

Insights into evapotranspiration partitioning based on hydrological observations using the generalized proportionality hypothesis

Amin Hassan¹, I. Colin Prentice^{2,3}, Xu Liang¹

¹Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA

⁵²Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK

³Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China

10 *Correspondence to:* Xu Liang (xuliang@pitt.edu)

Abstract. Evapotranspiration comprises transpiration, soil evaporation, and interception. The partitioning of evapotranspiration is challenging due to the lack of direct measurements and uncertainty of existing evapotranspiration partitioning methods. We propose a novel method to estimate long-term mean transpiration to evapotranspiration (E_t/E) ratios based on the generalized proportionality hypothesis using long-term mean hydrological observations at the watershed scale.

15 We tested the method using 648 watersheds in the United States classified into six vegetation types. We mitigated impacts of the variability associated with different E_p data products by rescaling their original E_p values using the product E/E_p ratios in combination with the observed E calculated from watershed water balance. With E_p thus rescaled, our method produced consistent E_t/E across six widely used E_p products. Shrubs (0.38) and grasslands (0.33) showed lower mean E_t/E than croplands (0.46) and forests (respectively 0.73, 0.55, and 0.68 for evergreen needleleaf, deciduous broadleaf, and mixed forests). E_t/E 20 showed significant dependence on aridity, leaf area index, and other hydrological and environmental conditions. Using E/E estimates, we calculated transpiration to precipitation ratios (E_t/P) ratios and revealed a bell-shaped curve at the watershed scale, which conformed to the bell-shaped relationship with the aridity index (AI) observed at the field and remote-sensing scales (Good et al., 2017). This relationship peaked at an E_t/P between 0.5 and 0.6, corresponding to an AI between 2 and 3 depending on the E_p dataset used. These results strengthen our understanding of the interactions between plants and water and 25 provide a new perspective on a long-standing challenge for hydrology and ecosystem science.

1 Introduction

Partitioning evapotranspiration is important for understanding water and energy balances of terrestrial ecosystems. Evapotranspiration has been predicted to increase at the expense of soil moisture due to climate change (Li et al., 2022; Niu et al., 2019) with potential implications for future projections of water, energy, and carbon balances. Large uncertainty remains 30 in the partitioning of evapotranspiration into its components: transpiration, interception, and bare soil evaporation. Various methods have been developed to partition evapotranspiration based on measurements (Kool et al., 2014; Stoy et al., 2019).

These include (1) flux-variance similarity methods using high frequency (10–20 Hz) flux tower measurements, which estimate E_t/E based on carbon-water correlation since transpiration and plant carbon uptake are concurrent (Scanlon and Kustas, 2012, 2010; Scanlon and Sahu, 2008; Skaggs et al., 2018); (2) eddy-covariance methods, which estimate E_t/E using assumptions related to water use efficiency based on widely available half-hourly/hourly eddy covariance measurements (Berkelhammer et al., 2016; Li et al., 2019; Scott and Biederman, 2017; Yu et al., 2022; Zhou et al., 2016) ; and (3) isotopic methods (Griffis, 2013; Williams et al., 2004; Zhang et al., 2011). Measurements of sap flow through plant stems have also been commonly used to more directly estimate transpiration. Sap flow measurements are classified into three groups (Kool et al., 2014): heat balance methods (Čermák et al., 1973; Sakuratani, 1987, 1981), heat pulse methods (Cohen et al., 1981; Green et al., 2003; 40 Swanson and Whitfield, 1981), and constant heater methods (Čermák et al., 2004; Granier, 1985). Poyatos et al. (2021) compiled 202 sap flow datasets to form the global SAPFLUXNET dataset. Recent studies have used remotely sensed solar-induced fluorescence (SIF) measurements (Alemohammad et al., 2017; Damm et al., 2018; Liu et al., 2022; Lu et al., 2018; Pagán et al., 2019; Shan et al., 2019) as a way to estimate global transpiration, relying on the close coupling between transpiration and photosynthesis.

45 The ratio of transpiration to evapotranspiration (E_t/E) is a particularly important quantity because the controls on T (which is tightly regulated by plants through stomatal behaviour) are substantially different from the controls on the other two components. The evapotranspiration partitioning methods summarized above have multiple limitations and produce an alarmingly wide range of values for the global mean E_t/E . Wei et al. (2017) showed mean global E_t/E varying from 0.24 to 0.90 based on a variety of remote-sensing, isotopic, and modelling studies. Another compilation by Liu et al. (2022) showed 50 the mean varying between 0.24 and 0.86. Schlesinger and Jasechko (2014) showed that E_t/E ratios derived from isotopic methods tend to be systematically higher than those produced by other methods. It has also been shown that two different evapotranspiration partitioning methods could produce greatly different E_t/E values at the same site (Cavanaugh et al., 2011; Moran et al., 2009). Some E_t/E estimates at the stand scale ignore transpiration from subcanopy vegetation, resulting in underestimation (Schlesinger and Jasechko, 2014). There is no consensus on which method is more accurate (Stoy et al., 2019); 55 this presents a challenge for applying the E_t/E estimates using any of the above methods, especially when they are developed based on data at site scale but are applied at larger (regional to global) spatial scales.

Few studies have considered partitioning evapotranspiration based on hydrological concepts using widely available long-term hydrological observations, which could in principle provide reliable methods to estimate E_t/E . Gerrits et al. (2009) estimated monthly and (upscaled) annual transpiration based on precipitation, interception, soil moisture, and the aridity index. They 60 estimated E_t/E by modeling interception (which includes topsoil evaporation) as a daily threshold process (threshold is the interception storage capacity) and used rainfall distributions to upscale it to the monthly and then annual interception. Transpiration was modeled as a monthly threshold process based on net rainfall (precipitation minus interception), with the threshold being the soil moisture storage estimated based on a hydrological model, and upscaled it to annual transpiration via a rainfall distribution. E_t/E is then calculated by assuming evapotranspiration is interception plus transpiration, since topsoil 65 evaporation is included in interception, and deeper soil and open water evaporation are neglected. Mianabadi et al. (2019)

extended their approach and applied it globally. In this study, we propose a new method to partition evapotranspiration based on the Generalized Proportionality Hypothesis (GPH) using long-term hydrological observations. The GPH was initially used by the United States Soil Conservation Service (SCS) for runoff calculation (USDA SCS, 1985), and was afterwards generalized by Ponce and Shetty (1995a, 1995b). Wang and Tang (2014) provided a comprehensive discussion of the use of 70 GPH and noted its connection to various models, including the “abcd” model, the SCS direct runoff model, and the Budyko-type models. The GPH partitions water fluxes into their components and has been implemented as a two-stage partitioning. The first stage partitions precipitation into soil wetting and surface runoff; the second stage partitions soil wetting into baseflow and evaporation (Ponce and Shetty, 1995a, 1995b; Tang and Wang, 2017). We follow an approach based on the GPH 75 partitioning of soil wetting to estimate catchment E_t/E based on hydrological observations. Due to the wider availability of hydrological observations compared to the observations required for the techniques previously mentioned, this method has a wide potential for application in gauged watersheds across the globe.

The objectives of our study are: 1) to develop a new method to estimate E_t/E at the catchment scale based on long-term 80 hydrological observations, 2) to test the method and evaluate its robustness to different data products using watersheds with different vegetation types, 3) to find E_t/P (transpiration/precipitation) ratios based on E_t/E and to compare this to previous studies, and 4) to understand the effect of hydrological and environmental conditions on both E_t/E and E_t/P . The paper is organized as follows. Section 2 describes the newly developed method. Section 3 describes datasets used. Section 4 presents results from the new method and compares them with E_t/E estimates from other studies. Section 5 discusses the results and investigates their dependence on hydrological and environmental factors. Section 6 provides an insight into the variation of some existing partitioning methods. Section 7 summarizes our conclusions.

85 2 Methods and Data

2.1 Theory

We present a new method to estimate long-term mean E_t/E ratios at a watershed scale by taking advantage of long-term 90 available hydrological observations. The new method is based on the Generalized Proportionality Hypothesis (GPH), shown in equation (1). the GPH equation has been previously established in the literature based on the observed relationships found by L'vovich (1979) and the later mathematical derivation (and generalization) by Ponce & Shetty (1995a, 1995b). The proportionality hypothesis of the SCS method was obtained based on observed data from a larger number of watersheds (USDA SCS, 1985), which was then generalized by Ponce and Shetty (1995). GPH partitions an unbounded water quantity Z into an unbounded water quantity Y and a water quantity X that is bound by its potential value X_p . The value X_0 is the initial quantity 95 of X that is fulfilled prior to the competition between X and Y ; for example, interception is a portion of E that is initially lost and not accessible for baseflow:

$$\frac{X - X_0}{X_p - X_0} = \frac{Y}{Z - X_0} \quad (1)$$

Ponce and Shetty (1995a, 1995b) applied the GPH for hydrological partitioning. They partitioned annual precipitation over two stages: the first stage partitions precipitation into catchment wetting and surface runoff; and the second stage partitions wetting (W) into evapotranspiration (E) and baseflow (Q_b) as shown in Figure 1. Both stages of partitioning follow the generalized formula in equation (1). The two-stage partitioning is well established, has been proved with thermodynamic principles (D. Wang et al., 2015), and has been extensively used in the literature in studies such as Sivapalan et al. (2011), D. Wang & Tang (2014), Chen & Wang (2015), Tang & Wang (2017), Abeshu & Li (2021).

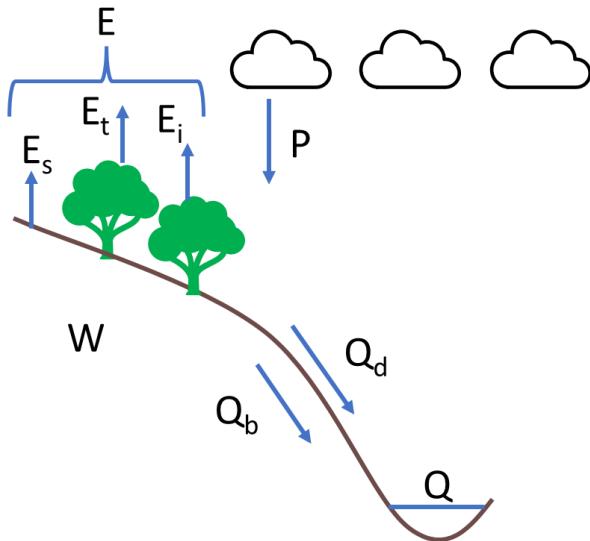


Figure 1: Two stage partitioning of annual precipitation. E: evapotranspiration; E_s: soil evaporation; E_i: interception evaporation; E_t: transpiration; P: precipitation; W: soil wetting; Q_b: baseflow; Q_d: direct runoff; Q: total runoff.

In this work, we use the second stage partitioning to partition wetting into evapotranspiration and baseflow as shown in equation (2):

$$\frac{E - E_0}{E_p - E_0} = \frac{Q_b}{W - E_0} \quad (2)$$

where E_0 is the initial evapotranspiration that does not compete with baseflow and E_p is the potential evapotranspiration. W can be estimated as $P - Q_d$, where P is precipitation and Q_d is direct runoff. E can be estimated as $P - Q$, where Q is the total runoff (since the long-term mean soil moisture change can be ignored). Initial evapotranspiration (E_0) has been represented in different ways in the literature. Ponce & Shetty (1995a, 1995b) used λE_p to represent E_0 , where λ is a coefficient, Tang & Wang (2017) and Wang & Tang (2014) used λW , and Abeshu & Li (2021) used λE . In this study, we choose λE as E_0 due to the interpretability of the λ parameter. We alternately use k instead of λ to avoid confusion with the latent heat of vaporization, leading to equation (3):

$$\frac{E - kE}{E_p - kE} = \frac{Q_b}{W - kE} \quad (3)$$

115 In Abeshu & Li (2021), E_0 included interception, evaporation from surface depression, topsoil evaporation, and shallow transpiration. In Gerrits et al. (2009), they assumed that interception includes canopy and understory interception, in addition to topsoil evaporation, while deep soil evaporation is insignificant or can be combined with interception. In Savenije (2004), they considered topsoil evaporation to be a part of interception, and distinguished transpiration between fast and slow ones, where fast transpiration relies on moisture in the top 50 cm of soil, and slow transpiration relies on deeper soil moisture.

120 Therefore, we assume that E_0 includes bare soil evaporation, interception, and a portion (f) of the transpiration (E_t) representing the fast transpiration from the top 10 cm of soil (Abeshu & Li, 2021; Savenije, 2004). Since root uptake not only occurs near the surface but also progresses downwards (Gardner, 1983; Savenije, 2004), we assume that transpiration extracted from the topsoil occurs in a rapid manner that makes it inaccessible to the competition between baseflow and E , and therefore belongs to E_0 . The remaining portion of E after deducting E_0 is equivalent to the remaining portion of E_t after deducting the portion f . That is,

$$(1 - k)E = (1 - f)E_t \quad (4)$$

Therefore, the transpiration ratio (E_t/E) becomes:

$$\frac{E_t}{E} = \frac{1 - k}{1 - f} \quad (5)$$

130 Equation (5) indicates that E_t/E can be found using k and f values. The k parameter can be found by applying an optimization technique that maximizes the non-parametric Kling-Gupta efficiency (KGE, equation 6) (Gupta et al., 2009; Pool et al., 2018) between observed soil wetting (from watershed balance) and simulated soil wetting (rearranging equation (3) to be in terms of soil wetting).

$$KGE = 1 - \sqrt{(r - 1)^2 + (\alpha - 1)^2 + (\beta - 1)^2} \quad (6)$$

where r is Pearson correlation coefficient,

α is relative variability in the simulated and observed values, and

β is ratio between the mean simulated and mean observed flows.

