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Abstract

Mercury in the atmosphere is a crucial environmental concern due to its toxicity and ability to travel
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long distances. In the marginal seas, the contributions of terrestrial anthropogenic vs. natural sources
on atmospheric mercury have been rarely quantified and their roles in mercury sea-air exchange are

not well understood. To address this issue, this study integrated observations from island, cruise,

and inland campaigns. The mean concentrations of TGM were 2.32 + 1.02 ng/m? (Bohai Sea), 2.55

+ 0.55 ng/m® (Yellow Sea), and 2.31 + 0.81 ng/m? (East China Sea), respectively, with coastal

regions exhibiting significantly higher values than open ocean areas due to continental outflows.

Positive correlations were observed between total gaseous mercury (TGM) concentrations and
environmental parameters such as temperature, relative humidity, and wind speed, indicating the

significant influence of natural sources on atmospheric mercury in the marine environment. The

utilizing a receptor model and linear regression analysis, a robust method was developed to

quantitatively estimate the contribution of anthropogenic and natural sources to TGM.
Anthropogenic sources accounted for an average of 59%, 3840%, and 2629% of TGM over the
Bohai Sea, Yellow Sea, and East China Sea, respectively. The sea-air exchange fluxes of mercury
were estimated as 0.17+0.38, 1.10+1.34, and 3.44+3.24 ng m? h'! over the three seas above,

respectively. To assess the potential impact of anthropogenic emissions on the sea-air exchange

fluxes of mercury, After-omittins-anthropogenic contributions to TGM were artificially removed,

then thesea-air fluxes would be increased by 207.1% in the Bohai Sea, 33.4% in the Yellow Sea

and 6.5% in the East China Sea, respectively. Upen-emitting-the-contributions-of anthropegenie

respeetively—This study elucidated the role of anthropogenic emissions in shaping the marine

atmospheric mercury and the modulation of sea-air exchange fluxes, thereby informing valuable
assessments regarding the influence of future reduced anthropogenic mercury emissions on the

marine mercury cycle and ecosystems.

1. Introduction
Mercury is a ubiquitous toxic pollutant that can cycleean-eyeles among atmospheric, aquatic,

and terrestrial environments (Mason et al., 2012; Lamborg et al., 2014). Anthropogenic discharge

of mercury can be transported into marine atmospheres, subsequently entering oceans via wet and
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dry depositions, constituting a primary source of marine mercury (Outridge et al., 2018). A fraction

of mercury that enters oceans can undergo methylation and bioaccumulate in the food chain, thereby
posing health risks to humans through the consumption of methylmercury-contaminated seafood;
another fraction converts to dissolved gaseous mercury and can escape from surface seawater

through sea-air exchange processes (Lavoie et al., 2018; Obrist et al., 2018). This sea-air exchange

is pivotal to the biogeochemical cycling of mercury, as it influences mercury concentrations in
seawater, oceanic mercury accumulation rates, and methylmercury production (Mason et al., 2017;
Ci et al., 2016). Simultaneously, the sea-air exchange of mercury represented the largest flux
between different environmental media within the global mercury cycle. Previous estimates
indicated that the release of gaseous elemental mercury from the global ocean contributed

approximately one-third of the global atmospheric mercury emissions (Horowitz et al., 2017).

Numerous studies have emphasized the impact of anthropogenic sources on marine
atmospheric mercury. For instance, one study conducted over the Bohai Sea revealed that the
increased concentration of gaseous elemental mercury (GEM) resulted from the long-range

transport of mercury released from anthropogenic sources (Wang et al., 2020). An island

investigation over the East China Sea showed the outflow from mainland China was the primary

contributor to atmospheric GEM (Fu et al., 2018). Cruises campaigns over the East China Sea and

South China Sea observed elevated GEM concentrations at sites proximate to mainland China,

indicating the prominent influence of terrestrial emissions (Fu et al., 2010; Wang et al., 2016a).

Additionally, studies in the Gulf of Mexico, North Atlantic Ocean, and Mediterranean Sea also
attributed significant portions of atmospheric mercury to anthropogenic emissions (Obrist et al.,

2018). Although isotopic signatures have been widely applied to source apportionment of

atmospheric mercury, current isotopic methods still exhibit significant uncertainties due to the poor

understanding of isotopic compositions of gaseous elemental mercury emitted from various sources

and fractionation processes of Hg isotopes during atmospheric transformations (Fu et al., 2018).

Additionally, this approach requires specialized isotopic measurements unavailable for routine

monitoring. At present, quantitative analyses of anthropogenic contributions to marine atmospheric

mercury remain limited.
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Although annual global anthropogenic atmospheric mercury emissions have been approximated to
reach 2300 tons, accounting for about one-third of global atmospheric mercury emission (Pirrone et
al., 2010; Zhang et al., 2016), the specific contributions to marine atmospheric mercury remained
poorly delineated, thereby constraining insights into the oceanic mercury cycling dynamics. In this
regard, it is imperative to develop methodologies capable of quantifying the contributions from
anthropogenic sources to marine atmospheric mercury, particularly in critical marginal seas, which
served as essential biogeochemical interfaces between landmasses and open oceans. Previous
studies have indicated that the importance of the mercury cycling in offshore ecosystems

approximated that within open oceanic environments (Fitzgerald et al., 2007). Marginal seas

functioned not only as natural sinks for terrestrial mercury but also represented significant sources

of atmospheric mercury (Ci et al., 2011). Given that China ranks as the foremost global emitter of

anthropogenic atmospheric mercury (Pacyna et al., 2016; Pacyna et al., 2010; Zhang et al., 2015),

its emissions inevitably exert profound influences on adjacent marginal seas.

