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Abstract. Evapotranspiration comprises transpiration, soil evaporation, and interception. The partitioning of 

evapotranspiration is challenging due to the lack of direct measurements and uncertainty of existing evapotranspiration 

partitioning methods. We propose a novel method to estimate long-term mean transpiration to evapotranspiration (Et/E) ratios 

based on the generalized proportionality hypothesis using long-term mean hydrological observations at the watershed scale. 

We tested the method using 648 watersheds in the United States classified into six vegetation types. We mitigated impacts of 15 

the variability associated with different Ep data products by rescaling their original Ep values using the product E/Ep ratios in 

combination with the observed E calculated from watershed water balance. With Ep thus rescaled, our method produced 

consistent Et/E across six widely used Ep products. Shrubs (0.38) and grasslands (0.33) showed lower mean Et/E than croplands 

(0.46) and forests (respectively 0.73, 0.55, and 0.68 for evergreen needleleaf, deciduous broadleaf, and mixed forests). Et/E 

showed significant dependence on aridity, leaf area index, and other hydrological and environmental conditions. Using Et/E 20 

estimates, we calculated transpiration to precipitation ratios (Et/P) ratios and revealed a bell-shaped curve at the watershed 

scale, which conformed to the bell-shaped relationship with the aridity index (AI) observed at the field and remote-sensing 

scales  (Good et al., 2017)(Good et al., 2017). This relationship peaked at an Et/P between 0.5 and 0.6, corresponding to an AI 

between 2 and 3 depending on the Ep dataset used. These results strengthen our understanding of the interactions between 

plants and water and provide a new perspective on a long-standing challenge for hydrology and ecosystem science. 25 

1 Introduction 

Partitioning evapotranspiration is important for understanding water and energy balances of terrestrial ecosystems. 

Evapotranspiration has been predicted to increase at the expense of soil moisture due to climate change (Li et al., 2022; Niu et 

al., 2019) (Li et al., 2022; Niu et al., 2019) with potential implications for future projections of water, energy, and carbon 

balances. Large uncertainty remains in the partitioning of evapotranspiration into its components: transpiration, interception, 30 

and bare soil evaporation. Various methods have been developed to partition evapotranspiration based on measurements (Kool 
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et al., 2014; Stoy et al., 2019) (Kool et al., 2014; Stoy et al., 2019). These include (1) flux-variance similarity methods using 

high frequency (10–20 Hz) flux tower measurements, which estimate Et/E based on carbon-water correlation since 

transpiration and plant carbon uptake are concurrent (Scanlon and Kustas, 2010, 2012; Scanlon and Sahu, 2008; Skaggs et al., 

2018)(Scanlon and Kustas, 2012, 2010; Scanlon and Sahu, 2008; Skaggs et al., 2018); (2) eddy-covariance methods, which 35 

estimate Et/E using assumptions related to water use efficiency based on widely available half-hourly/hourly eddy covariance 

measurements (Berkelhammer et al., 2016; Li et al., 2019; Scott and Biederman, 2017; Yu et al., 2022; Zhou et al., 2016) 

(Berkelhammer et al., 2016; Li et al., 2019; Scott and Biederman, 2017; Yu et al., 2022; Zhou et al., 2016) ; and (3) isotopic 

methods (Griffis, 2013; Williams et al., 2004; Zhang et al., 2011) (Griffis, 2013; Williams et al., 2004; Zhang et al., 2011). 

Measurements of sap flow through plant stems have also been commonly used to more directly estimate transpiration. Sap 40 

flow measurements are classified into three groups (Kool et al., 2014) (Kool et al., 2014): heat balance methods (Čermák et 

al., 1973; Sakuratani, 1981, 1987) (Čermák et al., 1973; Sakuratani, 1987, 1981), heat pulse methods (Cohen et al., 1981; 

Green et al., 2003; Swanson and Whitfield, 1981) (Cohen et al., 1981; Green et al., 2003; Swanson and Whitfield, 1981), and 

constant heater methods (Čermák et al., 2004; Granier, 1985) (Čermák et al., 2004; Granier, 1985). (Poyatos et al., . (2021) 

Poyatos et al. (2021) compiled 202 sap flow datasets to form the global SAPFLUXNET dataset. Recent studies have used 45 

remotely sensed solar-induced fluorescence (SIF) measurements (Alemohammad et al., 2017; Damm et al., 2018; Liu et al., 

2022; Lu et al., 2018; Pagán et al., 2019; Shan et al., 2019)(Alemohammad et al., 2017; Damm et al., 2018; Liu et al., 2022; 

Lu et al., 2018; Pagán et al., 2019; Shan et al., 2019) as a way toto estimate global transpiration, relying on the close coupling 

between transpiration and photosynthesis.  

The ratio of transpiration to evapotranspiration (Et/E) is a particularly important quantity because the controls on T (which is 50 

tightly regulated by plants through stomatal behaviourbehavior) are substantially different from the controls on the other two 

components. The evapotranspiration partitioning methods summarized above have multiple limitations and produce an 

alarmingly wide range of values for the global mean Et/E. (Wei et al., . (2017) Wei et al. (2017) showed mean global Et/E 

varying from 0.24 to 0.90 based on a variety of remote-sensing, isotopic, and modelling studies. Another compilation by (Liu 

et al., . (2022) Liu et al. (2022) showed the mean varying between 0.24 and 0.86. (Schlesinger and Jasechko,  (2014) 55 

Schlesinger and Jasechko (2014) showed that Et/E ratios derived from isotopic methods tend to be systematically higher than 

those produced by other methods. It has also been shown that two different evapotranspiration partitioning methods could 

produce greatly different Et/E values at the same site (Cavanaugh et al., 2011; Moran et al., 2009) (Cavanaugh et al., 2011; 

Moran et al., 2009).  Some Et/E estimates at the stand scale ignore transpiration from subcanopy vegetation, resulting in 

underestimation (Schlesinger and Jasechko, 2014)(Schlesinger and Jasechko, 2014). There is no consensus on which method 60 

is more accurate (Stoy et al., 2019) (Stoy et al., 2019); this presents a challenge for applying the Et/E estimates using any of 

the above methods, especially when they are developed based on data at site scale but are applied at larger (regional to global) 

spatial scales. 

Few studies have considered partitioning evapotranspiration based on hydrological concepts using widely available long-term 

hydrological observations, which could in principle provide reliable methods to estimate Et/E. (Gerrits et al., . (2009) Gerrits 65 
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et al. (2009) estimated monthly and (upscaled) annual transpiration based on precipitation, interception, soil moisture, and the 

aridity index. They estimated Et/E by modeling interception (which includes topsoil evaporation) as a daily threshold process 

(threshold is the interception storage capacity) and used rainfall distributions to upscale it to the monthly and then annual 

interception. Transpiration was modeled as a monthly threshold process based on net rainfall (precipitation minus interception), 

with the threshold being the soil moisture storage estimated based on a hydrological model, and upscaled it to annual 70 

transpiration via a rainfall distribution. Et/E is then calculated by assuming evapotranspiration is interception plus transpiration, 

since topsoil evaporation is included in interception, and deeper soil and open water evaporations are neglected. (Mianabadi 

et al., . (2019) Mianabadi et al. (2019) extended their approach and applied it globally. In this study, we propose a new method 

to partition evapotranspiration based on the Generalized Proportionality Hypothesis (GPH) using long-term hydrological 

observations. The GPH was initially used by the United States Soil Conservation Service (SCS) for runoff calculation (USDA 75 

SCS, 1985) (USDA SCS, 1985) , and was afterwards generalized by (Ponce and Shetty,  (1995a, b) Ponce and Shetty (1995a, 

1995b). (Wang and Tang,  (2014) Wang and Tang (2014) provided a comprehensive discussion of the use of GPH and noted 

its connection to various models, including the “abcd” model, the SCS direct runoff model, and the Budyko-type models. The 

GPH partitions water fluxes into their components and has been implemented as a two-stage partitioning. The first stage 

partitions precipitation into soil wetting and surface runoff; the second stage partitions soil wetting into baseflow and 80 

evaporation (Ponce and Shetty, 1995a, b; Tang and Wang, 2017)(Ponce and Shetty, 1995a, 1995b; Tang and Wang, 2017). 

