

“However, an accurate assessment of the health risks associated with PM10 requires 

an accurate analysis of its sources and chemical compositions. High-quality, complete 

datasets are essential for reliable source apportionment and subsequent risk assessment. 

Environmental monitoring data often contain missing values and anomalies due to 

instrument malfunction, maintenance periods, or extreme weather conditions, which 

can significantly affect the accuracy of subsequent analyses. In recent years, with the 

rapid development of deep learning technology, its application in handling 

environmental data quality issues has received increasing attention. Deep learning 

models, particularly the combination of Convolutional Neural Networks (CNN) and 

Long Short-Term Memory networks (LSTM), have demonstrated significant 



advantages in identifying and correcting anomalies and filling missing values in time 

series environmental data. CNNs effectively extract spatial features, while LSTMs 

excel at capturing long-term dependencies in time series (Huang and Kuo, 2018; Li et 

al., 2020). This hybrid model not only identifies anomalies, but also improves data 

completeness and reliability by predicting and replacing anomalous or missing values 

(Lee et al., 2019; Qin et al., 2019). Compared with traditional machine learning 

methods, CNN-LSTM models show superior performance in several evaluation metrics, 

such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE) (Huang and 

Kuo, 2018; Yang et al., 2020a; Li et al., 2020). CNN-LSTM models retain significant 

value in processing atmospheric particulate matter data for data quality improvement. 

Their spatial feature extraction capabilities effectively identify and correct anomalies 

caused by instrument malfunction or local pollution events, thereby improving data 

quality (Zhang and Zhou, 2023). Through training and learning, CNN-LSTM models 

can effectively predict and fill missing data, providing a high-quality data foundation 

for subsequent source apportionment and risk assessment analyses (Li et al., 2020; 

Yang et al., 2020a).” 

10.  Line 95: This is not correct, no MLR model was used in this study for evaluating 

the PM10 sources contributions to OP. 

Response: Thanks for catching this mistake. We apologize for this oversight that was 

not corrected in time. Lines 93-95 have been revised to: “Finally, based on the PMF 

results, we calculated the OP per unit mass of PM10 (OPm) to investigate the intrinsic 

toxicity of different emission sources.” 

11.  Lines 190-191: I’m curious how relevant is this criterion. Metals such as Al, Fe, 

Si, K are not measured and can significantly affect the total PM10 mass concentrations 

during some specific periods, e.g. during desert dust events. I would recommend some 

more justification. 

 Response：Thank you for raising this important point regarding the potential 

influence of unmeasured metals on PM10 mass concentrations. 



 We acknowledge that metals such as Al, Fe, Si, and K can significantly affect total 

PM10 mass concentrations during desert dust events. However, our analysis shows that 

such conditions were extremely rare in our study. Among all 1237 samples collected 

across all monitoring sites, only 20 samples (approximately 1.6%) were collected 

during blowing dust or haze events. Given this very low frequency of dust-related 

events, we believe our current approach is appropriate for this particular dataset. The 

vast majority of samples (98.4%) were collected under normal atmospheric conditions 

where the measured chemical components adequately represent the PM10 composition 

for our analysis objectives. 

 Nevertheless, we also suggest that future studies in regions with more frequent dust 

events should consider including crustal element measurements for more 

comprehensive mass reconstruction. 

12.  Line 216: n, m and p are not described. 

Response: Thank you for the valuable observation. We acknowledge that the 

variables n, m, and p in the PMF mathematical model were not adequately defined in 

the original manuscript. We have revised the text to include clear definitions of these 

parameters. Lines 215-216 have been revised to: “Where X is the observation data 

matrix (n×m), G is the factor contribution matrix (n×p), F is the factor profile matrix 

(p×m), and E is the residual matrix. Here, n represents the number of samples, m 

represents the number of chemical species, and p represents the number of factors.” 

13.  Line 231: Is it “PM10 concentration measurements” or “reconstructed PM10 

concentrations”? If PM10 were measured at all sites then how? 

