Review: Quantitative Comparison of Causal Inference Methods
for Climate Tipping Points

General Comments:

In this work, the authors conduct a quantitative investigation into the reliability and
robustness of three multivariate causal inference methods:

1. Liang-Kleeman Information Flow (LKIF)
2. Peter-Clark Momentary Conditional Independence (PCMCI)
3. Granger Causality for State Space Models (GCSS)

This is done in the context of studying the interactions of climate tipping elements in
various facets of the Earth system which pose specific operational challenges. Through the
quantitative metric of choice (Matthews Correlation Coefficient; MCC), the authors
showcase unique advantages for each method, while also identifying three general
principles for addressing nonlinear responses, delayed effects, and confounders during the
application of these causal methods to climate tipping points. The use of MCC is natural
and justified, as it considers balanced ratios of the confusion matrix in binary
classification.

Following a preliminary study on synthetic data generated by a network of differential
equations, they apply LKIF and PCMCI, based on their recommendations, on reanalysis
data to detect tipping point interactions between Atlantic Meridional Overturning
Circulation (AMOC) and Arctic summer sea ice (ASSI), confirming established physical
mechanisms (bidirectional stabilizing interactions) beyond confounding influences (Arctic
temperatures).

This study is a welcome addition to both the climate tipping literature and to the causal
inference community. The structure of the paper is sound, transitioning from a synthetic-
data investigation to a realistic application to climate tipping point interactions between
AMOC and ASSI. Physically consistent results are derived in the latter study, both in terms
of state-space causality and temporal causal influence regions, by applying the
recommendations derived from the former experiment.

My general assessment is that this is a well-written paper overall, with the authors
presenting their methodology and results succinctly and clearly, which should be of
interest to the relevant researchers. The results are put in context, well interpreted, and
presented without drawing strong conclusions. This work fits into the scientific scope of
NPG. My recommendation is that it can be published to NPG following some major
revisions and clarifications, as well as some minor corrections and adjustments.



Specific Comments:

(Format: p.##, L.## - Page number, line number | Section/Appendix/Figure/Table ##)

p.2, .32—44 — In terms of references, the authors appropriately cite most relevant works in
the associated fields throughout the manuscript. But, while the authors succinctly explain
climate tipping points and provide constructive and relevant examples here, | would
recommend that they note, either implicitly or explicitly, how they essentially describe
bifurcation-generated tippings here (with a hint towards rate-induced tips when referring to
effects across time scales), with other regime-switching driving mechanisms (internal
variability and rate-limited tipping) also being possible [1].

[1] https://arxiv.org/abs/1103.0169

p.7, .L178—179 - | would recommend elaborating a bit more on the details of how the time
lag analysis is calculated in LKIF (“Time lag analysis is implemented by shifting any single
input time series by a given number of time steps.”) and whether the adopted approach is
operationally consistent with the approaches in PCMCI and GCSS. These details can be
added in the appendix if preferred.

Section 2.3 - would recommend adding a very brief paragraph here providing an
interpretation of MCC and its values for people not familiar with the metric (e.g., maximum
values and zero values, relation to the chi-squared statistic or other scores for intuition,
etc.), which would also help with the self-containedness of the work.

p. 9, l. 223—227 (and p.21, 1.481—483 by extension) — As a quick clarification, how are the
results affected by a different heuristic choice of the time step At to account for causal
delays? Specifically, how are the results in Panel (b), Figure 2 affected by implicitly
changing the signal-to-noise ratio of each relation? A quick note here would also help with
empirically elaborating on Recommendation 1 in Section 4.

p.10, l. 239—240 - Indeed, since GCSS assesses causal relationships by projecting the
latent state process (cause) onto the space spanned by the infinite past of the observation
variables with and without the effect, it provides higher explanatory power with the
autoregressive part resolving the presence of time lags. Elaborating a bit more on this
argument will make the justification slightly more rigorous.

p. 14, 1. 325 - A quick note on why GCSS cannot be implemented here in a straightforward
manner due to implementation details would be welcome (the small number of samples
available for this experimentis also a valid limitation, based on the results of Fig. 2a). | do
note the additional clarificationin p. 17, l. 412—413, which is more than enough, but it
does come towards the end of the case study.



p.14, l. 341—343 - Is the choice of including cells above the 66" percentile based on a
specific heuristic in the associated literature? How sensitive are the results to this choice?

