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Abstract. Evapotranspiration comprises transpiration, soil evaporation, and interception. The partitioning of 

evapotranspiration is challenging due to the lack of direct measurements and uncertainty of existing evapotranspiration 

partitioning methods. We propose a novel method to estimate long-term mean transpiration to evapotranspiration (Et/E) ratios 

based on the generalized proportionality hypothesis using long-term mean hydrological observations at the watershed scale. 

We tested the method using 648 watersheds in the United States classified into six vegetation types. We mitigated impacts of 15 

the variability associated with different Ep data products by rescaling their original Ep values using the product E/Ep ratios in 

combination with the observed E calculated from watershed water balance. With Ep thus rescaled, our method produced 

consistent Et/E across six widely used Ep products. Shrubs (0.38) and grasslands (0.33) showed lower mean Et/E than croplands 

(0.46) and forests (respectively 0.73, 0.55, and 0.68 for evergreen needleleaf, deciduous broadleaf, and mixed forests). Et/E 

showed significant dependence on aridity, leaf area index, and other hydrological and environmental conditions. Using Et/E 20 

estimates, we calculated transpiration to precipitation ratios (Et/P) ratios and revealed a bell-shaped curve at the watershed 

scale, which conformed to the bell-shaped relationship with the aridity index (AI) observed at the field and remote-sensing 

scales (Good et al., 2017). This relationship peaked at an Et/P between 0.5 and 0.6, corresponding to an AI between 2 and 3 

depending on the Ep dataset used. These results strengthen our understanding of the interactions between plants and water and 

provide a new perspective on a long-standing challenge for hydrology and ecosystem science. 25 

1 Introduction 

Partitioning evapotranspiration is important for understanding water and energy balances of terrestrial ecosystems. 

Evapotranspiration has been predicted to increase at the expense of soil moisture due to climate change (Li et al., 2022; Niu et 

al., 2019) with potential implications for future projections of water, energy, and carbon balances. Large uncertainty remains 

in the partitioning of evapotranspiration into its components: transpiration, interception, and bare soil evaporation. Various 30 

methods have been developed to partition evapotranspiration based on measurements (Kool et al., 2014; Stoy et al., 2019). 
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These include (1) flux-variance similarity methods using high frequency (10–20 Hz) flux tower measurements, which estimate 

Et/E based on carbon-water correlation since transpiration and plant carbon uptake are concurrent (Scanlon and Kustas, 2012, 

2010; Scanlon and Sahu, 2008; Skaggs et al., 2018); (2) eddy-covariance methods, which estimate Et/E using assumptions 

related to water use efficiency based on widely available half-hourly/hourly eddy covariance measurements (Berkelhammer 35 

et al., 2016; Li et al., 2019; Scott and Biederman, 2017; Yu et al., 2022; Zhou et al., 2016) ; and (3) isotopic methods (Griffis, 

2013; Williams et al., 2004; Zhang et al., 2011). Measurements of sap flow through plant stems have also been commonly 

used to more directly estimate transpiration. Sap flow measurements are classified into three groups (Kool et al., 2014): heat 

balance methods (Čermák et al., 1973; Sakuratani, 1987, 1981), heat pulse methods (Cohen et al., 1981; Green et al., 2003; 

Swanson and Whitfield, 1981), and constant heater methods (Čermák et al., 2004; Granier, 1985). Poyatos et al. (2021) 40 

compiled 202 sap flow datasets to form the global SAPFLUXNET dataset. Recent studies have used remotely sensed solar-

induced fluorescence (SIF) measurements (Alemohammad et al., 2017; Damm et al., 2018; Liu et al., 2022; Lu et al., 2018; 

Pagán et al., 2019; Shan et al., 2019) as a way to estimate global transpiration, relying on the close coupling between 

transpiration and photosynthesis.  

The ratio of transpiration to evapotranspiration (Et/E) is a particularly important quantity because the controls on T (which is 45 

tightly regulated by plants through stomatal behaviour) are substantially different from the controls on the other two 

components. The evapotranspiration partitioning methods summarized above have multiple limitations and produce an 

alarmingly wide range of values for the global mean Et/E. Wei et al. (2017) showed mean global Et/E varying from 0.24 to 

0.90 based on a variety of remote-sensing, isotopic, and modelling studies. Another compilation by Liu et al. (2022) showed 

the mean varying between 0.24 and 0.86. Schlesinger and Jasechko (2014) showed that Et/E ratios derived from isotopic 50 

methods tend to be systematically higher than those produced by other methods. It has also been shown that two different 

evapotranspiration partitioning methods could produce greatly different Et/E values at the same site (Cavanaugh et al., 2011; 

Moran et al., 2009).  Some Et/E estimates at the stand scale ignore transpiration from subcanopy vegetation, resulting in 

underestimation (Schlesinger and Jasechko, 2014). There is no consensus on which method is more accurate (Stoy et al., 2019); 

this presents a challenge for applying the Et/E estimates using any of the above methods, especially when they are developed 55 

based on data at site scale but are applied at larger (regional to global) spatial scales. 

Few studies have considered partitioning evapotranspiration based on hydrological concepts using widely available long-term 

hydrological observations, which could in principle provide reliable methods to estimate Et/E. Gerrits et al. (2009) estimated 

monthly and (upscaled) annual transpiration based on precipitation, interception, soil moisture, and the aridity index. They 

estimated Et/E by modeling interception (which includes topsoil evaporation) as a daily threshold process (threshold is the 60 

interception storage capacity) and used rainfall distributions to upscale it to the monthly and then annual interception. 

Transpiration was modeled as a monthly threshold process based on net rainfall (precipitation minus interception), with the 

threshold being the soil moisture storage estimated based on a hydrological model, and upscaled it to annual transpiration via 

a rainfall distribution. Et/E is then calculated by assuming evapotranspiration is interception plus transpiration, since topsoil 

evaporation is included in interception, and deeper soil and open water evaporations are neglected. Mianabadi et al. (2019) 65 
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extended their approach and applied it globally. In this study, we propose a new method to partition evapotranspiration based 

on the Generalized Proportionality Hypothesis (GPH) using long-term hydrological observations. The GPH was initially used 

by the United States Soil Conservation Service (SCS) for runoff calculation (USDA SCS, 1985), and was afterwards 

generalized by Ponce and Shetty (1995a, 1995b). Wang and Tang (2014) provided a comprehensive discussion of the use of 

GPH and noted its connection to various models, including the “abcd” model, the SCS direct runoff model, and the Budyko-70 

type models. The GPH partitions water fluxes into their components and has been implemented as a two-stage partitioning. 