Response: Sorry for the confusion. The “PM10 concentration measurements” refers to 

the PM10 concentration data available in our dataset. The CNN-LSTM model was 

trained using PM10 concentrations from non-outlier datasets along with their 

corresponding eleven chemical constituent concentrations. The trained model was then 

used to predict PM10 concentrations for outlier datasets based on their chemical 

constituent concentrations as input features. Lines 230-237 have been revised to: “The 



CNN-LSTM model was trained using non-outlier datasets consisting of PM10 

concentration measurements and their corresponding eleven chemical constituents, 

including OM, EC, Na+, NH4
+, K+, Ca2+, Mg2+, F-, Cl-, NO3

-, and SO4
2-. To ensure the 

integrity of the data quality, outlier elimination was performed based on the sum of the 

chemical components. After the outlier screening process described in Section 2.3.3, 

471 non-outlier datasets meeting the quality criteria were retained for model training 

and evaluation, with 85% allocated to the training set and 15% to the test set. The 

trained CNN-LSTM model was then used to predict PM10 concentrations for the 766 

outlier datasets by using their eleven chemical constituent concentrations as input 

features, with the predicted values replacing the original outlier measurements to 

maintain data completeness.” 

14.  Line 232: Please justify the use of OM =1.4*OC. 

Response: Thank you for asking for justification of this conversion factor. We 

sincerely apologize for the confusion in our manuscript. Due to our oversight during 

the final manuscript preparation, the text incorrectly stated OM =1.4*OC in Line 336, 

but we actually used OM = 1.2*OC throughout all our calculations and data analysis. 

We have carefully reviewed our analysis code and confirmed that 1.2 was consistently 

applied. This discrepancy has now been corrected in the revised manuscript. 

The conversion factor of 1.2 was specifically chosen based on established literature 

recommendations for urban atmospheric aerosols. White and Roberts suggested that 

1.2-1.4 represents a conservative range commonly used in mass balance analysis (White 

and Roberts, 1977). We selected 1.2 as the more conservative end of this range to avoid 

overestimating organic matter contributions in our PMF source apportionment analysis. 

Therefore, we believe that the use of OM = 1.2*OC represents a reasonable and 

conservative approach for our urban PM10 source apportionment study. 

Reference 

White, W. H. and Roberts, P. T.: On the nature and origins of visibility-reducing aerosols in the los 

angeles air basin, Atmos. Environ., 11, 803-812, https://doi.org/10.1016/0004-6981(77)90042-

7, 1977. 



15.  Lines 232-235: This is already stated earlier, and needs to be better explained. 

Response: Thanks for your kind reminder. We removed the duplicated description 

of the outlier elimination criteria that was previously mentioned in Section 2.3.3 and 

enhanced the explanation to clarify that the trained CNN-LSTM model was applied to 

predict PM10 concentrations for the 766 outlier datasets, with these predicted values 

used to replace the original outlier measurements. Lines 231-237 have been revised to: 

“To ensure the integrity of the data quality, outlier elimination was performed based on 

the sum of the chemical components. After the outlier screening process described in 

Section 2.3.3, 471 non-outlier datasets meeting the quality criteria were retained for 

model training and evaluation, with 85% allocated to the training set and 15% to the 

test set. The trained CNN-LSTM model was then used to predict PM10 concentrations 

for the 766 outlier datasets by using their eleven chemical constituent concentrations as 

input features, with the predicted values replacing the original outlier measurements to 

maintain data completeness.” 

16.  Line 236: What percentage of the total data do the outliers represent? 

Response: Thank you for important question. In our dataset, outliers represent 

approximately 62% of the total data points. Specifically, we identified 766 outliers out 

of 1237 total observations. 

