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Abstract 27 

Mercury in the atmosphere is a crucial environmental concern due to its toxicity and ability to travel 28 
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long distances. In the marginal seas, the contributions of terrestrial anthropogenic vs. natural sources 29 

on atmospheric mercury have been rarely quantified and their roles in mercury sea-air exchange are 30 

not well understood. To address this issue, this study integrated observations from island, cruise, 31 

and inland campaigns. The mean concentrations of total gaseous mercury (TGM)TGM were 2.32 ± 32 

1.02 ng/m³ (Bohai Sea), 2.55 ± 0.55 ng/m³ (Yellow Sea), and 2.31 ± 0.81 ng/m³ (East China Sea), 33 

respectively, with coastal regions exhibiting significantly higher values than open ocean areas due 34 

to continental outflows. Positive correlations were observed between TGM total gaseous mercury 35 

(TGM) concentrations and environmental parameters such as temperature, relative humidity, and 36 

wind speed, indicating the significant influence of natural sources on atmospheric mercury in the 37 

marine environment. By utilizing a receptor model and linear regression analysis, a robust method 38 

was developed to quantitatively estimate the contribution of anthropogenic and natural sources to 39 

TGM. Anthropogenic sources accounted for an average of 59%, 40%, and 2927% of TGM over the 40 

Bohai Sea, Yellow Sea, and East China Sea, respectively. The sea-air exchange fluxes of mercury 41 

were estimated as 0.17±0.38, 1.10±1.34, and 3.44±3.24 ng m-2 h-1 over the three seas above, 42 

respectively. Stronger anthropogenic mercury emissions in the northern China partially explained 43 

the suppressed sea-air exchange fluxes of mercury in the Bohai Sea. To assess the potential impact 44 

of anthropogenic emissions on the sea-air exchange fluxes of mercury, anthropogenic contributions 45 

to TGM were artificially removed, then the fluxes would be increased by 207.1% in the Bohai Sea, 46 

33.4% in the Yellow Sea, and 6.5% in the East China Sea, respectively. This study elucidated the 47 

role of anthropogenic emissions in shaping the marine atmospheric mercury and the modulation of 48 

sea-air exchange fluxes, thereby informing valuable assessments regarding the influence of future 49 

reduced anthropogenic mercury emissions on the marine mercury cycle and ecosystems. 50 

 51 

1. Introduction 52 

Mercury is a ubiquitous toxic pollutant that can cycle among atmospheric, aquatic, and 53 

terrestrial environments (Mason et al., 2012; Lamborg et al., 2014). Anthropogenic discharge of 54 

mercury can be transported into marine atmospheres, subsequently entering oceans via wet and dry 55 

depositions, constituting a primary source of marine mercury (Outridge et al., 2018). A fraction of 56 

mercury that enters oceans can undergo methylation and bioaccumulate in the food chain, thereby 57 
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posing health risks to humans through the consumption of methylmercury-contaminated seafood; 58 

another fraction converts to dissolved gaseous mercury and can escape from surface seawater 59 

through sea-air exchange processes (Lavoie et al., 2018; Obrist et al., 2018). This sea-air exchange 60 

is pivotal to the biogeochemical cycling of mercury, as it influences mercury concentrations in 61 

seawater, oceanic mercury accumulation rates, and methylmercury production (Mason et al., 2017; 62 

Ci et al., 2016). Simultaneously, the sea-air exchange of mercury represented the largest flux 63 

between different environmental media within the global mercury cycle. Previous estimates 64 

indicated that the release of gaseous elemental mercury from the global ocean contributed 65 

approximately one-third of the global atmospheric mercury emissions (Horowitz et al., 2017).  66 

Numerous studies have emphasized the impact of anthropogenic sources on marine 67 

atmospheric mercury. For instance, one study conducted over the Bohai Sea revealed that the 68 

increased concentration of gaseous elemental mercury (GEM) resulted from the long-range 69 

transport of mercury released from anthropogenic sources (Wang et al., 2020). An island 70 

investigation over the East China Sea showed the outflow from mainland China was the primary 71 

contributor to atmospheric GEM (Fu et al., 2018). Cruises campaigns over the East China Sea and 72 

South China Sea observed elevated GEM concentrations at sites proximate to mainland China, 73 

indicating the prominent influence of terrestrial emissions (Fu et al., 2010; Wang et al., 2016a). 74 

Additionally, studies in the Gulf of Mexico, North Atlantic Ocean, and Mediterranean Sea also 75 

attributed significant portions of atmospheric mercury to anthropogenic emissions (Obrist et al., 76 

2018). Although isotopic signatures have been widely applied to source apportionment of 77 

atmospheric mercury, current isotopic methods still exhibit significant uncertainties due to the poor 78 

understanding of isotopic compositions of gaseous elemental mercury emitted from various sources 79 

and fractionation processes of Hg isotopes during atmospheric transformations (Fu et al., 2018). 80 

Additionally, this approach requires specialized isotopic measurements unavailable for routine 81 

monitoring. At present, quantitative analyses of anthropogenic contributions to marine atmospheric 82 

mercury remain limited.. Although annual global anthropogenic atmospheric mercury emissions 83 

have been approximated to reach 2300 tons, accounting for about one-third of global atmospheric 84 

mercury emission (Pirrone et al., 2010; Zhang et al., 2016), the specific contributions to marine 85 

atmospheric mercury remained poorly delineated, thereby constraining insights into the oceanic 86 
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mercury cycling dynamics. In this regard, it is imperative to develop methodologies capable of 87 

quantifying the contributions from anthropogenic sources to marine atmospheric mercury, 88 

particularly in critical marginal seas, which served as essential biogeochemical interfaces between 89 

landmasses and open oceans. Previous studies have indicated that the importance of the mercury 90 

cycling in offshore ecosystems approximated that within open oceanic environments (Fitzgerald et 91 

al., 2007). Marginal seas functioned not only as natural sinks for terrestrial mercury but also 92 

represented significant sources of atmospheric mercury (Ci et al., 2011). Given that China ranks as 93 

the foremost global emitter of anthropogenic atmospheric mercury (Pacyna et al., 2016; Pacyna et 94 

al., 2010; Zhang et al., 2015), its emissions inevitably exert profound influences on adjacent 95 

marginal seas.  96 

Anthropogenic inputs influenced not only the concentrations of atmospheric mercury but also 97 

the dynamics of mercury sea-air exchange. Given that Hg0 in the surface oceanic waters frequently 98 

exceeded its saturation levels, the prevailing direction of sea-air exchange was predominantly 99 

upward, facilitating the efflux of mercury from the ocean to the atmosphere (Andersson et al., 2008b; 100 