We follow an approach based on the GPH partitioning of soil wetting to estimate catchment Et/E based on hydrological 

observations. Due to the wider availability of hydrological observations compared to the observations required for the 

techniques previously mentioned, this method has a wide potential for application in gauged watersheds across the globe.  

The objectives of our study are: 1) to develop a new method to estimate Et/E at the catchment scale based on long-term 85 

hydrological observations, 2) to test the method and evaluate its robustness to different data products using watersheds with 

different vegetation types, 3) to find Et/P (transpiration/precipitation) ratios based on Et/E and to compare this to previous 

studies, and 4) to understand the effect of hydrological and environmental conditions on both Et/E and Et/P. The paper is 

organized as follows. Section 2 describes the newly developed method. Section 3 and  describesthe datasets used. Section 3 

investigates the differences in Ep data products, and the use of a rescaled Ep for Et/E estimation. Section 4 presents the results 90 

from the new method and compares them with Et/E estimates from other studies. Section 5 discusses the results and investigates 

their dependence on hydrological and environmental factors. Section 6 provides an insight into the variation of some existing 

partitioning methods. Section 7 summarizes our conclusions. 

2 Methods and Data 

2.1 Theory 95 

We present a new method to estimate long-term mean Et/E ratios at a watershed scale by taking advantage of long-term 

available hydrological observations. The new method is based on the Generalized Proportionality Hypothesis (GPH), shown 
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in equation (1(1). the GPH equation has been previously established in the literature based on the observed relationships found 

by (Lʹvovich, (1979) and the later mathematical derivation (and generalization) by (Ponce and Shetty, 1995a, b)(Ponce and 

Shetty, 1995a, b) (Ponce and Shetty, (1995a, b).  The proportionality hypothesis of the SCS method was obtained based on 100 

observed data from a larger number of watersheds (USDA SCS, 1985), which was then generalized by (Ponce and Shetty, 

(1995a)Ponce and Shetty (1995). GPH partitions an unbounded water quantity 𝑍 into an unbounded water quantity 𝑌 and a 

water quantity 𝑋 that is bound by its potential value 𝑋𝑝. The value 𝑋0 is the initial quantity of 𝑋 that is fulfilled prior to the 

competition between 𝑋 and 𝑌; for example, interception is a portion of E that is initially lost and not accessible for baseflow: 

𝑋 − 𝑋0

𝑋𝑝 − 𝑋0

=
𝑌

𝑍 − 𝑋0

 (1) 

Ponce and Shetty (1995a, b) (Ponce and Shetty, 1995a, b)(Ponce and Shetty, 1995a, b) applied the GPH for hydrological 105 

partitioning. They partitioned annual precipitation over two stages: the first stage partitions precipitation into catchment 

wetting and surface runoff; and the second stage partitions wetting (W) into evapotranspiration (E) and baseflow (Qb) as shown 

in Figure 1. Both stages of partitioning follow the generalized formula in equation (1)(1). The two-stage partitioning is well 

established, has been proved with thermodynamic principles (Wang et al., 2015)(Wang et al., 2015)(Wang et al., 2015),  and 

has been extensively used in the literature in studies such as (Abeshu and Li, 2021; Chen and Wang, 2015; Sivapalan et al., 110 

2011; Tang and Wang, 2017; Wang and Tang, 2014) Sivapalan et al. (2011)Sivapalan et al. (2011), Wang and Tang 

(2014)Wang and Tang (2014), Chen and Wang (2015)Chen and Wang (2015), Tang and Wang (2017), Abeshu and Li (2021). 

. 

 

Figure 1: Two stage partitioning of annual precipitation. E: evapotranspiration; Es: soil evaporation; Ei: interception evaporation; 115 
Et: transpiration; P: precipitation; W: soil wetting; Qb: baseflow; Qd: direct runoff; Q: total runoff. 

In this work, we use the second stage partitioning to partition wetting into evapotranspiration and baseflow as shown in 

equation (2(2):  
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𝐸 − 𝐸0

𝐸𝑝 − 𝐸0

=
𝑄𝑏

𝑊 − 𝐸0

 (2) 

where 𝐸0 is the initial evapotranspiration that does not compete with baseflow and 𝐸𝑝 is the potential evapotranspiration. 𝑊 

can be estimated from watershed balance as 𝑃 − 𝑄𝑑, where 𝑃 is precipitation and 𝑄𝑑 is direct runoff. 𝐸 can be estimated from 120 

watershed balance as 𝑃 − 𝑄, where 𝑄 is the total runoff (since the long-term mean soil moisture change can be ignored). Initial 

evapotranspiration (𝐸0) has been represented in different ways in the literature. (Ponce and Shetty, (1995a, b; ) and Sivapalan 

et al., (2011) (Ponce & Shetty, 1995a, 1995b; Sivapalan et al., 2011)(Ponce & Shetty, 1995a, 1995b; Sivapalan et al., 2011) 

used 𝜆𝐸𝑝 to represent 𝐸0, where 𝜆 is a coefficient, (Tang and Wang (, 2017) ; and Wang and Tang, (2014)(Tang and Wang, 

2017; Wang and Tang, 2014) used 𝜆𝑊, and (Abeshu and Li, (2021) (Abeshu and Li, 2021) uused 𝜆𝐸. In this study, we choose 125 

𝜆𝐸 as 𝐸0 due to the interpretability of the λ parameter. We alternately use 𝑘 instead of 𝜆 to avoid confusion with the latent heat 

of vaporization, leading to equation (3(3): 

 

𝐸 − k𝐸

Ep − k𝐸
=

𝑄𝑏

𝑊 − k𝐸
 

 

(3) 

 

In Abeshu and Li (2021)Abeshu and Li (2021),, 𝐸0  included interception, evaporation from surface depression, topsoil 

evaporation, and shallow transpiration. In (Gerrits et al. , (2009) Gerrits et al. (2009), they assumed that interception includes 130 

canopy and understory interception, in addition to topsoil evaporation, while deep soil evaporation is insignificant or can be 

combined with interception. In (Savenije, (2004) Savenije (2004), they considered topsoil evaporation to be a part of 

interception, and distinguished transpiration between fast and slow ones, where fast transpiration relies on moisture in the top 

50 cm of soil, and slow transpiration relies on deeper soil moisture. Therefore, we assume that 𝐸0  includes bare soil 

evaporation, interception, and a portion (𝑓) of the transpiration (𝐸𝑡) representing the fast transpiration from the top 10 cm of 135 

soil (Abeshu and Li, 2021; Savenije, 2004).(Abeshu and Li, 2021; Savenije, 2004). Since root uptake not only occurs near the 

surface but also progresses downwards (Gardner, 1983)(Gardner, 1983), we assume that transpiration extracted from the 

topsoil occurs in a rapid manner that makes it inaccessible to the competition between baseflow and 𝐸, and therefore belongs 

to 𝐸0. Therefore, 𝐸0 includes all evaporative fluxes except slow transpiration, meaning that slow transpiration is the only 

evaporative flux that competes with baseflow. Slow transpiration can therefore be expressed as 𝐸𝑡_𝑠𝑙𝑜𝑤 = 𝐸 − 𝐸0 . For 140 

transpiration, we define fast transpiration as 𝐸𝑡_𝑓𝑎𝑠𝑡 = 𝑓 𝐸𝑡 , and thus slow transpiration as 𝐸𝑡_𝑠𝑙𝑜𝑤 = (1 − 𝑓) 𝐸𝑡 . Equating 

these two 𝐸𝑡_𝑠𝑙𝑜𝑤  equations yields 𝐸 − 𝐸0 = (1 − 𝑓)𝐸𝑡. Substituting 𝐸0 with 𝑘𝐸 yields (1 − 𝑘)𝐸 = (1 − 𝑓)𝐸𝑡, and thus we 

can get:The remaining portion of 𝐸 after deducting 𝐸0 is equivalent to the remaining portion of 𝐸𝑡 after deducting the portion 

