
Response to the reviewer:  

We sincerely thank the reviewers for their insightful feedback and constructive 

suggestions, which have significantly improved our manuscript. Our detailed 

responses to each comment are provided below, with reviewer comments in black and 

our responses in blue. We have included the relevant revised text to show how each 

suggestion has been incorporated. 

 

Comments 

1. Firstly, although the title and Methods emphasize the CNN-LSTM model, it is used 

solely for outlier replacement. The manuscript does not yet demonstrate what 

additional insights the deep learning approach offers beyond conventional gap-filling 

techniques such as linear regression or random forest. The authors are encouraged to 

supply a comparison table that shows the CNN-LSTM’s performance relative to other 

simpler methods. It might also be helpful to conduct an independent cross-validation, 

for example, leave-one-site-out to confirm that the network reproduces physically 

meaningful variability rather than site-specific bias. 

Response：We sincerely thank you for your attention to our research and the 

valuable comments you have provided. Regarding the questions you mentioned 

about the application scope of the CNN-LSTM model and its comparison with other 

methods, we deeply agree and have made the following supplements and 

modifications: 

(1) Comparison with Conventional Gap-filling Techniques 

In the revised manuscript, we have added “3.1.1 Comparison with Conventional 

Gap-filling Techniques”, comparing the CNN-LSTM model with traditional methods 

such as linear regression, random forest, and K-nearest neighbors. As shown in Table 

2, the CNN-LSTM model performs better in terms of MAE, RMSE, and R2 metrics. 

The specific manuscript revision is located at Lines 243-273. 



Table 2. Comparison of MAE, RMSE, and R2 among different models. 

Model Type MAE（μg·m-3） RMSE（μg·m-3） R2 

Linear Regression 12.6852 17.8804 0.8028 

RF 14.6494 20.0135 0.8482 

KNN 15.6263 24.2398 0.8135 

CNN-LSTM 12.6705 17.4935 0.8840 

(2) Ablation Study of CNN-LSTM 

Thanks for the valuable suggestions from the reviewer. To more comprehensively 

validate the performance and reliability of the CNN-LSTM model, we have conducted 

detailed ablation experiments in the supporting materials and optimized the 

cross-validation methods. In Section S1 “Ablation Study of CNN-LSTM” of the 

supplement, we systematically removed or modified key components of the model to 

evaluate their individual contributions to overall performance. The specific 

experimental results are shown in Table S1: 

Table S1. Performance Comparison of MAE, RMSE, and R2 across Model Variants.  

Model Type MAE（μg·m-3） RMSE（μg·m-3） R2 

CNN 14.7668 19.2806 0.8591 

LSTM 14.3056 21.1303 0.8308 

CNN-LSTM 12.6705 17.4935 0.8840 

CNN-only model：The CNN-only model using only convolutional layers without 

LSTM components achieved an MAE of 14.7668 μg·m-3，RMSE of 19.2806 μg·m-3, 

and R2 of 0.8591. This configuration can effectively extract spatial features from input 

data, but due to the lack of temporal modeling, compared to the complete 

CNN-LSTM model, the MAE increased by 16.54%. 

LSTM-only model：The LSTM-only configuration using only recurrent layers 

without convolutional preprocessing achieved an MAE of 14.3056 μg·m-3，RMSE of 

21.1303 μg·m-3, and R2 of 0.8308. Although the LSTM component successfully 

captured temporal dependencies, the lack of spatial feature extraction capability led to 

suboptimal performance, with MAE increasing by 12.90% compared to the complete 



model. This result emphasizes the necessity of hierarchical feature extraction when 

processing complex atmospheric data. 

(3) CNN-LSTM model cross-validation 

Thanks for the valuable suggestions. Regarding the leave-one-site-out 

cross-validation, we encountered some data limitation challenges during 

implementation. Currently, the sample size for each site in our dataset is relatively 

limited (ranging from 20-70 samples). Direct application of traditional 

leave-one-site-out validation might affect validation stability due to insufficient data 

volume at individual sites. 

To address this issue, we adopted a site-type-based leave-one-site-out validation 

strategy. Specifically, we classified all sites in the study area into four types based on 

their functional characteristics: urban sites, rural sites, urban-rural transition sites, and 

background sites, then conducted leave-one-site-out cross-validation for each type of 

site separately. This strategy not only considers the geographical and functional 

differences of sites but also ensures the stability and reliability of the validation 

process. In the revised manuscript, we have added “3.1.2 Leave-One-Site-Out 

Cross-Validation”. Through this approach, we can more comprehensively evaluate the 

model's generalization ability and adaptability to different site types. The specific 

manuscript revision is located at Lines 274-302. 