The relatively high percentage of outliers in our PM10 dataset can be attributed to 

several methodological and technical factors inherent to atmospheric monitoring: 

Offline monitoring limitations: Our chemical composition analysis, while strictly 

following meteorological bureau experimental standards (QXT 70-2007 for 

carbonaceous components and HJ 799-2016, HJ 800-2016 for water-soluble ions), 

relies on offline monitoring using quartz filter membranes. These filters are susceptible 

to damage or scaling-off during transportation and storage processes, and are extremely 

sensitive to environmental humidity changes, which may lead to abnormally high 

offline data readings. Therefore, we primarily employed online monitoring equipment 

for PM10 concentration measurements to minimize these offline-related uncertainties. 

Instrumental heterogeneity: The 12 monitoring stations employed online 



monitoring equipment based on different measurement principles, including light 

scattering method, beta-ray attenuation method, and tapered element oscillating 

microbalance method, which cannot be completely standardized. Each method has 

inherent limitations: (1) light scattering methods are easily affected by particle 

physicochemical characteristics such as size distribution, chemical composition, and 

optical properties (Chen et al., 2018; Koestner et al., 2020; Jiang et al., 2021); (2) 

tapered element oscillating microbalance methods are insufficient in measuring semi-

volatile substances (Green and Fuller, 2006) and sensitive to humidity (Li et al., 2012); 

(3) beta-ray attenuation methods are also sensitive to environmental humidity 

fluctuations (Shukla and Aggarwal, 2022). 

Environmental factors: PM10 mass concentration measurements are subject to 

significant uncertainties due to these combined technical limitations and varying 

environmental conditions across different monitoring sites, including temporal 

variations in meteorological parameters and spatial heterogeneity in local emission 

sources. 

Given the higher reliability of our chemical composition data (which follows 

established national standards and aligns with comprehensive national-scale studies), 

we employed the CNN-LSTM deep learning model specifically to predict and replace 

these PM10 anomalous values, thereby improving overall data quality and analytical 

accuracy.  

Reference 

Chen, D., Liu, X. W., Han, J. K., Jiang, M., Xu, Y. S., and Xu, M. H.: Measurements of particulate 

matter concentration by the light scattering method: Optimization of the detection angle, Fuel 

Process. Technol., 179, 124-134, http://dx.doi.org/10.1016/j.fuproc.2018.06.016, 2018. 

China Meteorological Administration: Determination of elemental carbon and organic carbon in 

atmospheric aerosols—thermal-optical analysis method, QXT 70-2007, 

https://www.cma.gov.cn/zfxxgk/gknr/flfgbz/bz/202209/t20220921_5097811.html (last access: 

28 April 2025), 2007. 

Green, D. and Fuller, G. W.: The implications of tapered element oscillating microbalance (TEOM) 

software configuration on particulate matter measurements in the UK and Europe, Atmos. 



Environ., 40, 5608-5616, http://dx.doi.org/10.1016/j.atmosenv.2006.04.052, 2006. 

Jiang, M., Liu, X. W., Han, J. K., Zhou, Z. J., and Xu, M. H.: Measuring particle size and 

concentration of non-spherical particles by combined light extinction and scattering method, 

Measurement, 184, http://dx.doi.org/10.1016/j.measurement.2021.109911, 2021. 

Koestner, D., Stramski, D., and Reynolds, R. A.: Assessing the effects of particle size and 

composition on light scattering through measurements of size-fractionated seawater samples, 

Limnol. Oceanogr., 65, 173-190, http://dx.doi.org/10.1002/lno.11259, 2020. 

Li, Q. F., Lingjuan, W. L., Liu, Z. F., and Heber, A. J.: Field evaluation of particulate matter 

measurements using tapered element oscillating microbalance in a layer house, J. Air Waste 

Manage. Assoc., 62, 322-335, http://dx.doi.org/10.1080/10473289.2011.650316, 2012. 

Ministry of Ecology and Environment of the People's Republic of China: Ambient air—

Determination of water-soluble anions (F-, Cl-, Br-, NO2
-, NO3

-, PO4
3-, SO3

2-, SO4
2-) in 

particulate matter—Ion chromatography, HJ 799-2016, 

https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201605/t20160519_337906.shtml (last 

access: 28 April 2025), 2016. 