From the water balance equation at the watershed scale, we have

(7)

$$W_{obs} = P - Q_a$$

$$W_{sim} = Q_b \frac{E_p - kE}{E - kE} + kE \quad (8)$$

Since f represents the fast response of transpiration, we follow a similar approach to Abolafia-Rosenzweig et al. (2020) in defining the ratio of surface transpiration using root distribution in soil water stress. We additionally distinguish between energy- and water-limited regions by constraining energy-limited f using the aridity index as displayed in equation (4):

135

$$f = r_{10} \times S \times f_{AI}$$

Where r_{10} is the root percentage in the top 10 cm of the soil, S is the soil moisture availability, and f_{AI} represents impact of available energy. If the aridity index (AI) is less than 1, the region is energy limited. Thus, $f_{AI} = AI$. If $AI \geq 1$, then $f_{AI} = 1$. The rationale behind this is that when $AI < 1$, only a fraction of the transpiration from the top surface layer is quantified to be part of the fast components due to its energy limited nature.

140

The soil moisture availability, S , represents the moisture availability in the root zone for root water uptake. (Abolafia-Rosenzweig et al., (2020) calculated the soil moisture availability as a function of soil moisture, wilting point, and field capacity. To rely on hydrological observations instead of simulated or remotely sensed soil moisture, we assume the soil moisture availability to be represented by the ratio between baseflow and total streamflow (Q_b/Q). This ratio can give an indication of water availability in the soil, and hence can be used to indicate soil moisture availability. Since we apply this 145 method at the watershed scale, there may be multiple vegetation types in the same watershed, and therefore, we calculate a weighted value of f .

2.2 Data

150

From Equations 2-5 and the descriptions of Section 2.1, we see that one needs long-term observed precipitation, streamflow, baseflow, estimated E_p , and root distribution to estimate the E/E ratio. Watershed boundaries and precipitation data were retrieved from the Hydrometeorological Sandbox - École de technologie supérieure (HYSETS) dataset (Arsenault et al., 2020). The HYSETS dataset includes watershed boundaries, land cover, soil properties, meteorology, and hydrological data for 14,425 watersheds in North American. We selected 648 watersheds (Fig. 1) across the United States with at least 10 years of streamflow data between 1980 and 2018 from this HYSETS data source. Detailed land cover data were retrieved from the ESA CCI Land Cover project (www.esa-landcover-cci.org, last accessed December 28, 2022).

155

Streamflow data were retrieved from the US Geological Survey (USGS), and their corresponding baseflow magnitudes were estimated by separating it from the streamflow data using a one-parameter digital filter separation method (Lyne & Hollick, 1979). Filtering methods separate direct runoff and baseflow by differentiating them based on frequency spectrums of the hydrograph, where low frequency flow represents baseflow and high frequency represents the direct runoff which has rapid responses to precipitation. We employed the widely used filtering method tool developed by Purdue University, Web-based 160 Hydrological Analysis Tool (WHAT, Lim et al., 2010, 2005; <https://engineering.purdue.edu/mapserve/WHAT>, last accessed 25 Oct 2022), to separate baseflow from the observed streamflow. We set the value of the filter parameter to be 0.925 which is within the suggested range. We did a sensitivity analysis (in a separate study) and used different filter values and methods available from WHAT, the results were similar. Since other methods such as Eckhardt (2005) require knowledge of hydrogeological conditions, we chose the one-parameter digital filter method due to its simplicity and constant parameter

165 value, which produces plausible results (Eckhardt, 2008; Xie et al., 2020). Additional details on the baseflow separation method are presented in Lim et al. (2005).

Information related to root density functions was obtained from Zeng (2001), who represented root density distribution as a two-parameter function for each vegetation type based on compiled root database. The root density distribution from Zeng (2001) was validated using root information from other studies (Fan et al., 2016; Jackson et al., 1996; Lozanova et al., 2019; 170 Schenk & Jackson, 2002; Wallace et al., 1980). Soil moisture stress (Q_b/Q) was calculated based on the USGS observed streamflow and the estimated baseflow from WHAT.

Numerous E_p data products are available that satisfy our study regions and time period requirements, posing a question as to which one should be selected – as each has its own strengths. To address this question, we examined six widely used E_p data products and assessed their impact on the estimation of E/E ratios. These data products were selected because they are (1) 175 widely used within the hydrological and ecological communities, (2) associated with a wide range of spatial resolutions, and (3) derived using different methods. The six E_p datasets are the Global Land Evaporation Amsterdam Model (GLEAM v3.5a) (Martens et al., 2017), the Moderate Resolution Imaging Spectroradiometer (MODIS MOD16A3GF) product (Running et al., 2021), the dataset from Zhang et al. (2010), the North American Regional Reanalysis (NARR) (Mesinger et al., 2006), the Simple Process-Led Algorithms for Simulating Habitats (SPLASH v1.0) (Davis et al., 2017), and the Breathing Earth System 180 Simulator (BESS v2) (Li et al., 2023). Details of these six products are provided in Table 1.

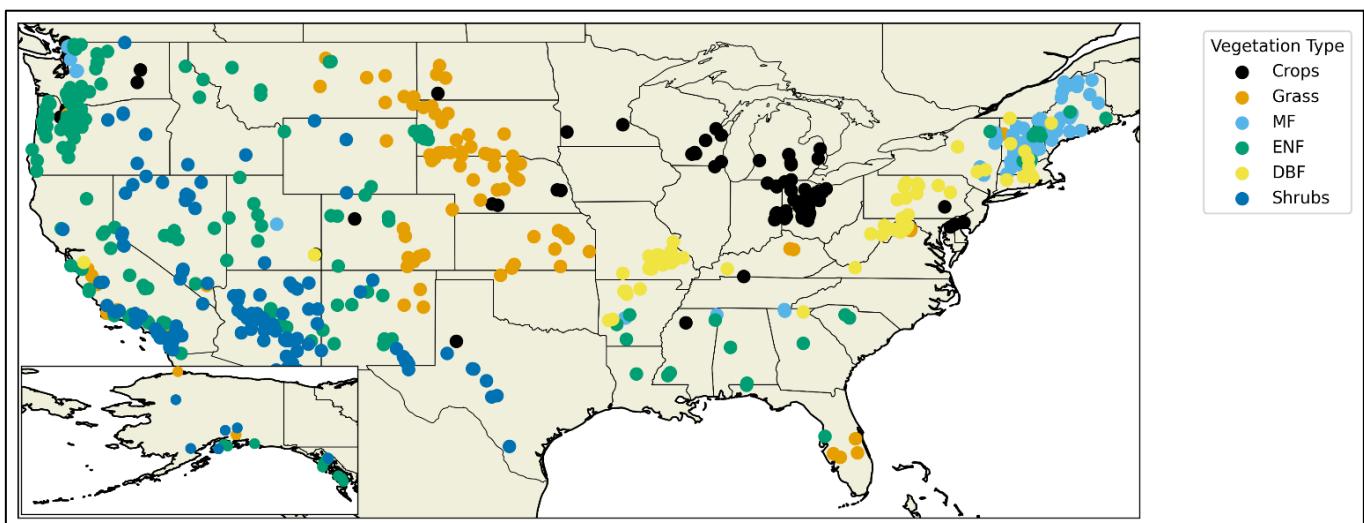


Figure 2: 648 watersheds in the US, categorized into six vegetation types; crops, grass, shrubs, evergreen needleleaf forest (ENF), deciduous broadleaf forests (DBF), and mixed forests (MF). The inset map at the bottom left shows watersheds in Alaska.

185

Table 1: Description of six E_p products used in this study.

Dataset	E_p equation	Spatial and temporal scale	Remarks
GLEAM v3.5a	Priestley-Taylor	0.25×0.25°, Daily/Monthly, 1980-2021	
NARR	Eta Model (Penman-based)	32×32 km, Daily/Monthly, 1979-2022	
MODIS MOD16A3GF	Combination of Penman-Monteith and Priestley-Taylor	500×500m, 8-day/Yearly, 2000-2021	
SPLASH	Priestly-Taylor	1 km, Daily, 1980-2018	Forced using daily DayMet (Thornton et al., 2022) data
BESS v2	Priestly-Taylor	5 km, Monthly, 1982-2022	
Zhang	Penman-Monteith	8×8 km, Daily/Monthly, 1983-2006	

190 Environmental variables – relative humidity, downward shortwave radiation, air temperature, wind speed, and soil moisture content – were retrieved from the NARR dataset to study the dependencies of E_v/E on environmental factors. Data on leaf area index (LAI) were obtained from the Global Monthly Mean Leaf Area Index Climatology produced by ORNL DAAC (Mao & Yan, 2019) and aggregated to obtain the long-term mean LAI at watershed scale.

195 The relevant data were collected for 648 watersheds and aggregated to the annual timescale. The dominant vegetation type was determined for each watershed from the ESA CCI land cover data, and watersheds were classified into six vegetation types: crops, grass, shrubs, evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF). We assume each watershed has a single mean long-term E_v/E value. For each dataset, due to the different time coverage of the datasets and the streamflow gauges, we filtered the watersheds to include only those that have available data for at least 10 years. We used optimization to find k . We then performed additional filtering for each dataset to remove watersheds with KGE values less than zero. Using the filtered watersheds, we calculated E_v/E based on estimated k and f together with the other variables. The final number of watersheds associated with each dataset used in this study, after filtering, is shown in Table 2.

205 **Table 2: Number of filtered watersheds for each potential evapotranspiration (E_p) data product. Watersheds with less than 10 years of data and/or with Kling-Gupta efficiencies less than zero were removed from the analysis. Numbers are shown for each of the six vegetation types.**

Type	All watersheds	NARR	MODIS	Zhang	GLEAM v3.5a	BESS v2	SPLASH
Crops	74	72	61	57	73	59	71
Grass	89	84	66	73	86	79	81
Shrubs	146	131	107	114	134	128	131
ENF	206	166	118	118	173	161	156
DBF	65	65	61	54	65	64	65
MF	68	63	58	52	66	51	61
Total	648	581	471	468	597	542	565

3 Impact of E_p products

Figure 3a shows mean annual E_p values from six different data products for the 648 study watersheds. We observe large

210 differences in mean annual E_p among the six different data products. The differences in E_p are likely attributed to variations in input data and parameter values used by these products, while differences in methods and resolutions used to compute E_p may play a secondary role (Hassan et al., 2024). Discrepancies between the input net radiation used in different data products result in especially large variations in the computed E_p . Variations in parameter values, including the Priestly-Taylor α parameter, among different data products also result in significant differences in the resulting E_p . On the other hand, the E/E_p ratios from

215 the six different E_p products are relatively consistent among the six datasets (except for GLEAM) as shown in Figure 3b. This is likely because within each product the same input/forcing data and parameter values are employed for both E_p and E , resulting in similar impacts on both. Such consistency is an indication of a uniformity of the underlying physics across these five products, despite the large disparities in their individual E_p magnitudes. The GLEAM E_p product, which has also been previously identified for its overestimation of E/E_p ratio by Peng et al. (2019) in comparison with FLUXNET E/E_p , appears to

220 be an exception. Rather than excluding the GLEAM data product, we opted to adjust its E/E_p ratio by normalizing it with the average ratio of the other five datasets (NARR, MODIS, Zhang, SPLASH, and BESS), yielding a adjusting factor of 0.7. This adjusting factor of 0.7 was applied to GLEAM to adjust its E/E_p values. In addition, E_p values from the six data products in this study were newly derived by applying their individual E/E_p ratios, obtained from their own data products, to the watershed E values calculated based on data (i.e., $E = P - Q$) for each watershed. The importance of deriving E_p values for each data product through this rescaling approach (referred to rescaled E_p), rather than using the original E_p product, is to ensure consistency between the E_p values and the watershed-budget estimated E values for each watershed while preserving the E/E_p

ratios from the individual products. This is necessary because the magnitudes of some original E_p products are smaller than their corresponding watershed-budget estimated E values.

In essence, we derive new E_p values for all six products using Equation (9), maintaining the E/E_p ratio for each data product
230 (except for GLEAM). This approach yields consistent E_p values across the 648 watershed for each individual data product and captures the essential variations among the six E_p datasets. The rescaled E_p values obtained from Equation (9) uphold the fundamental principles of individual products by preserving their respective E/E_p ratios. By doing so, the effects stemming from differences or uncertainties in their inputs/forcing data are notably mitigated, as the new E_p values are calculated using the watershed-budget estimated E and their own E/E_p ratios. This concept is akin to the notion of emergent constraints
235 employed by others (Green et al., 2024; Hall et al., 2019; Williamson et al., 2021):

$$E_{p_{rescaled}} = \frac{E_{p_{dataset}}}{E_{dataset}} \times E_{obs} \quad (9)$$

where $E_{dataset}$ and $E_{p_{dataset}}$ are values extracted from different data products, and E_{obs} is the watershed-budget estimated E calculated as $P - Q$ based on observed P and Q for each watershed. Table 3 shows the correlation between the rescaled E_p values of the six data products; the correlations show good consistency between the rescaled E_p values. These six rescaled E_p data products are then applied to Equations 2-5 to obtain E/E ratios for each of the six vegetation types over the 648 watersheds.