2. Regarding the source apportionment, PMF analysis is only conducted for four of 

the twelve sites. The manuscript should explain the basis for this selection. Authors 

should also include more comprehensive error estimation for the PMF analysis. 

Authors should expand the diagnostics in Table S3 to report whether > 80% of factor 

elements are mapped in BS runs, and summarize BS-DISP error estimates. 

Response：Thank you for your valuable comments regarding the PMF analysis. 

We appreciate your thorough review and constructive suggestions. 



The selection of these four sites was based on the following considerations: First, 

these four sites possess good representativeness in terms of geographical location and 

environmental characteristics. Second, considering the data quality requirements for 

PMF model analysis, we selected sites with high data completeness and reliability. 

Specifically, Nanning represents the southern inland urban environment (located 

relatively close to the coast), Longfengshan is located in the northeastern region and 

serves as a background site reference, Zhengzhou, as an important transportation hub, 

exhibits typical suburban characteristics, and Gucheng is situated in the key pollution 

area of the Beijing-Tianjin-Hebei region, representing the rural environmental 

characteristics of this area. We have added detailed explanations for the site selection 

criteria in the revised manuscript (Lines 451-458): “This study employed the PMF 

model to conduct a detailed analysis of PM10 sources at four representative sites 

selected based on distinct geographical and environmental characteristics. The 

selection criteria considered regional representativeness, pollution characteristics, and 

geographical diversity across China. The selected sites include: NN, an urban site in 

southern China with coastal proximity; LFS, a remote site located in the northeastern 

region of Heilongjiang Province; ZZ, a suburban site serving as a major transportation 

hub in central China; and GC, a rural site situated in the heavily polluted 

Beijing-Tianjin-Hebei region. These four sites collectively represent different 

pollution source characteristics and regional environmental conditions, enabling a 

comprehensive understanding of PM10 source apportionment across diverse 

geographical and climatic zones in China.” 

Regarding the expanded diagnostics with PMF results, we expanded Table S3 to 

include both the percentage of factor elements successfully mapped in Bootstrap (BS) 

runs with explicit indication of whether the >80% threshold is met for each factor, and 

comprehensive BS-DISP error estimates. The determination of optimal factor number 

was guided by Qtrue/Qrobust values and BS mapping evaluation, as demonstrated in 

Figure S1. 

 



 

Figure S1. Changes in Qtrue/Qrobust and uncorrelated bootstrap (BS) mapping calculated by 

the PMF model for varying numbers of factors (3-8). Black dots represent the optimum 

solution factors at each station. 



Table S3. Summary of error estimation diagnostic with PMF at NN, LFS, ZZ and GC station. 

Diagnostics NN LFS ZZ GC 

 Number of base run 20 20 20 20 

 Qrobust 2338 2658.86 2043.86 2066.75 

 Qtrue 2521.1 3160.89 2341.26 2249.16 

 Qtrue/Qrobust 1.08 1.18 1.14 1.09 

DISP 
% dQ < 0.1 % < 0.1 % < 0.1 % < 0.1 % 

swaps 0 0 0 0 

BS 

Number of run 100 100 100 100 

Extra modeling 

uncertainty (%) 
0 0 0 0 

Min. Correlation 

R-Value 
0.6 0.6 0.6 0.6 

Mapping 

Dust: 94% 

Biomass burning: 99% 

Others: 100% 

Secondary aerosol: 88% 

Traffic: 97% 

Agricultural activities:95% 

Others: 100% 

Coal combustion: 87% 

Secondary aerosol: 97% 

Agricultural activities: 98% 

Others: 100% 

Agricultural activities: 90% 

Coal combustion: 85% 

Others: 100% 

BS-DISP 

#of Cases Accepted 89 78 80 71 

% cases with swaps 9% 18% 15% 25% 



3. Furthermore, the discussion on OP lacks depth. OPv reflects a combination of PM 

mass concentration and particle intrinsic toxicity. The current discussion on OP 

focuses almost exclusively on emissions. Authors are encouraged to discuss how 

emission sources influence OPv differently from their share of PM10 mass. For 

example, integrating Fig. 11 and Fig. 12 will help to reveal the intrinsic toxicity 

associated with different emission sources. 