𝑓. That is,   

𝐸𝑡

𝐸
=

1 − 𝑘

1 − 𝑓
 

(4) 
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(1 − 𝑘)𝐸 = (1 − 𝑓)𝐸𝑡 (4) 

Therefore, the transpiration ratio (𝐸𝑡/𝐸) becomes:  145 

𝐸𝑡

𝐸
=

1 − 𝑘

1 − 𝑓
 (5) 

Equation (54) indicates that 𝐸𝑡/𝐸  can be found using 𝑘  and 𝑓  values. The 𝑘  parameter can be found by applying an 

optimization technique that maximizes the non-parametric Kling-Gupta efficiency (KGE, equation 65, (Gupta et al., 2009; 

Pool et al., 2018)) (Gupta et al., 2009; Pool et al., 2018) between observed soil wetting (from watershed balance, equation 6) 

and simulated soil wetting (rearranging equation (3)(3) to be in terms of soil wetting, equation 7). 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (65) 

where r is Pearson correlation coefficient, 𝛼 is relative variability in the simulated and observed values, and 𝛽 is the ratio 150 

between the mean simulated and mean observed flows. 

From the water balance equation at the watershed scale, we haveobtain observed wetting as: 

𝑊𝑜𝑏𝑠 = 𝑃 − 𝑄𝑑  (76) 

And by rearranging equation (3) to obtain simulated wetting: 

𝑊𝑠𝑖𝑚 = 𝑄𝑏

𝐸𝑝 − 𝑘𝐸

𝐸 − 𝑘𝐸
+ 𝑘𝐸 

(87) 

 

Since 𝑓 represents the fast response of transpiration, we follow a similar approach to (Abolafia-Rosenzweig et al.,  (2020) 

Abolafia-Rosenzweig et al. (2020) in defining the ratio of surface transpiration using root distribution in and soil water stress. 155 

We additionally distinguish between energy- and water-limited regions by constraining energy-limited f using the aridity index 

as displayed in equation (48): 

𝑓 = 𝑟10 × 𝑆 × 𝑓𝐴𝐼  (8) 

 

Where 𝑟10 is the root percentage in the top 10 cm of the soil, 𝑆 is the soil moisture availability, and 𝑓𝐴𝐼 represents impact of 

available energy. If the aridity index (AI) is less than 1, the region is energy limited. Thus, 𝑓𝐴𝐼.= AI. If AI ≥ 1, then 𝑓𝐴𝐼 = 1. 160 

The rationale behind this is that when 𝐴𝐼 < 1, only a fraction of the transpiration from the top surface layer is quantified to be 

part of the fast components due to its energy limited nature.  

The literature variesshows variation in how defining the depth of where fast transpiration occursis defined. For example, 

Abolafia-Rosenzweig et al. (2020) Abolafia-Rosenzweig et al. (2020)used the top 5 cm to estimate transpiration from the 

surface soil layer(Wang et al., 2021). Wang et al. (2021)Wang et al. (2021) statedindicated that evapotranspiration occurs most 165 

rapidly occurs from the top 10 cm of soil, whereaswith deeper layer haveresponding more slower responsesslowly.  Similarly, 

(Zhang et al., . (2022) Zhang et al. (2022) showedreported that rapid soil moisture responses to rainfall occurredwere 

concentrated in the top 5-10 cm, and therefore we would expectsuggesting that fast transpiration is likely driven by to occur 

from the increased soil moisture within this layer. AlthoughBy contrast, (Abeshu and Li,  (2021) Abeshu and Li (2021)used 
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50 cm as the depth of the rapid response,. we believeWe consider that 50 cm cm isto be an overestimationoverestimation, as  170 

since for some vegetation types (e.g., grasses) thatthis depth would includemay encompass nearly the entire rooting depth,zone 

like grasses for instance. ThereforeBased on this evidence, we chooseadopted 10 cm as the representative depth for the fast 

transpiration. We additionallyIn addition, we conducted perform a sensitivity analysis in section 4.4 to quantify the effect of 

theis depth choice of fast transpiration on the 𝐸𝑡/𝐸 values.  

The soil moisture availability, S, represents the moisture availability in the root zone for root water uptake. Abolafia-175 

Rosenzweig et al. (2020)  (Abolafia-Rosenzweig et al., 2020) calculated the soil moisture availability as a function of soil 

moisture, wilting point, and field capacity. To rely on hydrological observations instead of simulated or remotely sensed soil 

moisture, we assume the soil moisture availability to be represented by the ratio between baseflow and total streamflow 

(𝑄𝑏/𝑄).  This ratio can give an indication of water availability in the soil, and hence can be used to indicate soil moisture 

availability. Since we apply this method at the watershed scale, there may be multiple vegetation types in the same watershed, 180 

and therefore, we calculate a weighted value of 𝑓. 

2.2 Data 

From Equations 2-5 and the descriptions of Section 2.1, we see that one needs long-term observed precipitation, streamflow, 

baseflow, estimated Ep, and root distribution to estimate the Et/E ratio. Watershed boundaries and precipitation data were 

retrieved from the Hydrometeorological Sandbox - École de technologie supérieure (HYSETS) dataset  (Arsenault et al., 185 

2020)((Arsenault et al., 2020)). The HYSETS dataset includes watershed boundaries, land cover, soil properties, meteorology, 

and hydrological data for 14,425 watersheds in North American. We selected 648 watersheds (Figure 2) (Fig. 1) across the 

United States with at least 10 years of streamflow data between 1980 and 2018 from this HYSETS data source. Detailed land 

cover data were retrieved from the ESA CCI Land Cover project (www.esa-landcover-cci.org, last accessed December 28, 

2022).  190 

Streamflow data were retrieved from the US Geological Survey (USGS), and their corresponding baseflow magnitudes were 

estimated by separating it from the streamflow data using a one-parameter digital filter separation method (Lyne and Hollick, 

1979). (Lyne and Hollick, 1979). Filtering methods separate direct runoff and baseflow by differentiating them based on 

frequency spectrums of the hydrograph, where low frequency flow represents baseflow and high frequency represents the 

direct runoff which has rapid responses to precipitation. We employed the widely used filtering method tool developed by 195 

Purdue University, Web-based Hydrological Analysis Tool (WHAT, (Lim et al., 2005, 2010) , (Lim et al., 2005, 2010); 

https://engineering.purdue.edu/mapserve/WHAT, last accessed 25 Oct 2022), to separate baseflow from the observed 

streamflow.  We set the value of the filter parameter to be 0.925 which is within the suggested range. We did a sensitivity 

analysis (in a separate study) and used different filter values and methods available from WHAT, the results were similar.  