240 With the six rescaled E_p data products, we can assess how variations in E_p affect the robustness of our new method in estimating E/E .

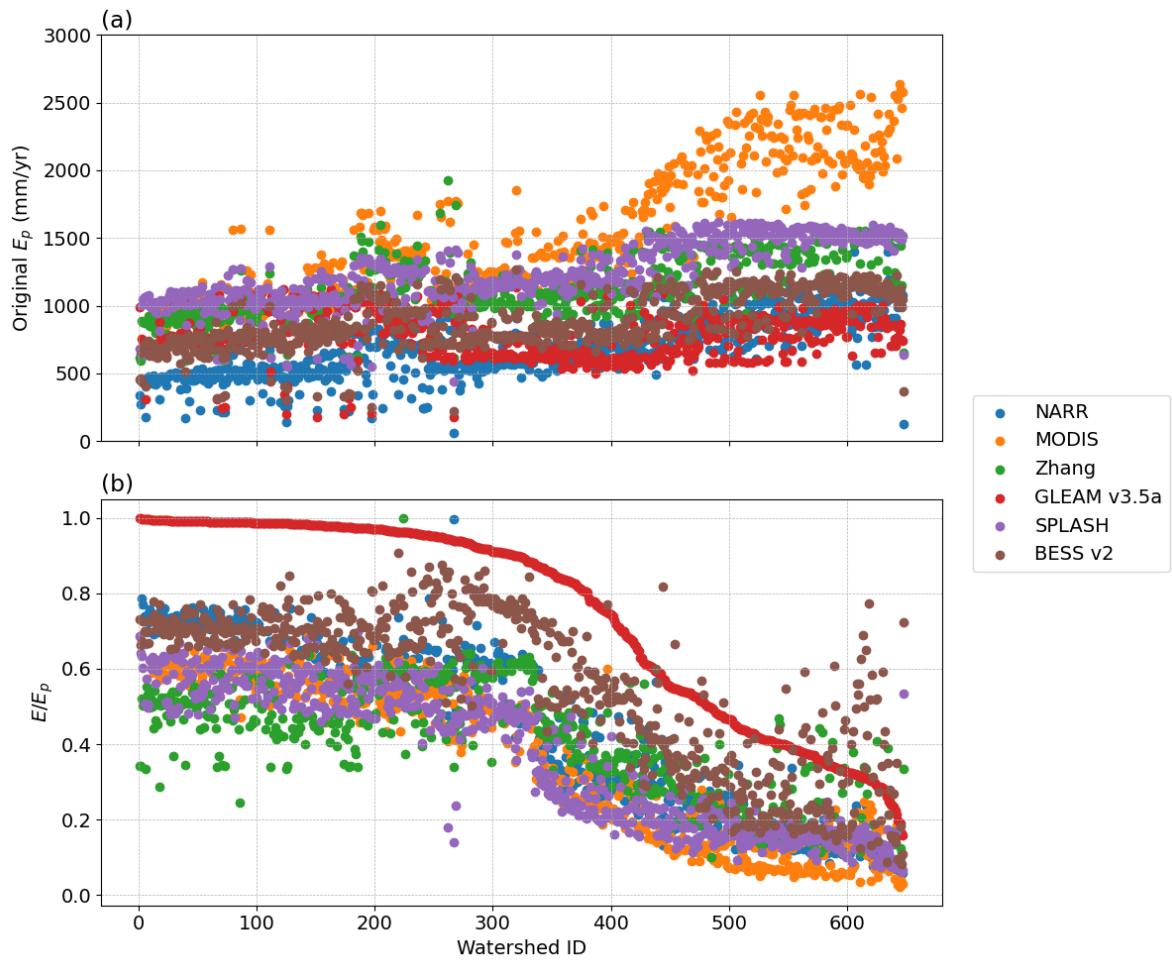


Figure 3: Original E_p for six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS v2 for 648 watersheds. (a) E_p values retrieved from the data products, and (b) E/E_p ratios retrieved from the data products. Watersheds are sorted in descending order according to GLEAM's E/E_p .

245

Table 3: Correlations between rescaled E_p of six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS v2 for 648 watersheds.

	MODIS	GLEAM	NARR	SPLASH	BESS	Zhang
MODIS	1					
GLEAM v3.5a	0.72	1				
NARR	0.81	0.83	1			
SPLASH	0.80	0.84	0.83	1		
BESS	0.92	0.78	0.73	0.75	1	
Zhang	0.70	0.83	0.68	0.69	0.92	1

4 Results

Figure 4 shows the estimated values of k for each of the six datasets based on Equations 6-8. Figure 5 shows the comparison 250 between observed soil wetting (W) and the simulated soil wetting with estimated k value for a representative vegetation type. The six datasets show similar trends, where the highest k values are observed for the shrubs and grass vegetation types. Crops have lower k values than shrubs and grass, but equal or higher than those for forests according to the dataset used. Figure 4 illustrates that the greatest variations among the six data products occur in the mixed forest and crops. This discrepancy may 255 be attributed to differences in how each data product defines mixed forest and crop compositions, resulting in varying estimated parameters.

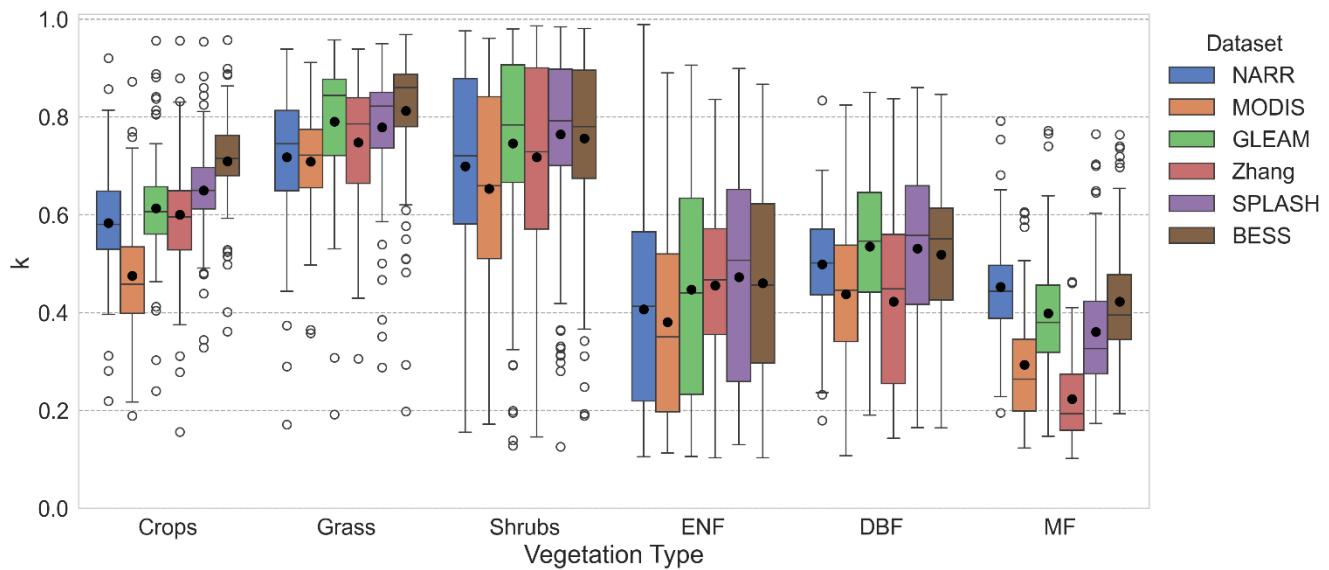
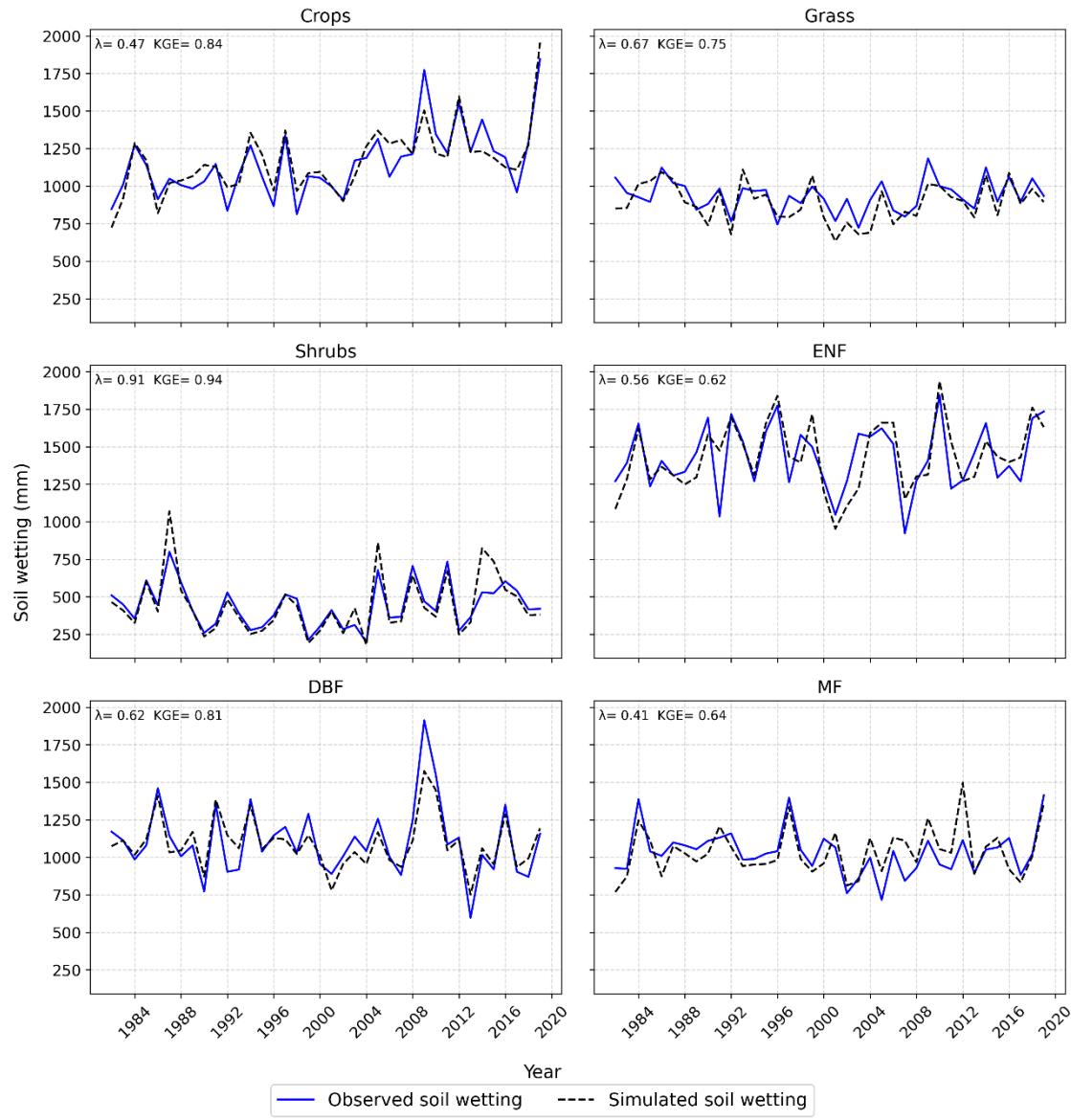


Figure 4: k values for the watersheds using data from six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after rescaling, SPLASH, and BESS. Note that ENF, DBF, and MF represent, respectively, evergreen needle-leaf forest, deciduous broadleaf forest, and mixed forest in the figure.



260

Figure 5: Optimization of k values using observed and simulated soil wetting as explained in equations 6-8. Figure shows observed and simulated soil wetting time series for an example watershed for each of the six vegetation types (crops, grass, shrubs, ENF, DBF, MF) using NARR data.

Figure 6 shows the values of the f parameter for 648 watersheds classified into six vegetation types. The highest f value is 265 observed in grass, which can be explained by their shallow rooting depths causing higher portions of fast transpiration. The lowest f values can be observed in forests due to their deeper rooting system, which provides access to deeper soil moisture, reducing the portion of fast transpiration.