Anthropogenic inputs influenced not only the concentrations of atmospheric mercury but also
the dynamics of mercury sea-air exchange. Given that Hg? in the surface oceanic waters frequently
exceeded its saturation levels, the prevailing direction of sea-air exchange was predominantly

upward, facilitating the efflux of mercury from the ocean to the atmosphere (Andersson et al., 2008b;

Mason et al., 2001; Huang and Zhang, 2021). The sea-air exchange of Hg® was governed by the

concentration gradients at the atmosphere-seawater interface (Soerensen et al., 2013), which were

influenced by the spectrum of physical and chemical processes within seawater, as well as

meteorological conditions and ambient GEM concentrations (Costa and Liss, 1999; Mason, 2009;

Selin, 2009). Previous studies illuminated the direct impact of dissolved gaseous mercury (DGM)
in surface waters on Hg? fluxes, while photochemical reduction of Hg (II) has been identified as the

principal mechanism driving the DGM generation in marine settings (Amyot et al., 1994; Huang

and Zhang, 2021). Field measurements observed nocturnal peaks in DGM and Hg® fluxes, implying

that dark reduction processes may significantly contribute to these dynamics (O'driscoll et al., 2003;

Fu etal., 2013). Hg’ fluxes increased 2-4 folds as a result of strengthened wind speeds coupled with
Hg (II) inputs from atmospheric precipitation in the Intertropical Convergence Zone (ITCZ) region

(Soerensen et al., 2014). While considerable research has elucidated the factors influencing the
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mercury sea-air exchange, few studies have comprehensively explored the repercussions of
fluctuating GEM concentrations on Hg sea-air dynamics. Given the backdrop of observed annual
declines in GEM concentrations( -0.011+0.006 ng m~ y') across most Northern Hemispheric

regions from 2005 to 2020 (Feinberg et al., 2024) and particularly pronounced declines (-0.29 ng

m) in China from 2013 to 2017 (Liu et al., 2019), conducting such study in marginal seas is

essential.

Under the influence of Chinese mainland emissions, mercury pollution in its adjacent marginal
seas, such as the East China Sea, Yellow Sea, and Bohai Sea, exhibited pronounced severity. The
East China Sea and Yellow Sea, as semi-enclosed seas, are located in the downwind region of East
Asia and serve as a major pathway for the transport of pollutants to the Pacific Ocean. The Bohai
Sea, as an inland sea, has received a substantial amount of pollutants from the Chinese mainland,

making it one of the most mercury-polluted seas in the world (Luo et al., 2012). By focusing on the

marginal seas surrounding China, this study integrated observations from two offshore islands, one
research cruise, and a coastal city, to reveal the spatiotemporal distribution characteristics of total
gaseous mercury (TGM) and dissolved gaseous mercury (DGM). The impact of oceanic
meteorological conditions on the atmospheric mercury over the ocean was explored, particularly
examining the effects of anthropogenic sources transported from the mainland. Furthermore, we
developed a method to quantify the contributions from anthropogenic sources to marine atmospheric

mercury and ultimately assessed how these inputs shaped the mercury sea-air exchange dynamics.

2. Methods
2.1 Study area

The study area, illustrated in Figure 1a, encompasses the Bohai Sea (BS), the Yellow Sea (YS),
and the East China Sea (ECS). The BS, a shallow inner sea bordered by Liaoning, Hebei, and
Shandong provinces, covers around 77x103 km?. The YS, situated between mainland China and the
Korean Peninsula, covers around 38x10* km?. The ECS, a semi-enclosed marginal sea positioned
downwind of East Asia, extends over 77x10* km?. Field measurements were conducted at Juehua
Island (JHI) in the BS, approximately 10 km from Xingcheng City, Liaoning Province. Due to its

proximity to the mainland, JHI experienced marked impacts from anthropogenic emissions (Li et
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al., 2023). Field measurements were also conducted at Huaniao Island (HNI) in the ECS,

approximately 80 km from Shanghai. Although local anthropogenic emissions were negligible there,

this island was frequently affected by terrestrial transport during winter and spring, when prevailing

northwesterly winds dominated (Fu et al., 2018; Qin et al., 2016). A cruise campaign was conducted

aboard the research vessel (R/V) Dongfanghong |Il. The cruise routes, as shown in Figure la,
covered most of the YS and ECS regions. Land-based measurements were conducted at a super site
(Dianshan Lake, DSL) in the rural Shanghai Qingpu District. This super site is located at the

intersection of Shanghai, Zhejiang, and Jiangsu provinces.
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Figure 1. (a) The locations of two island sites (JHI and HNI) and one inland site (DSL) denoted by
purple pentagrams. The spatial distribution of TGM concentrations over the East China Sea (ECS)
and the Yellow Sea (YS) is shown along the cruise routes. The time series of TGM concentrations

are measured at (b) JHI, (c) HNI, and (d) ECS+YS, respectively.