Response：We appreciate the reviewer's insightful comment regarding the need 

for deeper discussion on OP. In response to this valuable feedback, we have 

substantially revised Section 3.4.2 Source apportionment of OP in PM10 (Lines 

565-669) to address the intrinsic toxicity of different emission sources beyond their 

mass contributions. Specifically, we now discuss the mass-normalized oxidative 

potential (OPm) for each emission source, which reveals how sources contribute to 

OPv differently from their share of PM10 mass. The analysis revealed significant 

variations in toxic efficiency among different sources, with traffic emissions showing 

consistently high OPm values (0.013-0.022 nmol H2O2·μg-1) across all sites, while 

biomass burning exhibited site-specific patterns with notable contributions at NN and 

GC sites but zero oxidative potential contributions at LFS and ZZ sites despite mass 

contributions. Secondary aerosols, coal combustion, agricultural activities, and dust 

sources also demonstrated substantial spatial variations in toxic efficiency, 

highlighting the complex relationship between source contributions and intrinsic 

toxicity. 



 

Figure 11. Comparison of OPm contributions from different emission sources across NN, 

LFS, ZZ and GC sites. 

Specific comments: 

4. #33, “due to its small particle size”, this statement does not seem valid for PM10. 

Response: We are very sorry for our careless mistake. We have revised this 

statement by removing the reference to "small particle size" and now state in Lines 

32-34: “PM10 can remain suspended in the atmosphere for extended periods of time, 

significantly affecting atmospheric visibility while potentially exerting profound 

effects on regional and global climate change through both direct and indirect 

mechanism (Slanina and Zhang, 2004).” 

5. #62, photochemical aging can either decrease or increase OP, for example, this 

paper reports a decrease after O3 aging: Ma, S., Cheng, D., Tang, Y., Fan, Y., Li, Q., 

He, C., Zhao, Z. and Xu, T., 2025. Investigation of oxidative potential of fresh and 

O3-aging PM2.5 from various emission sources across urban and rural 

regions. Journal of Environmental Sciences, 151, pp.608-615. 

Response: Thanks for your valuable comment and for providing the relevant 

reference. We agree that photochemical aging can have varying effects on the OP of 

PM, and our original statement was indeed oversimplified. We have revised the 



sentence in Lines 58-61 for: “Significantly, photochemical aging of PM in the 

atmosphere further alters its OP, possibly related to the formation of secondary 

organic aerosols, changes in oxidation states of metallic components during the aging 

process, and the oxidation degree of reactive organic compounds (An et al., 2022; Ma 

et al., 2025).” 

6. #67-69, this statement is inaccurate. Furthermore, CNN-LSTM is used solely for 

dealing with missing data, and thus referring to traditional source attribution 

methods in this context is misleading. 

Response: Thanks for pointing out this important issue. We agree that our original 

statement could have been misleading. In our study, the CNN-LSTM model is 

specifically used to handle missing data and anomalies to improve data quality. We 

have revised the manuscript to make this clear: (1) the CNN-LSTM approach is 

applied for data preprocessing to ensure high-quality, complete datasets; (2) this data 

quality improvement step is essential before conducting source apportionment 

analyses; and (3) we have removed the misleading reference to traditional source 

attribution methods in this context. The revised text now clearly distinguishes 

between data quality improvement (using CNN-LSTM) and subsequent source 

apportionment analyses, providing a more accurate representation of our methodology. 

The detailed revisions can be found in Lines 63-80 of the revised manuscript. 

“However, an accurate assessment of the health risks associated with PM10 

requires an accurate analysis of its sources and chemical compositions. High-quality, 

complete datasets are essential for reliable source apportionment and subsequent risk 

assessment. Environmental monitoring data often contain missing values and 

anomalies due to instrument malfunction, maintenance periods, or extreme weather 

conditions, which can significantly affect the accuracy of subsequent analyses. In 

recent years, with the rapid development of deep learning technology, its application 

in handling environmental data quality issues has received increasing attention. Deep 

learning models, particularly the combination of Convolutional Neural Networks 

(CNN) and Long Short-Term Memory networks (LSTM), have demonstrated 



significant advantages in identifying and correcting anomalies and filling missing 

values in time series environmental data. CNNs effectively extract spatial features, 

while LSTMs excel at capturing long-term dependencies in time series (Huang and 

Kuo, 2018; Li et al., 2020). This hybrid model not only identifies anomalies, but also 

improves data completeness and reliability by predicting and replacing anomalous or 

missing values (Lee et al., 2019; Qin et al., 2019). Compared with traditional machine 

learning methods, CNN-LSTM models show superior performance in several 

evaluation metrics, such as Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE) (Huang and Kuo, 2018; Yang et al., 2020a; Li et al., 2020). CNN-LSTM 

models retain significant value in processing atmospheric particulate matter data for 

data quality improvement. Their spatial feature extraction capabilities effectively 

identify and correct anomalies caused by instrument malfunction or local pollution 

events, thereby improving data quality (Zhang and Zhou, 2023). Through training and 

learning, CNN-LSTM models can effectively predict and fill missing data, providing 

a high-quality data foundation for subsequent source apportionment and risk 

assessment analyses (Li et al., 2020; Yang et al., 2020a).” 