Ministry of Ecology and Environment of the People's Republic of China: Ambient air—

Determination of water-soluble cations (Li+, Na+, NH4
+, K+, Ca2+, Mg2+) in particulate 

matter—Ion chromatography, HJ 800-2016, 

https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201605/t20160519_337907.htm (last 

access: 28 April 2025), 2016. 

Shukla, K. and Aggarwal, S. G.: A Technical Overview on Beta-Attenuation Method for the 

Monitoring of Particulate Matter in Ambient Air, Aerosol Air Qual. Res., 22, 

http://dx.doi.org/10.4209/aaqr.220195, 2022. 

17. Line 246: Please remove “W”. 

Response：Thanks for your attention to detail. We have eliminated “W” from Line 

247. 

18. Line 247: Be consistent with significative digits of Table 2. 

Response：Thank you for pointing out the inconsistency in significant digits in 



Table 2. We have carefully revised the table to ensure all numerical values are presented 

with consistent significant digits. Lines 244-248 have been revised to: “The model was 

evaluated on both the training and test sets after completion of training, with results 

presented in Table 2 and Figure 5. As shown in Figure 5 (a), the training process 

converged effectively, with the loss function decreasing steadily and stabilizing at 

approximately 0.0007, indicating successful model optimization without overfitting. 

For the training set, the CNN-LSTM model achieved a MAE of 6.6614 μg·m-3, a RMSE 

of 8.7162 μg·m-3, and a R2 of 0.9670. When evaluated on the test set, the model 

demonstrated an MAE of 12.6705 μg·m-3, a RMSE of 17.4965 μg·m-3, and an R2 of 

0.8840.” 

Table 2. Comparison of MAE, RMSE, and R2 among different models. 

Model Type MAE（μg·m-3） RMSE（μg·m-3） R2 

Linear Regression 12.6852 17.8804 0.8028 

RF 14.6494 20.0135 0.8482 

KNN 15.6263 24.2398 0.8135 

CNN-LSTM 12.6705 17.4935 0.8840 

Additionally, to strengthen the comprehensiveness of our evaluation, we have 

added comparisons with conventional gap-filling techniques in the revised manuscript. 

Specifically, we have included a new subsection (Section 3.1.1) titled “Comparison 

with Conventional Gap-filling Techniques” in Lines 243-273, where we compare our 

CNN-LSTM model with Random Forest (RF), K-Nearest Neighbors (KNN), and 

Linear Regression methods.  

19. Line 260: Results of Figure 5 would need more discussion. Does the slight deviation 

occur for the same sites? 

Response: Thanks for your valuable suggestions. We have revised the manuscript to 

provide a more comprehensive analysis of Figure 5. Specifically, the updated version 

includes a detailed discussion on the convergence of the loss function (Figure 5a), 

noting that it stabilizes around 0.0007, indicating successful model optimization 

without overfitting. The relevant modifications can be found in Lines 244–248. “The 



model was evaluated on both the training and test sets after completion of training, with 

results presented in Table 2 and Figure 5. As shown in Figure 5 (a), the training process 

converged effectively, with the loss function decreasing steadily and stabilizing at 

approximately 0.0007, indicating successful model optimization without overfitting. 

For the training set, the CNN-LSTM model achieved a MAE of 6.6614 μg·m-3, a RMSE 

of 8.7162 μg·m-3, and a coefficient of determination (R2) of 0.9670. When evaluated on 

the test set, the model demonstrated an MAE of 12.6705 μg·m-3, a RMSE of 17.4965 

μg·m-3, and an R2 of 0.8840." 

And we also thanks for insightful question regarding site-specific deviation 

patterns. Unfortunately, due to the limited size of our test dataset, when we attempt to 

analyze deviations by individual sites, each site contains fewer than 10 data points in 

the test set, making it difficult to conduct a reliable site-specific evaluation of model 

performance. However, to address concerns about the model's generalization capability 

and site-specific performance, we have added Section 3.1.2 “Leave-One-Site-Out 

Cross-Validation” to the CNN-LSTM model results discussion.  