The first stage partitions precipitation into soil wetting and surface runoff; the second stage partitions soil wetting into baseflow 

and evaporation (Ponce and Shetty, 1995a, 1995b; Tang and Wang, 2017). We follow an approach based on the GPH 

partitioning of soil wetting to estimate catchment Et/E based on hydrological observations. Due to the wider availability of 

hydrological observations compared to the observations required for the techniques previously mentioned, this method has a 75 

wide potential for application in gauged watersheds across the globe.  

The objectives of our study are: 1) to develop a new method to estimate Et/E at the catchment scale based on long-term 

hydrological observations, 2) to test the method and evaluate its robustness to different data products using watersheds with 

different vegetation types, 3) to find Et/P (transpiration/precipitation) ratios based on Et/E and to compare this to previous 

studies, and 4) to understand the effect of hydrological and environmental conditions on both Et/E and Et/P. The paper is 80 

organized as follows. Section 2 describes the newly developed method. Section 3 describes datasets used. Section 4 presents 

results from the new method and compares them with Et/E estimates from other studies. Section 5 discusses the results and 

investigates their dependence on hydrological and environmental factors. Section 6 provides an insight into the variation of 

some existing partitioning methods. Section 7 summarizes our conclusions. 

2 Methods and Data 85 

2.1 Theory 

We present a new method to estimate long-term mean Et/E ratios at a watershed scale by taking advantage of long-term 

available hydrological observations. The new method is based on the Generalized Proportionality Hypothesis (GPH), shown 

in equation (1). the GPH equation has been previously established in the literature based on the observed relationships found 

by Lʹvovich (1979) and the later mathematical derivation (and generalization) by Ponce & Shetty (1995a, 1995b).  The 90 

proportionality hypothesis of the SCS method was obtained based on observed data from a larger number of watersheds (USDA 

SCS, 1985), which was then generalized by Ponce and Shetty (1995). GPH partitions an unbounded water quantity 𝑍 into an 

unbounded water quantity 𝑌 and a water quantity 𝑋 that is bound by its potential value 𝑋𝑝. The value 𝑋0 is the initial quantity 

of 𝑋 that is fulfilled prior to the competition between 𝑋 and 𝑌; for example, interception is a portion of E that is initially lost 

and not accessible for baseflow: 95 
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𝑋 − 𝑋0
𝑋𝑝 − 𝑋0

=
𝑌

𝑍 − 𝑋0
 (1) 

Ponce and Shetty (1995a, 1995b) applied the GPH for hydrological partitioning. They partitioned annual precipitation over 

two stages: the first stage partitions precipitation into catchment wetting and surface runoff; and the second stage partitions 

wetting (W) into evapotranspiration (E) and baseflow (Qb) as shown in Figure 1. Both stages of partitioning follow the 

generalized formula in equation (1). The two-stage partitioning is well established, has been proved with thermodynamic 

principles (D. Wang et al., 2015),  and has been extensively used in the literature in studies such as Sivapalan et al. (2011), D. 100 

Wang & Tang (2014), Chen & Wang (2015), Tang & Wang (2017), Abeshu & Li (2021).  

 

Figure 1: Two stage partitioning of annual precipitation. E: evapotranspiration; Es: soil evaporation; Ei: interception evaporation; 

Et: transpiration; P: precipitation; W: soil wetting; Qb: baseflow; Qd: direct runoff; Q: total runoff. 

In this work, we use the second stage partitioning to partition wetting into evapotranspiration and baseflow as shown in 105 

equation (2):  

𝐸 − 𝐸0
𝐸𝑝 − 𝐸0

=
𝑄𝑏

𝑊 − 𝐸0
 (2) 

where 𝐸0 is the initial evapotranspiration that does not compete with baseflow and 𝐸𝑝 is the potential evapotranspiration. 𝑊 

can be estimated as 𝑃 − 𝑄𝑑, where 𝑃 is precipitation and 𝑄𝑑 is direct runoff. 𝐸 can be estimated as 𝑃 − 𝑄, where 𝑄 is the total 

runoff (since the long-term mean soil moisture change can be ignored). Initial evapotranspiration (𝐸0) has been represented in 

different ways in the literature. Ponce & Shetty (1995a, 1995b) used 𝜆𝐸𝑝 to represent 𝐸0, where 𝜆 is a coefficient, Tang & 110 

Wang (2017) and Wang & Tang (2014)  used 𝜆𝑊, and Abeshu & Li (2021) used 𝜆𝐸. In this study, we choose 𝜆𝐸 as 𝐸0 due to 

the interpretability of the λ parameter. We alternately use 𝑘 instead of 𝜆 to avoid confusion with the latent heat of vaporization, 

leading to equation (3): 



5 

 

 

𝐸 − k𝐸

Ep − k𝐸
=

𝑄𝑏
𝑊 − k𝐸

 
(3) 

 

In Abeshu & Li (2021), 𝐸0  included interception, evaporation from surface depression, topsoil evaporation, and shallow 115 

transpiration. In Gerrits et al. (2009), they assumed that interception includes canopy and understory interception, in addition 

to topsoil evaporation, while deep soil evaporation is insignificant or can be combined with interception. In Savenije (2004), 

they considered topsoil evaporation to be a part of interception, and distinguished transpiration between fast and slow ones, 

where fast transpiration relies on moisture in the top 50 com of soil, and slow transpiration relies on deeper soil moisture. 