Since other methods such as (Eckhardt, (2005) Eckhardt (2005) require knowledge of hydrogeological conditions, we chose 200 

the one-parameter digital filter method due to its simplicity and constant parameter value, which produces plausible results 

http://www.esa-landcover-cci.org/
https://engineering.purdue.edu/mapserve/WHAT
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(Eckhardt, 2008; Xie et al., 2020) (Eckhardt, 2008; Xie et al., 2020). Additional details on the baseflow separation method are 

presented in Lim et al. (2005)Lim et al. (2005). (Lim et al., . (2005)  

Information related to root density functions was obtained from (Zeng,  (2001) (Zeng, 2001)(Zeng, 2001), who represented 

root density distribution as a two-parameter function for each vegetation type based on compiled root database. The root 205 

density distribution from Zeng (2001) (Zeng, 2001)(Zeng, 2001) was validated using root information from other studies (Fan 

et al., 2016; Jackson et al., 1996; Lozanova et al., 2019; Schenk and Jackson, 2002; Wallace et al., 1980) (Fan et al., 2016; 

Jackson et al., 1996; Lozanova et al., 2019; Schenk and Jackson, 2002; Wallace et al., 1980)(Fan et al., 2016; Jackson et al. , 

1996; Lozanova et al., 2019; Schenk and Jackson, 2002; Wallace et al., 1980).. Soil moisture stress (𝑄𝑏/𝑄) was calculated 

based on the USGS observed streamflow and the estimated baseflow from WHAT.  210 

Numerous Ep data products are available that satisfy our study regions and time period requirements, posing a question as to 

which one should be selected – as each has its own strengths. To address this question, we examined six widely used Ep data 

products and assessed their impact on the estimation of Et/E ratios. These data products were selected because they are (1) 

widely used within the hydrological and ecological communities, (2) associated with a wide range of spatial resolutions, and 

(3) derived using different methods. The six Ep datasets are the Global Land Evaporation Amsterdam Model (GLEAM v3.5a, 215 

)(Martens et al., 2017))  (Martens et al., 2017)(Martens et al., 2017), the Moderate Resolution Imaging Spectroradiometer 

(MODIS MOD16A3GF) product (MODIS/Terra Net Evapotranspiration Gap-Filled Yearly L4 Global 500m SIN Grid V061 

[Data set], 2022) (MODIS/Terra Net Evapotranspiration Gap-Filled Yearly L4 Global 500m SIN Grid V061 [Data set], 

2022)(MODIS/Terra Net Evapotranspiration Gap-Filled Yearly L4 Global 500m SIN Grid V061 [Data set], 2022), the Ep 

dataset from (Zhang et al., . (2010) (Zhang et al., 2010),, the North American Regional Reanalysis (NARR,) (Mesinger et al., 220 

2006)) (Mesinger et al., 2006), the Simple Process-Led Algorithms for Simulating Habitats (SPLASH v1.0) , (Davis et al., 

2017)) (Davis et al., 2017),, and the Breathing Earth System Simulator (BESS v2,) (Li et al., 2023)). (Li et al., 2023)(Li et al., 

2023) Details of these six products are provided in Table 1Table 1.  
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Figure 2: 648 watersheds in the US, categorized into six vegetation types; crops, grass, shrubs, evergreen needleleaf forest (ENF), 225 
deciduous broadleaf forests (DBF), and mixed forests (MF). The inset map at the bottom left shows watersheds in Alaska. 

 

 

 

 230 

Table 11: Description of six Ep products used in this study. 

Dataset Ep equation Spatial and temporal scale Remarks 

GLEAM 

v3.5a 

Priestley-Taylor 0.25×0.25°, Daily/Monthly, 1980-

2021 

 

NARR Eta Model (Penman 

based) 

32×32 km, Daily/Monthly, 1979-

2022 

 

MODIS 

MOD16A3GF 

Combination of Penman-

Monteith and Priestley-

Taylor 

500×500m, 8-day/Yearly, 2000-

2021 

 

SPLASH Priestly-Taylor 1 km, Daily, 1980-2018 Forced using daily DayMet 

(Thornton et al., 2022)  (Thornton et 

al., 2022)(Thornton et al., 2022) data 

BESS v2 Priestly-Taylor 5 km, Monthly, 1982-2022  

Zhang Penman-Monteith 8×8 km, Daily/Monthly, 1983-2006  

 

Environmental variables – relative humidity, downward shortwave radiation, air temperature, wind speed, and soil moisture 

content – were retrieved from the NARR dataset to study the dependencies of Et/E on environmental factors. Data on leaf area 

index (LAI) were obtained from the Global Monthly Mean Leaf Area Index Climatology produced by ORNL DAAC (Mao 235 

and Yan, 2019) (Mao and Yan, 2019)(Mao and Yan, 2019) and aggregated to obtain the long-term mean LAI at watershed 

scale.  

The relevant data were collected for 648 watersheds and aggregated to the annual timescale. The dominant vegetation type 

was determined for each watershed from the ESA CCI land cover data, and watersheds were classified into six vegetation 

types: crops, grass, shrubs, evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF). We 240 

assume each watershed has a single mean long-term Et/E value. For each dataset, due to the different time coverage of the 
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datasets and the streamflow gauges, we filtered the watersheds to include only those that have available data for at least 10 

years. We used optimization to find 𝑘. We then performed additional filtering for each dataset to remove watersheds with KGE 

values less than zero. Using the filtered watersheds, we calculated Et/E based on estimated 𝑘 and 𝑓 together with the other 

variables. The final number of watersheds associated with each dataset used in this study, after filtering, is shown in Table 245 

2Table 2. 

 

Table 22: Number of filtered watersheds for each potential evapotranspiration (Ep) data product. Watersheds with less than 10 years 

of data and/or with Kling-Gupta efficiencies less than zero were removed from the analysis. Numbers are shown for each of the six 

vegetation types. 250 

Type 
All 

watersheds 
NARR MODIS Zhang 

GLEAM 

v3.5a 

BESS 

v2 
SPLASH 

Crops 74 72 61 57 73 59 71 

Grass 89 84 66 73 86 79 81 

Shrubs 146 131 107 114 134 128 131 

ENF 206 166 118 118 173 161 156 

DBF 65 65 61 54 65 64 65 

MF 68 63 58 52 66 51 61 

Total 648 581 471 468 597 542 565 

3 Impact of Ep products 

Figure 3Figure 3a shows mean annual Ep values from six different data products for the 648 study watersheds. We observe 

large differences in mean annual Ep among the six different data products. The differences in Ep are likely attributed to 

variations in input data and parameter values used by these products, while differences in methods and resolutions used to 

compute Ep may play a secondary role (Hassan et al., 2024).(Hassan et al., 2024)(Hassan et al., 2024). Discrepancies between 255 

the input net radiation used in different data products result in especially large variations in the computed Ep. Variations in 

parameter values, including the Priestly-Taylor α parameter, among different data products also result in significant differences 

in the resulting Ep. On the other hand, the E/Ep ratios from the six different Ep products are relatively consistent among the six 

datasets (except for GLEAM) as shown in Figure 3Figure 3b. This is likely because within each product the same input/forcing 

data and parameter values are employed for both Ep and E, resulting in similar impacts on both. Such consistency is an 260 

indication of a uniformity of the underlying physics across these five products, despite the large disparities in their individual 

Ep magnitudes. The GLEAM Ep product, which has also been previously identified for its overestimation of E/Ep ratio by 

(Peng et al., . (2019)Peng et al. (2019) in comparison with FLUXNET E/Ep, appears to be an exception. Rather than excluding 
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the GLEAM data product, we opted to adjust its E/Ep ratio by normalizing it with the average ratio of the other five datasets 

(NARR, MODIS, Zhang, SPLASH, and BESS), yielding an adjusting factor of 0.7. This adjusting factor of 0.7 was applied to 265 

GLEAM to adjust its E/Ep values.  In addition, rescaled Ep values from the six data products in this study were newly derived 

by applying their individual E/Ep ratios, obtained from their own data products, to the watershed E values calculated based on 

data watershed balance (i.e., E = P – Q) for each watershed. The importance of deriving Ep values for each data product 

through this rescaling approach (referred to as rescaled Ep), rather than using the original Ep product, is to ensure consistency 

between the Ep values and the watershed-budget estimated E values for each watershed while preserving the E/Ep ratios from 270 

the individual products. This is necessary because the magnitudes of some original Ep products are smaller than their 

corresponding watershed-budget estimated E values.  