Mason et al., 2001; Huang and Zhang, 2021). The sea-air exchange of Hg0 was governed by the 101 

concentration gradients at the atmosphere-seawater interface (Soerensen et al., 2013), which were 102 

influenced by the spectrum of physical and chemical processes within seawater, as well as 103 

meteorological conditions and ambient GEM concentrations (Costa and Liss, 1999; Mason, 2009; 104 

Selin, 2009). Previous studies illuminated the direct impact of dissolved gaseous mercury (DGM) 105 

in surface waters on Hg0 fluxes, while photochemical reduction of Hg (II) has been identified as the 106 

principal mechanism driving the DGM generation in marine settings (Amyot et al., 1994; Huang 107 

and Zhang, 2021). Field measurements observed nocturnal peaks in DGM and Hg0 fluxes, implying 108 

that dark reduction processes may significantly contribute to these dynamics (O'driscoll et al., 2003; 109 

Fu et al., 2013). Hg0 fluxes increased 2-4 folds as a result of strengthened wind speeds coupled with 110 

Hg (II) inputs from atmospheric precipitation in the Intertropical Convergence Zone (ITCZ) region 111 

(Soerensen et al., 2014). While considerable research has elucidated the factors influencing the 112 

mercury sea-air exchange, few studies have comprehensively explored the repercussions of 113 

fluctuating GEM concentrations on Hg0 sea-air dynamics. Given the backdrop of observed annual 114 

declines in GEM concentrations( -0.011±0.006 ng m-3 y-1) across most Northern Hemispheric 115 
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regions from 2005 to 2020 (Feinberg et al., 2024) and particularly pronounced declines (-0.29 ng 116 

m-3) in China from 2013 to 2017 (Liu et al., 2019), conducting such study in marginal seas is 117 

essential.  118 

Under the influence of Chinese mainland emissions, mercury pollution in its adjacent marginal 119 

seas, such as the East China Sea, Yellow Sea, and Bohai Sea, exhibited pronounced severity. The 120 

East China Sea and Yellow Sea, as semi-enclosed seas, are located in the downwind region of East 121 

Asia and serve as a major pathway for the transport of pollutants to the Pacific Ocean. The Bohai 122 

Sea, as an inland sea, has received a substantial amount of pollutants from the Chinese mainland, 123 

making it one of the most mercury-polluted seas in the world (Luo et al., 2012). By focusing on the 124 

marginal seas surrounding China, this study integrated observations from two offshore islands, one 125 

research cruise, and a coastal city, to reveal the spatiotemporal distribution characteristics of total 126 

gaseous mercury (TGM) and dissolved gaseous mercury (DGM). The impact of oceanic 127 

meteorological conditions on the atmospheric mercury over the ocean was explored, particularly 128 

examining the effects of anthropogenic sources transported from the mainland. Furthermore, we 129 

developed a method to quantify the contributions from anthropogenic sources to marine atmospheric 130 

mercury and ultimately assessed how these inputs shaped the mercury sea-air exchange dynamics. 131 

 132 

2. Methods 133 

2.1 Study area  134 

The study area, illustrated in Figure 1a, encompasses the Bohai Sea (BS), the Yellow Sea (YS), 135 

and the East China Sea (ECS). The BS, a shallow inner sea bordered by Liaoning, Hebei, and 136 

Shandong provinces, covers around 77×103 km2. The YS, situated between mainland China and the 137 

Korean Peninsula, covers around 38×104 km2. The ECS, a semi-enclosed marginal sea positioned 138 

downwind of East Asia, extends over 77×104 km2. Field measurements were conducted at Juehua 139 

Island (JHI) in the BS, approximately 10 km from Xingcheng City, Liaoning Province. Due to its 140 

proximity to the mainland, JHI experienced marked impacts from anthropogenic emissions (Li et 141 

al., 2023). Field measurements were also conducted at Huaniao Island (HNI) in the ECS, 142 

approximately 80 km from Shanghai. Although local anthropogenic emissions were negligible there, 143 

this island was frequently affected by terrestrial transport during winter and spring, when prevailing 144 
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northwesterly winds dominated (Fu et al., 2018; Qin et al., 2016). A cruise campaign was conducted 145 

aboard the research vessel (R/V) Dongfanghong Ⅲ. The cruise routes, as shown in Figure 1a, 146 

covered most of the YS and ECS regions. Land-based measurements were conducted at a super site 147 

(Dianshan Lake, DSL) in the rural Shanghai Qingpu District. This super site is located at the 148 

intersection of Shanghai, Zhejiang, and Jiangsu provinces.  149 

 150 

 151 

Figure 1. (a) The locations of two island sites (JHI and HNI) and one inland site (DSL) denoted by 152 

purple pentagrams. The spatial distribution of TGM concentrations over the East China Sea (ECS) 153 

and the Yellow Sea (YS) is shown along the cruise routes. The time series of TGM concentrations 154 

are measured at (b) JHI, (c) HNI, and (d) ECS+YS, respectively. 155 

 156 

2.2 TGM/GEM measurements  157 

TGM measurements were performed utilizing a modified Tekran 2600 instrument across 158 

various locations and timeframes, i.e., JHI from December 2, 2020 to January 1, 2021, HNI from 159 

October 14 to November 4, 2020, and aboard the research vessel (R/V) Dongfanghong Ⅲ from 160 

December 29, 2019 to January 16, 2020. The Tekran 2600 monitor operated similarly to Tekran 161 

2537B, which is widely used for continuous collection and analysis of atmospheric mercury 162 

(Sprovieri et al., 2016; Landis and Keeler, 2002). During the operation of the modified Tekran 2600, 163 

atmospheric mercury was adsorbed onto the first gold trap over a 24-minute sampling period. After 164 
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sampling, the mercury on the first gold trap was thermally desorbed and transferred to the second 165 

gold trap. The second trap was then analyzed by the detector during a 6-minute detection phase, 166 

resulting in an overall 30-minute sample resolution. To ensure data quality during cruise 167 

observations, the instrument was calibrated daily using the external calibration unit Tekran 2505. 168 