Therefore,  we assume that 𝐸0  includes bare soil evaporation, interception, and a portion (𝑓 ) of the transpiration (𝐸𝑡 ) 120 

representing the fast transpiration from the top 10 cm of soil (Abeshu & Li, 2021; Savenije, 2004). Since root uptake not only 

occurs near the surface but also progresses downwards (Gardner, 1983; Savenije, 2004), we assume that transpiration extracted 

from the topsoil occurs in a rapid manner that makes it inaccessible to the competition between baseflow and 𝐸, and therefore 

belongs to 𝐸0. The remaining portion of 𝐸 after deducting 𝐸0 is equivalent to the remaining portion of 𝐸𝑡 after deducting the 

portion 𝑓. That is,   125 

(1 − 𝑘)𝐸 = (1 − 𝑓)𝐸𝑡 (4) 

Therefore, the transpiration ratio (𝐸𝑡/𝐸) becomes:  

𝐸𝑡
𝐸
=
1 − 𝑘

1 − 𝑓
 (5) 

Equation (5) indicates that 𝐸𝑡/𝐸 can be found using 𝑘 and 𝑓 values. The 𝑘 parameter can be found by applying an optimization 

technique that maximizes the non-parametric Kling-Gupta efficiency (KGE, equation 6) (Gupta et al., 2009; Pool et al., 2018) 

between observed soil wetting (from watershed balance) and simulated soil wetting (rearranging equation (3) to be in terms of 

soil wetting). 130 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (6) 

where r is Pearson correlation coefficient, 

𝛼 is relative variability in the simulated and observed values, and  

𝛽 is  ratio between the mean simulated and mean observed flows. 

 

From the water balance equation at the watershed scale, we have 

 

𝑊𝑜𝑏𝑠 = 𝑃 − 𝑄𝑑  

(7) 

  

𝑊𝑠𝑖𝑚 = 𝑄𝑏
𝐸𝑝 − 𝑘𝐸

𝐸 − 𝑘𝐸
+ 𝑘𝐸 (8) 
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Since 𝑓 represents the fast response of transpiration, we follow a similar approach to Abolafia-Rosenzweig et al. (2020) in 

defining the ratio of surface transpiration using root distribution in soil water stress. We additionally distinguish between 

energy- and water-limited regions by constraining energy-limited f using the aridity index as displayed in equation (4): 

𝑓 = 𝑟10 × 𝑆 × 𝑓𝐴𝐼  135 

Where 𝑟10 is the root percentage in the top 10 cm of the soil, 𝑆 is the soil moisture availability, and 𝑓𝐴𝐼 represents impact of 

available energy. If the aridity index (AI) is less than 1, the region is energy limited. Thus, 𝑓𝐴𝐼.= AI. If AI ≥ 1, then 𝑓𝐴𝐼 = 1. 

The rationale behind this is that when 𝐴𝐼 < 1, only a fraction of the transpiration from the top surface layer is quantified to be 

part of the fast components due to its energy limited nature.  

The soil moisture availability, S, represents the moisture availability in the root zone for root water uptake. (Abolafia-140 

Rosenzweig et al., (2020) calculated the soil moisture availability as a function of soil moisture, wilting point, and field 

capacity. To rely on hydrological observations instead of simulated or remotely sensed soil moisture, we assume the soil 

moisture availability to be represented by the ratio between baseflow and total streamflow (𝑄𝑏/𝑄).  This ratio can give an 

indication of water availability in the soil, and hence can be used to indicate soil moisture availability. Since we apply this 

method at the watershed scale, there may be multiple vegetation types in the same watershed, and therefore, we calculate a 145 

weighted value of 𝑓. 

2.2 Data 

From Equations 2-5 and the descriptions of Section 2.1, we see that one needs long-term observed precipitation, streamflow, 

baseflow, estimated Ep, and root distribution to estimate the Et/E ratio. Watershed boundaries and precipitation data were 

retrieved from the Hydrometeorological Sandbox - École de technologie supérieure (HYSETS) dataset (Arsenault et al., 2020). 150 

The HYSETS dataset includes watershed boundaries, land cover, soil properties, meteorology, and hydrological data for 

14,425 watersheds in North American. We selected 648 watersheds (Fig. 1) across the United States with at least 10 years of 

streamflow data between 1980 and 2018 from this HYSETS data source. Detailed land cover data were retrieved from the 

ESA CCI Land Cover project (www.esa-landcover-cci.org, last accessed December 28, 2022).  

Streamflow data were retrieved from the US Geological Survey (USGS), and their corresponding baseflow magnitudes were 155 

estimated by separating it from the streamflow data using a one-parameter digital filter separation method (Lyne & Hollick, 

1979). Filtering methods separate direct runoff and baseflow by differentiating them based on frequency spectrums of the 

hydrograph, where low frequency flow represents baseflow and high frequency represents the direct runoff which has rapid 

responses to precipitation. We employed the widely used filtering method tool developed by Purdue University, Web-based 

Hydrological Analysis Tool (WHAT, Lim et al., 2010, 2005; https://engineering.purdue.edu/mapserve/WHAT, last accessed 160 

25 Oct 2022), to separate baseflow from the observed streamflow.  We set the value of the filter parameter to be 0.925 which 

is within the suggested range. We did a sensitivity analysis (in a separate study) and used different filter values and methods 

available from WHAT, the results were similar.  Since other methods such as Eckhardt (2005) require knowledge of 

hydrogeological conditions, we chose the one-parameter digital filter method due to its simplicity and constant parameter 

http://www.esa-landcover-cci.org/
https://engineering.purdue.edu/mapserve/WHAT
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value, which produces plausible results (Eckhardt, 2008; Xie et al., 2020). Additional details on the baseflow separation method 165 

are presented in Lim et al. (2005).  

Information related to root density functions was obtained from Zeng (2001), who represented root density distribution as a 

two-parameter function for each vegetation type based on compiled root database. The root density distribution from Zeng 

(2001) was validated using root information from other studies (Fan et al., 2016; Jackson et al., 1996; Lozanova et al., 2019; 

Schenk & Jackson, 2002; Wallace et al., 1980). Soil moisture stress (𝑄𝑏/𝑄) was calculated based on the USGS observed 170 

streamflow and the estimated baseflow from WHAT.  

Numerous Ep data products are available that satisfy our study regions and time period requirements, posing a question as to 

which one should be selected – as each has its own strengths. To address this question, we examined six widely used Ep data 

products and assessed their impact on the estimation of Et/E ratios. These data products were selected because they are (1) 

widely used within the hydrological and ecological communities, (2) associated with a wide range of spatial resolutions, and 175 

(3) derived using different methods. The six Ep datasets are the Global Land Evaporation Amsterdam Model (GLEAM v3.5a) 

(Martens et al., 2017), the Moderate Resolution Imaging Spectroradiometer (MODIS MOD16A3GF) product (Running et al., 

2021), the dataset from Zhang et al. (2010), the North American Regional Reanalysis (NARR) (Mesinger et al., 2006), the 

Simple Process-Led Algorithms for Simulating Habitats (SPLASH v1.0) (Davis et al., 2017), and the Breathing Earth System 

Simulator (BESS v2) (Li et al., 2023). Details of these six products are provided in Table 1. 180 

 

Figure 2: 648 watersheds in the US, categorized into six vegetation types; crops, grass, shrubs, evergreen needleleaf forest (ENF), 

deciduous broadleaf forests (DBF), and mixed forests (MF). The inset map at the bottom left shows watersheds in Alaska. 