2.2 TGM/GEM measurements

TGM measurements were performed utilizing a modified Tekran 2600 instrument across
various locations and timeframes, i.e., JHI from December 2, 2020 to January 1, 2021, HNI from
October 14 to November 4, 2020, and aboard the research vessel (R/V) Dongfanghong Il from

December 29, 2019 to January 16, 2020. The Tekran 2600 monitor operated similarly to Tekran
6
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2537B, which is widely used for continuous collection and analysis of atmospheric mercury

(Sprovieri et al., 2016; Landis and Keeler, 2002). During the operation of the modified Tekran 2600,

atmospheric mercury was adsorbed onto the first gold trap over a 24-minute sampling period. After

sampling, the mercury on the first gold trap was thermally desorbed and transferred to the second

gold trap. The second trap was then analyzed by the detector during a 6-minute detection phase,

resulting in_an overall 30-minute sample resolution. To ensure data quality during cruise

observations, the instrument was calibrated daily using the external calibration unit Tekran 2505.

Samples were pre-dried via a soda lime drying tube prior to detector entry to prevent humidity

interference. In

exceeded—95% during—each—ealibration—eyele—Additionally, the drying tube and Teflon filter

underwent replacement bi-weekly to maintain optimal performance.

GEM measurements were conducted at DSL in Shanghai from October to December,

2020Mareh—+2015-to-February 28,2019, employing the atmospheric mercury monitoring system

(Tekran 2537B/1130/1135) as documented in our prior study (Qin et al., 2020). Briefly, GEM was

captured utilizing dual gold cartridges at a flow rate of 1.0 LPM and S5-minute intervals.
Subsequently, GEM underwent thermal decomposition for detection via CVAFS. During the
sampling process, rigorous quality controls were applied. Prior to sampling, denuders and quartz
filters were duly prepared and cleansed adhered to Tekran technical directives. To ensure accuracy,
calibration was routinely executed every 47 hours using an internal permeation source, alongside

manual injections of standard saturated mercury vapor;. For the Tekran 2537B. the average

duplication rate between the A and B traps is 99%. with deviations between the two traps

consistently below 3%. To mitigate the impact of high humidity on the instrument, samples are first

passed through a soda lime drying tube for dehumidification before entering the detector. Further,
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the KCl-coated denuder, Teflon-coated glass inlet, and impactor plate were swapped weekly, while
the quartz filters underwent monthly replacement.

It is noteworthy that TGM in the atmosphere comprises GEM and GOM (gaseous oxidized
mercury). Generally, GEM constitutes over 95% of atmospheric mercury (Mao et al., 2016),

particularly in the marine boundary layer, including China’s marginal seas (Wang et al., 2016b; Fu

etal., 2018; Cietal., 2011; Wang et al., 2019a). Therefore, this study does not differentiate between

TGM and GEM, conforming to analogous treatments in existing research (Fu et al., 2018; Ci et al.,

2011).

2.3 DGM measurement
DGM (dissolved gaseous mercury) collection from seawater adhered to the procedure

described in previous studies (Gardfeldt et al., 2003; O'driscoll et al., 2003). The sampling process

involved the following steps. 1.5 L of surface seawater was collected in a Teflon bottle and
subsequently transferred into a borosilicate glass bottle. An introduction of free-Hg argon at
approximately 500 ml/min purged the seawater for 60 minutes to extract the DGM onto a gold trap,
aided by a soda lime tube deployed to extract water vapor prior to the gold trap. The gold trap was
maintained at ~50°C during extraction to prevent water vapor condensation. The DGM stored in
the gold trap was measured using the Tekran 2600 post-sampling. To assure quality, stringent
assurance and control measures were enacted through replicated field blank experiments. DGM
excised from an equivalent volume of Milli-Q water served as the analytical system blank,
encompassing a total of 12 blank experiments during field samplings at JHI and HNI, as well as
during the R/V measurements. The mean system blank calculated was 2.5+1.3 pg/L (n = 20), with

a detection limit of 3.4 pg/L.

2.4 Ancillary data

At JHI, water-soluble ions in PM,s, including sulphate (SO4*), nitrate (NOs’), ammonium
(NH4"), chloride (CI°), sodium (Na*), potassium (K*), magnesium (Mg?"), calcium (Ca?"), alongside
the soluble gases such as ammonia (NH3) and sulfur dioxide (SO2) were continuously monitored

using an In-situ Gas and Aerosol Composition monitoring system (IGAC) (Wang et al., 2022).
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IGAC operated at a 1-hour temporal resolution and consisted of a wet annular denuder (WAD) and

ion chromatography (IC) equipped with columns CS17 and CG17 for cations and AG11-HC and

AS11-HC for anions. Ambient air was drawn into a PM> s cyclone inlet by a built-in pump at a flow

rate of 16.7 L/min. The sampled air was separated by passing through the vertically placed WAD to

capture water-soluble gases, and airborne particles were collected by a steam scrubber and impact

aerosol collector placed downstream. Air samples were dissolved by 30 ml ultra-pure water (18.25

MQ cm!) and then divided into two steams. Both aqueous samples (including particles and gases)

were injected into the IC system by two separated syringe pumps for analyzing the cations and

anions. For quality assurance/quality control (QA/QC) of IGAC, a standardized lithium bromide

(LiBr) solution was continuously introduced into aerosol liquid samples during the campaign to

validate sampling and analytical stability. Weekly calibrations were performed for the ion

chromatography (IC) module using certified standard solutions, with linearity (R=> 0.99) and

detection limits (LODs) validated. Black carbon (BC) in PM» s was measured continuously using a

multi-wavelength Aethalometer (AE-33, Magee Scientific, USA). Meteorological parameters were

measured using a Vaisala WXT530 surface weather station (Vaisala, Finland). Surface seawater

temperature was recorded by a YSI EC300 portable conductivity meter (YSI, USA) with a

resolution of 0.1°C. Metee

Methods—methods for analyzing meteorological parameters, BC, and the—surface seawater

temperature mirrored those employed at JHI.
During the cruise campaign, the meteorological metrics (e.g., air temperature, wind

speed/direction) and surface seawater temperature were collected from the Finnish Vaisala AWS430

shipborne weather stationinstrumentations onboard the R/V. AE-33 was also used for BC

measurements during the cruise.