Samples were pre-dried via a soda lime drying tube prior to detector entry to prevent humidity 169 

interference.  Additionally, the drying tube and Teflon filter underwent replacement bi-weekly to 170 

maintain optimal performance. 171 

GEM measurements were conducted at DSL in Shanghai from October to December, 2020, 172 

employing the atmospheric mercury monitoring system (Tekran 2537B/1130/1135) as documented 173 

in our prior study (Qin et al., 2020). Briefly, GEM was captured utilizing dual gold cartridges at a 174 

flow rate of 1.0 LPM and 5-minute intervals. Subsequently, GEM underwent thermal decomposition 175 

for detection via CVAFS. During the sampling process, rigorous quality controls were applied. Prior 176 

to sampling, denuders and quartz filters were duly prepared and cleansed adhered to Tekran 177 

technical directives. To ensure accuracy, calibration was routinely executed every 47 hours using an 178 

internal permeation source, alongside manual injections of standard saturated mercury vapor. For 179 

the Tekran 2537B, the average duplication rate between the A and B traps is 99%, with deviations 180 

between the two traps consistently below 3%. To mitigate the impact of high humidity on the 181 

instrument, samples are first passed through a soda lime drying tube for dehumidification before 182 

entering the detector. Further, the KCl-coated denuder, Teflon-coated glass inlet, and impactor plate 183 

were swapped weekly, while the quartz filters underwent monthly replacement. 184 

It is noteworthy that TGM in the atmosphere comprises GEM and GOM (gaseous oxidized 185 

mercury). Generally, GEM constitutes over 95% of atmospheric mercury (Mao et al., 2016), 186 

particularly in the marine boundary layer, including China’s marginal seas (Wang et al., 2016b; Fu 187 

et al., 2018; Ci et al., 2011; Wang et al., 2019a). Therefore, this study does not differentiate between 188 

TGM and GEM, conforming to analogous treatments in existing research (Fu et al., 2018; Ci et al., 189 

2011). 190 

 191 

2.3 DGM measurement 192 

DGM (dissolved gaseous mercury) collection from seawater adhered to the procedure 193 
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described in previous studies (Gardfeldt et al., 2003; O'driscoll et al., 2003). The sampling process 194 

involved the following steps. 1.5 L of surface seawater was collected in a Teflon bottle and 195 

subsequently transferred into a borosilicate glass bottle. An introduction of free-Hg argon at 196 

approximately 500 ml/min purged the seawater for 60 minutes to extract the DGM onto a gold trap, 197 

aided by a soda lime tube deployed to extract water vapor prior to the gold trap. The gold trap was 198 

maintained at ~50℃ during extraction to prevent water vapor condensation. The DGM stored in 199 

the gold trap was measured using the Tekran 2600 post-sampling. To assure quality, stringent 200 

assurance and control measures were enacted through replicated field blank experiments. DGM 201 

excised from an equivalent volume of Milli-Q water served as the analytical system blank, 202 

encompassing a total of 12 blank experiments during field samplings at JHI and HNI, as well as 203 

during the R/V measurements. The mean system blank calculated was 2.5±1.3 pg/L (n = 20), with 204 

a detection limit of 3.4 pg/L. 205 

 206 

2.4 Ancillary data 207 

At JHI, water-soluble ions in PM2.5, including sulphate (SO4
2-), nitrate (NO3

-), ammonium 208 

(NH4
+), chloride (Cl-), sodium (Na+), potassium (K+), magnesium (Mg2+), calcium (Ca2+), alongside 209 

the soluble gases such as ammonia (NH3) and sulfur dioxide (SO2) were continuously monitored 210 

using an In-situ Gas and Aerosol Composition monitoring system (IGAC) (Wang et al., 2022). 211 

IGAC operated at a 1-hour temporal resolution and consisted of a wet annular denuder (WAD) and 212 

ion chromatography (IC) equipped with columns CS17 and CG17 for cations and AG11-HC and 213 

AS11-HC for anions. Ambient air was drawn into a PM2.5 cyclone inlet by a built-in pump at a flow 214 

rate of 16.7 L/min. The sampled air was separated by passing through the vertically placed WAD to 215 

capture water-soluble gases, and airborne particles were collected by a steam scrubber and impact 216 

aerosol collector placed downstream. Air samples were dissolved by 30 ml ultra-pure water (18.25 217 

MΩ cm-1) and then divided into two steams. Both aqueous samples (including particles and gases) 218 

were injected into the IC system by two separated syringe pumps for analyzing the cations and 219 

anions. For quality assurance/quality control (QA/QC) of IGAC, a standardized lithium bromide 220 

(LiBr) solution was continuously introduced into aerosol liquid samples during the campaign to 221 

validate sampling and analytical stability. Weekly calibrations were performed for the ion 222 
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chromatography (IC) module using certified standard solutions, with linearity (R² > 0.99) and 223 

detection limits (LODs) validated. Black carbon (BC) in PM2.5 was measured continuously using a 224 

multi-wavelength Aethalometer (AE-33, Magee Scientific, USA). Meteorological parameters were 225 

measured using a Vaisala WXT530 surface weather station (Vaisala, Finland). Surface seawater 226 

temperature was recorded by a YSI EC300 portable conductivity meter (YSI, USA) with a 227 

resolution of 0.1°C.  228 

At HNI, methods for analyzing meteorological parameters, BC, and surface seawater 229 

temperature mirrored those employed at JHI.  230 

During the cruise campaign, the meteorological metrics (e.g., air temperature, wind 231 

speed/direction) and surface seawater temperature were collected from the Finnish Vaisala AWS430 232 

shipborne weather station onboard the R/V. AE-33 was also used for BC measurements during the 233 

cruise.  234 

At DSL, water-soluble ions in PM2.5 and soluble gases were also measured by the IGAC 235 

instrument. Trace metals in PM₂.₅ (Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Cd, Sn, Sb, 236 

Ba, Tl, Pb, and Bi) were continuously measured using an Xact multi-metals monitor (Model Xact™ 237 

625, Cooper Environmental Services LLT, OR, USA). It operated at a flow rate of 16.7 L min⁻¹ 238 

with hourly resolution. Particles in the airflow passed through a PM2.5 cyclone inlet and were 239 

deposited onto a Teflon filter tape, then the samples were transported into a spectrometer for analysis 240 

via nondestructive energy-dispersive X-ray fluorescence.  241 

Planetary boundary layer (PBL) height data were obtained from the Global Data Assimilation 242 

System (GDAS) archive maintained by the U.S. National Oceanic and Atmospheric Administration 243 

(NOAA), available through the READY (Real-time Environmental Applications and Display 244 

sYstem) portal (https://www.ready.noaa.gov/archives.php; last accessed: 11 May 2025). The dataset, 245 

featuring 1-hour temporal resolution, was processed and extracted using MATLAB R2021b 246 