 

 185 
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Table 1: Description of six Ep products used in this study. 

Dataset Ep equation Spatial and temporal scale Remarks 

GLEAM 

v3.5a 

Priestley-Taylor 0.25×0.25°, Daily/Monthly, 1980-

2021 

 

NARR Eta Model (Penman 

based) 

32×32 km, Daily/Monthly, 1979-

2022 

 

MODIS 

MOD16A3GF 

Combination of Penman-

Monteith and Priestley-

Taylor 

500×500m, 8-day/Yearly, 2000-

2021 

 

SPLASH Priestly-Taylor 1 km, Daily, 1980-2018 Forced using daily DayMet 

(Thornton et al., 2022) data 

BESS v2 Priestly-Taylor 5 km, Monthly, 1982-2022  

Zhang Penman-Monteith 8×8 km, Daily/Monthly, 1983-2006  

 

Environmental variables – relative humidity, downward shortwave radiation, air temperature, wind speed, and soil moisture 190 

content – were retrieved from the NARR dataset to study the dependencies of Et/E on environmental factors. Data on leaf area 

index (LAI) were obtained from the Global Monthly Mean Leaf Area Index Climatology produced by ORNL DAAC (Mao & 

Yan, 2019) and aggregated to obtain the long-term mean LAI at watershed scale.  

The relevant data were collected for 648 watersheds and aggregated to the annual timescale. The dominant vegetation type 

was determined for each watershed from the ESA CCI land cover data, and watersheds were classified into six vegetation 195 

types: crops, grass, shrubs, evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF). We 

assume each watershed has a single mean long-term Et/E value. For each dataset, due to the different time coverage of the 

datasets and the streamflow gauges, we filtered the watersheds to include only those that have available data for at least 10 

years. We used optimization to find 𝑘. We then performed additional filtering for each dataset to remove watersheds with KGE 

values less than zero. Using the filtered watersheds, we calculated Et/E based on estimated 𝑘 and 𝑓 together with the other 200 

variables. The final number of watersheds associated with each dataset used in this study, after filtering, is shown in Table 2. 
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Table 2: Number of filtered watersheds for each potential evapotranspiration (Ep) data product. Watersheds with less than 10 years 205 
of data and/or with Kling-Gupta efficiencies less than zero were removed from the analysis. Numbers are shown for each of the six 

vegetation types. 

Type 
All 

watersheds 
NARR MODIS Zhang 

GLEAM 

v3.5a 

BESS 

v2 
SPLASH 

Crops 74 72 61 57 73 59 71 

Grass 89 84 66 73 86 79 81 

Shrubs 146 131 107 114 134 128 131 

ENF 206 166 118 118 173 161 156 

DBF 65 65 61 54 65 64 65 

MF 68 63 58 52 66 51 61 

Total 648 581 471 468 597 542 565 

3 Impact of Ep products 

Figure 3a shows mean annual Ep values from six different data products for the 648 study watersheds. We observe large 

differences in mean annual Ep among the six different data products. The differences in Ep are likely attributed to variations in 210 

input data and parameter values used by these products, while differences in methods and resolutions used to compute Ep may 

play a secondary role (Hassan et al., 2024). Discrepancies between the input net radiation used in different data products result 

in especially large variations in the computed Ep. Variations in parameter values, including the Priestly-Taylor α parameter, 

among different data products also result in significant differences in the resulting Ep. On the other hand, the E/Ep ratios from 

the six different Ep products are relatively consistent among the six datasets (except for GLEAM) as shown in Figure 3b. This 215 

is likely because within each product the same input/forcing data and parameter values are employed for both Ep and E, 

resulting in similar impacts on both. Such consistency is an indication of a uniformity of the underlying physics across these 

five products, despite the large disparities in their individual Ep magnitudes. The GLEAM Ep product, which has also been 

previously identified for its overestimation of E/Ep ratio by Peng et al. (2019) in comparison with FLUXNET E/Ep, appears to 

be an exception. Rather than excluding the GLEAM data product, we opted to adjust its E/Ep ratio by normalizing it with the 220 

average ratio of the other five datasets (NARR, MODIS, Zhang, SPLASH, and BESS), yielding a adjusting factor of 0.7. This 

adjusting factor of 0.7 was applied to GLEAM to adjust its E/Ep values.  In addition, Ep values from the six data products in 

this study were newly derived by applying their individual E/Ep ratios, obtained from their own data products, to the watershed 

E values calculated based on data (i.e., E = P – Q) for each watershed. The importance of deriving Ep values for each data 

product through this rescaling approach (referred to rescaled Ep), rather than using the original Ep product, is to ensure 225 

consistency between the Ep values and the watershed-budget estimated E values for each watershed while preserving the E/Ep 
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ratios from the individual products. This is necessary because the magnitudes of some original Ep products are smaller than 

their corresponding watershed-budget estimated E values.  

In essence, we derive new Ep values for all six products using Equation (9), maintaining the E/Ep ratio for each data product 

(except for GLEAM). This approach yields consistent Ep values across the 648 watershed for each individual data product and 230 

captures the essential variations among the six Ep datasets. The rescaled Ep values obtained from Equation (9) uphold the 

fundamental principles of individual products by preserving their respective E/Ep ratios. By doing so, the effects stemming 

from differences or uncertainties in their inputs/forcing data are notably mitigated, as the new Ep values are calculated using 

the watershed-budget estimated E and their own E/Ep ratios. This concept is akin to the notion of emergent constraints 

employed by others (Green et al., 2024; Hall et al., 2019; Williamson et al., 2021): 235 

𝐸𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 =
𝐸𝑝𝑑𝑎𝑡𝑎𝑠𝑒𝑡
𝐸𝑑𝑎𝑡𝑎𝑠𝑒𝑡

× 𝐸𝑜𝑏𝑠 (9) 

where 𝐸𝑑𝑎𝑡𝑎𝑠𝑒𝑡 and 𝐸𝑝𝑑𝑎𝑡𝑎𝑠𝑒𝑡 are values extracted from different data products, and 𝐸𝑜𝑏𝑠 is the watershed-budget estimated 𝐸 

calculated as 𝑃 − 𝑄 based on observed P and Q for each watershed. Table 3 shows the correlation between the rescaled Ep 

values of the six data products; the correlations show good consistency between the rescaled Ep values. These six rescaled Ep 

data products are then applied to Equations 2-5 to obtain Et/E ratios for each of the six vegetation types over the 648 watersheds. 