At DSL, water-soluble ions in PM, s and soluble gases, were also measured by the IGAC

instrument. Trace metals in PM..s (Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Cd, Sn, Sb,
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Ba, Tl, Pb, and Bi),were continuously measured using an Xact multi-metals monitor (Model Xact™

625, Cooper Environmental Services LLT, OR, USA). It operated at a flow rate of 16.7 L min!

with hourly resolution. Particles in the airflow passed through a PM2.5 cyclone inlet and were

deposited onto a Teflon filter tape, then the samples were transported into a spectrometer for analysis

via nondestructive energy-dispersive X-ray fluorescence. ,

Planetary boundary layer (PBL) height data were obtained from the Global Data Assimilation

System (GDAS) archive maintained by the U.S. National Oceanic and Atmospheric Administration

(NOAA), available through the READY (Real-time Environmental Applications and Display

sYstem) portal (https://www.ready.noaa.gov/archives.php; last accessed: 11 May 2025). The dataset.
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in the kth factor, g;; is the residual for specific measurement, and P represents the number of factors.

The objective function, defined in Eq. (2) below, represents the sum of the squared differences+

between measured and modeled concentrations, weighted by concentration uncertainties.

Minimizing this function allows the PMF model to determine optimal non-negative factor profiles

and contributions:

Xij—Yh AikFyj z
Q=g g, (EeA) () -

Sij i

Where X denotes the concentration of the j pollutant in the i sample, Aj represents the

ith

contribution of the k™ factor to the i sample, Fy; is the mass fraction of the j™ pollutant in the j*
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pollutant in k™ factor, S;; is the uncertainty of the j™ pollutant in the i™ sample, and p is the number

of factors. Detail description can be seen in the previous study (Paatero and Tapper, 1994), /[ Formatted
TGM, air temperature (unit: Kelvin), gaseous pollutants, and major aerosol chemical species+ [ Formatted: Indent: First line: 2 ch
Formatted

were used as inputs for the PMF model. We tested factor numbers ranging from 3 to 8, with the

optimal solution determined by analyzing the slope of the Q-value versus factor count. Model

stability was assessed through residual analysis, correlation coefficients between observed and

predicted concentrations, and Q-value trends. A six-factor solution in DSL and a five-factor solution

inat JHI provided the most stable and interpretable results.

_ L ] +in-the-previous-study—At Dianshan-Lake(DSL). we selected ( Formatted: Font: 10.5 pt

observational data from October to December, 2020 (totaling 1,080 valid data points) for PMF

modeling to align with the HNI observational campaign. FerJuehuatstand-(At JHI}, observational

data from December 2 to 30, 2020 (totaling 675 valid data points) were used for PMF analysis.

2.6 Sea-air exchange flux

The sea-air exchange fluxes of Hg” were calculated via the following equation (Andersson et [ Field Code Changed

al., 2008a; Wanninkhof and Oceans, 1992; Wangberg et al., 2001):
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where F is the sea-air exchange flux, Ky represents the gas exchange velocity, Cy and C, represent
the DGM concentration in seawater and the TGM concentration in the atmosphere, respectively, H’

is the dimensionless Henry’s law coefficient of Hg between the atmosphere and seawater. Ky is

calculated as follows (Soerensen et al., 2010b; Nightingale et al., 2000). [ Field Code Changed
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H’ is calculated as follows (Andersson et al., 2008a).

H = exp (—2403.3/T + 6.92) (46)
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Where T is the surface seawater temperature in K.

3. Results and Discussions
3.1 Characteristics of TGM over Chinese marginal seas

Figure 1b-d shows the time series of TGM concentrations measured during three field
campaigns, including December 2, 2020 to January 1, 2021 at Juehua Island (JHI), October 14,2020
to November 4, 2020 at Huaniao Island (HNI), and December 29, 2019 to January 16, 2020 over
the Yellow Sea and East China Sea (YS/ECS). The mean TGM concentrations during the three
periods were 2.32 + 1.02 ng/m’, 1.85 £ 0.74 ng/m?, and 2.25 + 0.66 ng/m?, respectively. TGM at
JHI exhibited pronounced fluctuations, frequently surpassing high values of 6 ng/m3, which was
attributed to the enhanced coal combustion for residential heating in winter (Li et al., 2023).
Conversely, TGM at HNI and across the YS/ECS demonstrated less fluctuations, with
concentrations predominantly remaining below 6 ng/m®. The cruise campaign unveiled the spatial
distribution of TGM over the ocean (Figure 1a), generally showing its decreasing trend with the
increased distance away from the continent. Specifically, hot spots were observed in the eastern
oceanic region of Jiangsu province, the Changjiang estuary, and the outer sea close to the Hangzhou

Bay. The continental outflows likely explained this phenomenon. The mean TGM concentrations

reached 2.36 + 0.65 ng/m® and 2.16 + 0.81 ng/m® over the Yellow Sea and East China Sea.