(MathWorks, Natick, MA). 247 

 248 

 249 

2.5 Positive matrix factorization (PMF) 250 

The PMF model is recognized for its efficacy in elucidating sources profiles and quantifying 251 

https://www.ready.noaa.gov/archives.php
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source contributions (Paatero and Tapper, 1994). The underlying principle of PMF posits that 252 

sample concentration is dictated by source profiles with disparate contributions, mathematically 253 

represented as： 254 

       Xij =  ∑ gik
P
k=1 fkj + eij             (1) 255 

where Xij represents the concentration of the jth species in the ith sample, gik is the contribution of 256 

the kth factor in the ith sample, fkj provides the information about the mass fraction of the jth species 257 

in the kth factor, eij is the residual for specific measurement, and P represents the number of factors.  258 

The objective function, defined in Eq. (2) below, represents the sum of the squared differences 259 

between measured and modeled concentrations, weighted by concentration uncertainties. 260 

Minimizing this function allows the PMF model to determine optimal non-negative factor profiles 261 

and contributions: 262 

Q = ∑ ∑ (
Xij−∑ AikFkj

p
k=1

Sij
)

2
m
j=1

n
i=1 （2） 263 

Where Xij denotes the concentration of the jth pollutant in the ith sample, Aik represents the 264 

contribution of the kth factor to the ith sample, Fkj is the mass fraction of the jth pollutant in the jth 265 

pollutant in kth factor, Sij is the uncertainty of the jth pollutant in the ith sample, and p is the number 266 

of factors. Detail description can be seen in the previous study (Paatero and Tapper, 1994). 267 

TGM, air temperature (unit: Kelvin), gaseous pollutants, and major aerosol chemical species 268 

were used as inputs for the PMF model. We tested factor numbers ranging from 3 to 8, with the 269 

optimal solution determined by analyzing the slope of the Q-value versus factor count. Model 270 

stability was assessed through residual analysis, correlation coefficients between observed and 271 

predicted concentrations, and Q-value trends. A six-factor solution in DSL and a five-factor solution 272 

at JHI provided the most stable and interpretable results. 273 

At DSL, we selected observational data from October to December, 2020 (totaling 1,080 valid 274 

data points) for PMF modeling to align with the HNI observational campaign. At JHI, observational 275 

data from December 2 to 30, 2020 (totaling 675 valid data points) were used for PMF analysis. 276 

 277 

2.6 Sea-air exchange flux  278 

The sea-air exchange fluxes of Hg0 were calculated via the following equation (Andersson et 279 

al., 2008a; Wanninkhof and Oceans, 1992; Wangberg et al., 2001): 280 
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F = KW(CW − Ca/H′)              (3) 281 

where F is the sea-air exchange flux, Kw represents the gas exchange velocity, Cw and Ca represent 282 

the DGM concentration in seawater and the TGM concentration in the atmosphere, respectively, H’ 283 

is the dimensionless Henry’s law coefficient of Hg0 between the atmosphere and seawater. Kw is 284 

calculated as follows (Soerensen et al., 2010b; Nightingale et al., 2000). 285 

Kw = 0.31u10
2 (SCHg

/660)−0.5       (4) 286 

where u10 is 10-meter wind speed, SCHg
 is the Schmidt number of Hg0, 660 is the Schmidt number 287 

of CO2 in 20 ℃ seawater (Poissant et al., 2000). The Schmidt number for Hg (SCHg) was calculated 288 

as: 289 

SCHg
 =  v DHg⁄           (5) 290 

where v is seawater kinematic viscosity (Wanninkhof, 2014) and DHg is the diffusion coefficient of 291 

Hg (Kuss et al., 2009). 292 

H’ is calculated as follows (Andersson et al., 2008a). 293 

H′ = exp (−2403.3/T + 6.92)      (6) 294 

Where T is the surface seawater temperature in K. 295 

 296 

3. Results and Discussions  297 

3.1 Characteristics of TGM over Chinese marginal seas  298 

Figure 1b-d shows the time series of TGM concentrations measured during three field 299 

campaigns, including December 2, 2020 to January 1, 2021 at Juehua Island (JHI), October 14, 2020 300 

to November 4, 2020 at Huaniao Island (HNI), and December 29, 2019 to January 16, 2020 over 301 

the Yellow Sea and East China Sea (YS/ECS). The mean TGM concentrations during the three 302 

periods were 2.32 ± 1.02 ng/m3, 1.85 ± 0.74 ng/m3, and 2.25 ± 0.66 ng/m3, respectively. TGM at 303 

JHI exhibited pronounced fluctuations, frequently surpassing high values of 6 ng/m3, which was 304 

attributed to the enhanced coal combustion for residential heating in winter (Li et al., 2023). 305 

Conversely, TGM at HNI and across the YS/ECS demonstrated less fluctuations, with 306 

concentrations predominantly remaining below 6 ng/m3. The cruise campaign unveiled the spatial 307 

distribution of TGM over the ocean (Figure 1a), generally showing its decreasing trend with the 308 
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increased distance away from the continent. Specifically, hot spots were observed in the eastern 309 

oceanic region of Jiangsu province, the Changjiang estuary, and the outer sea close to the Hangzhou 310 

Bay. The continental outflows likely explained this phenomenon. The mean TGM concentrations 311 

reached 2.36 ± 0.65 ng/m3 and 2.16 ± 0.81 ng/m3 over the Yellow Sea and East China Sea, 312 

respectively, significantly higher than the background level in the Northern Hemisphere (1.58 ± 0.31 313 

ng/m³) (Bencardino et al., 2024) and also surpassing measurements recorded in the other open ocean 314 

areas such as the South China Sea (1.52±0.32 ng/m3), Mediterranean Sea (1.8± 1.0 ng/m3), Bering 315 

Sea (1.1 ± 0.3 ng/m3), Pacific Ocean (1.15-1.32ng/m3), and Atlantic Ocean (1.63 ± 0.08 ng/m3) 316 

(Laurier and Mason, 2007; Soerensen et al., 2010a; Mastromonaco et al., 2017; Kalinchuk et al., 317 

2018; Wang et al., 2019b). 72h air mass backward trajectory analyses revealed that air masses over 318 

the YS predominantly originated from Liaoning and Inner Mongolia province in northern China, 319 

whereas trajectories over the ECS were largely dispersed across the ocean and Eastern China (Figure 320 