With the six rescaled Ep data products, we can assess how variations in Ep affect the robustness of our new method in estimating 240 

Et/E. 
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Figure 3: Original Ep for six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS v2 for 648 watersheds. (a) 

Ep values retrieved from the data products, and (b) E/Ep ratios retrieved from the data products. Watersheds are sorted in 

descending order according to GLEAM’s E/Ep. 245 

Table 3: Correlations between rescaled Ep of six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS v2 for 

648 watersheds. 

  MODIS GLEAM NARR SPLASH BESS Zhang 

MODIS 1 
     

GLEAM v3.5a 0.72 1 
    

NARR 0.81 0.83 1 
   

SPLASH 0.80 0.84 0.83 1 
  

BESS 0.92 0.78 0.73 0.75 1 
 

Zhang 0.70 0.83 0.68 0.69 0.92 1 
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4 Results 

Figure 4 shows the estimated values of 𝑘 for each of the six datasets based on Equations 6-8. Figure 5 shows the comparison 

between observed soil wetting (W) and the simulated soil wetting with estimated 𝑘 value for a representative vegetation type. 250 

The six datasets show similar trends, where the highest 𝑘 values are observed for the shrubs and grass vegetation types. Crops 

have lower 𝑘 values than shrubs and grass, but equal or higher than those for forests according to the dataset used. Figure 4 

illustrates that the greatest variations among the six data products occur in the mixed forest and crops. This discrepancy may 

be attributed to differences in how each data product defines mixed forest and crop compositions, resulting in varying estimated 

parameters.  255 

 

Figure 4: 𝒌 values for the watersheds using data from six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after rescaling, 

SPLASH, and BESS. Note that ENF, DBF, and MF represent, respectively, evergreen needle-leaf forest, deciduous broadleaf forest, 

and mixed forest in the figure. 
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 260 

Figure 5: Optimization of 𝒌 values using observed and simulated soil wetting as explained in equations 6-8. Figure shows observed 

and simulated soil wetting time series for an example watershed for each of the six vegetation types (crops, grass, shrubs, ENF, DBF, 

MF) using NARR data. 

Figure 6 shows the values of the 𝑓 parameter for 648 watersheds classified into six vegetation types. The highest 𝑓 value is 

observed in grass, which can be explained by their shallow rooting depths causing higher portions of fast transpiration. The 265 

lowest 𝑓 values can be observed in forests due to their deeper rooting system, which provides access to deeper soil moisture, 

reducing the portion of fast transpiration. 
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Figure 6: 𝑓 values for six vegetation types for 648 watersheds 

Et/E ratios are shown in Figure 7 and Table 4. Overall, the trend is consistent among the six datasets. Grass and shrubs have 270 

the lowest Et/E values, with mean Et/E in the range of 0.19-0.39. Crops have higher mean Et/E ratios, with NARR, Zhang, and 

GLEAM averaging around 0.4, while MODIS and SPLASH show a higher crop mean Et/E of around 0.51. BESS has the 

lowest crop Et/E with a value of 0.29. All datasets have similar forest Et/E trend, with lowest mean Et/E for DBF (0.46-0.60), 

followed by ENF (0.52-0.71). The highest mean Et/E is exhibited for MF (0.55-0.76).  

 275 

 

Figure 7: Et/E values for the watersheds using data from the six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after 

rescaling, SPLASH, and BESS 



15 

 

Table 4: Mean Et/E values for six vegetation types using Ep data from the six data products. Minimum, maximum, and mean values 

are shown for each vegetation type. 280 

Data 

product 
Crops Grass Shrubs ENF DBF MF Mean 

NARR 0.52 0.37 0.37 0.72 0.59 0.61 0.52 

MODIS 0.65 0.38 0.41 0.77 0.67 0.80 0.59 

Zhang 0.49 0.34 0.34 0.69 0.69 0.90 0.52 

GLEAM 0.48 0.28 0.31 0.67 0.54 0.67 0.48 

SPLASH 0.43 0.30 0.29 0.65 0.55 0.71 0.47 

BESS 0.35 0.25 0.30 0.65 0.56 0.64 0.45 

Minimum 0.35 0.25 0.29 0.65 0.54 0.61 0.45 

Maximum 0.65 0.38 0.41 0.77 0.69 0.90 0.59 

Mean 0.48 0.32 0.33 0.69 0.60 0.70 0.50 

5 Discussion 

5.1 𝒌 and Et/E ratios 

Shrubs and grass showed higher 𝑘 values, likely due to their occurrence in arid and semi-arid regions in the US. The high 𝑘 

values could be explained by the higher bare soil evaporation expected in arid regions (Baver et al., 1972), especially due to 

the sparse nature of shrubs, increasing bare areas and thus bare soil evaporation (Liu et al., 2022). Also, the high aridity is 285 

expected to cause water stress, lowering the continuing transpiration (portion of transpiration not included in 𝑘). The lower 𝑘 

values in crops and forests may be due to the higher vegetation coverage in these areas which provides shade to the soil, 

reducing the amount of soil evaporation (Baver et al., 1972). Additionally, litter contributes to reducing soil evaporation, and 

may even have a larger reduction effect than canopy shade (Magliano et al., 2017). The broader leaves of DBF increase their 

interception compared to ENF, thus resulting in a higher 𝑘 value as well. 290 

These estimated mean Et/E ratios followed explainable trends, with shrubs and grass watersheds showing low Et/E ratios, 

forests exhibiting higher Et/E ratios, and crops falling in between. Given greater water availability in crops and forests, it is 