20. Line 270: Change with “Due to its location”. 

Response: Thank you for pointing this out. We have corrected it in Line 311 as 

follows: “Due to its location in an arid region, Dunhuang is likely influenced by dust 

storm events, as evidenced by higher concentrations of crustal elements such as Ca2+ 

(Yu et al., 2020).” 

21. Line 305: Figure 6 is not referenced in the main text, and doesn’t provide any 

additional information beyond what is presented in Table 3. I would suggest to remove 

it. How was the “unknown components” part determined?   

Response: Thank you for pointing out this problem in the manuscript. We have 

removed Figure 6 from the revised manuscript and renumbered the subsequent figures 

accordingly. 

The determination of “unknown components” was calculated as the difference 

between the total PM10 mass concentration, as measured by online monitoring 



equipment, and the sum of all identified chemical components (OM, EC, NH4
+, K+, Na+, 

Ca2+, Mg2+, F-, Cl-, NO3
-, SO4

2-). Specifically: 

Unknown components(μg·m-3)=PM 10total mass - Σ identified chemical components 

22. Line 307: Providing the standard deviations to these values would help assess the 

significance of the observed differences. 

Response：Thank you for this valuable suggestion. We agree that including standard 

deviations would help readers to better assess the significance of the observed 

differences. We have revised the manuscript to include standard deviations for all 

relevant values mentioned in Line 307 (now Lines 344-345 in the revised manuscript). 

The specific changes are as follows: “The annual mean PM10 concentrations for urban, 

rural, suburban, and remote sites were 59.99 ± 29.38 μg·m-3, 62.88 ± 27.58 μg·m-3, 

85.43 ± 39.43 μg·m-3, and 45.12 ± 14.67 μg·m-3, respectively.” 

23.  Figure 7: the axis labels are difficult to read. 

Response：We are extremely grateful for pointing out this problem. We agree that 

the axis labels need improvement for better readability. We have revised Figure 6 

(originally Figure 7) with larger, clearer axis labels. 

 

 

 



 
Figure 6. Stacked Representation of Monthly averaged PM10 Concentrations and Chemical 

Composition（μg·m-3）across Chinese Regions, Including Unknown Components from June 

2022 to May 2023. (n.d: Unknown Components). The map base is from the Ministry of Natural 

Resources' Standard Map Service, review number GS (2019)1822. 

24. Line 321: Change “Seasonal” by “Monthly”. 

Response：Thanks for your kind reminder. We have replaced “Seasonal” with 

“Monthly” in Line 358 according to your suggestion. 

“Monthly variations in PM10 concentrations are shown in Figure 6.” 

25. Line 340: What does the “Chinese atmospheric particulates” term refer to? 

Response: Thank you for your careful review. We have revised the sentence to be 

more specific about the type of atmospheric particulates being referenced. The term 

"Chinese atmospheric particulates" has been changed to "PM10 across China" to clearly 

indicate that we are referring to carbonaceous components in PM10 particles specifically. 

The revised sentence in Lines 376-378: “All three functional site types showed the 

lowest concentrations in summer and the highest in winter, consistent with previous 

studies confirming the widespread winter-high and summer-low seasonal pattern of 

carbonaceous components in PM10 across China (Tian et al., 2013).” 



26. Figure 8: Y-Axis units are unclear and not displayed in the figure. 

Response: Thank you for the important observation. We acknowledge that the Y-

axis units in Figure 7 (originally Figure 8) were not properly displayed. We have 

corrected the figure to include clear Y-axis unit labels: (μg·m-3) for Figure 7 (a) and 

(nmol H₂O₂·m-3) for Figure 7 (b). 

 

Figure 7. Seasonal variations of (a) PM10 concentrations（μg·m-3）and (b) OPv (nmol H2O2·m-

3) across different regions of China. The map bases are from the Ministry of Natural 

Resources' Standard Map Service, review number GS (2019)1822. 