S1). This divergence may be one of the reasons why the TGM concentration in the YS was higher 321 

than that in the ECS. 322 

The diurnal variations of TGM concentrations along with ambient temperature and sun flux 323 

during the three periods are displayed in Figure 2. At HNI, TGM commenced increasing at 7:00 324 

a.m., peaking at around 2.44 ng/m3 by 12:00, subsequently declining and stabilizing post 6:00 p.m. 325 

The mean TGM concentration during daytime (06:00-18:00) (2.00 ± 0.80 ng/m3) surpassed that of 326 

nighttime (1.66 ± 0.40 ng/m3) (t test, p < 0.001). The TGM diurnal pattern displayed strong 327 

concordance with temperature and solar flux (Figure 2a), indicative of significant impacts from 328 

natural sources (Osterwalder et al., 2021; Huang and Zhang, 2021; Mason et al., 2001).At JHI 329 

(Figure 2b), TGM also rose around early morning and peaked at 2.65 ng/m3 by 10:00 a.m., with 330 

nocturnal levels markedly increasing from 2.12 ng/m3 at 6:00 p.m. to 2.60 ng/m3 at 11:00 p.m. 331 

During daytime, TGM generally showed consistent variation with temperature and sun flux, 332 

indicating the influence of natural mercury release. However, the notable frequency of nocturnal 333 

peaks suggested that in addition to natural sources, TGM measured at JHI was also significantly 334 

affected by anthropogenic sources and unfavorable atmospheric diffusion conditions, specifically 335 

from coal combustion for the winter residential heating in northern China (Li et al., 2023). The 336 

diurnal pattern of TGM throughout the cruise campaign diverged from those of HNI and JHI, 337 
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lacking a consistent relationship with temperature and sun flux. This was mainly due to that the 338 

cruise sampling was variable in both the temporal and spatial scale.  339 

 340 

 341 

Figure 2. Diurnal variations of TGM, ambient temperature and sun flux at (a) HNI, (b) JHI, and 342 

(c) the YS/ECS cruise, respectively. 343 

 344 

Positive correlations between TGM concentrations and ambient temperature at both HNI and 345 

JHI were observed, yielding R2 values of 0.53 and 0.60, respectively (Figure 3a&3b). Since 346 

temperature played a crucial role in Hg0 release from natural surfaces (Lindberg et al., 1998; 347 

Poissant et al., 2000), the evident correlation between TGM and temperature exemplified the 348 

significant effects of natural surface emissions.  349 

Positive correlations were also observed between TGM, relative humidity, and wind speed at 350 

both HNI and JHI (Figure 3). The positive correlation between humidity and TGM may be due to 351 

the fact that high humidity is typically associated with the stable atmospheric stratification, which 352 

promoted the accumulation of TGM. As for wind speed, it is a key parameter influencing air-sea 353 

exchange in the double-membrane theory model (Wanninkhof, 1992)., For example, Soerensen et 354 

al. (2014) found a 2–4 times greater Hg0 flux due to the high wind speed in the Intertropical 355 
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Convergence Zone (ITCZ) region. Previous studies suggested wetting processes may promote the 356 

reduction of Hg
Ⅱ

 to Hg0 in surface seawater, while higher wind speed accelerated its evasion (Lin 357 

et al., 2010; Soerensen et al., 2013).. This may explain the observed positive correlations between 358 

humidity, wind speed, and TGM concentrations.  359 

At HNI, TGM increased concurrently with rising Planetary Boundary Layer (PBL) heights 360 

from around 380 to 1000 m, yet decreased with further increase in PBL beyond around 1000 m 361 

(Figure 3a). This observed diurnal pattern of TGM may primarily stem from the interplay between 362 

temperature-driven natural surface emissions and atmospheric dilution effects. When the PBL 363 

height was below 1 km, its increase coincided with rising temperature. Under these conditions, the 364 

enhancement of natural surface emissions due to temperature outweighed the dilution effect caused 365 

by the developed PBL, leading to increased TGM concentrations. Afterwards, as the PBL height 366 

continued to rise, the dilution effect gradually surpassed the temperature-driven emission 367 

enhancement, resulting in a decline of TGM concentrations.. In contrast, the similar phenomenon 368 

lacked manifestation at JHI, where TGM concentrations decreased with the increase of PBL (Figure 369 

3b). Due to the significantly lower marine mercury emissions in the BS (Wang et al., 2020) than in 370 

the ECS (Wang et al., 2016a), this phenomenon was likely ascribed to that the natural release around 371 

JHI was weaker than that around HNI, thus the dilution effect of elevated PBL overwhelmed the 372 

effect of natural surface emissions. Compared to HNI and JHI, the cruise campaign showed almost 373 

no relationship between TGM and temperature, relative humidity, wind speed, or PBL height were 374 

identified (Figure 3c), which shared similar reasons as discussed in the diurnal variation of TGM. 375 

 376 
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 377 

Figure 3. Relationship between TGM concentration and temperature, relative humidity, planetary 378 

boundary layer height, and wind speed at (a) HNI, (b) JHI, and (c)YS/ECS, respectively. 379 

 380 

3.2 Influence of continental outflows on marine TGM  381 

The potential source regions of TGM at HNI and JHI are illustrated in Figure S2. At HNI, TGM 382 

mainly derived from the lands of Jiangsu Province and vast coastal waters of the East China Sea. 383 

While at JHI, the hot spots of TGM were mainly located in the southern Mongolia and Beijing-384 

Tianjin-Hebei regions. This indicated that the relatively high TGM concentrations at the coastal 385 

islands were closely related to the continental outflows. Using HNI as an example, Figure S3 386 

compares the daily mean TGM concentration at HNI with the daily mean concentrations of CO, 387 

SO2, and PM2.5 in nearby coastal cities including Zhoushan, Ningbo, Jiaxing, Shanghai, and Ningbo. 388 

Consistently temporal variations were observed between TGM and these pollutants, particularly for 389 



16 

 

the peak concentrations, further confirming that offshore TGM concentrations were significantly 390 

influenced by continental outflows. 391 

To assess the impact of anthropogenic sources on marine TGM, the daily TGM concentrations 392 

at HNI and DSL (a suburban site in the Yangtze River Delta, Figure 1a) were compared (Figure 4a). 393 

Their concentration time series exhibited moderate agreement, suggesting potential land-sea 394 

interactions. Furthermore, the correlation between TGM and BC at DSL was pronounced (R2=0.56, 395 

Figure 4b). This was expected, as BC primarily originated from fossil fuels combustion (Li et al., 396 

2021; Briggs and Long, 2016), which was also the major anthropogenic source of TGM (Pacyna et 397 

al., 2006; Streets et al., 2011; Liu et al., 2019). In contrast, the correlation between TGM and BC at 398 