expected that they would exhibit higher Et/E ratios. Many crops in the US benefit from continuous irrigation, reducing water 

stress and promoting transpiration. Forests, with their dense canopy cover offering shade, reduce soil evaporation (Baver et 

al., 1972)  and consequently boost the Et/E ratios. Crops also show high vegetation coverage, thereby providing shade to the 295 

soil and increasing Et/E (Baver et al., 1972). Moreover, in arid regions dominated by shrubs, lower soil water content is 

anticipated, resulting in diminished root water uptake (Gardner, 1983). Furthermore, the shedding of leaves in deciduous 

forests reduces transpiration when examined over the whole year (as here), resulting in a decreased Et/E ratio for DBF.  
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Differences in study scale may hinder the comparison with other studies, since our method estimates Et/E at the watershed 

scale, while other studies are based at a plot-scale (field/eddy covariance-based methods) or grid scale (models and remote-300 

sensing methods). Factors affecting watershed scale Et/E include the possible presence of secondary vegetation within the 

watershed and the possible sparseness of the primary vegetation and presence of bare areas which can increase soil evaporation 

and reduce Et/E, especially for shrublands. Therefore, this method has the advantage of providing a realistic watershed Et/E 

ratio that accounts for multiple vegetation types and sparseness in vegetation distribution. Consistent results across different 

datasets underscore the reliability of our new method, irrespective of the data product employed (see Fig. 5 and Table 3).  305 

5.2 Effect of hydrological indices on Et/E 

We explore the sensitivity of Et/E to two hydrological indices, namely the runoff ratio (Q/P) and the baseflow ratio (Qb/Q). 

Figure 8a shows a proportional relationship between Et/E and Q/P. The relationship appears to manifest as two distinct linear 

correlations, with arid catchments showing a steeper slope than humid catchments. Arid regions typically experience minimum 

runoff as a significant portion of precipitation evaporates in various forms owing to elevated atmospheric demand. This 310 

phenomenon yields high Et/E ratios at relatively low Q/P values. Conversely, humid catchments often experience substantial 

runoff, attributed to either saturation excess or infiltration excess runoff mechanisms, resulting in elevated Q/P ratios compared 

to arid catchments at equivalent Et/E values. In both cases, a higher Q/P ratio signifies increased water availability, 

consequently leading to higher Et/E ratios.  

In Figure 8b a non-linear positive relationship is depicted between the mean Et/E and Qb/Q (baseflow ratio). The baseflow 315 

ratio serves as an indicator of soil water availability, as higher baseflow typically corresponds to increased soil moisture content 

(Hurkmans et al., 2008). Consequently, a positive correlation between Et/E and the baseflow ratio is anticipated. Notably, the 

majority of arid catchments cluster in the low Qb/Q and low Et/E region, while transitioning toward wetter catchments naturally 

augments both Qb/Q and Et/E.  

1.  320 
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Figure 8: Relationship between mean Et/E and two hydrological indices (a) Q/P and (b) Qb/Q for 648 watersheds based on NARR 

data. Plots are colored according to aridity index. 

 5.3 Effect of LAI on Et/E 325 

The leaf area index (LAI), representing the leaf area per unit ground area, reflects the combined influences of leaf size and 

canopy density. As shown in Figure 9, LAI appears to exert some influence over evapotranspiration partitioning. Arid 

watersheds show lower LAI values, and Et/E ratios increase non-linearly with LAI. However, as watersheds transition toward 

higher humidity levels, their LAI and Et/E ratios increase non-linearly, albeit at different rates. In arid regions, plants tend to 

reduce their leaf area to mitigate water loss (Chaves et al., 2003) decreasing both LAI and Et/E – a direct consequence of 330 

heightened aridity. This suggests that aridity plays a role in regulating Et/E. Figure 9 illustrates a complex relationship between 

LAI and Et/E, characterized by substantial scatter. Our findings align with previous studies indicating diverse dependence of 

Et/E on LAI. For instance, LAI has been shown to provide a control on E partitioning (X. Li et al., 2019; L. Wang et al., 2014; 

Wei et al., 2017), but that effect varies from one study to another. Wang et al. (2014) showed that LAI has a non-linear 

relationship with Et/E during the growing season, whereas X. Li et al. (2019) showed a weak linear relationship between mean 335 

growing season LAI and mean annual Et/E across sites, with the Et/E and LAI relationship within the same site being non-

linear. Additionally, Cao et al. (2022) showed a non-linear positive relationship between annual Et/E and LAI.  
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Figure 9: Relationship between Et/E and LAI for 648 watersheds using Et/E calculated based on the NARR dataset. 

5.4 Impacts of environmental variables on Et/E ratios 340 

We explore the effect of six environmental factors on the mean Et/E ratios. They are aridity index (AI), relative humidity (RH), 

air temperature (Tair), downward shortwave radiation (DSW), soil moisture, and wind speed (WS). These factors were derived 

from the NARR dataset, and the Et/E ratios were calculated based on the same dataset. Since some of these environmental 

variables are highly correlated (as shown in Figure 10), we first perform variable selection using stepwise regression and Lasso 

regression to identify those that are strongly correlated with each other. Stepwise regression aims to select a subset of variables 345 

that provide the best prediction with minimum redundancy, while Lasso regression adds a penalty term to reduce the 

coefficients of insignificant variables. Both methods resulted in the elimination of downward shortwave radiation, while 

stepwise selection additionally eliminated relative humidity and air temperature. Table 5 shows the coefficients of the 

environmental variables and their significance for both stepwise and Lasso regression. Although the significance test shows 

that air temperature and relative humidity has an insignificant impact on the Lasso regression, while the aridity index, soil 350 

moisture, and wind speed are significant (Table 5), they are still included because they marginally contributes to the model's 

predictive power. Additionally, they represent independent and observable dimensions, distinct from the other three significant 

environmental variables.  