Figure 5 and p.15—16, L. 369—389 - | would recommend a clarification of the results in
Figure 5 and the associated text: The colour of the causal arrow from ASSI to AMOC
indicates a stabilizing/negative effect at one month delay but at five months delay there’s a
destabilizing/positive link instead. While that is the weaker link, as the text notes, adding
two arrows that are independently coloured instead of single one that is coloured with
respect to the stronger link would remove any ambiguity or confusion. | would recommend
the same for the causal effect from ASSI to the Arctic temperatures (adding three arrows).
That way, the coefficient of each link can also be superimposed next to the corresponding
arrow for clarity. If the authors choose to implement these changes, they can also apply
them to Figure F1 for consistency.

Table C1 - For the synthetic data experiments, has a larger (or non-uniform) noise level
been tested (but not too large as to break the required assumption of stationarity through
the linear couplings)? Also, | would recommend adding the variable next to the parameter
name in the first column, which would also clarify the use of uniform coupling strengths
(not considering the choice of sign). E.g., “Noise scale (g)”.

Appendices D, E, and F - Just wanted to note that these are a very nice addition to the text,
further illuminating the implementation intricacies behind the causal methods utilized in
terms of different variants, operational complexity, and robustness to observational noise
and different reanalysis approaches, respectively.

Technical Corrections:

(Format: p.#, L.# - Page number, line number)

1. p.1,1.9-The LKIF abbreviation is used in .14 of the abstract but not defined here.

2. p.3,.50—53 - If possible, the authors can slightly revise this sentence for clarity
and readability.

3. p.3,1.59-The PCMCI acronym is used here but first defined in l.77.

4. p.4,1.104 - Small typo: “...not known to the causal method and introduces
common...”.

5. p.5,1.116 - As a small note, since the Wiener processes for each state variable are
mutually independent (as also noted in the text), please consider adding an
appropriate subscript to W to indicate this (I assume the diffusion feedback ¢ is held
constant across x;).
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p.5, L.L117 - As a minor note, | would recommend first noting here the role of ¢ as the
common confounder in the induced causal diagrams, akin to p.10, .255—262,
which would also clarify Panel (a) in Figure 1.

p.5, L121—123 - It could be that I’m missing something, but shouldn’t the cited
negative critical value correspond to the transition threshold in the absence of the
additive noise and linear coupling terms? If yes, maybe consider slightly rephrasing
this sentence to avoid ambiguity.

p.6, L. 140 - Small typo: “...are established in the literature.”.

p.7, L. 163 -Small typo: “...can be found in Appendix D.”.

.p.10, L. 239 - Small typo: “..for time lags. We consider...”.
11.
12.

p. 10, l. 258 - For clarification: “...(without interactions and noise).”.

p. 10, L. 260—279 — “exclusion” and “inclusion” are used here for the confounder
term, but “hidden” and “known” are used in the legend of Figure 4. | would
recommend sticking to the former throughout for consistency.

p. 10, l. 263—266 — | could be misinterpreting Figure 4, but | think this excerpt should
read as “...for the LKIF algorithm in the absence of forcing.”, “...the forcing
strength does not have an influence on the true positive rate of LKIF.”, and
“...GCSS drops for an unknown confounder, but the false positive rate remains
unchanged if the confounderis included in the causal analysis.”.

p. 12, Figure 4 Caption - For clarification: “The LKIF method instead sees a large
decline in false positives and the PCMCI method does not show a clear effect”.

p. 13, Section 4 — Referencing the relevant panels from Figures 2—4 here would help
for fast lookup.

p.13, l. 293 - Small typo: “..as described in Appendix B.”.

p.15, l. 346 — Small typo: “..(Carvalho and Wang, 2020). A reduction...”.

. Panels (e) & (f), Figure A1 —Some connections (e.g., 9>11) might be construed as

being moderated by an intermediate variable (10 in this case). While this shouldn’t
be an issue considering the structure of the linear and explicit couplings in Egs. (1)
and (2), having the arrows circumvent the extraneous nodes in the diagram would
leave no room for misinterpretation. Finally, | would recommend noting Panel (c) as
the default model network for clarity, just like the last column of Table C1.

p.21, .470 — I would recommend writing “Ax;= x;-1” here for simplicity.

p.21, 1.478—483 - Small typo: Ax::should read as Ax;:in Eq. (B2). | would also
recommend including the noise term (using Euler—Maruyama), making (B2) a
coupled VAR(1) process that is consistent with the preceding exposition, as the
simplification without the stochastic term does not really simplify things that much.
The approximation statement in .479—480 is still true then, both weakly and
strongly (under appropriate convergence orders).