respectively, significantly higher than the background level in the Northern Hemisphere (1.58 +£0.31

ng/m?) (Bencardino et al., 2024)Fhe-mean FTGM-concentrationsreached 236+ 0-65-ng/m’and 216

b e
baekeroundtevelin—the NorthernHemisphere {(Sprovieriet—als—2046) and also surpassing

measurements recorded in the other open ocean areas such as the South China Sea (1.5240.32

ng/m®), Mediterranean Sea (1.8+1.0 ng/m?®), Bering Sea (1.1 +0.3 ng/m?), Pacific Ocean (1.15-

1.32ng/m?®), and Atlantic Ocean (1.63 #0.08 ng/m?3)als

and-Atlantie Ocean (Laurier and Mason, 2007; Soerensen et al., 2010a; Mastromonaco et al., 2017,
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Kalinchuk et al., 2018; Wang et al., 2019b). 72h air mass backward trajectory analyses revealed that
air masses over the YS predominantly originated from Liaoning and Inner Mongolia province in
northern China, whereas trajectories over the ECS were largely dispersed across the ocean and

Eastern China (Figure S1).,This divergence may be one of the reasons why the TGM concentration

in the YS was higher than that in the ECS.

The diurnal variations of TGM concentrations along with ambient temperature and sun flux

during the three periods are displayed in Figure 2. At HNI, TGM commenced increasing at 7:00
a.m., peaking at around 2.44 ng/m? by 12:00, subsequently declining and stabilizing post 6:00 p.m.
The mean TGM concentration during daytime (06:00-18:00) (2.00 + 0.80 ng/m?) surpassed that of

nighttime (1.66 + 0.40 ng/m?) (¢ test, p < 0.001). The TGM diurnal pattern displayed strong

concordance with temperature and solar flux (Figure 2a), indicative of significant impacts from

natural sources (Osterwalder et al., 2021; Huang and Zhang, 2021; Mason et al., 2001) Fhe-FGM

s-At JHI (Figure 2b), TGM also rose around early morning
and peaked at 2.65 ng/m? by 10:00 a.m., with nocturnal levels markedly increasing from 2.12 ng/m?
at 6:00 p.m. to 2.60 ng/m? at 11:00 p.m. During daytime, TGM generally showed consistent
variation with temperature and sun flux, indicating the influence of natural mercury release.
However, the notable frequency of nocturnal peaks suggested that in addition to natural sources,
TGM measured at JHI was also significantly affected by anthropogenic sources and unfavorable
atmospheric diffusion conditions, specifically from coal combustion for the winter residential

heating in northern China (Li et al., 2023). The diurnal pattern of TGM throughout the cruise

campaign diverged from those of HNI and JHI, lacking a consistent relationship with temperature
and sun flux. This was mainly due to that the cruise sampling was variable in both the temporal and

spatial scale.
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Figure 2. Diurnal variations of TGM, ambient temperature and sun flux at (a) HNI, (b) JHI, and

(c) the YS/ECS cruise, respectively.

Positive correlations between TGM concentrations and ambient temperature at both HNI and

JHI were observed, yielding R? values of 0.53 and 0.60, respectively (Figure 3a&3b). Since

temperature played a crucial role in Hg® release from natural surfaces (Lindberg et al., 1998;

Poissant et al., 2000), the evident correlation between TGM and temperature exemplified the

significant effects of natural surface emissions.

Positive correlations were also observed between TGM, relative humidity, and wind speed at

both HNI and JHI (Figure 3). Previous studies suggested wetting processes may promote the

reduction of Hg" to He in surface seawater, while higher wind speed accelerated its evasion (Lin

[Formatted: Font: 10.5 pt, Font color: Red
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et al., 2010b; Soerensen et al., 2013).Previous-studies-suggested-wetting processes-may-promete-the
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. This may explain the
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At HNI, TGM increased concurrently with rising Planetary Boundary Layer (PBL) heights
from around 380 to 1000 m, yet decreased with further increase in PBL beyond around 1000 m

(Figure 3a). This observed diurnal pattern of TGM may primarily stem from the interplay between

temperature-driven natural surface emissions and atmospheric dilution effects. When the PBL

height was below 1 km, its increase coincided with rising temperature. Under these conditions, the

enhancement of natural surface emissions due to temperature outweighed the dilution effect caused

by the developed PBL, leading to increased TGM concentrations. Afterwards, as the PBL height

continued to rise, the dilution effect gradually surpassed the temperature-driven emission

enhancement, resulting in a decline of TGM concentrations. Fhis-wastikely-due-to-that-the-gradual

eotthd—ot—cotnterbatanec—the—enhanced—natarb—strfiee—cmisstons.  In contrast, the similar

phenomenon lacked manifestation at JHI, where TGM concentrations decreased with the increase

of PBL (Figure 3b). Due to the significantly lower marine mercury emissions in the BS (Wang et

al., 2020), than in the ECS (Wang et al., 2016a), Fhis-this phenomenon was likely ascribed to that
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the natural release around JHI was weaker than that around HNI, thus the dilution effect of elevated
PBL overwhelmed the effect of natural surface emissions. Compared to HNI and JHI, the cruise
campaign showed almost no relationship between TGM and temperature, relative humidity, wind
speed, or PBL height were identified (Figure 3c), which shared similar reasons as discussed in the

diurnal variation of TGM.
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Figure 3. Relationship between TGM concentration and temperature, relative humidity, planetary

boundary layer height, and wind speed at (a) HNI, (b) JHI, and (c)YS/ECS, respectively.