 

27. Line 375: Change “northern Chinese sites” by “northern China”. 

Response: Thanks for your kind reminder. We have changed Lines 413-414 as 

follows: “As shown in Figure 7(a) and (b), sites located in northern China exhibited 

significantly elevated PM10 concentrations and OPv levels during the autumn and winter 

seasons.” 

28. Lines 375-380: Unclear, are the factors presented to explain the high PM10 and OP 

levels in winter and autumn applicable only to the northern Chinese sites? 

Response: We are sorry for confusion. We agree that the original manuscript did not 

adequately clarify whether these factors apply only to northern China. We have revised 

this paragraph from two perspectives: climate differences between northern and 

southern China and distinct heating practices, to illustrate that these factors are unique 



regional characteristics of northern China, forming a sharp contrast with southern China. 

We have revised Lines 413-421 as follows: “As shown in Figure 7(a) and (b), sites 

located in northern China exhibited significantly elevated PM10 concentrations and OPv 

levels during the autumn and winter seasons. This phenomenon in northern Chinese 

sites can be attributed to several factors unique to northern China's regional 

characteristics. Firstly, the widespread reliance on coal-based central heating systems 

and biomass burning for residential heating in northern China during the heating season 

(typically from November to March) (Liu et al., 2017b; Li et al., 2017) sharply contrasts 

with southern China where heating demand is minimal due to milder winter 

temperatures. In addition, northern China's continental climate creates more severe 

winter meteorological conditions, including prolonged periods of low wind speeds, 

frequent temperature inversions, and significantly reduced atmospheric boundary layer 

heights compared to the more temperate conditions in southern regions, which severely 

inhibited pollutant dispersion (Li et al., 2017).” 

29. Line 396: How are the northern/southern regions defined? 

Response: Thank you for important question regarding our regional classification. 

We have defined the northern and southern regions of China based on the traditional 

geographical boundary of the Qinling Mountains-Huaihe River line, which is widely 

recognized in Chinese geographical and environmental studies as the natural dividing 

line between northern and southern China. Specifically, monitoring sites located north 

of this boundary are classified as northern regions, while sites south of this line are 

classified as southern regions. 

It should be noted that Lhasa, due to its unique location on the Tibetan Plateau with 

distinct high-altitude characteristics, was not included in either the northern or southern 

regional analysis and was treated separately as a plateau region. This classification 

approach ensures that our regional comparisons reflect the major climatic and 

geographical differences across China while appropriately accounting for the unique 

environmental conditions of the Tibetan Plateau.  

And we have added a detailed explanation of our regional classification in the 



Supplement S2. The detailed site classification is provided in Supplementary Table 

S2, where we have included the following clarification: “China was divided into 

northern and southern regions using the Qinling Mountains-Huaihe River line as the 

boundary. This line represents the traditional geographical and climatic divide in China. 

Sites north of this boundary were classified as northern regions, while sites south were 

classified as southern regions. Lhasa, located on the Tibetan Plateau, was treated as a 

separate plateau region due to its distinct high-altitude environmental characteristics. 

The detailed site classification is provided in Table S2.” 

Table S2. The geographical division corresponding to the station. 

Geographic region Station name 

Northern sties LFS, DL, GC, DH, XA, ZZ 

Southern sites LA, CD, JS, NN, CHD 

30.  Line 412: What does “more complex” mean? 

Response: We feel sorry for the confusion. We have revised the sentence in Lines 

463-465: “The ZZ site showed industry, agricultural activities, traffic, coal combustion, 

dust, and secondary aerosols as the main sources. PM10 sources in GC are biomass 

burning, traffic, dust, agricultural activity emissions, secondary aerosols, and coal 

combustion.” 

31. Line 415: Figure 11 reference is mentioned before the Figure 10. 

Response: Thank you for pointing out the issue with the figure numbering. We 

have reordered the figures to ensure they are cited in the correct order. Figure 11 is now 

Figure 9, while Figure 10 remains unchanged. The figures now follow the correct 

citation order in the text. 