HNI was much weaker (R2=0.34, Figure 4c). Being an offshore site, HNI could be more strongly 399 

influenced by natural sources than DSL.  400 

To qualitatively evaluate the relative importance of anthropogenic and natural sources to TGM, 401 

the ratio of TGM/BC was introduced as a qualitative index. an indicator with lower ratios implying 402 

the prevalence of anthropogenic sources, and vice versa. Since TGM and BC shared common 403 

anthropogenic sources, and TGM had additional natural sources, an increase in the TGM/BC ratio 404 

may indicate the growing importance of natural source contributions, and vice versa. Figure 4d 405 

shows that the TGM/BC ratio at DSL (mean of 1.6 ng μg-1) was substantially lower than that at HNI 406 

(5.2 ng μg-1). On one hand, lower contribution of anthropogenic sources to TGM in the coastal 407 

environment compared to the urban environment was expected. On the other hand, BC deposited 408 

more quickly than TGM, thus also elevating the TGM/BC ratios was at locations far from emission 409 

sources. The cruise measurement illustrated the spatial distribution of the TGM/BC ratio over 410 

YS/ECS (Figure 4e)., showing a tendency of decreasing values with increasing distance away from 411 

the coasts (Figure 4e). In the East China Sea, the TGM/BC ratio increased with increasing distances 412 

away from the coasts. For instance, in the East China Sea, the TGM/BC ratio near the coasts 413 

typically ranged from 0.3 to 5.2 ng μg-1, while offshore values generally fluctuated between 8.6 and 414 

22.9 ng μg-1. This indicated the contribution of natural sources to TGM obviously increased over 415 

the open ocean waters. However, this spatial trend was not observed in the Yellow Sea. As depicted 416 

in Figure 4e, the very northern, western, and eastern cruise legs in the Yellow Sea showed relatively 417 

low TGM/BC ratios compared to the other cruise periods. This phenomenon should be due to the 418 
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Yellow Sea being a comparatively enclosed basin, as these cruise legs above were geographically 419 

close to Liaoning province in northeast China, the North China Plain, and the Korean Peninsula. 420 

Thus, more influences from the terrestrial emissions induced the low TGM/BC ratios. This further 421 

corroborated the important contribution of marine natural emissions to TGM. In regard of different 422 

maritime spaces, the northern oceanic regions showed considerably lower values than those in the 423 

southern sea regions. In the Yellow Sea, the mean TGM/BC ratio was 4.1 ng μg-1, noticeably lower 424 

than that of 6.5 ng μg-1 observed in the East China Sea.  425 

 426 

 427 

 428 

Figure 4. (a) Comparison of the daily TGM concentrations between DSL and HNI; Correlation 429 

between TGM and BC at (b) DSL and (c) HNI; (d) Comparison of the TGM/BC ratio between DSL 430 

and HNI; (e) Spatial distribution of the TGM/BC ratio along the cruise routes over the ECS and YS. 431 

  432 

3.3 Quantification of anthropogenic vs. marine sources to TGM  433 

Based on the discussions above, it is essential to disentangle the anthropogenic and natural 434 

sources of atmospheric mercury. Here, the PMF model was employed for the comprehensive dataset 435 

obtained at DSL and JHI, respectively. Considering the direct correlation between temperature and 436 

natural release of atmospheric mercury (Wang et al., 2014; Zhu et al., 2016) and the indirect 437 

correlation between ammonia and natural release of atmospheric mercury (Qin et al., 2019), we 438 

utilized temperature and ammonia as indicators of natural atmospheric mercury sources, which has 439 

been proven feasible (Qin et al., 2020). Inputs for PMF also encompassed SO4²⁻, Cl⁻, NO3⁻, Na⁺, 440 
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NH4⁺, K⁺, Mg²⁺, Ca²⁺, SO2, NO, Pb, Fe, K, Cr, Se, Ca, V, Mn, As, and Ni. While running the PMF 441 

model, we tested the number of factors from three to eight and determined the optimal solutions 442 

through analyzing the slope of the Q values in relation to the number of factors. The analyses 443 

revealed that a six-factor solution for DSL and a five-factor solution for JHI produced the most 444 

robust and coherent interpretations.  445 

 446 

 447 
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Figure 5. Source apportionment of TGM at (a) DSL and (b) JHI; Linear relationship between BC 448 

and anthropogenic TGM at (c) DSL and (d) JHI. 449 

 450 

As detailed in Figure 5a, six distinct factors were resolved by PMF at DSL. The factor 451 

characterized by high loadings of temperature, NH3, and TGM represented the natural surface 452 

emissions of mercury. A second factor with notable loading of V and moderate loading of Ni was 453 

ascribed to be shipping emissions, as V has been considered a typical tracer of heavy-oil combustion, 454 

which is commonly used in marine vessels (Viana et al., 2009). The dust and cement production 455 

was associated with a factor exhibiting prominent Ca loading. The factor displaying high loading of 456 

Cr and moderate loadings of Fe and Mn was attributed to iron and steel production. Another factor, 457 

categorized by elevated NO levels, was linked to vehicle emissions. Finally, the factor with high 458 

loadings of SO4
2-. Pb, K, Se, and As was indicative of coal combustion. PMF results indicated that 459 

the contributions of anthropogenic and natural sources to TGM were approximate 48% and 52% at 460 

DSL, respectively. By applying the same PMF modeling strategy at JHI, the contributions of 461 

anthropogenic and natural sources to TGM at JHI were 59% and 41%, respectively (Figure 5b). The 462 

source apportionment results signified substantial influences of both human and natural factors on 463 

TGM levels, with their contributions being nearly equivalent. Furthermore, correlation analysis was 464 

conducted between the absolute contribution of anthropogenic sources to GEM and BC, yielding a 465 

high strong correlations coefficient (R2) of 0.88 and 0.86 at both DSL (Anthropogenic TGM = (0.424 466 

± 0.014)*BC + (0.171± 0.032), R2 = 0.88, Figure 5c) and JHI (Anthropogenic TGM = 0.362 ± 467 

0.009)*BC + (0.431 ± 0.044), R2 = 0.86, Figure 5dFigure 5c&5d), respectively. It should be noted 468 

that BC was not included in PMF modeling, thus the robust relationship between anthropogenic 469 