In essence, we derive new Ep values for all six products using Equation (9), maintaining the E/Ep ratio for each data product 

(except for GLEAM, whose E/Ep ratio is adjusted by a factor of 0.7). This approach yields consistent Ep values across the 648 

watersheds for each individual data product and captures the essential variations among the six Ep datasets. The rescaled Ep 275 

values obtained from Equation (9) uphold the fundamental principles of individual products by preserving their respective 

E/Ep ratios. By doing so, the effects stemming from differences or uncertainties in their inputs/forcing data are notably 

mitigated, as the new Ep values are calculated using the watershed-budget estimated E and their own E/Ep ratios. This concept 

is akin to the notion of emergent constraints employed by others (Green et al., 2024; Hall et al., 2019; Williamson et al., 2021). 

(Green et al., 2024; Hall et al., 2019; Williamson et al., 2021): 280 

𝐸𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑
=

𝐸𝑝𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝐸𝑑𝑎𝑡𝑎𝑠𝑒𝑡

× 𝐸𝑜𝑏𝑠 (9) 

where 𝐸𝑑𝑎𝑡𝑎𝑠𝑒𝑡 and 𝐸𝑝𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 are values extracted from different data products, and 𝐸𝑜𝑏𝑠 is the watershed-budget estimated 𝐸 

calculated as 𝑃 − 𝑄 based on observed P and Q for each watershed. Table 3Table 3 shows the correlation between the rescaled 

Ep values of the six data products; the correlations show good consistency between the rescaled Ep values. These six rescaled 

Ep data products are then applied to Equations 2-5 to obtain Et/E ratios for each of the six vegetation types over the 648 

watersheds. With the six rescaled Ep data products, we can assess how variations in Ep affect the robustness of our new method 285 

in estimating Et/E. 
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Figure 3: Original Ep for six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS v2 for 648 watersheds. (a) 

Ep values retrieved from the data products, and (b) E/Ep ratios retrieved from the data products. Watersheds are sorted in 

descending order according to GLEAM’s E/Ep. 290 

Table 33: Correlations between rescaled Ep of six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS v2 

for 648 watersheds. 

  MODIS GLEAM NARR SPLASH BESS Zhang 

MODIS 1 
     

GLEAM v3.5a 0.72 1 
    

NARR 0.81 0.83 1 
   

SPLASH 0.80 0.84 0.83 1 
  

BESS 0.92 0.78 0.73 0.75 1 
 

Zhang 0.70 0.83 0.68 0.69 0.92 1 
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4 Results 

4.1 𝒌 values 

Figure 4 shows an example of the optimization between observed soil wetting (𝑊𝑜𝑏𝑠) and the simulated soil wetting (𝑊𝑠𝑖𝑚) 295 

with the optimized 𝑘 value for a representative watershed of each vegetation type. Figure 5Figure 4 shows the estimated values 

of 𝑘 for the 648 watersheds using each of the six input datasets based on Equations 6-8. Figure 5 shows the comparison between 

observed soil wetting (W) and the simulated soil wetting with estimated 𝑘 value for a representative vegetation type. The six 

datasets show similar trends, where the highest 𝑘 values are observed for the shrubs and grass vegetation types. Crops have 

lower 𝑘 values than shrubs and grass, but equal or higher than those for forests according to the dataset used. Figure 5Figure 300 

4 illustrates that the greatest variations among the six data products occur in the mixed forest and crops. This discrepancy may 

be attributed to differences in how each data product defines mixed forest and crop compositions, resulting in varying estimated 

parameters. The 𝑘 values observed herein our study are similar in trend to the valuesthose reported inby (Abeshu and Li,  

(2021)Abeshu and Li (2021), but lower in magnitude,. whichThis difference mayis likely be due to differences in input data 

to the GPH equation such as precipitation and PET values since different datasets are used for both studies. (Sivapalan et al., . 305 

(2011) Sivapalan et al. (2011)showedreported lower 𝑘 values (between 0 and 0.45). However,, but their definition of 𝑘 is 

different thandiffers from ours: while we define 𝐸0 = 𝑘𝐸 in Eq. 3, , since they define initial evapotranspiration as adopted the 

formulation of 𝐸0 = 𝑘𝐸𝑝., while we define 𝐸0 = 𝑘𝐸 . Since actual evapotranspiration (E) is typically much smaller than 

potential evapotranspiration (𝐸𝑝),  𝐸 < 𝐸𝑝 it is expected that then ourtheir 𝑘 values are expected to be lower than ourshigher. 

AlsoIn addition, the analysis of Sivapalan et al. (2011) Sivapalan et al. (2011)was limited to 12 watersheds inunder relatively 310 

humid conditions (, with a maximum aridity of 2.29), and thuswhich does not capture the full range of climatic conditions, 

particularly drier environments.  
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Figure 4: 𝒌 values for the watersheds using data from six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after rescaling, 

SPLASH, and BESS. Note that ENF, DBF, and MF represent, respectively, evergreen needle-leaf forest, deciduous broadleaf forest, 315 
and mixed forest in the figure. 

 

Figure 45: Optimization of 𝒌 values using observed and simulated soil wetting as explained in equations 6-8. Figure shows observed 

and simulated soil wetting time series for an example watershed for each of the six vegetation types (crops, grass, shrubs, ENF, DBF, 

MF) using NARR data. 320 
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Figure 54: 𝒌 values for the watersheds using data from six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after rescaling, 

SPLASH, and BESS. Note that ENF, DBF, and MF represent, respectively, evergreen needle-leaf forest, deciduous broadleaf forest, 

and mixed forest in the figure. 

 325 

4.2 𝒇 values 

Figure 6Figure 6 shows the values of the 𝑓 parameter for 648 watersheds classified into six vegetation types. The highest 𝑓 

value is observed in grass, which can be explained by their shallow rooting depths causing higher portions of fast transpiration. 

The lowest 𝑓 values can be observed in forests due to their deeper rooting system, which provides access to deeper soil 

moisture, reducing the portion of fast transpiration. 330 
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Figure 6: 𝒇 values for six vegetation types for 648 watersheds 

 

4.3 Et/E values 

Et/E ratios are shown in Figure 7Figure 7 and Table 4Table 4. Overall, the trend is consistent among the six datasets. Grass 335 

and shrubs have the lowest Et/E values, with mean Et/E in the range of 0.19-0.39. Crops have higher mean Et/E ratios, with 

NARR, Zhang, and GLEAM averaging around 0.4, while MODIS and SPLASH show a higher crop mean Et/E of around 0.51. 

BESS has the lowest crop Et/E with a value of 0.29. All datasets have similar forest Et/E trend, with lowest mean Et/E for DBF 

(0.46-0.60), followed by ENF (0.52-0.71). The highest mean Et/E is exhibited for MF (0.55-0.76).  

 340 

 



17 

 

Figure 7: Et/E values for the watersheds using data from the six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after 

rescaling, SPLASH, and BESS 

Table 44: Mean Et/E values for six vegetation types using Ep data from the six data products. Minimum, maximum, and mean values 

are shown for each vegetation type. 345 

Data 

product 
Crops Grass Shrubs ENF DBF MF Mean 

NARR 0.52 0.37 0.37 0.72 0.59 0.61 0.52 

MODIS 0.65 0.38 0.41 0.77 0.67 0.80 0.59 

Zhang 0.49 0.34 0.34 0.69 0.69 0.90 0.52 

GLEAM 0.48 0.28 0.31 0.67 0.54 0.67 0.48 

SPLASH 0.43 0.30 0.29 0.65 0.55 0.71 0.47 

BESS 0.35 0.25 0.30 0.65 0.56 0.64 0.45 

Minimum 0.35 0.25 0.29 0.65 0.54 0.61 0.45 

Maximum 0.65 0.38 0.41 0.77 0.69 0.90 0.59 

Mean 0.48 0.32 0.33 0.69 0.60 0.70 0.50 

4.4 Sensitivity of Et/E to f values 

We perform a sensitivity analysis to determineinvestigate the effect of the soil depth used in estimating value of f on the Et/E 

values. Since  

𝑓 = 𝑟10 × 𝑆 × 𝑓𝐴𝐼 , and both 𝑆 and 𝑓𝐴𝐼 are constant for the watershed, then differences in 𝑓 will arise withfrom changinges in 