7. #190-191, the criterion for flagging outliers appears arbitrary. The summed 

species exceeding the measured PM10 mass does not necessarily indicate outliers 

considering measurement uncertainties. 

Response：We sincerely appreciate your insightful reflections and valuable 

suggestions regarding the quality control standards of this study. 

Due to our oversight during the final manuscript preparation, the text incorrectly 

stated OM =1.4*OC in Line 326, but we actually used OM = 1.2*OC throughout all 

our calculations and data analysis. We have carefully reviewed our analysis code and 

confirmed that 1.2 was consistently applied. This discrepancy has now been corrected 

in the revised manuscript. On the closure between chemical components and PM10 

mass concentration, this study adopted a conservative OM/OC ratio of 1.2 for organic 

matter estimation. This approach was based on the following considerations: 



This study primarily analyzed chemical components including OC, EC, and 

water-soluble ions (constituting major PM10 constituents). However, due to 

experimental limitations, metal elements and water-insoluble components were not 

included in the analysis. 

For OM estimation, we deliberately adopted the smaller conversion factor of 1.2 

as recommended in the literature. Classical studies including White and Roberts have 

established that 1.2-1.4 represents a conservative range commonly used in mass 

balance analyses (White and Roberts, 1977). Therefore, by employing the minimum 

conversion factor (1.2) while excluding certain components, the sum of our 11 

measured chemical species should theoretically not exceed the total PM10 mass 

concentration. This approach aligns with standard practices in aerosol characterization 

research. We fully appreciate the reviewer's rigorous perspective and will strive to 

incorporate additional component measurements in future studies.  

Regarding the classification of samples with chemical component sums below 

50% of PM10 mass as outliers, we maintain this represents a conservative quality 

control criterion. Di et al. shown that Chongqing study demonstrated that 

carbonaceous components alone accounted for 33-35% of PM10 mass (Di et al., 2007). 

Furthermore, research conducted in Luohe City from May 2017 to February 2018 

showed that nine water-soluble ions (F-, Cl-, NO3
-, SO4

2-, NH4
+, Ca2+, Na+, Mg2+, K+) 

comprised an average of 35.67% of PM10 mass (Wang et al., 2018). In this study, we 

analyze 11 components primarily encompassing both carbonaceous fractions and 

water-soluble ions. 

We therefore consider the 50% threshold for chemical component summation to 

be scientifically justified. However, we acknowledge potential limitations in this 

approach, as natural conditions might legitimately produce PM10 compositions where 

these measured components constitute less than 50% of total mass. In subsequent 

research, we will incorporate auxiliary data including meteorological conditions and 

local pollution source distributions to better evaluate whether sub-threshold 

measurements truly represent outliers. 



Reference 

Di, Y., Qi, Z., Changtan, J., Jun, C., and Xiaoxing, M.: Characteristics of elemental carbon and 

organic carbon in PM10 during spring and autumn in Chongqing, China, China Particuology, 

5, 255-260, https://doi.org/10.1016/j.cpart.2007.03.009, 2007. 

Liu, Y., Zhang, W., Yang, W., Bai, Z., and Zhao, X.: Chemical Compositions of PM2.5 Emitted 

from Diesel Trucks and Construction Equipment, Aerosol Science and Engineering, 2, 51-60, 

https://doi.org/10.1007/s41810-017-0020-2, 2018. 

Lodovici, M. and Bigagli, E.: Oxidative Stress and Air Pollution Exposure, Journal of Toxicology, 

2011, https://doi.org/10.1155/2011/487074, 2011. 

Wang, N., Yin, B., Wang, J., Liu, Y., Li W., Geng, C., and Bai, Z.: Characteristics of 

Water-Soluble lon Concentration Associated with PM10 and PM2.5 and Source 

Apportionment in Luohe City Research of Environmental Sciences, 31, 2073-2082, 

https://doi.org/10.13198/j.issn.1001-6929.2018.08.18, 2018. 