A negative non-linear correlation between Et/E and AI is present. Increased aridity prompts plants to adopt water conserving 

strategies (Chaves et al., 2003), thereby reducing the transpiration ratios. In humid regions, the relationship between Et/E and 355 

AI is more discernible, with AI accounting for a significant portion of the variance of Et/E. Conversely, for arid regions, 

particularly those dominated by shrubs, the relationship shows greater scatter, suggesting that AI exerts a relatively smaller 

effect on Et/E, while other factors play a more prominent role. Furthermore, higher air temperature contributes to lowering 

Et/E (see Fig. 9b), as it prompts water-conserving behaviors in plants and elevates soil evaporation, consequently reducing 
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Et/E ratios. Conversely, increasing soil moisture leads to enhanced water availability for plant root uptake, resulting in a near 360 

linear increase in Et/E, as shown in Figure 11c.  The relationship between wind speed (WS) and Et/E is inconclusive; this 

finding is consistent with several previous studies (e.g., Dixon and Grace, 1984; Huang et al., 2015; Schymanski and Or, 2016) 

which have presented a mixed effect of wind speed on transpiration. Nevertheless, the effects of other environmental variables 

on Et/E demonstrate explainable patterns as discussed here. The other five data products (MODIS, Zhang, GLEAM, SPLASH, 

and BESS) show similar impacts of all the environmental variables on Et/E as those shown in Figure 11 for NARR.  365 

 

Figure 10: Correlation between environmental variables. AI: aridity index, RH: relative humidity, Ta: air temperature, DSW: 

downward shortwave radiation, SM: soil moisture, WS: wind speed. 

Table 5: Coefficients of standardized environmental variables regressed against Et/E using stepwise selection and Lasso regression. 

Significance levels are shown next to the coefficients (***: p<0.001, **: p<0.01, *: p<0.05, blank: p>0.1  370 

  
Coefficient  

(Stepwise selection) 

Coefficient  

(Lasso regression) 

AI -0.105*** -0.026*** 

RH    0.001 

Tair  -0.004 

DSW     

SM 0.066*** 0.0005*** 

WS 0.023** 0.037* 



20 

 

 

 

 

 

Figure 11: Relationships between mean annual Et/E and environmental factors (a) aridity index (Ep/P), (b) air temperature (Tair), 

(c) soil moisture (SM), and (d) wind speed (WS) for 648 watersheds. Et/E is calculated based on NARR data, and the environmental 

variables are also retrieved from the NARR product. Significance of the pairwise relationships between Et/E and the environmental 375 
variables are shown on each plot. 

5.5 Et/P ratios 

We computed transpiration to precipitation (Et/P) ratios based on Et/E values calculated from the six adjusted Ep data products. 

The mean Et/P ratios from these six datasets range from 0.24 to 0.36, aligning closely with the global mean Et/P of 0.39 

estimated by Schlesinger and Jasechko (2014) 380 

We also compared our estimated Et/P ratios to the Et/P versus aridity index relationship identified by Good et al. (2017). Good 

et al. (2017) presented this relationship based on a compilation of field studies, three remote-sensing based models, and an 

ecohydrological model, revealing good consistency among the various Et/P data sources. Figure 12 shows a similar trend to 
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that presented in Fig. 1 of Good et al. (2017), with the maximum Et/P ratio close to the intersection between water and energy-

limited states. This maximum Et/P corresponds to an aridity index ranging between 2 and 3 in our study, similar to the estimated 385 

aridity index range of 1.3 to 1.9 for the maximum Et/P as reported by Good et al. (2017). Moreover, the maximum Et/P shown 

in Figure 12 ranges between 0.5 and 0.58, consistent with the maximum Et/P of 0.6 based on field data in Good et al. (2017). 

Notably, there is greater variation on the right side of the curve (indicating more arid conditions) compared to the left side 

(representing wetter conditions). In arid regions, transpiration is influenced not only by aridity, but also by factors such as 

groundwater table depth and soil moisture content, resulting in higher variability in the Et/P versus aridity index (AI) 390 

relationship. The consistency between Good et al. (2017) and this study suggests that this relationship holds not only at the 

field and remote sensing scales (as shown by Good et al., 2017), but also at the watershed scale, as demonstrated in this study. 

This relationship holds significance for studies like that of Cai et al. (2023) and B. Zhou et al. (2025)where Et/P serves as a 

parameter (referred to as f0 in their study) to determine water-limited fAPAR and LAI (Cai et al., 2023) estimated Et/P as a 

global mean using non-linear regression, with a value of 0.62, akin to the maximum Et/P of 0.5 to 0.58 estimated by our fitted 395 

curves depicted in Figure 12. B. Zhou et al. (2025) used a variable Et/P as a function of AI, akin to our fitted curves. Their 

maximum Et/P of 0.65 occurred at an AI of 1.9, similar to our fitted curves.  
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 400 

Figure 12: Et/P versus the aridity index for six datasets: (a) NARR, (b) MODIS, (c) Zhang et al. (2010), (d) GLEAM after rescaling, 

(e) SPLASH, (f) BESS 
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6 Variation of evapotranspiration partitioning methods 

Figure 7 demonstrates the influence of the six adjusted Ep data products on the Et/E ratios by our new method for each 

vegetation type, while Table 4 provides their variation range between the minimum and maximum mean Et/E ratios. On the 405 

other hand, as outlined in the introduction, estimated global mean values of Et/E from various existing methods exhibit a 

considerable variation, ranging from 0.24 to 0.9 (Liu et al., 2022; Wei et al., 2017). This variation may be attributed to several 

factors, including data inconsistencies, geographical disparities, and differences in selected time periods, apart from differences 

in methodology. In an effort to explore what may be the cause for the large variation among the different methods, we have 

tried to mitigate these factors by using the same half-hourly eddy covariance data from the FLUXNET and AMERIFLUX 410 

ONEFLUX towers measurements in the US for the same locations and same time periods. Such an approach would allow us 

to elucidate the disparities among the existing E partitioning methods, consequently, providing insights on influences by 

different Ep datasets in our method versus current existing different methods on the large range of Et/E ratios.   

The four methods we selected to investigate are: (1) Zhou et al. (2016), (2) Scott and Biederman (2017), (3) Li et al. (2019), 

and (4) Yu et al. (2022). These four methods are selected because they are based on eddy covariance measurements whose 415 

data are widely available, unlike sap flow and isotope measurements. Since these methods are based on flux measurements, 

they can be considered as field-based estimations of Et/E. We apply these four methods to the same datasets from the 

FLUXNET and AMERIFLUX ONEFLUX towers in the US, but the final number of flux towers included for each method 

depends on the filtering criteria in each method and the limitations in applying each method.  