𝑟10. Therefore, we tested the effect of using different depths of rapid response (on the values of Et/E. We tested the depth 350 

values of 5 cm, 10 cm, and 15 cm) andon the resulting Et/E values, which are shown in Figure 8. We choseselected 5- and 10 

cm based onthese depths since the general consensus in the literature and extended the range to 15 cm to account for additional 

uncertainty. we believe these would beThese depths represent plausible values for fast transpiration, and we do not believe 

larger depths would contribute to fast transpiration as previously discussed in Section 2.1, we do not consider larger depths to 

contribute significantly as fast transpiration.  355 

 

The percentage and absolute changes ofin Et/E as a result of changing theresulting from variations in rapid response depth are 

shownsummarized in Table 5 as average change per vegetation type (thewith six data products were averaged for each 

vegetation type). The full tableresults with changes for eachindividual data products isare provided in Appendix A (Tables 

A1-A6). The largest percentage changes arewere observed for the grass type, with Et/E values changingvarying aroundby 360 

about 10-13% if wewhen the depth was increased or decreased the fast response depth by 5 cm from the depth ofthe 10 cm 

reference we used in this paper. The largest absolute differencechange occursred when the fast response depth iswas increased 

from 5 cm to 15 cm for the ENF vegetation type, with a changedifference of 0.108. TOverall, the differences observed due to 
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the changeing inthe fast response depth are minor and remain well within the uncertainty ranges observedreported in the 

literature for evapotranspiration partitioning methods, as noted in the literature as shown in the introduction.  365 
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Figure 8: Sensitivity of Et/E to different depths of fast transpiration responses: (a) 5 cm; (b) 10 cm; and (c) (15 cm). 

Table 5: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth. Results are shown as an 

average of the change in the six data products for each vegetation type. Results from the fast transpiration at 10 cm depth are used 

as the reference for calculating the relative changes shown in the Table.   370 

Type 

% Change in Et/E Absolute change in Et/E 

5 cm to 10 cm 

relative to 5 cm 

10 cm to 15 cm 

relative to 10 cm 

5 cm to 15 cm 

relative to 5 cm 
5 cm to 10 cm 10 cm to 15 cm 5 cm to 15 cm 

Crops 10.04 8.50 19.40 0.045 0.041 0.086 

Grass 13.58 10.09 25.05 0.038 0.032 0.070 

Shrubs 8.93 6.86 16.41 0.027 0.023 0.050 

ENF 9.47 6.98 17.12 0.060 0.048 0.108 

DBF 7.98 6.72 15.24 0.045 0.041 0.085 

MF 5.49 4.52 10.26 0.038 0.033 0.071 

5 Discussion 

5.1 𝒌 and Et/E ratios 

Shrubs and grass showed higher 𝑘 values, likely due to their occurrence in arid and semi-arid regions in the US. The high 𝑘 

values could be explained by the higher bare soil evaporation expected in arid regions (Baver et al., 1972) (Baver et al., 1972), 

especially due to the sparse nature of shrubs, increasing bare areas and thus bare soil evaporation (Liu et al., 2022)(Liu et al., 375 

2022b) (Liu et al., 2022). Also, the high aridity is expected to cause water stress, lowering the continuing transpiration (portion 

of transpiration not included in 𝑘). The lower 𝑘 values in crops and forests may be due to the higher vegetation coverage in 

these areas which provides shade to the soil, reducing the amount of soil evaporation (Baver et al., 1972) (Baver et al., 1972). 

Additionally, litter contributes to reducing soil evaporation, and may even have a larger reduction effect than canopy shade 

(Magliano et al., 2017) (Magliano et al., 2017). The broader leaves of DBF increase their interception compared to ENF, thus 380 

resulting in a higher 𝑘 value as well. 

These estimated mean Et/E ratios followed explainable trends, with shrubs and grass watersheds showing low Et/E ratios, 

forests exhibiting higher Et/E ratios, and crops falling in between. Given greater water availability in crops and forests, it is 

expected that they would exhibit higher Et/E ratios. Many crops in the US benefit from continuous irrigation, reducing water 

stress and promoting transpiration. Forests, with their dense canopy cover offering shade, reduce soil evaporation (Baver et 385 

al., 1972) (Baver et al., 1972)  and consequently boost the Et/E ratios. Crops also show high vegetation coverage, thereby 

providing shade to the soil and increasing Et/E (Baver et al., 1972) (Baver et al., 1972). Moreover, in arid regions dominated 

by shrubs, lower soil water content is anticipated, resulting in diminished root water uptake (Gardner, 1983) (Gardner, 1983).. 
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Furthermore, the shedding of leaves in deciduous forests reduces transpiration when examined over the whole year (as here), 

resulting in a decreased Et/E ratio for DBF.  390 

Differences in study scale may hinder the comparison with other studies, since our method estimates Et/E at the watershed 

scale, while other studies are based at a plot-scale (field/eddy covariance-based methods) or grid scale (models and remote-

sensing methods). Factors affecting watershed scale Et/E include the possible presence of secondary vegetation within the 

watershed and the possible sparseness of the primary vegetation and presence of bare areas which can increase soil evaporation 

and reduce Et/E, especially for shrublands. Therefore, this method has the advantage of providing a realistic watershed Et/E 395 

ratio that accounts for multiple vegetation types and sparseness in vegetation distribution. Consistent results across different 

datasets underscore the reliability of our new method, irrespective of the data product employed (see Fig. 5 and Table 3).  

5.2 Effect of hydrological indices on Et/E 

We explore the sensitivity of Et/E to two hydrological indices, namely the runoff ratio (Q/P) and the baseflow ratio (Qb/Q). 

Figure 9Figure 8a shows a proportional relationship between Et/E and Q/P. The relationship appears to manifest as two distinct 400 

linear correlations, with arid catchments showing a steeper slope than humid catchments. Arid regions typically experience 

minimum runoff as a significant portion of precipitation evaporates in various forms owing to elevated atmospheric demand. 

This phenomenon yields high Et/E ratios at relatively low Q/P values. Conversely, humid catchments often experience 

substantial runoff, attributed to either saturation excess or infiltration excess runoff mechanisms, resulting in elevated Q/P 

ratios compared to arid catchments at equivalent Et/E values. In both cases, a higher Q/P ratio signifies increased water 405 

availability, consequently leading to higher Et/E ratios.  

In Figure 9Figure 8b a non-linear positive relationship is depicted between the mean Et/E and Qb/Q (baseflow ratio). The 

baseflow ratio serves as an indicator of soil water availability, as higher baseflow typically corresponds to increased soil 

moisture content (Hurkmans et al., 2008). (Hurkmans et al., 2008). Consequently, a positive correlation between Et/E and the 

baseflow ratio is anticipated. Notably, the majority of arid catchments cluster in the low Qb/Q and low Et/E region, while 410 

transitioning toward wetter catchments naturally augments both Qb/Q and Et/E.  

1.  
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Figure 98: Relationship between mean Et/E and two hydrological indices (a) Q/P and (b) Qb/Q for 648 watersheds based on NARR 415 
data. Plots are colored according to aridity index. 

 5.3 Effect of LAI on Et/E 

The leaf area index (LAI), representing the leaf area per unit ground area, reflects the combined influences of leaf size and 

canopy density. As shown in Figure 10Figure 9, LAI appears to exert some influence over evapotranspiration partitioning. 