 

Figure 9. The contributions of Biomass burning, Traffic, Dust, Secondary aerosol, Sea salt, 

Agricultural activities, Coal combustion, and Industry to the atmospheric concentration of PM10 

mass (%) as derived by PMF modelling at NN, LFS, ZZ, and GC. 



 
Figure 10. Chemical profiles of the source factors identified at NN, LFS, ZZ and GC. The bars 

represent the chemical composition profiles (left y-axis) and the dots indicate the contribution 

values (right y-axis). 

32.  Lines 459-460: No contributions from EC and OC were found in the Biomass 

Burning factor at ZZ site, which is quite unexpected. It should be discussed. 

Response: Sorry for the confusion. Upon careful reconsideration of the PMF results 

and local emission characteristics, we acknowledge that our initial factor identification 



may not have been optimal. We have refined our factor identification from biomass 

burning to industrial emission, which appears to better align with the observed chemical 

profile lacking significant EC and OC contributions and is more consistent with the 

local source conditions at the ZZ site. We have corrected in Lines 509-512: “The first 

factor had high contribution of K+ (21.7%) and Cl- (83.9%), but low contribution of OC 

(4.6%) and EC (2.8%), possibly indicating the influence of industrial emissions, such 

as food manufacturing, cement manufacturing, salt production, or industrial activities 

involving potassium chloride compounds (Yin et al., 2019; Seo et al., 2019), with a 

contribution proportion of approximately 9.5%.” 

33. Line 464: Please add a reference supporting the coal combustion origin. 

Response: Thanks for your kind reminder. We have added the reference in Lines 

515-518: “Since SO4
2- primarily originates from fuel combustion (Schwartz, 1993), and 

Mg is specifically mentioned as an element enriched in the magnetic separation of coal 

fly ash (Strzałkowska, 2021), this factor is associated with emissions from coal 

combustion when regional characteristics are considered. Coal combustion accounts for 

around 15.5% of PM10 emissions and is likely to be associated with combined heat and 

power facilities in the surrounding area.” 

34. Lines 469-470: What about NO3
- ? Is there a reason why NH4

+ is only present in the 

agricultural activities factor at LFS?   

Response：Thanks for your valuable suggestion. We have added some discussion 

about NO3
- in agricultural activities at ZZ, as well as an explanation for why NH4

+ is 

only associated with the agricultural activities factor at LFS among the three sites (LFS, 

ZZ, and GC). 

We have added discussion about NO3
- in Lines 522-526: “The sixth factor had high 

levels of K+ (60.6%), Ca2+ (38.4%), EC (39.3%), OC (28.8%), and NO3
- (25.0%), based 

on comprehensive analysis of these characteristic species, this factor may be related to 

agricultural activity emissions, contributing approximately 22% to PM10. Ca2+, OC and 

EC may be related to surface soil dust (Yu and Cao, 2023), Jung et al. found elevated 



K+ concentrations at schools near corn farms, supporting the agricultural source 

attribution (Jung et al., 2024), while NO3
- would be related to fertilizer application (Cao 

et al., 2018).” 

In addition, the differential NH4
+ contribution in agricultural emissions among the 

three sites is primarily attributed to temperature-related atmospheric processes. At the 

cooler LFS site in northeastern China, lower ambient temperatures favor the stability 

of particulate NH4
+ and minimize volatilization, allowing NH4

+ to remain directly 

associated with agricultural emission factors. In contrast, at the warmer ZZ and GC 

sites, higher temperatures promote NH4
+ volatilization to gaseous NH3, which 

subsequently undergoes secondary atmospheric reactions to form ammonium-

containing secondary aerosols rather than being retained in primary agricultural 

emissions. We have added discussions in Lines 554-564: “A notable pattern observed 

among the three sites with agricultural activities (LFS, ZZ, and GC) is the differential 