White, W. H. and Roberts, P. T.: On the nature and origins of visibility-reducing aerosols in the 

los angeles air basin, Atmos. Environ., 11, 803-812, 

https://doi.org/10.1016/0004-6981(77)90042-7, 1977. 

8. #331, which six monitoring stations are being referred to? 

Response: We thank the reviewer for this important clarification request. Upon 

revisiting the data, we realized that the initial phrasing could be more precise 

regarding the number of monitoring stations. In the revised manuscript (Lines 

368-369), we have clarified the text as follows: “Five monitoring stations including 

GC, LFS, DH, LA, and Nanning (NN) exhibited significantly elevated concentrations 

during spring, which can be attributed to multiple factors.” 

9. #353-355, any reference that supports the temperature-dependent partitioning of 

ammonium sulfate? 

Response：Thanks for your valuable suggestions. We have added a reference that 

document the temperature dependence of ammonium sulfate partitioning behavior in 

Lines 390-392: “Furthermore, the relatively lower temperatures in winter facilitate 



the gas-to-particle conversion of gaseous precursors, promoting the partitioning of 

semi-volatiles such as ammonium sulfate and ammonium nitrate to the particulate 

phase (Wang et al., 2020).” 

Reference 

Wang, M., Kong, W., Marten, R., He, X.-C., Chen, D., Pfeifer, J., Heitto, A., Kontkanen, J., Dada, 

L., Kürten, A., Yli-Juuti, T., Manninen, H. E., Amanatidis, S., Amorim, A., Baalbaki, R., 

Baccarini, A., Bell, D. M., Bertozzi, B., Bräkling, S., Brilke, S., Murillo, L. C., Chiu, R., Chu, 

B., De Menezes, L.-P., Duplissy, J., Finkenzeller, H., Carracedo, L. G., Granzin, M., Guida, 

R., Hansel, A., Hofbauer, V., Krechmer, J., Lehtipalo, K., Lamkaddam, H., Lampimäki, M., 

Lee, C. P., Makhmutov, V., Marie, G., Mathot, S., Mauldin, R. L., Mentler, B., Müller, T., 

Onnela, A., Partoll, E., Petäjä, T., Philippov, M., Pospisilova, V., Ranjithkumar, A., Rissanen, 

M., Rörup, B., Scholz, W., Shen, J., Simon, M., Sipilä, M., Steiner, G., Stolzenburg, D., 

Tham, Y. J., Tomé, A., Wagner, A. C., Wang, D. S., Wang, Y., Weber, S. K., Winkler, P. M., 

Wlasits, P. J., Wu, Y., Xiao, M., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Volkamer, R., 

Riipinen, I., Dommen, J., Curtius, J., Baltensperger, U., Kulmala, M., Worsnop, D. R., 

Kirkby, J., Seinfeld, J. H., El-Haddad, I., Flagan, R. C., and Donahue, N. M.: Rapid growth 

of new atmospheric particles by nitric acid and ammonia condensation, Nature, 581, 184-189, 

https://doi.org/10.1038/s41586-020-2270-4, 2020. 

10. #365-366, the high OPv in Gucheng is related to its high PM10 mass 

concentration. 

Response: Thanks for your insightful comment. We agree that the high OPv levels 

in Gucheng are indeed related to its high PM10 mass concentration. We have revised 

the manuscript to explicitly acknowledge this important relationship and highlight the 

correlation between particulate matter loading and OPv levels at this site. The revised 

text now emphasizes that the elevated OPv concentrations are consistent with the high 

PM10 concentrations observed, while also considering the regional pollution 

characteristics and transport effects. This revision strengthens our interpretation of the 

data and provides a more comprehensive explanation for the observed patterns. We 

have revised in Lines 401-406: “However, the study revealed unexpectedly high 

average OPv levels at the rural site in GC, ranking second highest among all sites. 

This finding is consistent with the high PM10 mass concentrations observed at this site, 

suggesting a strong correlation between particulate matter loading and OPv levels. GC, 



located in the Beijing-Tianjin-Hebei region characterized by high population density 

and typical pollution concentration, experiences elevated OPv levels likely due to the 

combined influence of high PM10 concentrations, pollutant transport from surrounding 

urban areas, and local emissions (Han et al., 2015).” 

11. 3.4, 3.4.1, 3.4.2 source appointment should be source apportionment. 