3.2 Influence of continental outflows on marine TGM

The potential source regions of TGM at HNI and JHI are illustrated in Figure S2. At HNI, TGM

mainly derived from the lands of Jiangsu Province and vast coastal waters of the East China Sea.

While at JHI, the hot spots of TGM were mainly located in the southern Mongolia and Beijing-

Tianjin-Hebei regions. This indicated that the relatively high TGM concentrations at the coastal

islands were closely related to the continental outflows. Using HNI as an example, Figure S3

compares the daily mean TGM concentration at HNI with the daily mean concentrations of CO,

SO, and PM 5 in nearby coastal cities including Zhoushan, Ningbo, Jiaxing, Shanghai, and Ningbo.

Consistently temporal variations were observed between TGM and these pollutants, particularly for
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the peak concentrations, further confirming that offshore TGM concentrations were significantly
influenced by continental outflows.

To assess the impact of anthropogenic sources on marine TGM, the daily TGM concentrations
at HNI and DSL (a suburban site in the Yangtze River Delta, Figure 1a) were compared (Figure 4a).

Their_concentration time series exhibited moderate agreement, suggesting potential land-sea

interactions.

Furthermore, the correlation between TGM and BC at DSL was pronounced (R?=0.56, Figure 4b).

This was expected, as BC primarily originated from fossil fuels combustion (Li et al., 2021; Briggs

and Long, 2016), which was also the major anthropogenic source of TGM_(Pacyna et al., 2006;
Streets et al., 2011; Liu et al., 2019). In contrast, the correlation between TGM and BC at HNI was
much weaker (R?=0.34, Figure 4c). Being an offshore site, HNI could be more strongly influenced
by natural sources than DSL.

To qualitatively evaluate the relative importance of anthropogenic and natural sources to TGM,
the ratio of TGM/BC was introduced as an indicator with lower ratios implying the prevalence of
anthropogenic sources, and vice versa. Figure 4d shows that the TGM/BC ratio at DSL (mean of

1.6 ng pg'!) was substantially lower than that at HNI (5.2 ng pg™).; On one hand. lower contribution

of anthropogenic sources to TGM in the coastal environment compared to the urban environment

was expected. On the other hand, BC deposited more quickly than TGM, thus also elevating the

TGM/BC ratios was at locations far from sources. indicating-much-strongercontribution-of nataral
sourcesto- TGN Hn-the-coastal-cnvironment-than-the-urban-cnvironment-The cruise measurement

illustrated the spatial distribution of the TGM/BC ratio over YS/ECS, showing a tendency of
decreasing values with increasing distance away from the coasts (Figure 4e). For instance, in the
East China Sea, the TGM/BC ratio near the coasts typically ranged from 0.3 to 5.2 ng ug!, while
offshore values generally fluctuated between 8.6 and 22.9 ng pg™'. This further corroborated the
important contribution of marine natural emissions to TGM. In regard of different maritime spaces,
the northern oceanic regions showed considerably lower values than those in the southern sea
regions. In the Yellow Sea, the mean TGM/BC ratio was 4.1 ng ug™', noticeably lower than that of

6.5 ng ug! observed in the East China Sea.
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447  Figure 4. (a) Comparison of the daily TGM concentrations between DSL and HNI; Correlation
448  between TGM and BC at (b) DSL and (c) HNI; (d) Comparison of the TGM/BC ratio between DSL
449  and HNI; (e) Spatial distribution of the TGM/BC ratio along the cruise routes over the ECS and YS.
450
451 3.3 Quantification of anthropogenic vs. marine sources to TGM
452 Based on the discussions above, it is essential to disentangle the anthropogenic and natural
453 sources of atmospheric mercury. Here, the PMF model was employed for the comprehensive dataset
454 obtained at DSL and JHI, respectively. Considering the direct correlation between temperature and
455  natural release of atmospheric mercury (Wang et al., 2014; Zhu et al., 2016) and the indirect
456  correlation between ammonia and natural release of atmospheric mercury (Qin et al., 2019), we
457  utilized temperature and ammonia as indicators of natural atmospheric mercury sources, which has
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been proven feasible (Qin et al., 2020). Inputs for PMF also encompassed SO4*", Cl-, NO3~, Na*,

NH4*, K, Mg?, Ca?*, SO,, NO, Pb, Fe, K, Cr, Se, Ca, V, Mn, As, and Ni. While running the PMF

model, we tested the number of factors from three to eight and determined the optimal solutions

through analyzing the slope of the Q values in relation to the number of factors. The analyses

revealed that a six-factor solution for DSL and a five-factor solution for JHI produced the most

robust and coherent interpretations.
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Figure 5. Source apportionment of TGM at (a) DSL and (b) JHI; Linear relationship between BC

and anthropogenic TGM at (c) DSL and (d) JHI.