GEM and BC suggested that BC can serve as a viable indicator for quantifying anthropogenic 470 

contributions to TGM.  471 

To validate the robustness of this relationship in different years, we derived the relationship 472 

between anthropogenic GEM and BC at DSL before 2020 based on the same methodology. It can 473 

be found that the regression equation during the winter of previous years was close to that obtained 474 

during this study period (Figure S5). In fact, the mercury emissions (Feng et al., 2024) and black 475 

carbon emissions (Geng et al., 2024) were quite stable in the neighboring years of this study period. 476 
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For instance, China's anthropogenic GEM emissions in 2019 and 2020 were 194.2 tonnes and 191.8 477 

tonnes, respectively, showing negligible changes. Thus, it can be assumed that the relationship 478 

between anthropogenic GEM and BC remained relatively constant. 479 

Based on the results above, the regression formulas obtained from DSL (Anthropogenic TGM 480 

= (0.436 424 ± 0.008014)*BC + (0.201171± 0.022032), Figure 5c) and JHI ((Anthropogenic TGM 481 

= 0.362 ± 0.009)*BC + (0.431 ± 0.044), Figure 5d) were further applied to the cruise observation 482 

for the purpose of differentiating the anthropogenic and natural fractions of TGM over the ocean. 483 

The following criteria were applied. If the air mass backward trajectories (purple segments in Figure 484 

S54) primarily originated from northern China, the JHI-derived formula was employed; If the air 485 

mass backward trajectories (green segments in Figure S54) passed through the Yangtze River Delta 486 

region or hovered over the East China Sea, the DSL-derived formula was enacted. Due to the 487 

uncertainties of regression slopes and intercepts of the regression formulas, this approach caused 488 

around 5% uncertainties on differentiating the anthropogenic and natural fractions of TGM. 489 

Time-series of mass concentrations of anthropogenic and natural TGM in different coastal and 490 

oceanic regions after applying the above equations are shown in Figure S65. Concentrations of 491 

anthropogenic TGM at HNI, JHI, ECS, and YS were 0.64 61 ± 0.30 29 ng/m3, 1.28 ± 0.75 ng/m3, 492 

0.63 59 ± 0.45 41 ng/m3, and 0.92 ± 0.25 ng/m3, respectively. And the concentrations of natural 493 

TGM were 1.15 19 ± 0.46 45 ng/m3, 0.88 ± 0.26 ng/m3, 1.54 57 ± 0.52 53 ng/m3, and 1.38 ± 0.51 494 

ng/m3 at the four locations above, respectively. To ensure the reliability of these results, the 495 

relationship between natural TGM and temperature was explored, yielding R2 of 0.92, 0.76, 0.75, 496 

and 0.63 at HNI, JHI, ECS, and YS, respectively (Figure 6). The correlation was significantly 497 

stronger than that between the total TGM and temperature, particularly in the ECS and YS regions, 498 

where no correlations were observed (Figure 3c). This proved that the quantitative method 499 

established above was reliable.  500 

 501 
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 502 

 503 

Figure 6. (a-d) Relationship between natural TGM and temperature at HNI, JHI, ECS, and YS, 504 

respectively. (e) Spatial distribution of the relative contributions of anthropogenic and natural 505 

sources to TGM concentrations along the cruise routes. The mean contributions over JHI, HNI, DSL, 506 

ECS, and YS are denoted by the pie charts. 507 

 508 

 The anthropogenic contributions to TGM along the cruise routes are plotted in Figure 6e, 509 

demonstrating significantly higher values near the coastal zones compared to the open ocean areas. 510 

In details, anthropogenic contributions to TGM near the East China Sea coastal zones reached as 511 

high as 60-88%, while the contributions diminished quickly to 15-25% over the open oceans. From 512 

the northern oceanic regions to the southern counterparts, the contribution of anthropogenic sources 513 
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to TGM generally exhibited a decreasing trend, with values of around 59%, 40%, 3634%, and 2927% 514 

over JHI, YS, HNI, and ECS, respectively. In comparison, previous isotope-based source 515 

apportionment studies have revealed anthropogenic contributions of 29% and 42% to TGM in 516 

remote areas like Changbai Mountain and Ailao Mountain (Wu et al., 2023). In general, the isotope-517 

based results indicated that the relative contributions of anthropogenic emissions to surface GEM 518 

in remote China and urban China were around 30% and 49%, respectively (Fu et al., 2021; Feng et 519 

al., 2022; Wu et al., 2023). Notably, the anthropogenic contributions to TGM in the Yellow Sea, 520 

East China Sea, and Huaniao Island from this study aligned closely with isotope-derived values 521 

from China's remote regions, while the DSL findings corresponded with urban isotope results. The 522 

elevated contribution observed at JHI (59%) may be attributed to its proximity to the mainland (only 523 

10 km away) and the sampling period occurring during the winter heating season, where continental 524 

transport influences were significant (Li et al., 2023). Furthermore, the values obtained in this study 525 

fell within comparable ranges to modeling study estimates (typically 33% to 41% on average) (Chen 526 

et al., 2014; Wang et al., 2018). As shown in Figure S1, the backward trajectories over the Yellow 527 

Sea segment were primarily influenced by air masses from the North China Plain and Liaoning 528 

Province. The relatively higher contribution of anthropogenic sources to the Yellow Sea during the 529 

cruise was likely attributable to the continental transport from northern China. In addition, during 530 

this cruise, the seawater temperature of the Yellow Sea was significantly lower than that of the East 531 

China Sea, which was unfavorable for the natural release of mercury. 532 

 533 

3.4 Effects of anthropogenic inputs on the Characteristics of sea-air exchange of mercury in 534 

various oceans  535 

To determine the sea-air exchange flux of mercury, DGM (dissolved gaseous mercury) 536 

concentrations in seawater were measured at all sampling sites during the cruise (Figure S76). 537 

Figure S76 delineates the time-series of DGM observed at JHI, YS, HNI, and ECS, with mean 538 

concentrations of 21.3 ± 4.8, 29.9 ± 6.1, 42.0 ± 9.4, and 39.7 ± 10.9 pg/L, respectively. The DGM 539 

concentrations measured during this winter cruise campaign (22.9-39.7 pg/L) were significantly 540 

lower than those recorded previously during summer and fall in similar regions (52.4-63.9 pg/L)  541 

(Ci et al., 2011; Ci et al., 2015; Wang et al., 2016a), indicating a noticeable seasonal variation in 542 
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DGM concentrations in the ECS and YS. This seasonal variation pattern of seawater DGM, with 543 

lower levels in winter compared to summer and autumn, can be attributed to the dynamic 544 

equilibrium between competing redox processes. This equilibrium can be represented as: Hg²⁺ + 545 

photo-reductants ⇌ DGM + photo-oxidants (O'driscoll et al., 2006). During warmer seasons, higher 546 

temperature accelerated the volatilization of DGM from seawater, and also drove the equilibrium 547 

toward Hg²⁺ reduction to replenish the lost DGM. Therefore, DGM concentrations in seawater were 548 

usually lower in winter due to suppressed redox processes. Spatially, DGM concentrations in the 549 