Response: Thanks for your careful review. We feel sorry for our carelessness. We 

have corrected in Lines 449, 450, and 565 as follows: “3.4 Source apportionment”, 

“3.4.1 Source apportionment of PM10”, “3.4.2 Source apportionment of OP in PM10”. 

12. #471, Liu et al. 2023 is cited in the text but missing from the reference list. 

Response: We are sorry for the confusion. We have rewritten the discussion 

content in that section, adding new, more appropriate references to better support our 

arguments. We have verified that all the citations in the revised manuscript 

correspond to the entries in the reference list in Lines 522-526: “The sixth factor had 

high levels of K+ (60.6%), Ca2+ (38.4%), EC (39.3%), OC (28.8%), and NO3
- (25.0%), 

based on comprehensive analysis of these characteristic species, this factor may be 

related to agricultural activity emissions, contributing approximately 22% to PM10. 

Ca2+, OC and EC may be related to surface soil dust (Yu and Cao, 2023), Jung et al. 

found elevated K+ concentrations at schools near corn farms, supporting the 

agricultural source attribution (Jung et al., 2024), while NO3
- would be related to 

fertilizer application (Cao et al., 2018).” 

Reference 

Cao, P., Lu, C., and Yu, Z.: Historical nitrogen fertilizer use in agricultural ecosystems of the 

contiguous United States during 1850–2015: application rate, timing, and fertilizer types, 

Earth Syst. Sci. Data, 10, 969-984, https://doi.org/10.5194/essd-10-969-2018, 2018. 

Jung, C., Huang, C., Su, H., Chen, N., and Yeh, C.: Impact of agricultural activity on PM2.5 and its 

compositions in elementary schools near corn and rice farms, Sci. Total Environ., 906, 

167496, https://doi.org/10.1016/j.scitotenv.2023.167496, 2024. 



Yu, Y. and Cao, J.: Chemical Fingerprints and Source Profiles of PM10 and PM2.5 from 

Agricultural Soil in a Typical Polluted Region of Northwest China, Aerosol Air Qual. Res., 

23, 220419, https://doi.org/10.4209/aaqr.220419, 2023. 

13. Figure 10, The agricultural activities factor shows very different OC/EC loadings 

at ZZ vs. GC. Please provide supporting literature or discuss why the profiles are 

different. 

Response: Thank you for your valuable comment. This difference can be attributed 

to regional agricultural practices: The suburban ZZ site (Zhengzhou) is located in an 

intensively cultivated area with high agricultural mechanization, while the rural GC 

site (Gucheng, Baoding) represents a more traditional farming area. We have 

analyzed the different OC/EC loadings in the agricultural activities factor between ZZ 

and GC and added the following discussion in the revised manuscript in Lines 

548-553: “The contrasting OC/EC loadings in the agricultural activities factor 

between the suburban ZZ site and rural GC site reveal important insights into the 

spatial heterogeneity of agricultural emissions. The suburban ZZ site, located in the 

intensively cultivated Central Plains, experiences higher carbonaceous aerosol 

loadings from mechanized farming operations, which contribute significantly to EC 

emissions through diesel exhaust from agricultural machinery (Liu et al., 2018). In 

contrast, the rural GC site in Baoding represents areas with traditional, less 

mechanized farming practices, resulting in minimal EC contributions from 

agricultural activities.” 

14. #510-512, please clarify what pathways. 

Response: Thanks for your suggestion. We have added in Lines 651-652: “NO3
- 

formed during fertilizer application can influence particle oxidative properties through 

ionic strength effects and acidification processes (Lodovici and Bigagli, 2011)” 

15. #526-529, these statements are inconsistent with the results in Fig. 12. In GC, the 

contribution of coal combustion to OPv ranks second among the four sites, and the 



secondary aerosols contribution at GC is smaller than LFS. Please re-examine the 

conclusions. 

Response: Thank you for pointing out this inconsistency and we apologize for 

any confusion caused. 

We have made substantial revisions to Section 3.4.2 (Lines 565-669). In this 

section, we have conducted a mass-normalized OP analysis to evaluate the intrinsic 

oxidative potential of particles from different emission sources more effectively. 

Specifically, we have compared and discussed the contribution of OP concentrations 

in a unit mass of PM10 from each emission source across the NN, LFS, ZZ and GC 

sites. This mass-normalized approach allows us to distinguish between the effects of 

particle mass concentration and the inherent oxidative potential of particles from 

different sources, providing a more accurate assessment of source-specific toxicity. 

The detailed analysis and discussion can be found in the revised Section 3.4.2 (Lines 

565-669). 