As detailed in Figure Sa, six distinct factors were resolved by PMF at DSL. The factor
characterized by high loadings of temperature, NH3, and TGM represented the natural surface
emissions of mercury. A second factor with notable loading of V and moderate loading of Ni was

ascribed to be shipping emissions, s,V has been considered a typical tracer of heavy-oil combustion

which is commonly used in marine vessels (Viana et al., 2009). The dust and cement production

was associated with a factor exhibiting prominent Ca loading. The factor displaying high loading of
Cr and moderate loadings of Fe and Mn was attributed to iron and steel production. Another factor,
categorized by elevated NO levels, was linked to vehicle emissions. Finally, the factor with high
loadings of SO4*. Pb, K, Se, and As was indicative of coal combustion. PMF results indicated that
the contributions of anthropogenic and natural sources to TGM were approximate 48% and 52% at
DSL, respectively. By applying the same PMF modeling strategy at JHI, the contributions of
anthropogenic and natural sources to TGM at JHI were 59% and 41%, respectively (Figure 5b). The
source apportionment results signified substantial influences of both human and natural factors on

TGM levels, with their contributions being nearly equivalent. Furthermore, correlation analysis was
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conducted between the absolute contribution of anthropogenic sources to GEM and BC, yielding a
high correlation coefficient (R?) of 0.88 and 0.86 at DSL and JHI (Figure 5¢&5d), respectively. It
should be noted that BC was not included in PMF modeling, thus the robust relationship between
anthropogenic GEM and BC suggested that BC can serve as a viable indicator for quantifying
anthropogenic contributions to TGM.

Based on the results above, the regression formulas obtained from DSL (Anthropogenic TGM
= (0444436 _+ 0.008)*BC + (0.235201+ 0.022), Figure 5c) and JHI ((Anthropogenic TGM =
0.375362 £ 0.009)*BC + (0.431 + 0.044), Figure 5d) were further applied to the cruise observation
for the purpose of differentiating the anthropogenic and natural fractions of TGM over the ocean.
The following criteria were applied. If the air mass backward trajectories (purple segments in Figure
S4) primarily originated from northern China, the JHI-derived formula was employed; If the air
mass backward trajectories (green segments in Figure S4) passed through the Yangtze River Delta
region or hovered over the East China Sea, the DSL-derived formula was enacted. Due to the

uncertainties of regression slopes and intercepts of the regression formulas, this approach caused

around 5% uncertainties on differentiating the anthropogenic and natural fractions of TGM.

Time-series of mass concentrations of anthropogenic and natural TGM in different coastal and
oceanic regions after applying the above equations are shown in Figure S5. Concentrations of
anthropogenic TGM at HNI, JHI, ECS, and YS were 0.6+-64 + 0.29-30 ng/m?, 1.28 & 0.75 ng/m’,
0.6358 + 0.454 ng/m’, and 0.9286 + 0.252 ng/m’, respectively. And the concentrations of natural
TGM were 1.158 +0.468 ng/m3, 0.88 = 0.26 ng/m>, 1.549 + 0.523 ng/m?, and 1.3844 + 0.513 ng/m’
at the four locations above, respectively. To ensure the reliability of these results, the relationship
between natural TGM and temperature was explored, yielding R? of 0.92, 0.76, 0.75, and 0.63 at
HNI, JHI, ECS, and YS, respectively (Figure 6). The correlation was significantly stronger than that
between the total TGM and temperature, particularly in the ECS and YS regions, where no
correlations were observed (Figure 3c). This proved that the quantitative method established above

was reliable.
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517

518 The anthropogenic contributions to TGM along the cruise routes are plotted in Figure 6e,
519  demonstrating significantly higher values near the coastal zones compared to the open ocean areas.

520  In details, anthropogenic contributions to TGM near the East China Sea coastal zones reached as

521  high as 60-88%, while the contributions diminished quickly to 15-25% over the open oceans. From
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the northern oceanic regions to the southern counterparts, the contribution of anthropogenic sources
to TGM generally exhibited a decreasing trend, with values of around 59%, 3840%, 3536%, and

296% over JHI, YS, HNI, and ECS, respectively. In comparison, previous isotope-based source

apportionment studies have revealed anthropogenic contributions of 29% and 42% to TGM in

remote areas like Changbai Mountain and Ailao Mountain (Wu et al., 2023). In general, the isotope-

based results indicated that the relative contributions of anthropogenic emissions to surface GEM

in remote China and urban China were around 30% and 49%, respectively (Fu et al., 2021; Feng et

al., 2022: Wu et al., 2023). Notably, the anthropogenic contributions to TGM in the Yellow Sea.

East China Sea, and Huaniao Island from this study aligned closely with isotope-derived values

from China's remote regions, while the DSL findings corresponded with urban isotope results. The

elevated contribution observed at JHI (59%) may be attributed to its proximity to the mainland (only

10 km away) and the sampling period occurring during the winter heating season, where continental

transport influences were significant (Li et al., 2023). Furthermore, the values obtained in this stud:

fell within comparable ranges to modeling study estimates (typically 33% to 41% on average) (Chen

etal., 2014; Wang et al., 2018). As shown in Figure S1. the backward trajectories over the Yellow

Sea segment were primarily influenced by air masses from the North China Plain and Liaoning

Province. The relatively higher contribution of anthropogenic sources to the Yellow Sea during the

cruise was likely attributable to the continental transport from northern China. The-main-cause-of

China-Sca-making more-susceptibleto-terrestrial-transport-intluenees. In addition, during this

cruise, the seawater temperature of the Yellow Sea was significantly lower than that of the East

China Sea, which was unfavorable for the natural release of mercury.