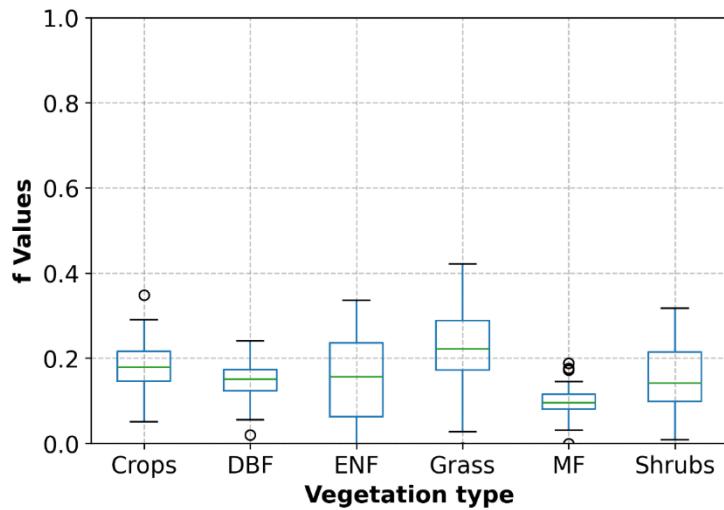


Figure 6: f values for six vegetation types for 648 watersheds

270 E_t/E ratios are shown in Figure 7 and Table 4. Overall, the trend is consistent among the six datasets. Grass and shrubs have the lowest E_t/E values, with mean E_t/E in the range of 0.19-0.39. Crops have higher mean E_t/E ratios, with NARR, Zhang, and GLEAM averaging around 0.4, while MODIS and SPLASH show a higher crop mean E_t/E of around 0.51. BESS has the lowest crop E_t/E with a value of 0.29. All datasets have similar forest E_t/E trend, with lowest mean E_t/E for DBF (0.46-0.60), followed by ENF (0.52-0.71). The highest mean E_t/E is exhibited for MF (0.55-0.76).

275

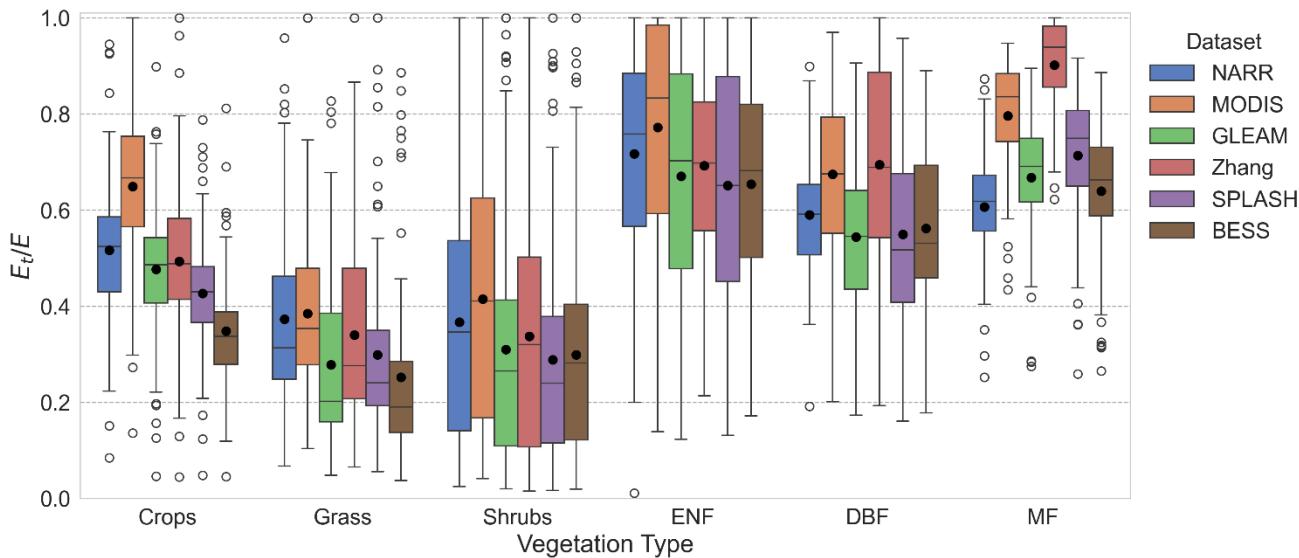


Figure 7: E_t/E values for the watersheds using data from the six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after rescaling, SPLASH, and BESS

280 **Table 4: Mean E_v/E values for six vegetation types using E_p data from the six data products. Minimum, maximum, and mean values
are shown for each vegetation type.**

Data product	Crops	Grass	Shrubs	ENF	DBF	MF	Mean
NARR	0.52	0.37	0.37	0.72	0.59	0.61	0.52
MODIS	0.65	0.38	0.41	0.77	0.67	0.80	0.59
Zhang	0.49	0.34	0.34	0.69	0.69	0.90	0.52
GLEAM	0.48	0.28	0.31	0.67	0.54	0.67	0.48
SPLASH	0.43	0.30	0.29	0.65	0.55	0.71	0.47
BESS	0.35	0.25	0.30	0.65	0.56	0.64	0.45
Minimum	0.35	0.25	0.29	0.65	0.54	0.61	0.45
Maximum	0.65	0.38	0.41	0.77	0.69	0.90	0.59
Mean	0.48	0.32	0.33	0.69	0.60	0.70	0.50

5 Discussion

5.1 *k* and E_v/E ratios

285 Shrubs and grass showed higher *k* values, likely due to their occurrence in arid and semi-arid regions in the US. The high *k* values could be explained by the higher bare soil evaporation expected in arid regions (Baver et al., 1972), especially due to the sparse nature of shrubs, increasing bare areas and thus bare soil evaporation (Liu et al., 2022). Also, the high aridity is expected to cause water stress, lowering the continuing transpiration (portion of transpiration not included in *k*). The lower *k* values in crops and forests may be due to the higher vegetation coverage in these areas which provides shade to the soil, reducing the amount of soil evaporation (Baver et al., 1972). Additionally, litter contributes to reducing soil evaporation, and may even have a larger reduction effect than canopy shade (Magliano et al., 2017). The broader leaves of DBF increase their 290 interception compared to ENF, thus resulting in a higher *k* value as well.

These estimated mean E_v/E ratios followed explainable trends, with shrubs and grass watersheds showing low E_v/E ratios, forests exhibiting higher E_v/E ratios, and crops falling in between. Given greater water availability in crops and forests, it is expected that they would exhibit higher E_v/E ratios. Many crops in the US benefit from continuous irrigation, reducing water stress and promoting transpiration. Forests, with their dense canopy cover offering shade, reduce soil evaporation (Baver et 295 al., 1972) and consequently boost the E_v/E ratios. Crops also show high vegetation coverage, thereby providing shade to the soil and increasing E_v/E (Baver et al., 1972). Moreover, in arid regions dominated by shrubs, lower soil water content is anticipated, resulting in diminished root water uptake (Gardner, 1983). Furthermore, the shedding of leaves in deciduous forests reduces transpiration when examined over the whole year (as here), resulting in a decreased E_v/E ratio for DBF.

Differences in study scale may hinder the comparison with other studies, since our method estimates E_t/E at the watershed scale, while other studies are based at a plot-scale (field/eddy covariance-based methods) or grid scale (models and remote-sensing methods). Factors affecting watershed scale E_t/E include the possible presence of secondary vegetation within the watershed and the possible sparseness of the primary vegetation and presence of bare areas which can increase soil evaporation and reduce E_t/E , especially for shrublands. Therefore, this method has the advantage of providing a realistic watershed E_t/E ratio that accounts for multiple vegetation types and sparseness in vegetation distribution. Consistent results across different datasets underscore the reliability of our new method, irrespective of the data product employed (see Fig. 5 and Table 3).

5.2 Effect of hydrological indices on E_t/E

We explore the sensitivity of E_t/E to two hydrological indices, namely the runoff ratio (Q/P) and the baseflow ratio (Q_b/Q). Figure 8a shows a proportional relationship between E_t/E and Q/P . The relationship appears to manifest as two distinct linear correlations, with arid catchments showing a steeper slope than humid catchments. Arid regions typically experience minimum runoff as a significant portion of precipitation evaporates in various forms owing to elevated atmospheric demand. This phenomenon yields high E_t/E ratios at relatively low Q/P values. Conversely, humid catchments often experience substantial runoff, attributed to either saturation excess or infiltration excess runoff mechanisms, resulting in elevated Q/P ratios compared to arid catchments at equivalent E_t/E values. In both cases, a higher Q/P ratio signifies increased water availability, consequently leading to higher E_t/E ratios.

In Figure 8b a non-linear positive relationship is depicted between the mean E_t/E and Q_b/Q (baseflow ratio). The baseflow ratio serves as an indicator of soil water availability, as higher baseflow typically corresponds to increased soil moisture content (Hurkmans et al., 2008). Consequently, a positive correlation between E_t/E and the baseflow ratio is anticipated. Notably, the majority of arid catchments cluster in the low Q_b/Q and low E_t/E region, while transitioning toward wetter catchments naturally augments both Q_b/Q and E_t/E .

320 1.

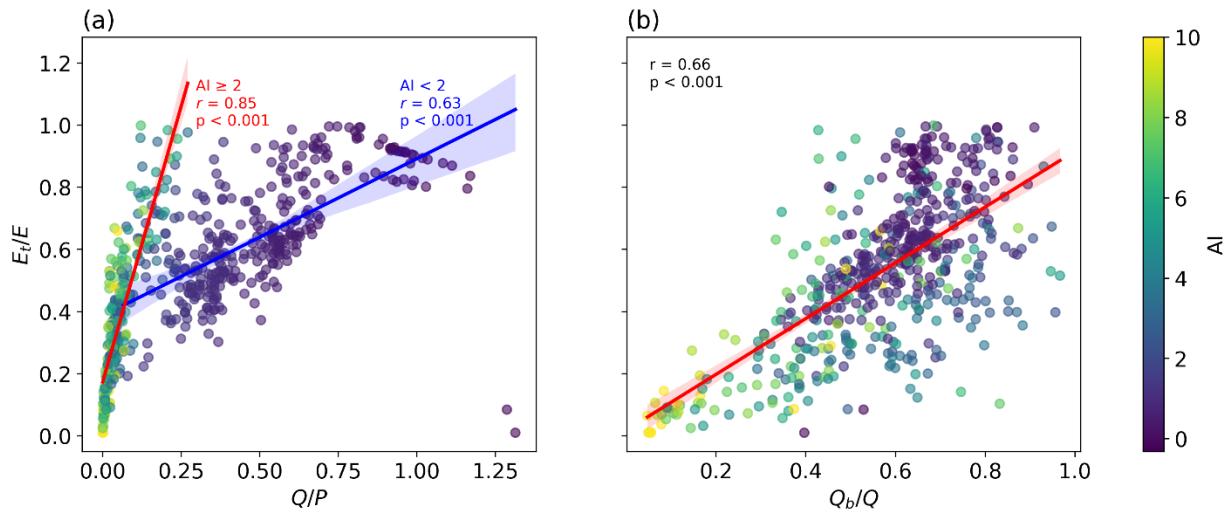


Figure 8: Relationship between mean E_t/E and two hydrological indices (a) Q/P and (b) Q_b/Q for 648 watersheds based on NARR data. Plots are colored according to aridity index.

325 5.3 Effect of LAI on E_t/E

The leaf area index (LAI), representing the leaf area per unit ground area, reflects the combined influences of leaf size and canopy density. As shown in Figure 9, LAI appears to exert some influence over evapotranspiration partitioning. Arid watersheds show lower LAI values, and E_t/E ratios increase non-linearly with LAI. However, as watersheds transition toward higher humidity levels, their LAI and E_t/E ratios increase non-linearly, albeit at different rates. In arid regions, plants tend to 330 reduce their leaf area to mitigate water loss (Chaves et al., 2003) decreasing both LAI and E_t/E – a direct consequence of heightened aridity. This suggests that aridity plays a role in regulating E_t/E . Figure 9 illustrates a complex relationship between LAI and E_t/E , characterized by substantial scatter. Our findings align with previous studies indicating diverse dependence of E_t/E on LAI. For instance, LAI has been shown to provide a control on E partitioning (X. Li et al., 2019; L. Wang et al., 2014; Wei et al., 2017), but that effect varies from one study to another. Wang et al. (2014) showed that LAI has a non-linear 335 relationship with E_t/E during the growing season, whereas X. Li et al. (2019) showed a weak linear relationship between mean growing season LAI and mean annual E_t/E across sites, with the E_t/E and LAI relationship within the same site being non-linear. Additionally, Cao et al. (2022) showed a non-linear positive relationship between annual E_t/E and LAI.