Arid watersheds show lower LAI values, and Et/E ratios increase non-linearly with LAI. However, as watersheds transition 420 

toward higher humidity levels, their LAI and Et/E ratios increase non-linearly, albeit at different rates. In arid regions, plants 

tend to reduce their leaf area to mitigate water loss (Chaves et al., 2003) (Chaves et al., 2003) decreasing both LAI and Et/E – 

a direct consequence of high aridity. This suggests that aridity plays a role in regulating Et/E. Figure 10Figure 9 illustrates a 

complex relationship between LAI and Et/E, characterized by substantial scatter. Our findings align with previous studies 

indicating diverse dependence of Et/E on LAI. For instance, LAI has been shown to provide a control on E partitioning (Li et 425 

al., 2019; Wang et al., 2014; Wei et al., 2017), (Li et al., 2019; Wang et al., 2014; Wei et al., 2017), but that effect varies from 

one study to another. (Wang et al., . (2014) (Wang et al., 2014) showed that LAI has a non-linear relationship with Et/E during 

the growing season, whereas (Li et al., . (2019)( Li et al., 2019) Li et al. (2019) showed a weak linear relationship between 

mean growing season LAI and mean annual Et/E across sites, with the Et/E and LAI relationship within the same site being 

non-linear. Additionally, (Cao et al., . (2022) Cao et al. (2022)  showed a non-linear positive relationship between annual Et/E 430 

and LAI.  
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Figure 109: Relationship between Et/E and LAI for 648 watersheds using Et/E calculated based on the NARR dataset. 

5.4 Impacts of environmental variables on Et/E ratios 

We explore the effect of six environmental factors on the mean Et/E ratios. They are aridity index (AI), relative humidity (RH), 435 

air temperature (Tair), downward shortwave radiation (DSW), soil moisture, and wind speed (WS). These factors were derived 

from the NARR dataset, and the Et/E ratios were calculated based on the same dataset. Since some of these environmental 

variables are highly correlated (as shown in Figure 11Figure 10), we first perform variable selection using stepwise regression 

and Lasso regression to identify those that are strongly correlated with each other. Stepwise regression aims to select a subset 

of variables that provide the best prediction with minimum redundancy, while Lasso regression adds a penalty term to reduce 440 

the coefficients of insignificant variables. Both methods resulted in the elimination of downward shortwave radiation, while 

stepwise selection additionally eliminated relative humidity and air temperature. Table 6Table 5 shows the coefficients of the 

environmental variables and their significance for both stepwise and Lasso regression. Although the significance test shows 

that air temperature and relative humidity hashave an insignificant impact on the Lasso regression, while the aridity index, soil 

moisture, and wind speed are significant (Table 5), they are still included because they marginally contributes to the model's 445 

predictive power. Additionally, they represent independent and observable dimensions, distinct from the other three significant 

environmental variables.  

A negative non-linear correlation between Et/E and AI is present. Increased aridity prompts plants to adopt water conserving 

strategies (Chaves et al., 2003) (Chaves et al., 2003), thereby reducing the transpiration ratios. In humid regions, the 

relationship between Et/E and AI is more discernible, with AI accounting for a significant portion of the variance of Et/E. 450 

Conversely, for arid regions, particularly those dominated by shrubs, the relationship shows greater scatter, suggesting that AI 

exerts a relatively smaller effect on Et/E, while other factors play a more prominent role. Furthermore, higher air temperature 

contributes to lowering Et/E (see  Figure 12bFig. 9b), as it prompts water-conserving behaviors in plants and elevates soil 
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evaporation, consequently reducing Et/E ratios. Conversely, increasing soil moisture leads to enhanced water availability for 

plant root uptake, resulting in a near linear increase in Et/E, as shown in Figure 12Figure 11c.  The relationship between wind 455 

speed (WS) and Et/E is inconclusive; this finding is consistent with several previous studies (Dixon and Grace, 1984; Huang 

et al., 2015; Schymanski and Or, 2016) (Dixon and Grace, 1984; Huang et al., 2015; Schymanski and Or, 2016) which have 

presented a mixed effect of wind speed on transpiration. Nevertheless, the effects of other environmental variables on Et/E 

demonstrate explainable patterns as discussed here. The other five data products (MODIS, Zhang, GLEAM, SPLASH, and 

BESS) show similar impacts of all the environmental variables on Et/E as those shown in Figure 12Figure 11 for NARR.  460 

 

Figure 1110: Correlation between environmental variables. AI: aridity index, RH: relative humidity, Ta: air temperature, DSW: 

downward shortwave radiation, SM: soil moisture, WS: wind speed. 

Table 65: Coefficients of standardized environmental variables regressed against Et/E using stepwise selection and Lasso regression. 

Significance levels are shown next to the coefficients (***: p<0.001, **: p<0.01, *: p<0.05, blank: p>0.1  465 

  
Coefficient  

(Stepwise selection) 

Coefficient  

(Lasso regression) 

AI -0.105*** -0.026*** 

RH    0.001 

Tair  -0.004 

DSW     

SM 0.066*** 0.0005*** 
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WS 0.023** 0.037* 

 

 

 

 

Figure 1211: Relationships between mean annual Et/E and environmental factors (a) aridity index (Ep/P), (b) air temperature (Tair), 

(c) soil moisture (SM), and (d) wind speed (WS) for 648 watersheds. Et/E is calculated based on NARR data, and the environmental 

variables are also retrieved from the NARR product. Significance of the pairwise relationships between Et/E and the environmental 470 
variables are shown on each plot. 

5.5 Et/P ratios 

We computed transpiration to precipitation (Et/P) ratios based on Et/E values calculated from the six adjusted Ep data products. 

The mean Et/P ratios from these six datasets range from 0.24 to 0.36, aligning closely with the global mean Et/P of 0.39 

estimated by (Schlesinger and Jasechko,  (2014).(Schlesinger and Jasechko, 2014) (Schlesinger and Jasechko, 2014) 475 

We also compared our estimated Et/P ratios to the Et/P versus aridity index relationship identified by (Good et al., . (2017). 

Good et al. (2017) (Good et al., 2017). (Good et al., 2017) presented this relationship based on a compilation of field studies, 
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three remote-sensing based models, and an ecohydrological model, revealing good consistency among the various Et/P data 

sources. Figure 13Figure 12 shows a similar trend to that presented in Fig. 1 of (Good et al., 2017) Good et al. (2017), with 

the maximum Et/P ratio close to the intersection between water and energy-limited states. This maximum Et/P corresponds to 480 

an aridity index ranging between 2 and 3 in our study, similar to the estimated aridity index range of 1.3 to 1.9 for the maximum 

Et/P as reported by Good et al. (2017)(Good et al., 2017). . Moreover, the maximum Et/P shown in Figure 13Figure 12 ranges 

between 0.5 and 0.58, consistent with the maximum Et/P of 0.6 based on field data in Good et al. (2017) (Good et al., 2017).. 

Notably, there is greater variation on the right side of the curve (indicating more arid conditions) compared to the left side 

(representing wetter conditions). In arid regions, transpiration is influenced not only by aridity, but also by factors such as 485 

groundwater table depth and soil moisture content, resulting in higher variability in the Et/P versus aridity index (AI) 

relationship. The consistency between Good et al. (2017) Good et al. (2017) and this study suggests that this relationship holds 

not only at the field and remote sensing scales (as shown by Good et al., 2017Good et al., 2017), but also at the watershed 

scale, as demonstrated in this study. This relationship holds significance for studies like that of (Cai et al., . (2023);  and Zhou 

et al., . (2025)  (Cai et al., 2023; Zhou et al., 2025) where Et/P serves as a parameter (referred to as f0 in their study) to determine 490 

water-limited fAPAR and LAI. (Cai et al., . (2023) estimated Et/P as a global mean using non-linear regression, with a value 

of 0.62, akin to the maximum Et/P of 0.5 to 0.58 estimated by our fitted curves depicted in Figure 13Figure 12. (Zhou et al., . 

(2025)Zhou et al. (2025)  used a variable Et/P as a function of AI, akin to our fitted curves. Their maximum Et/P of 0.65 

occurred at an AI of 1.9, similar to our fitted curves.  

 495 
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Figure 1312: Et/P versus the aridity index for six datasets: (a) NARR, (b) MODIS, (c) Zhang et al. (2010), (d) GLEAM after rescaling, 

(e) SPLASH, (f) BESS 
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6 Variation of evapotranspiration partitioning methods 500 

Figure 7Figure 7 demonstrates the influence of the six adjusted Ep data products on the Et/E ratios by our new method for each 

vegetation type, while Table 4Table 4 provides their variation range between the minimum and maximum mean Et/E ratios. 