3.4 Effects of anthropogenic inputs on the sea-air exchange of mercury
To determine the sea-air exchange flux of mercury, DGM (dissolved gaseous mercury)
concentrations in seawater were measured at all sampling sites during the cruise (Figure S6). Figure

S6 delineates the time-series of DGM observed at JHI, YS, HNI, and ECS, with mean concentrations

0f21.3+£4.8,29.9£6.1,42.0 £ 9.4, and 39.7 + 10.9 pg/L, respectively. The DGM concentrations

measured during this winter cruise campaign (22.9-39.7 pg/L) were significantly lower than those
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recorded previously during summer and fall in similar regions (52.4-63.9 pg/L) Fhe—DBGM

recorded-previously-during-summer-and-fallin similarregions (Ci et al., 2011; Ci et al., 2015; Wang

et al., 2016a), indicating a noticeable seasonal variation in DGM concentrations in the ECS and Y'S.
Spatially, DGM concentrations in the ECS were higher than those in the YS, likely due to the
significantly higher sea surface temperature in the ECS (mean: 14.8 °C) compared to the Y'S (mean:

4.1 °C) during the cruise campaign. Higher temperatures not only favored the production of DGM
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the escape of DGM from the water surface into the atmosphere (Osterwalder et al., 2021; Huang
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Additionally, we observed that DGM concentrations were higher in coastal waters, particularly near
the Yangtze River Estuary, where the concentration reached 51.4 pg/m?. This suggested that
continental inputs, such as river discharge, had a significant influence on DGM levels in nearshore

waters (Chen et al., 2020; Kuss et al., 2018; Liu et al., 2016),-
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Figure 7. (a-c) Sea-air exchange fluxes of mercury at JHI, YS, and ECS, respectively. (d-f)
Comparison between the normal condition and the “without anthropogenic TGM” scenario, which
represented recalculated sea-air exchange fluxes of mercury after subtracting the anthropogenic

contributions of TGM concentrations.

Figure 7 shows the sea-air exchange fluxes of mercury within the BS (represented by JHI), YS,
and ECS, which were 0.17+0.38, 1.10+1.34, and 3.44+3.24 ng m2 h™!, respectively (Table S1). It
was evident that the Hg? fluxes during winter in the ECS was the highest, followed by the YS and
the BS. BS acted as a weak mercury source region and even a mercury sink sometimes (negative
flux in Figure 7a). Mercury fluxes observed during winter were lower than previous studies in other

seasons, €.g., 4.6+3.6 ng m? h! in ECS during summer (Wang et al., 2016a), 3.074+3.03 ng m h*!

in YS during spring (Wang et al., 2020), and 0.59+1.13 ng m? h™' in BS during fall (Wang et al.,

2020). To assess the impacts of anthropogenic inputs on the sea-air exchange, we recalculated the

flux after removing the anthropogenic contributions from the TGM measurements. This
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recalculation revealed increases of mercury fluxes in all investigated oceanic regions with different
extents. The post-adjustment mercury fluxes in the BS, YS, and ECS increased by 0.347, 0.357, and
0.199 ng m2 h*!, respectively, corresponding to increased marine mercury emissions of 0.058, 0.308,
and 0.332 tons, respectively. Compared to the normal condition, the BS exhibited the most
substantial increase in marine mercury release (207.1%) following the deduction of anthropogenic
impacts, suceeded by the YS (32-433.4%) and the ECS (5:86.5%) (Figure 7d-7f). These results
quantitatively elucidated the impact of anthropogenic emissions on marine mercury release,
underscoring the potential effects of diminished anthropogenic emissions on oceanic mercury

cycling.

4. Conclusions and implications

This study elucidated the effects of anthropogenic sources on atmospheric mercury
concentrations across various marginal seas and the subsequent influence on sea-air exchange
dynamics of mercury. Through comprehensive observations across island, cruise, and terrestrial
settings, we delineated atmospheric mercury distribution characteristics within the Chinese marginal
seas. The relationships between TGM and various environmental parameters suggested the
significance of natural sources in constraining oceanic atmospheric mercury levels. Notably, TGM
peaks recorded at terrestrial and island sites exemplified the influence of continental outflows on
the marine TGM. The introduction of the TGM/BC ratio functioned as a qualitative proxy for
assessing the extent of anthropogenic contributions. Furthermore, we articulated a quantitative
methodology for assessing anthropogenic contributions to marine atmospheric mercury, revealing
that these sources contributed 59%, 3840%, and 2629% to atmospheric mercury levels across the
Bohai Sea, Yellow Sea, and East China Sea, respectively. The winter sea-air exchange fluxes of
mercury in these three seas were estimated as 0.169, 1.100, and 3.442 ng m™ h*!, respectively, with
increases of 0.347, 0.357,and 0.199 ng m? h™! subsequent to deducting anthropogenic contributions.

Conducting atmospheric mercury measurements over oceans presented considerable
complexities compared to terrestrial observations, further compounded by challenges associated
with determining atmospheric mercury sources in the oceanic environment, This study established

a quantitative method grounded in extensive observations encompassing terrestrial, island, and
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612  marine contexts, facilitating estimations of anthropogenic contributions to atmospheric mercury
613  solely predicated on atmospheric mercury and black carbon data. This methodology may offer
614  valuable insights for analogous analyses of atmospheric mercury and other pollutants across diverse
615  oceanic regions globally. Using this method, we further quantified the extent to which anthropogenic
616  sources suppressed the sea-air exchange of mercury. Against the backdrop of declining global
617  anthropogenic atmospheric mercury emissions over the past 30 years, our findings suggested an
618  increase in mercury release from the ocean. Consequently, the mercury content in the ocean will be
619  likely to decrease, resulting in less inorganic mercury available for methylmercury production.
620  These insights contribute to a deeper understanding of the biogeochemical cycle of mercury and
621  enhance our ability to evaluate its impacts on marine ecosystems and human health.
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