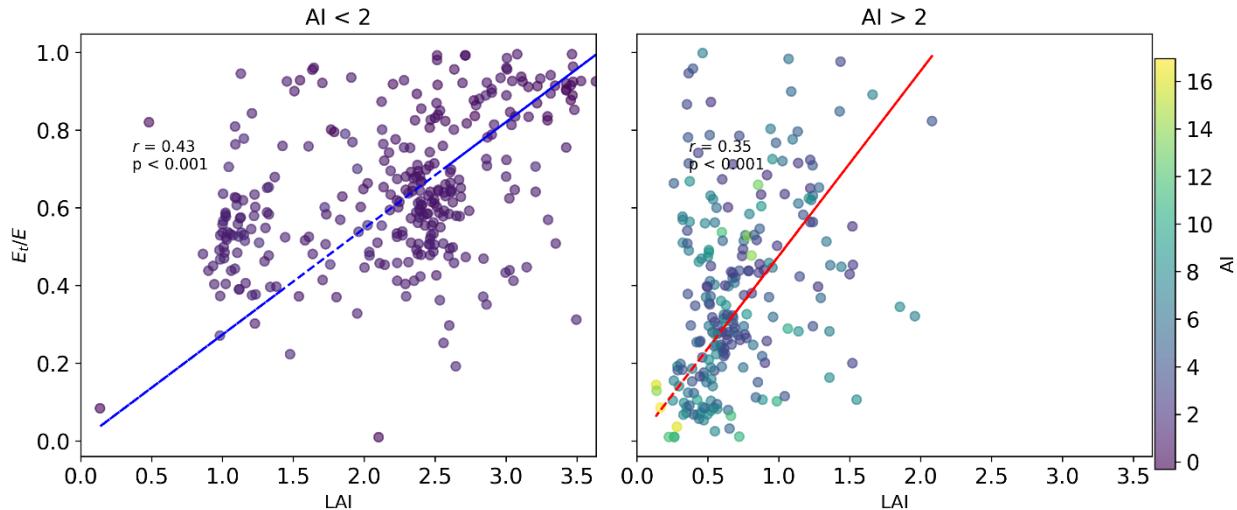


Figure 9: Relationship between E_t/E and LAI for 648 watersheds using E_t/E calculated based on the NARR dataset.

340 **5.4 Impacts of environmental variables on E_t/E ratios**

We explore the effect of six environmental factors on the mean E_t/E ratios. They are aridity index (AI), relative humidity (RH), air temperature (T_{air}), downward shortwave radiation (DSW), soil moisture, and wind speed (WS). These factors were derived from the NARR dataset, and the E_t/E ratios were calculated based on the same dataset. Since some of these environmental variables are highly correlated (as shown in Figure 10), we first perform variable selection using stepwise regression and Lasso

345 regression to identify those that are strongly correlated with each other. Stepwise regression aims to select a subset of variables that provide the best prediction with minimum redundancy, while Lasso regression adds a penalty term to reduce the coefficients of insignificant variables. Both methods resulted in the elimination of downward shortwave radiation, while stepwise selection additionally eliminated relative humidity and air temperature. Table 5 shows the coefficients of the environmental variables and their significance for both stepwise and Lasso regression. Although the significance test shows 350 that air temperature and relative humidity has an insignificant impact on the Lasso regression, while the aridity index, soil moisture, and wind speed are significant (Table 5), they are still included because they marginally contributes to the model's predictive power. Additionally, they represent independent and observable dimensions, distinct from the other three significant environmental variables.

A negative non-linear correlation between E_t/E and AI is present. Increased aridity prompts plants to adopt water conserving 355 strategies (Chaves et al., 2003), thereby reducing the transpiration ratios. In humid regions, the relationship between E_t/E and AI is more discernible, with AI accounting for a significant portion of the variance of E_t/E . Conversely, for arid regions, particularly those dominated by shrubs, the relationship shows greater scatter, suggesting that AI exerts a relatively smaller effect on E_t/E , while other factors play a more prominent role. Furthermore, higher air temperature contributes to lowering E_t/E (see Fig. 9b), as it prompts water-conserving behaviors in plants and elevates soil evaporation, consequently reducing

360 E/E ratios. Conversely, increasing soil moisture leads to enhanced water availability for plant root uptake, resulting in a near linear increase in E/E, as shown in Figure 11c. The relationship between wind speed (WS) and E/E is inconclusive; this finding is consistent with several previous studies (e.g., Dixon and Grace, 1984; Huang et al., 2015; Schymanski and Or, 2016) which have presented a mixed effect of wind speed on transpiration. Nevertheless, the effects of other environmental variables on E/E demonstrate explainable patterns as discussed here. The other five data products (MODIS, Zhang, GLEAM, SPLASH, 365 and BESS) show similar impacts of all the environmental variables on E/E as those shown in Figure 11 for NARR.

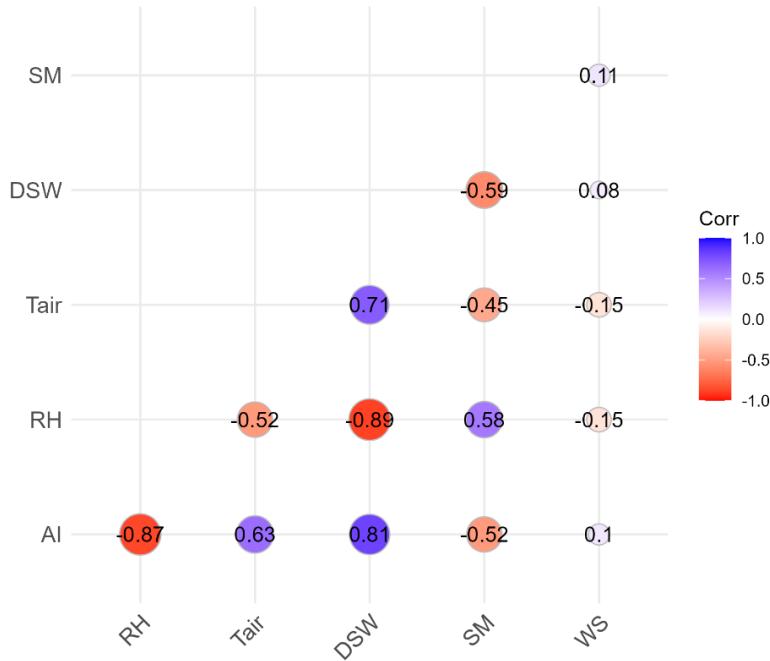


Figure 10: Correlation between environmental variables. AI: aridity index, RH: relative humidity, Ta: air temperature, DSW: downward shortwave radiation, SM: soil moisture, WS: wind speed.

Table 5: Coefficients of standardized environmental variables regressed against E/E using stepwise selection and Lasso regression. 370 Significance levels are shown next to the coefficients (***: $p < 0.001$, **: $p < 0.01$, *: $p < 0.05$, blank: $p > 0.1$)

	Coefficient (Stepwise selection)	Coefficient (Lasso regression)
AI	-0.105***	-0.026***
RH		0.001
Tair		-0.004
DSW		
SM	0.066***	0.0005***
WS	0.023**	0.037*

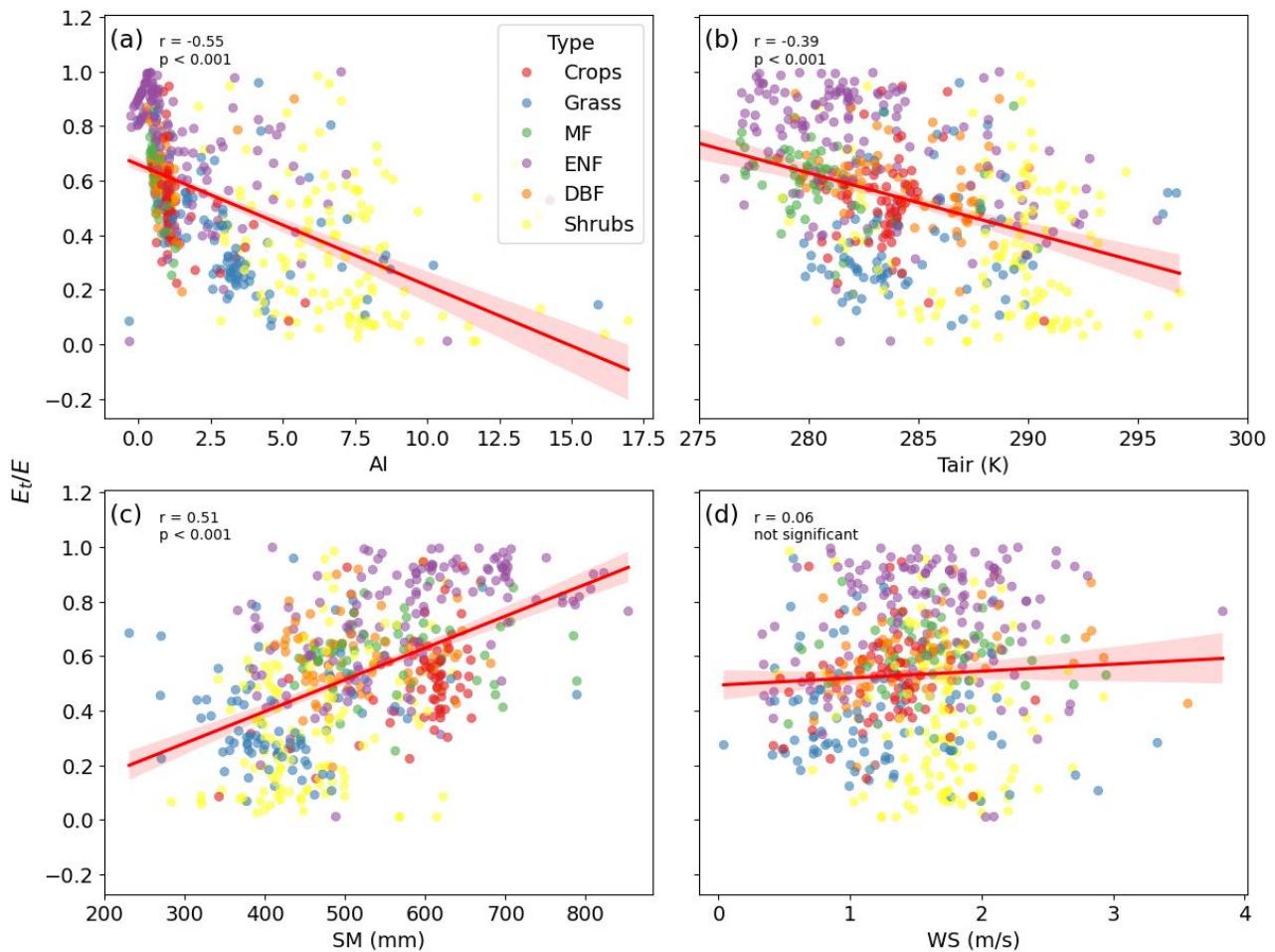


Figure 11: Relationships between mean annual E_t/E and environmental factors (a) aridity index (E_t/P), (b) air temperature (Tair), (c) soil moisture (SM), and (d) wind speed (WS) for 648 watersheds. E_t/E is calculated based on NARR data, and the environmental variables are also retrieved from the NARR product. Significance of the pairwise relationships between E_t/E and the environmental variables are shown on each plot.

375

380

5.5 E_t/P ratios

We computed transpiration to precipitation (E_t/P) ratios based on E_t/E values calculated from the six adjusted E_p data products. The mean E_t/P ratios from these six datasets range from 0.24 to 0.36, aligning closely with the global mean E_t/P of 0.39 estimated by Schlesinger and Jasechko (2014)

We also compared our estimated E_t/P ratios to the E_t/P versus aridity index relationship identified by Good et al. (2017). Good et al. (2017) presented this relationship based on a compilation of field studies, three remote-sensing based models, and an ecohydrological model, revealing good consistency among the various E_t/P data sources. Figure 12 shows a similar trend to

that presented in Fig. 1 of Good et al. (2017), with the maximum E_t/P ratio close to the intersection between water and energy-limited states. This maximum E_t/P corresponds to an aridity index ranging between 2 and 3 in our study, similar to the estimated aridity index range of 1.3 to 1.9 for the maximum E_t/P as reported by Good et al. (2017). Moreover, the maximum E_t/P shown in Figure 12 ranges between 0.5 and 0.58, consistent with the maximum E_t/P of 0.6 based on field data in Good et al. (2017). Notably, there is greater variation on the right side of the curve (indicating more arid conditions) compared to the left side (representing wetter conditions). In arid regions, transpiration is influenced not only by aridity, but also by factors such as groundwater table depth and soil moisture content, resulting in higher variability in the E_t/P versus aridity index (AI) relationship. The consistency between Good et al. (2017) and this study suggests that this relationship holds not only at the field and remote sensing scales (as shown by Good et al., 2017), but also at the watershed scale, as demonstrated in this study. This relationship holds significance for studies like that of Cai et al. (2023) and B. Zhou et al. (2025) where E_t/P serves as a parameter (referred to as f_0 in their study) to determine water-limited FAPAR and LAI (Cai et al., 2023) estimated E_t/P as a global mean using non-linear regression, with a value of 0.62, akin to the maximum E_t/P of 0.5 to 0.58 estimated by our fitted curves depicted in Figure 12. B. Zhou et al. (2025) used a variable E_t/P as a function of AI, akin to our fitted curves. Their maximum E_t/P of 0.65 occurred at an AI of 1.9, similar to our fitted curves.