contribution of NH4
+within agricultural emission factors, with NH4

+ being exclusively 

associated with agricultural activities at the LFS site. This spatial variation reflects the 

complex interplay between regional meteorological conditions, agricultural practices, 

and atmospheric chemistry processes. At the LFS site in northeastern China, cooler 

climate conditions favor the stability of particulate NH4
+, allowing its direct retention 

within agricultural emission factors (Wang et al., 2020). The concentrated fertilizer 

application during the spring planting season, combined with lower ambient 

temperatures that minimize NH4
+ volatilization, preserves the distinct agricultural 

source signature at this remote location (Huo et al., 2025). Conversely, at the warmer 

ZZ and GC sites in central and northern China, NH4
+ undergoes more extensive 

atmospheric processing due to higher ambient temperatures. These conditions promote 

the volatilization of NH4
+ to gaseous NH3, which subsequently undergoes secondary 

reactions with acidic species (SO4
2- and NO3

-) to form ammonium-containing 

secondary aerosols (Stelson and Seinfeld, 1982; Wang et al., 2015).” 

35. Lines 475-476: Please add a reference supporting this. 

Response: Thanks for your careful review. We have added a reference to support in 



Lines 530-534: “This likely reflects the contribution of corn, wheat, and other farming 

activities around the site to PM10, potentially associated with the agricultural-dominant 

economic structure of this rural area. Ca2+ and NO3
- may originate from agricultural 

soil dust during tillage and other agricultural processes, and NO3
- could be related to 

fertilizer application (Yu and Cao, 2023; Cao et al., 2018). Similar to the ZZ site, this 

agricultural source attribution is supported by Jung et al., who found elevated K+ 

concentrations at schools near corn farms (Jung et al., 2024).” 

Reference 

Cao, P., Lu, C., and Yu, Z.: Historical nitrogen fertilizer use in agricultural ecosystems of the 

contiguous United States during 1850–2015: application rate, timing, and fertilizer types, Earth 

Syst. Sci. Data, 10, 969-984, https://doi.org/10.5194/essd-10-969-2018, 2018. 

Jung, C., Huang, C., Su, H., Chen, N., and Yeh, C.: Impact of agricultural activity on PM2.5 and its 

compositions in elementary schools near corn and rice farms, Sci. Total Environ., 906, 167496, 

https://doi.org/10.1016/j.scitotenv.2023.167496, 2024. 

Yu, Y. and Cao, J.: Chemical Fingerprints and Source Profiles of PM10 and PM2.5 from Agricultural 

Soil in a Typical Polluted Region of Northwest China, Aerosol Air Qual. Res., 23, 220419, 

https://doi.org/10.4209/aaqr.220419, 2023. 

36. Line 495: Transition metals are not measured for this study. 

Response: Sorry for the confusion. We have revised the manuscript, making the 

following specific modifications in Lines 572-574: “The high OP of traffic emissions 

is mainly attributed to the oxidative components in their particulate matter emissions, 

including organic carbon as well as potentially present PAHs and transition metals 

(TMs) (Valavanidis et al., 2008)” 

37. Line 511-512: Several studies highlighted that ammonium nitrate is not redox-active, 

but can be present with species inducing OP. It should be clarified. 

Response: Thank you for this important clarification. You are correct that 

ammonium nitrate itself is generally not considered to be directly redox-active. We 

should clarify that NO3
- formed during fertilization processes may not directly 



contribute to oxidative potential, but can co-exist with redox-active species or influence 

the chemical environment that affects the oxidative characteristics of particulate matter 

through ionic strength effects and acidification processes. The presence of NO3
- may 

serve as an indicator of agricultural activities that simultaneously release other 

potentially oxidatively active compounds, rather than being a primary source of 

oxidative potential itself. We have corrected in Lines 651-652: “NO3
- formed during 

fertilizer application can influence particle oxidative properties through ionic strength 

effects and acidification processes (Lodovici and Bigagli, 2011).” 