ECS were higher than those in the YS, likely due to the significantly higher sea surface temperature 550 

in the ECS (mean: 14.8 ℃) compared to the YS (mean: 4.1 ℃) during the cruise campaign. Higher 551 

temperature not only favored the production of DGM in seawater (Costa and Liss, 1999; Andersson 552 

et al., 2011; Mason et al., 2001) but also promoted the escape of DGM from the water surface into 553 

the atmosphere (Osterwalder et al., 2021; Huang and Zhang, 2021).. Additionally, we observed that 554 

DGM concentrations were higher in coastal waters, particularly near the Yangtze River Estuary, 555 

where the concentration reached 51.4 pg/m³. This suggested that continental inputs, such as river 556 

discharge, had a significant influence on DGM levels in nearshore waters (Chen et al., 2020; Kuss 557 

et al., 2018; Liu et al., 2016). 558 

 559 

 560 
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 561 

 562 

Figure 7. (a-c) Sea-air exchange fluxes of mercury at JHI, YS, and ECS, respectively. (d-f) The 563 
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spatial distribution of sea-air exchange flux of  Hg0 during the cruiseComparison between the 564 

normal condition and the “without anthropogenic TGM” scenario, which represented recalculated 565 

sea-air exchange fluxes of mercury after subtracting the anthropogenic contributions of TGM 566 

concentrations.  567 

 568 

Figure 7 shows the time-series and spatial distribution of sea-air exchange fluxes of mercury 569 

within the BS (represented by JHI), YS, and ECS, which were 0.17±0.38, 1.10±1.34, and 3.44±3.24 570 

ng m-2 h-1, respectively (Table S1). It was evident that the Hg0 fluxes during winter in the ECS was 571 

the highest, followed by the YS and the BS. This finding coincided with the discussions above that 572 

natural TGM exhibited much higher concentrations in the ECS and YS than in the BS (Section 3.3). 573 

BS acted as a weak mercury source region and even a mercury sink sometimes (negative flux in 574 

Figure 7a). Due to the higher concentrations and contributions of anthropogenic TGM in the BS, 575 

the release of mercury from the ocean was significantly suppressed, which likely explained the 576 

relatively low sea-air exchange flux of mercury there. 577 

Overall, mMercury fluxes observed during winter were lower than previous studies in other 578 

seasons, e.g., 4.6±3.6 ng m-2 h-1 in ECS during summer (Wang et al., 2016a), 3.07±3.03 ng m-2 h-1 579 

in YS during spring (Wang et al., 2020), and 0.59±1.13 ng m-2 h-1 in BS during fall (Wang et al., 580 

2020).  To assess the impacts of anthropogenic inputs on the sea-air exchange, we recalculated the 581 

flux after removing the anthropogenic contributions from the TGM measurements. This 582 

recalculation revealed increases of mercury fluxes in all investigated oceanic regions with different 583 

extents. The post-adjustment mercury fluxes in the BS, YS, and ECS increased by 0.347, 0.357, and 584 

0.199 ng m-2 h-1, respectively, corresponding to increased marine mercury emissions of 0.058, 0.308, 585 

and 0.332 tons, respectively. Compared to the normal condition, the BS exhibited the most 586 

substantial increase in marine mercury release (207.1%) following the deduction of anthropogenic 587 

impacts, suceeded by the YS (33.4%) and the ECS (6.5%) (Figure 7d-7f). These results 588 

quantitatively elucidated the impact of anthropogenic emissions on marine mercury release, 589 

underscoring the potential effects of diminished anthropogenic emissions on oceanic mercury 590 

cycling. 591 

 592 
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4. Conclusions and implications 593 

This study elucidated the effects of anthropogenic sources on atmospheric mercury 594 

concentrations across various marginal seas and the subsequent influence on sea-air exchange 595 

dynamics of mercury. Through comprehensive observations across island, cruise, and terrestrial 596 

settings, we delineated atmospheric mercury distribution characteristics within the Chinese marginal 597 

seas. The relationships between TGM and various environmental parameters suggested the 598 

significance of natural sources in constraining oceanic atmospheric mercury levels. Notably, TGM 599 

peaks recorded at terrestrial and island sites exemplified the influence of continental outflows on 600 

the marine TGM. The introduction of the TGM/BC ratio functioned as a qualitative proxy for 601 

assessing the extent of anthropogenic contributions. Furthermore, we articulated a quantitative 602 

methodology for assessing anthropogenic contributions to marine atmospheric mercury, revealing 603 

that these sources contributed 59%, 40%, and 2927% to atmospheric mercury levels across the 604 

Bohai Sea, Yellow Sea, and East China Sea, respectively. The winter sea-air exchange fluxes of 605 

mercury in these three seas were estimated as 0.169, 1.100, and 3.442 ng m-2 h-1, respectively,  In 606 

regions where anthropogenic emissions were intense, sea-air exchange fluxes of mercury were 607 

evidently suppressed. with increases of 0.347, 0.357, and 0.199 ng m-2 h-1 subsequent to deducting 608 

anthropogenic contributions. 609 

Conducting atmospheric mercury measurements over oceans presented considerable 610 

complexities compared to terrestrial observations, further compounded by challenges associated 611 

with determining atmospheric mercury sources in the oceanic environment. This study established 612 

a quantitative method grounded in extensive observations encompassing terrestrial, island, and 613 

marine contexts, facilitating estimations of anthropogenic contributions to atmospheric mercury 614 

solely predicated on atmospheric mercury and black carbon data. This methodology may offer 615 

valuable insights for analogous analyses of atmospheric mercury and other pollutants across diverse 616 

oceanic regions globally. Using this method, we further quantified the extent to which anthropogenic 617 

sources suppressed the sea-air exchange of mercury. Against the backdrop of declining global 618 

anthropogenic atmospheric mercury emissions over the past 30 years, our findings suggested an 619 

increase in mercury release from the ocean. Consequently, the mercury content in the ocean will be 620 

likely to decrease, resulting in less inorganic mercury available for methylmercury production. 621 
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These insights contribute to a deeper understanding of the biogeochemical cycle of mercury and 622 

enhance our ability to evaluate its impacts on marine ecosystems and human health. 623 
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