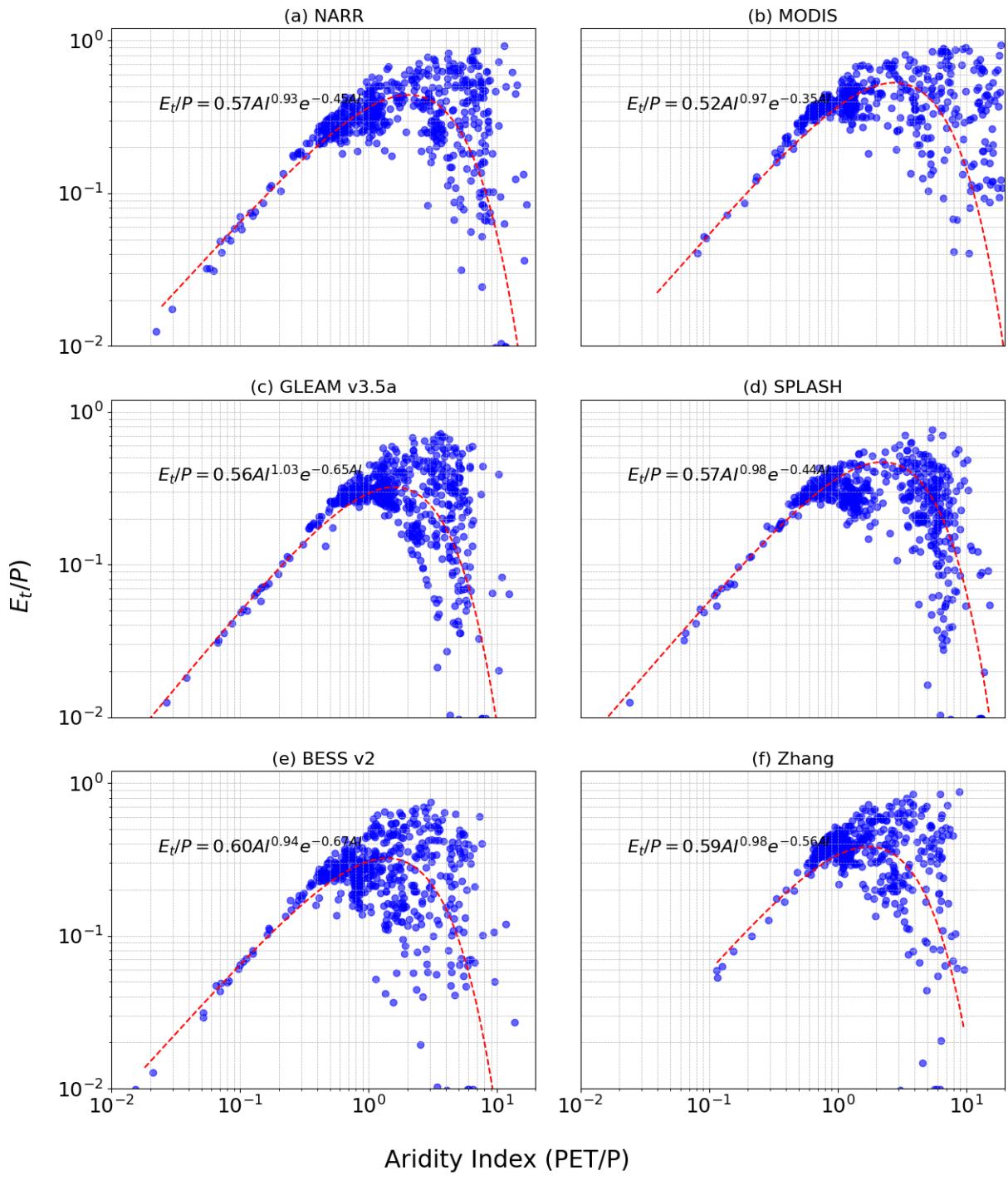


Figure 12: E_t/P versus the aridity index for six datasets: (a) NARR, (b) MODIS, (c) Zhang et al. (2010), (d) GLEAM after rescaling, (e) SPLASH, (f) BESS

6 Variation of evapotranspiration partitioning methods

Figure 7 demonstrates the influence of the six adjusted E_p data products on the E_t/E ratios by our new method for each vegetation type, while Table 4 provides their variation range between the minimum and maximum mean E_t/E ratios. On the other hand, as outlined in the introduction, estimated global mean values of E_t/E from various existing methods exhibit a considerable variation, ranging from 0.24 to 0.9 (Liu et al., 2022; Wei et al., 2017). This variation may be attributed to several factors, including data inconsistencies, geographical disparities, and differences in selected time periods, apart from differences in methodology. In an effort to explore what may be the cause for the large variation among the different methods, we have tried to mitigate these factors by using the same half-hourly eddy covariance data from the FLUXNET and AMERIFLUX ONEFLUX towers measurements in the US for the same locations and same time periods. Such an approach would allow us to elucidate the disparities among the existing E partitioning methods, consequently, providing insights on influences by different E_p datasets in our method versus current existing different methods on the large range of E_t/E ratios.

The four methods we selected to investigate are: (1) Zhou et al. (2016), (2) Scott and Biederman (2017), (3) Li et al. (2019), and (4) Yu et al. (2022). These four methods are selected because they are based on eddy covariance measurements whose data are widely available, unlike sap flow and isotope measurements. Since these methods are based on flux measurements, they can be considered as field-based estimations of E_t/E . We apply these four methods to the same datasets from the FLUXNET and AMERIFLUX ONEFLUX towers in the US, but the final number of flux towers included for each method depends on the filtering criteria in each method and the limitations in applying each method.

The first method by Zhou et al. (2016) is based on the water use efficiency. The ratio E_t/E is estimated as the ratio between the apparent water use efficiency ($WUE_a = GPP \times \frac{VPD^{0.5}}{ET}$) and the potential water use efficiency ($WUE_p = GPP \times \frac{VPD^{0.5}}{T}$). Assuming that E_t/E approaches 1 at some time during the growing season, the WUE_p is estimated from the 95th quantile regression of the half-hourly scatter plot (based on all half-hourly data for the site) between $GPP \times VPD^{0.5}$ and E and is assumed to be constant for the flux tower. WUE_a is then estimated for each time step as the linear regression of the E and $GPP \times VPD^{0.5}$ relationship using half-hourly data for the desired time period, which can be 8-day, monthly or annually.

The second method by Scott and Biederman (2017) is based on water use efficiency to estimate multiyear monthly average E_t/E ratios. This approach estimates transpiration as the product of the inverse of the marginal water use efficiency, the ratio between transpiration WUE and marginal WUE, and GPP. The inverse of the marginal WUE is estimated from the linear regression of the GPP versus E scatter plot. The ratio between transpiration and marginal WUEs is assumed to be 1. This method requires multiple years of data for its application.

The third method by Li et al. (2019) is based on the stomatal conductance model of Lin et al. (2018) to partition evapotranspiration. The E_t/E ratio is equivalent to the ratio between canopy conductance and ecosystem conductance. The eddy covariance data are divided into soil moisture bins to calibrate the parameters. Therefore, the method requires soil moisture data, along with GPP, VPD, E , and three calibrated parameters to estimate the E_t/E ratio.

435 The fourth method by Yu et al. (2022) combines the water use efficiency with the Medlyn et al. (2011) stomatal conductance model. This method relies on GPP, E, C_a , P_a , and VPD from the flux tower data in addition to the parameter g_1 from the Medlyn et al. (2011) model. The authors compared their method to other methods and showed a high correlation with the Zhou et al. (2016) but a low correlation with the Li et al. (2019) method.

440 Additionally, we compare our results to E_t/E values for 20 global flux towers from Tan et al. (2021). E_t/E was calculated based on flux tower data and P-model (Stocker et al., 2020; H. Wang et al., 2017) outputs.

The estimated E_t/E ratios from the five methods are shown in Figure 13a – e and Table 4, respectively, for the same six different vegetation types as shown in Figure 7 with our new method.

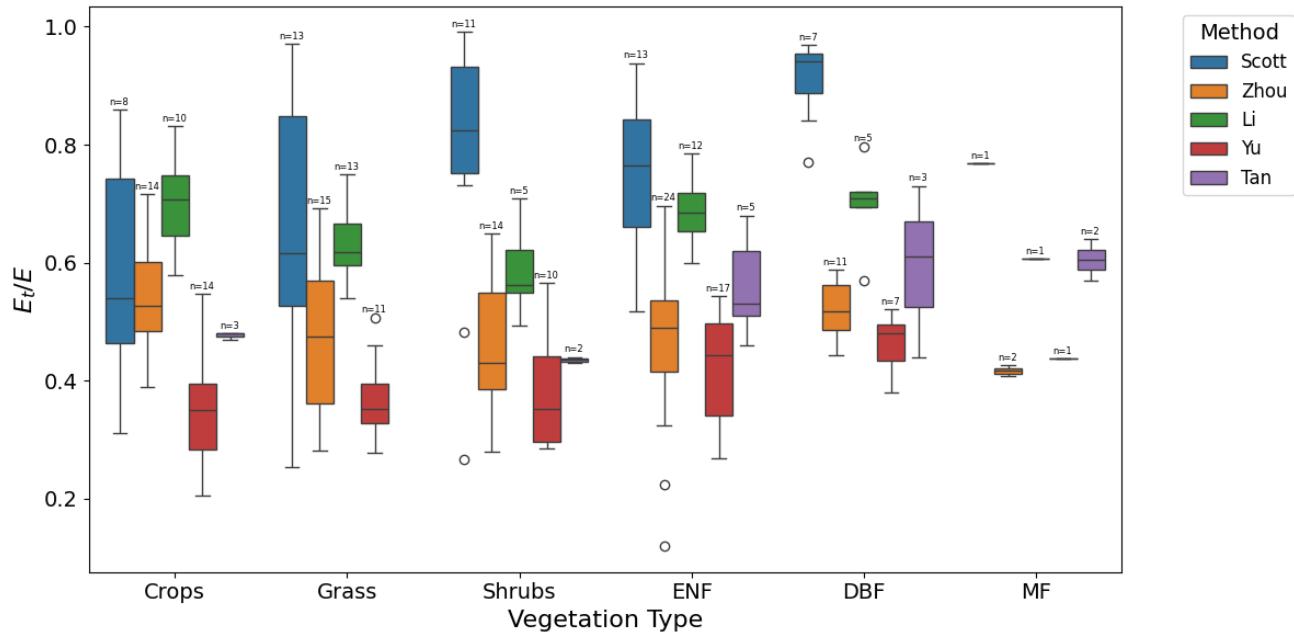


Figure 13: E_t/E values based on the eddy covariance tower data with 5 methods: (a) Zhou et al. (2016) (n=80), (b) Scott and Biederman (2017) (n=53), (c) Li et al. (2019) (n=46), (d) Yu et al. (2022) (n=60) (e) Tan et al. (2021) (n=15).

Table 6: Mean E_t/E values for six vegetation types using four evapotranspiration partitioning methods. Minimum, maximum, and mean values are shown for each vegetation type.

Evapotranspiration partitioning method	Crops	Grass	Shrubs	ENF	DBF	MF	Mean
Zhou et al.	0.54	0.48	0.46	0.46	0.52	0.42	0.48
Scott and Biederman	0.56	0.59	0.65	0.66	0.65	0.77	0.62
Li et al.	0.70	0.63	0.59	0.69	0.70	0.61	0.66

Yu et al.	0.34	0.37	0.38	0.43	0.46	0.44	0.39
Tan et al.	0.48	-	0.44	0.56	0.6	0.61	0.54
Minimum	0.34	0.37	0.38	0.43	0.46	0.42	0.39
Maximum	0.70	0.63	0.65	0.69	0.70	0.77	0.66
Mean	0.52	0.52	0.50	0.56	0.59	0.57	0.54

The inconsistencies among the five methods are evident, with Zhou, Yu, Li, and Tan showing minimal variation among 450 vegetation types, while Scott displays substantial variation. Moreover, the magnitudes and trends of E_v/E across these methods are also inconsistent. These discrepancies indicate a lack of agreement on both the mean E_v/E values and the variation ranges among the different methods. Consequently, these methods are not suitable as reference points for evaluating our new method. Instead, the assessment of our new method should be based on its physical behavior and relationships with other variables, as 455 discussed in Section 5. It is noteworthy that compared to Figure 7, the variation range of E_v/E ratios from the five different methods, utilizing the same data at the same locations, is significantly greater than that for our new method in which disparity is attributed to the variations associated with the E_p methods employed. Additionally, since our method is at a larger (watershed) scale, we observe larger variations between vegetation types, which can be attributed to different vegetation densities and bare land percentages at larger scales which is not a factor at smaller (flux tower) scales.

7 Conclusions

460 We have presented a new method for determining the transpiration to total evapotranspiration (E_v/E) ratio using long-term hydrological observations. This method is based on the generalized proportionality hypothesis, which has wide applications in hydrology. We applied the method to 648 watersheds in the US using six different E_p data products. Our findings demonstrate consistent E_v/E results across these diverse E_p datasets, facilitated by a rescaling of E_p derived from the E/E_p ratios obtained from each individual data product and watershed-budget estimated E computed from the watershed water balances.

465 Our analysis reveals that varying E_v/E ratios across watersheds are associated with different vegetation types, with shrubs and grasslands exhibiting lower E_v/E values compared to crops and forests. Furthermore, our results underscore the significant influence of leaf area index (LAI), hydrological indices (Q/P and Qb/Q), and prevailing environmental conditions on E_v/E . Our method also provides a realistic estimate of E_v/E at a watershed scale that implicitly accounts for the heterogeneity of vegetation within the catchment. Our method can also be useful for constraining hydrological models, land surface models, and climate 470 models.