The first method by Zhou et al. (2016) is based on the water use efficiency. The ratio Et/E is estimated as the ratio between the 420 

apparent water use efficiency (𝑊𝑈𝐸𝑎 = 𝐺𝑃𝑃 ×
𝑉𝑃𝐷0.5

𝐸𝑇
) and the potential water use efficiency (𝑊𝑈𝐸𝑝 = 𝐺𝑃𝑃 ×

𝑉𝑃𝐷0.5

𝑇
). 

Assuming that Et/E approaches 1 at some time during the growing season, the WUEp is estimated from the 95th quantile 

regression of the half-hourly scatter plot (based on all half-hourly data for the site) between GPP×VPD0.5 and E and is assumed 

to be constant for the flux tower. WUEa is then estimated for each time step as the linear regression of the E and GPP×VPD0.5 

relationship using half-hourly data for the desired time period, which can be 8-day, monthly or annually.  425 

The second method by Scott and Biederman (2017) is based on water use efficiency to estimate multiyear monthly average 

Et/E ratios. This approach estimates transpiration as the product of the inverse of the marginal water use efficiency, the ratio 

between transpiration WUE and marginal WUE, and GPP. The inverse of the marginal WUE is estimated from the linear 

regression of the GPP versus E scatter plot. The ratio between transpirational and marginal WUEs is assumed to be 1. This 

method requires multiple years of data for its application.  430 

The third method by Li et al. (2019) is based on the stomatal conductance model of Lin et al. (2018) to partition 

evapotranspiration. The Et/E ratio is equivalent to the ratio between canopy conductance and ecosystem conductance. The 

eddy covariance data are divided into soil moisture bins to calibrate the parameters. Therefore, the method requires soil 

moisture data, along with GPP, VPD, E, and three calibrated parameters to estimate the Et/E ratio.  
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The fourth method by Yu et al. (2022) combines the water use efficiency with the Medlyn et al. (2011) stomatal conductance 435 

model. This method relies on GPP, E, Ca, Pa, and VPD from the flux tower data in addition to the parameter g1 from the Medlyn 

et al. (2011) model. The authors compared their method to other methods and showed a high correlation with the Zhou et al. 

(2016) but a low correlation with the Li et al. (2019) method. 

Additionally, we compare our results to Et/E values for 20 global flux towers from Tan et al. (2021). Et/E was calculated based 

on flux tower data and P-model (Stocker et al., 2020; H. Wang et al., 2017) outputs.  440 

The estimated Et/E ratios from the five methods are shown in Figure 13a – e and Table 4, respectively, for the same six different 

vegetation types as shown in Figure 7 with our new method.  

 

Figure 13: Et/E values based on the eddy covariance tower data with 5 methods: (a) Zhou et al. (2016) (n=80), (b) Scott and Biederman 

(2017) (n=53), (c) Li et al. (2019) (n=46), (d) Yu et al. (2022) (n=60) (e) Tan et al. (2021)Tan et al. (2021) (n=15). 445 

Table 6: Mean Et/E values for six vegetation types using four evapotranspiration partitioning methods. Minimum, maximum, and 

mean values are shown for each vegetation type. 

Evapotranspiration 

partitioning 

method 

Crops Grass Shrubs ENF DBF MF Mean 

Zhou et al. 0.54 0.48 0.46 0.46 0.52 0.42 0.48 

Scott and 

Biederman 
0.56 0.59 0.65 0.66 0.65 0.77 0.62 

Li et al. 0.70 0.63 0.59 0.69 0.70 0.61 0.66 
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Yu et al. 0.34 0.37 0.38 0.43 0.46 0.44 0.39 

Tan et al. 0.48 - 0.44 0.56 0.6 0.61 0.54 

Minimum 0.34 0.37 0.38 0.43 0.46 0.42 0.39 

Maximum 0.70 0.63 0.65 0.69 0.70 0.77 0.66 

Mean 0.52 0.52 0.50 0.56 0.59 0.57 0.54 

 

The inconsistencies among the five methods are evident, with Zhou, Yu, Li, and Tan showing minimal variation among 

vegetation types, while Scott displays substantial variation. Moreover, the magnitudes and trends of Et/E across these methods 450 

are also inconsistent. These discrepancies indicate a lack of agreement on both the mean Et/E values and the variation ranges 

among the different methods. Consequently, these methods are not suitable as reference points for evaluating our new method. 

Instead, the assessment of our new method should be based on its physical behavior and relationships with other variables, as 

discussed in Section 5. It is noteworthy that compared to Figure 7, the variation range of Et/E ratios from the five different 

methods, utilizing the same data at the same locations, is significantly greater than that for our new method in which disparity 455 

is attributed to the variations associated with the Ep methods employed. Additionally, since our method is at a larger 

(watershed) scale, we observe larger variations between vegetation types, which can be attributed to different vegetation 

densities and bare land percentages at larger scales which is not a factor at smaller (flux tower) scales. 

7 Conclusions 

We have presented a new method for determining the transpiration to total evapotranspiration (Et/E) ratio using long-term 460 

hydrological observations. This method is based on the generalized proportionality hypothesis, which has wide applications in 

hydrology. We applied the method to 648 watersheds in the US using six different Ep data products. Our findings demonstrate 

consistent Et/E results across these diverse Ep datasets, facilitated by a rescaling of Ep derived from the E/Ep ratios obtained 

from each individual data product and watershed-budget estimated  E computed from the watershed water balances. 

Our analysis reveals that varying Et/E ratios across watersheds are associated with different vegetation types, with shrubs and 465 

grasslands exhibiting lower Et/E values compared to crops and forests. Furthermore, our results underscore the significant 

influence of leaf area index (LAI), hydrological indices (Q/P and Qb/Q), and prevailing environmental conditions on Et/E. Our 

method also provides a realistic estimate of Et/E at a watershed scale that implicitly accounts for the heterogeneity of vegetation 

within the catchment. Our method can also be useful for constraining hydrological models, land surface models, and climate 

models. 470 

We also explore the relationship between Et/P and aridity index, unveiling a bell-shaped curve at the watershed scale, where 

the maximum Et/P ratio occurs at an aridity index between 2 and 3, corresponding to an Et/P ratio of around 0.5 to 0.58. These 

findings provide valuable insights into the intricate interplay between hydrological processes and environmental variables, 

shedding light on the complex dynamics of evapotranspiration in diverse watershed ecosystems. 
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