We also explore the relationship between E_v/P and aridity index, unveiling a bell-shaped curve at the watershed scale, where the maximum E_v/P ratio occurs at an aridity index between 2 and 3, corresponding to an E_v/P ratio of around 0.5 to 0.58. These findings provide valuable insights into the intricate interplay between hydrological processes and environmental variables, shedding light on the complex dynamics of evapotranspiration in diverse watershed ecosystems.

475 **Acknowledgements**

This work was supported by Schmidt Sciences, LLC through the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project.

480 **Author contributions:** AH implemented the research ideas, designed and performed the experiments, analyzed the results, drafted the manuscript. XL conceived the research ideas, designed the experiments, analyzed the results, supervised the investigation, and wrote and finalized the manuscript. ICP initiated the research topic, analyzed the results, edited the manuscript.

Competing interests: The authors declare that they have no conflict of interest.

485 **References**

Abeshu, G.W., Li, H.Y., 2021. Horton Index: Conceptual Framework for Exploring Multi-Scale Links Between Catchment Water Balance and Vegetation Dynamics. *Water Resour Res* 57. <https://doi.org/10.1029/2020WR029343>

Alemohammad, S.H., Fang, B., Konings, A.G., Aires, F., Green, J.K., Kolassa, J., Miralles, D., Prigent, C., Gentine, P., 2017. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence. *Biogeosciences* 14, 4101–4124. <https://doi.org/10.5194/BG-14-4101-2017>

Arsenault, R., Brissette, F., Martel, J.L., Troin, M., Lévesque, G., Davidson-Chaput, J., Gonzalez, M.C., Ameli, A., Poulin, A., 2020. A comprehensive, multisource database for hydrometeorological modeling of 14,425 North American watersheds. *Sci Data* 7. <https://doi.org/10.1038/s41597-020-00583-2>

Bauer, L.D., Gardner, W.H., Gardner, W.R., 1972. *Soil Physics*. John Wiley & Sons, New York.

Berkelhammer, M., Noone, D.C., Wong, T.E., Burns, S.P., Knowles, J.F., Kaushik, A., Blanken, P.D., Williams, M.W., 2016. Convergent approaches to determine an ecosystem's transpiration fraction. *Global Biogeochem Cycles* 30, 933–951. <https://doi.org/10.1002/2016GB005392>

Cai, W., Zhu, Z., Harrison, S.P., Ryu, Y., Wang, H., Zhou, B., Prentice, I.C., 2023. A unifying principle for global greenness patterns and trends. *bioRxiv* 2023.02.25.529932. <https://doi.org/10.1101/2023.02.25.529932>

Cao, R., Huang, H., Wu, G., Han, D., Jiang, Z., Di, K., Hu, Z., 2022. Spatiotemporal variations in the ratio of transpiration to evapotranspiration and its controlling factors across terrestrial biomes. *Agric For Meteorol* 321. <https://doi.org/10.1016/j.agrformet.2022.108984>

Cavanaugh, M.L., Kurc, S.A., Scott, R.L., 2011. Evapotranspiration partitioning in semiarid shrubland ecosystems: a two-site evaluation of soil moisture control on transpiration. *Ecohydrology* 4, 671–681. <https://doi.org/10.1002/ECO.157>

Čermák, J., Deml, M., Penka, M., 1973. A new method of sap flow rate determination in trees. *Biol Plant* 15, 171–178. <https://doi.org/10.1007/BF02922390>

Čermák, J., Kučera, J., Nadezhdina, N., 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. *Trees* 2004 18:5 18, 529–546. 510 <https://doi.org/10.1007/S00468-004-0339-6>

Chaves, M.M., Maroco, J.P., Pereira, J.S., 2003. Understanding plant responses to drought — from genes to the whole plant. *Functional Plant Biology* 30, 239. <https://doi.org/10.1071/FP02076>

Cohen, Y., Fuchs, M., Green, G.C., 1981. Improvement of the heat pulse method for determining sap flow in trees. *Plant Cell Environ* 4, 391–397. <https://doi.org/10.1111/J.1365-3040.1981.TB02117.X>

515 Damm, A., Roethlin, S., Fritzsche, L., 2018. Towards advanced retrievals of plant transpiration using suninduced chlorophyll fluorescence: First considerations. *International Geoscience and Remote Sensing Symposium (IGARSS) 2018-July*, 5983–5986. <https://doi.org/10.1109/IGARSS.2018.8518974>

Davis, T.W., Prentice, I.C., Stocker, B.D., Thomas, R.T., Whitley, R.J., Wang, H., Evans, B.J., Gallego-Sala, A. V., Sykes, M.T., Cramer, W., 2017. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): Robust indices of radiation, 520 evapotranspiration and plant-available moisture. *Geosci Model Dev* 10, 689–708. <https://doi.org/10.5194/GMD-10-689-2017>

Dixon, M., Grace, J., 1984. Effect of Wind on the Transpiration of Young Trees. *Ann Bot* 53, 811–819. <https://doi.org/10.1093/oxfordjournals.aob.a086751>

Fan, J., McConkey, B., Wang, H., Janzen, H., 2016. Root distribution by depth for temperate agricultural crops. *Field Crops Res* 189, 68–74. <https://doi.org/10.1016/j.fcr.2016.02.013>

525 Gardner, W.R., 1983. Soil Properties and Efficient Water Use: An Overview. pp. 45–64. <https://doi.org/10.2134/1983.limitationstoeficientwateruse.c3>

Gerrits, A.M.J., Savenije, H.H.G., Veling, E.J.M., Pfister, L., 2009. Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. *Water Resour Res* 45. <https://doi.org/10.1029/2008WR007308>

Good, S.P., Moore, G.W., Miralles, D.G., 2017. A mesic maximum in biological water use demarcates biome sensitivity to 530 aridity shifts. *Nat Ecol Evol* 1, 1883–1888. <https://doi.org/10.1038/s41559-017-0371-8>

Granier, A., 1985. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. *Annales des Sciences Forestières* 42, 193–200. <https://doi.org/10.1051/forest:19850204>

Green, S., Clothier, B., Jardine, B., 2003. Theory and Practical Application of Heat Pulse to Measure Sap Flow. *Agron J* 95, 1371–1379. <https://doi.org/10.2134/agronj2003.1371>

535 Griffis, T.J., 2013. Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A review of optical isotope techniques and their application. *Agric For Meteorol* 174–175, 85–109. <https://doi.org/10.1016/J.AGRFORMAT.2013.02.009>

Gupta, H. V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. *J Hydrol (Amst)* 377, 80–91.
540 <https://doi.org/10.1016/j.jhydrol.2009.08.003>

Hassan, A., Prentice, I.C., Liang, X., 2024. Understanding the Variability in Potential Evapotranspiration (PET) Products for U.S. Watersheds, in: AGU24, 9-13 Dec 2024.

Huang, C.-W., Chu, C.-R., Hsieh, C.-I., Palmroth, S., Katul, G.G., 2015. Wind-induced leaf transpiration. *Adv Water Resour* 86, 240–255. <https://doi.org/10.1016/j.advwatres.2015.10.009>

545 Hurkmans, R.T.W.L., De Moel, H., Aerts, J.C.J.H., Troch, P.A., 2008. Water balance versus land surface model in the simulation of Rhine river discharges. *Water Resour Res* 44. <https://doi.org/10.1029/2007WR006168>

Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E., Schulze, E.D., 1996. A global analysis of root distributions for terrestrial biomes. *Oecologia* 108, 389–411. <https://doi.org/https://doi.org/10.1007/BF00333714>

Kool, D., Agam, N., Lazarovitch, N., Heitman, J.L., Sauer, T.J., Ben-Gal, A., 2014. A review of approaches for 550 evapotranspiration partitioning. *Agric For Meteorol*. <https://doi.org/10.1016/j.agrformet.2013.09.003>

Li, B., Ryu, Y., Jiang, C., Dechant, B., Liu, J., Yan, Y., Li, X., 2023. BESSv2.0: A satellite-based and coupled-process model for quantifying long-term global land–atmosphere fluxes. *Remote Sens Environ* 295. <https://doi.org/10.1016/j.rse.2023.113696>

Li, M., Wu, P., Ma, Z., Pan, Z., Lv, M., Yang, Q., Duan, Y., 2022. The Increasing Role of Vegetation Transpiration in Soil 555 Moisture Loss across China under Global Warming. *J Hydrometeorol* 23, 253–274. <https://doi.org/10.1175/JHM-D-21-0132.1>

Li, X., Gentine, P., Lin, C., Zhou, S., Sun, Z., Zheng, Y., Liu, J., Zheng, C., 2019. A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites. *Agric For Meteorol* 265, 171–182. <https://doi.org/10.1016/J.AGRFORMAT.2018.11.017>

560 Lim, K.J., Engel, B.A., Tang, Z., Choi, J., Kim, K.S., Muthukrishnan, S., Tripathy, D., 2005. AUTOMATED WEB GIS BASED HYDROGRAPH ANALYSIS TOOL, WHAT1. *JAWRA Journal of the American Water Resources Association* 41, 1407–1416. <https://doi.org/10.1111/J.1752-1688.2005.TB03808.X>

Lim, K.J., Park, Y.S., Kim, J., Shin, Y.C., Kim, N.W., Kim, S.J., Jeon, J.H., Engel, B.A., 2010. Development of genetic algorithm-based optimization module in WHAT system for hydrograph analysis and model application. *Comput Geosci* 36, 936–944. <https://doi.org/10.1016/J.CAGEO.2010.01.004>

565 Lin, C., Gentine, P., Huang, Y., Guan, K., Kimm, H., Zhou, S., 2018. Diel ecosystem conductance response to vapor pressure deficit is suboptimal and independent of soil moisture. *Agric For Meteorol* 250–251, 24–34. <https://doi.org/10.1016/J.AGRFORMAT.2017.12.078>

Liu, Y., Zhang, Y., Shan, N., Zhang, Z., Wei, Z., 2022. Global assessment of partitioning transpiration from evapotranspiration based on satellite solar-induced chlorophyll fluorescence data. *J Hydrol (Amst)* 612, 128044.
570 <https://doi.org/10.1016/J.JHYDROL.2022.128044>

Lozanova, L., Zhiyanski, M., Vanguelova, E., Doncheva, S., Marinov, M.P., Lazarova, S., 2019. Dynamics and Vertical Distribution of Roots in European Beech Forests and Douglas Fir Plantations in Bulgaria. *Forests* 2019, Vol. 10, Page 1123 10, 1123. <https://doi.org/10.3390/F10121123>

575 Lu, X., Liu, Z., An, S., Miralles, D.G., Maes, W., Liu, Y., Tang, J., 2018. Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a temperate forest. *Agric For Meteorol* 252, 75–87. <https://doi.org/10.1016/J.AGRFORMAT.2018.01.017>

Magliano, P.N., Giménez, R., Houspanossian, J., Páez, R.A., Nosetto, M.D., Fernández, R.J., Jobbágy, E.G., 2017. Litter is more effective than forest canopy reducing soil evaporation in Dry Chaco rangelands. *Ecohydrology* 10. <https://doi.org/10.1002/eco.1879>

580 Mao, J., Yan, B., 2019. Global Monthly Mean Leaf Area Index Climatology, 1981–2015. <https://doi.org/https://doi.org/10.3334/ORNLDAAC/1653>

Martens, B., Miralles, D.G., Lievens, H., Van Der Schalie, R., De Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., Verhoest, N.E.C., 2017. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. *Geosci Model Dev* 10, 1903–1925. <https://doi.org/10.5194/GMD-10-1903-2017>

585 Medlyn, B.E., Duursma, R.A., Eamus, D., Ellsworth, D.S., Prentice, I.C., Barton, C.V.M., Crous, K.Y., de Angelis, P., Freeman, M., Wingate, L., 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. *Glob Chang Biol* 17, 2134–2144. <https://doi.org/10.1111/J.1365-2486.2010.02375.X>

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E.H., Ek, M.B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., Shi, W., 2006. North American 590 Regional Reanalysis. *Bull Am Meteorol Soc* 87, 343–360. <https://doi.org/10.1175/BAMS-87-3-343>

Mianabadi, A., Coenders-Gerrits, M., Shirazi, P., Ghahraman, B., Alizadeh, A., 2019. A global Budyko model to partition evaporation into interception and transpiration. *Hydrol. Earth Syst. Sci* 23, 4983–5000. <https://doi.org/10.5194/hess-23-4983-2019>

595 Moran, M.S., Scott, R.L., Keefer, T.O., Emmerich, W.E., Hernandez, M., Nearing, G.S., Paige, G.B., Cosh, M.H., O'Neill, P.E., 2009. Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature. *Agric For Meteorol* 149, 59–72. <https://doi.org/10.1016/J.AGRFORMAT.2008.07.004>

Niu, Z., He, H., Zhu, G., Ren, X., Zhang, L., Zhang, K., Yu, G., Ge, R., Li, P., Zeng, N., Zhu, X., 2019. An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming. *Agric For Meteorol* 279, 107701. <https://doi.org/10.1016/J.AGRFORMAT.2019.107701>

600 Pagán, B.R., Maes, W.H., Gentine, P., Martens, B., Miralles, D.G., 2019. Exploring the Potential of Satellite Solar-Induced Fluorescence to Constrain Global Transpiration Estimates. *Remote Sensing* 2019, Vol. 11, Page 413 11, 413. <https://doi.org/10.3390/RS11040413>

Ponce, V.M., Shetty, A. V., 1995a. A conceptual model of catchment water balance: 1. Formulation and calibration. *J Hydrol (Amst)* 173, 27–40. [https://doi.org/10.1016/0022-1694\(95\)02739-C](https://doi.org/10.1016/0022-1694(95)02739-C)

605 Ponce, V.M., Shetty, A. V., 1995b. A conceptual model of catchment water balance: 2. Application to runoff and baseflow modeling. *J Hydrol (Amst)* 173, 41–50. [https://doi.org/10.1016/0022-1694\(95\)02745-B](https://doi.org/10.1016/0022-1694(95)02745-B)

Pool, S., Vis, M., Seibert, J., 2018. Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency. *Hydrological Sciences Journal* 63, 1941–1953. <https://doi.org/10.1080/02626667.2018.1552002>

610 Poyatos, R., Granda, V., Flo, V., Adams, M.A., Adorján, B., Aguadé, D., Aidar, M.P.M., Allen, S., Alvarado-Barrientos, M.S., Anderson-Teixeira, K.J., Aparecido, L.M., Altaf Arain, M., Aranda, I., Asbjornsen, H., Baxter, R., Beamesderfer, E., Berry, Z.C., Berveiller, D., Blakely, B., Boggs, J., Bohrer, G., Bolstad, P. v., Bonal, D., Bracho, R., Brito, P., Brodeur, J., Casanoves, F., Chave, J., Chen, H., Cisneros, C., Clark, K., Cremonese, E., Dang, H., David, J.S., David, T.S., Delpierre, N., Desai, A.R., Do, F.C., Dohnal, M., Domec, J.C., Dzikiti, S., Edgar, C., Eichstaedt, R., El-Madany, T.S., Elbers, J., Eller, C.B., Euskirchen, E.S., Ewers, B., Fonti, P., Forner, A., Forrester, D.I., Freitas, H.C., Galvagno, M., Garcia-Tejera, O., Ghimire, C.P., Gimeno, T.E., Grace, J., Granier, A., Griebel, A., Guangyu, Y., Gush, M.B., Hanson, P.J., Hasselquist, N.J., Heinrich, I., Hernandez-Santana, V., Herrmann, V., Hölttä, T., Holwerda, F., Irvine, J., Na Ayutthaya, S.I., Jarvis, P.G., Jochheim, H., Joly, C.A., Kaplick, J., Kim, H.S., Klemedtsson, L., Kropp, H., Lagergren, F., Lane, P., Lang, P., Lapenas, A., Lechuga, V., Lee, M., Leuschner, C., Limousin, J.M., Linares, J.C., Linderson, M.L., Lindroth, A., Llorens, P., López-Bernal, Á., Loranty, M.M., Lütschwager, D., MacInnis-Ng, C., Maréchaux, I., Martin, T.A., Matheny, A., McDowell, N., McMahon, S., Meir, P., 620 Mészáros, I., Migliavacca, M., Mitchell, P., Mölder, M., Montagnani, L., Moore, G.W., Nakada, R., Niu, F., Nolan, R.H., Norby, R., Novick, K., Oberhuber, W., Obojes, N., Oishi, A.C., Oliveira, R.S., Oren, R., Ourcival, J.M., Paljakkä, T., Perez-Priego, O., Peri, P.L., Peters, R.L., Pfautsch, S., Pockman, W.T., Preisler, Y., Rascher, K., Robinson, G., Rocha, H., Rocheteau, A., Röll, A., Rosado, B.H.P., Rowland, L., Rubtsov, A. v., Sabaté, S., Salmon, Y., Salomón, R.L., Sánchez-Costa, E., Schäfer, K.V.R., Schuldt, B., Shashkin, A., Stahl, C., Stojanović, M., Suárez, J.C., Sun, G., Szatniewska, J., Tatarinov, F., TesaÅ™, M., Thomas, F.M., Tor-Ngern, P., Urban, J., Valladares, F., van der Tol, C., van Meerveld, I., Varlagin, A., Voigt, H., Warren, J., Werner, C., Werner, W., Wieser, G., Wingate, L., Wullschleger, S., Yi, K., Zweifel, R., Steppe, K., Mencuccini, M., Martínez-Vilalta, J., 2021. Global transpiration data from sap flow measurements: The SAPFLUXNET database. *Earth Syst Sci Data* 13, 2607–2649. <https://doi.org/10.5194/ESSD-13-2607-2021>

630 Running, S., Mu, Q., Zhao, M., Moreno, A., 2021. MODIS/Terra Net Evapotranspiration Gap-Filled Yearly L4 Global 500m SIN Grid V061 [Data set] [WWW Document]. URL <https://doi.org/10.5067/MODIS/MOD16A3GF.061> (accessed 10.5.22).

Sakuratani, T., 1987. Studies on Evapotranspiration from Crops (2) Separate Estimation of Transpiration and Evaporation from a Soybean Field without Water Shortage. *Journal of Agricultural Meteorology* 42, 309–317. <https://doi.org/10.2480/AGRMET.42.309>

635 Sakuratani, T., 1981. A Heat Balance Method for Measuring Water Flux in the Stem of Intact Plants. *Journal of Agricultural Meteorology* 37, 9–17. <https://doi.org/10.2480/AGRMET.37.9>

Savenije, H.H.G., 2004. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. *Hydrol Process* 18, 1507–1511. <https://doi.org/10.1002/hyp.5563>

Scanlon, T.M., Kustas, W.P., 2012. Partitioning Evapotranspiration Using an Eddy Covariance-Based Technique: Improved Assessment of Soil Moisture and Land–Atmosphere Exchange Dynamics. *Vadose Zone Journal* 11.
640 <https://doi.org/10.2136/VZJ2012.0025/111632>

Scanlon, T.M., Kustas, W.P., 2010. Partitioning carbon dioxide and water vapor fluxes using correlation analysis. *Agric For Meteorol* 150, 89–99. <https://doi.org/10.1016/J.AGRFORMAT.2009.09.005>

Scanlon, T.M., Sahu, P., 2008. On the correlation structure of water vapor and carbon dioxide in the atmospheric surface layer: A basis for flux partitioning. *Water Resour Res* 44, 10418. <https://doi.org/10.1029/2008WR006932>

645 Schenk, H.J., Jackson, R.B., 2002. The Global Biogeography of Roots. *Ecol Monogr* 72, 311–328. [https://doi.org/https://doi.org/10.1890/0012-9615\(2002\)072\[0311:TGBOR\]2.0.CO;2](https://doi.org/https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2)

Schlesinger, W.H., Jasechko, S., 2014. Transpiration in the global water cycle. *Agric For Meteorol* 189–190, 115–117. <https://doi.org/10.1016/j.agrformat.2014.01.011>

Schymanski, S.J., Or, D., 2016. Wind increases leaf water use efficiency. *Plant Cell Environ* 39, 1448–1459.
650 <https://doi.org/10.1111/pce.12700>

Scott, R.L., Biedermaier, J.A., 2017. Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes. *Geophys Res Lett* 44, 6833–6840. <https://doi.org/10.1002/2017GL074324>

Shan, N., Ju, W., Migliavacca, M., Martini, D., Guanter, L., Chen, J., Goulas, Y., Zhang, Y., 2019. Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence. *Agric For Meteorol* 268, 189–201.
655 <https://doi.org/10.1016/J.AGRFORMAT.2019.01.031>

Skaggs, T.H., Anderson, R.G., Alfieri, J.G., Scanlon, T.M., Kustas, W.P., 2018. Fluxpart: Open source software for partitioning carbon dioxide and water vapor fluxes. *Agric For Meteorol* 253–254, 218–224. <https://doi.org/10.1016/J.AGRFORMAT.2018.02.019>

Stocker, B.D., Wang, H., Smith, N.G., Harrison, S.P., Keenan, T.F., Sandoval, D., Davis, T., Prentice, I.C., 2020. P-model
660 v1.0: An optimality-based light use efficiency model for simulating ecosystem gross primary production. *Geosci Model Dev* 13, 1545–1581. <https://doi.org/10.5194/gmd-13-1545-2020>

Stoy, P.C., El-Madany, T.S., Fisher, J.B., Gentine, P., Gerken, T., Good, S.P., Klosterhalfen, A., Liu, S., Miralles, D.G., Perez-Priego, O., Rigden, A.J., Skaggs, T.H., Wohlfahrt, G., Anderson, R.G., Coenders-Gerrits, A.M.J., Jung, M., Maes, W.H., Mammarella, I., Mauder, M., Migliavacca, M., Nelson, J.A., Poyatos, R., Reichstein, M., Scott, R.L., Wolf, S., 2019. Reviews
665 and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. *Biogeosciences* 16, 3747–3775. <https://doi.org/10.5194/BG-16-3747-2019>

Swanson, R.H., Whitfield, D.W.A., 1981. A Numerical Analysis of Heat Pulse Velocity Theory and Practice. *J Exp Bot* 32, 221–239. <https://doi.org/10.1093/JXB/32.1.221>

Tan, S., Wang, H., Prentice, I.C., Yang, K., 2021. Land-surface evapotranspiration derived from a first-principles primary
670 production model. *Environmental Research Letters* 16, 104047. <https://doi.org/10.1088/1748-9326/ac29eb>

Tang, Y., and D. Wang (2017), Evaluating the role of watershed properties in long-term water balance through a Budyko equation based on two-stage partitioning of precipitation, *Water Resour. Res.*, 53, doi:10.1002/2016WR019920.

Thornton, M.M., Shrestha, R., Wei, Y., Thornton, P.E., Kao, S.-C., Wilson, B.E., 2022. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 4 R1. <https://doi.org/10.3334/ORNLDAAAC/2129>

675 Wallace, A., Romney, E.M., Cha, J.W., 1980. DEPTH DISTRIBUTION OF ROOTS OF SOME PERENNIAL PLANTS IN THE NEVADA TEST SITE AREA OF THE NORTHERN MOJAVE DESERT. *Great Basin Naturalist Memoirs* 201–207.

Wang, D., and Y. Tang (2014), A oneparameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models, *Geophys. Res. Lett.*, 41, doi:10.1002/2014GL060509.

680 Wang, H., Prentice, I.C., Keenan, T.F., Davis, T.W., Wright, I.J., Cornwell, W.K., Evans, B.J., Peng, C., 2017. Towards a universal model for carbon dioxide uptake by plants. *Nat Plants* 3, 734–741. <https://doi.org/10.1038/s41477-017-0006-8>

Wang, L., Good, S.P., Caylor, K.K., 2014. Global synthesis of vegetation control on evapotranspiration partitioning. *Geophys Res Lett* 41, 6753–6757. <https://doi.org/10.1002/2014GL061439>

Wei, Z., Yoshimura, K., Wang, L., Miralles, D.G., Jasechko, S., Lee, X., 2017. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. *Geophys Res Lett* 44, 2792–2801. <https://doi.org/10.1002/2016GL072235>

685 Williams, D.G., Cable, W., Hultine, K., Hoedjes, J.C.B., Yepez, E.A., Simonneaux, V., Er-Raki, S., Boulet, G., de Bruin, H.A.R., Chehbouni, A., Hartogensis, O.K., Timouk, F., 2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. *Agric For Meteorol* 125, 241–258. <https://doi.org/10.1016/J.AGRFORMAT.2004.04.008>

Yu, L., Zhou, S., Zhao, X., Gao, X., Jiang, K., Zhang, B., Cheng, L., Song, X., Siddique, K.H.M., 2022. Evapotranspiration 690 Partitioning Based on Leaf and Ecosystem Water Use Efficiency. *Water Resour Res* 58. <https://doi.org/10.1029/2021WR030629>

Zeng, X., 2001. Global Vegetation Root Distribution for Land Modeling. *J Hydrometeorol* 2, 525–530. [https://doi.org/https://doi.org/10.1175/1525-7541\(2001\)002%3C0525:GVRDFL%3E2.0.CO;2](https://doi.org/https://doi.org/10.1175/1525-7541(2001)002%3C0525:GVRDFL%3E2.0.CO;2)

695 Zhang, K., Kimball, J.S., Nemani, R.R., Running, S.W., 2010. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. *Water Resour Res* 46, 9522. <https://doi.org/10.1029/2009WR008800>

Zhang, Y., Shen, Y., Sun, H., Gates, J.B., 2011. Evapotranspiration and its partitioning in an irrigated winter wheat field: A combined isotopic and micrometeorologic approach. *J Hydrol (Amst)* 408, 203–211. <https://doi.org/10.1016/J.JHYDROL.2011.07.036>

700 Zhou, S., Yu, B., Zhang, Y., Huang, Y., Wang, G., 2016. Partitioning evapotranspiration based on the concept of underlying water use efficiency. *Water Resour Res* 52, 1160–1175. <https://doi.org/10.1002/2015WR017766>