On the other hand, as outlined in the introduction, estimated global mean values of Et/E from various existing methods exhibit 

a considerable variation, ranging from 0.24 to 0.9 (Liu et al., 2022; Wei et al., 2017) (Liu et al., 2022; Wei et al., 2017). This 

variation may be attributed to several factors, including data inconsistencies, geographical disparities, and differences in 505 

selected time periods, apart from differences in methodology. In an effort to explore what may be the cause for the large 

variation among the different methods, we have tried to mitigate these factors by using the same half-hourly eddy covariance 

data from the FLUXNET and AMERIFLUX ONEFLUX towers measurements in the US for the same locations and same time 

periods. Such an approach would allow us to elucidate the disparities among the existing E partitioning methods, consequently, 

providing insights on influences by different Ep datasets in our method versus current existing different methods on the large 510 

range of Et/E ratios.   

The four methods we selected to investigate are: (1) (Zhou et al., . (2016)  Zhou et al. (2016), (2) (Scott and Biederman,  

(2017)Scott and Biederman (2017),, (3) (Li et al., . (2019) Li et al. (2019), and (4) (Yu et al. , (2022) Yu et al. (2022). These 

four methods are selected because they are based on eddy covariance measurements whose data are widely available, unlike 

sap flow and isotope measurements. Since these methods are based on flux measurements, they can be considered as field-515 

based estimations of Et/E. We apply these four methods to the same datasets from the FLUXNET and AMERIFLUX 

ONEFLUX towers in the US, but the final number of flux towers included for each method depends on the filtering criteria in 

each method and the limitations in applying each method.  

The first method by Zhou et al. (2016) Zhou et al. (2016) is based on the water use efficiency. The ratio Et/E is estimated as 

the ratio between the apparent water use efficiency (𝑊𝑈𝐸𝑎 = 𝐺𝑃𝑃 ×
𝑉𝑃𝐷0.5

𝐸𝑇
) and the potential water use efficiency (𝑊𝑈𝐸𝑝 =520 

𝐺𝑃𝑃 ×
𝑉𝑃𝐷0.5

𝑇
). Assuming that Et/E approaches 1 at some time during the growing season, the WUEp is estimated from the 95th 

quantile regression of the half-hourly scatter plot (based on all half-hourly data for the site) between GPP×VPD0.5 and E and 

is assumed to be constant for the flux tower. WUEa is then estimated for each time step as the linear regression of the E and 

GPP×VPD0.5 relationship using half-hourly data for the desired time period, which can be 8-day, monthly or annually.  

The second method by Scott and Biederman (2017)  Scott and Biederman (2017) is based on water use efficiency to estimate 525 

multiyear monthly average Et/E ratios. This approach estimates transpiration as the product of the inverse of the marginal water 

use efficiency, the ratio between transpiration WUE and marginal WUE, and GPP. The inverse of the marginal WUE is 

estimated from the linear regression of the GPP versus E scatter plot. The ratio between transpirational and marginal WUEs is 

assumed to be 1. This method requires multiple years of data for its application.  

The third method by Li et al. (2019)  Li et al. (2019) is based on the stomatal conductance model of (Lin et al., . (2018) Lin et 530 

al. (2018) to partition evapotranspiration. The Et/E ratio is equivalent to the ratio between canopy conductance and ecosystem 
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conductance. The eddy covariance data are divided into soil moisture bins to calibrate the parameters. Therefore, the method 

requires soil moisture data, along with GPP, VPD, E, and three calibrated parameters to estimate the Et/E ratio.  

The fourth method by Yu et al. (2022)  Yu et al. (2022) combines the water use efficiency with the (Medlyn et al., . (2011) 

Medlyn et al. (2011) stomatal conductance model. This method relies on GPP, E, Ca, Pa, and VPD from the flux tower data in 535 

addition to the parameter g1 from the  Medlyn et al. (2011) Medlyn et al. (2011) model. The authors compared their method to 

other methods and showed a high correlation with the Zhou et al. (2016) Zhou et al. (2016) but a low correlation with the Li 

et al. (2019)  Li et al. (2019) method. 

Additionally, we compare our results to Et/E values for 20 global flux towers from (Tan et al., . (2021) Tan et al. (2021).. Et/E 

was calculated based on flux tower data and P-model (Stocker et al., 2020; Wang et al., 2017) (Stocker et al., 2020; Wang et 540 

al., 2017) outputs.  

The estimated Et/E ratios from the five methods are shown in Figure 14Figure 13a – e and Table 4Table 4, respectively, for 

the same six different vegetation types as shown in Figure 7Figure 7 with our new method.  

 

Figure 1413: Et/E values based on the eddy covariance tower data with 5 methods:  (a) Zhou et al. (2016) Zhou et al. (2016) (n=80), 545 
(b) Scott and Biederman (2017) Scott and Biederman (2017) (n=53), (c) Li et al. (2019) Li et al. (2019) (n=46), (d) Yu et al. (2022) Yu 

et al. (2022) (n=60) (e) Tan et al. (2021) Tan et al. (2021) (n=15). 

Table 76: Mean Et/E values for six vegetation types using four evapotranspiration partitioning methods. Minimum, maximum, and 

mean values are shown for each vegetation type. 

Evapotranspiration 

partitioning 

method 

Crops Grass Shrubs ENF DBF MF Mean 
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Zhou et al. (2016) 0.54 0.48 0.46 0.46 0.52 0.42 0.48 

Scott and 

Biederman (2017) 
0.56 0.59 0.65 0.66 0.65 0.77 0.62 

Li et al. (2019) 0.70 0.63 0.59 0.69 0.70 0.61 0.66 

Yu et al. (2022) 0.34 0.37 0.38 0.43 0.46 0.44 0.39 

Tan et al. (2021) 0.48 - 0.44 0.56 0.6 0.61 0.54 

Minimum 0.34 0.37 0.38 0.43 0.46 0.42 0.39 

Maximum 0.70 0.63 0.65 0.69 0.70 0.77 0.66 

Mean 0.52 0.52 0.50 0.56 0.59 0.57 0.54 

 550 

The inconsistencies among the five methods are evident, with Zhou, Yu, Li, and Tan showing minimal variation among 

vegetation types, while Scott displays substantial variation. Moreover, the magnitudes and trends of Et/E across these methods 

are also inconsistent. These discrepancies indicate a lack of agreement on both the mean Et/E values and the variation ranges 

among the different methods. Consequently, these methods are not suitable as reference points for evaluating our new method. 

Instead, the assessment of our new method should be based on its physical behavior and relationships with other variables, as 555 

discussed in Section 5. It is noteworthy that compared to Figure 7Figure 7, the variation range of Et/E ratios from the five 

different methods, utilizing the same data at the same locations, is significantly greater than that for our new method in which 

disparity is attributed to the variations associated with the Ep methods employed. Additionally, since our method is at a larger 

(watershed) scale, we observe larger variations between vegetation types, which can be attributed to different vegetation 

densities and bare land percentages at larger scales which is not a factor at smaller (flux tower) scales. 560 

7 Conclusions 

We have presented a new method for determining the transpiration to total evapotranspiration (Et/E) ratio using long-term 

hydrological observations. This method is based on the generalized proportionality hypothesis, which has wide applications in 

hydrology. We applied the method to 648 watersheds in the US using six different Ep data products. Our findings demonstrate 

consistent Et/E results across these diverse Ep datasets, facilitated by a rescaling of Ep derived from the E/Ep ratios obtained 565 

from each individual data product and watershed-budget estimated E computed from the watershed water balances. 

Our analysis reveals that varying Et/E ratios across watersheds are associated with different vegetation types, with shrubs and 

grasslands exhibiting lower Et/E values compared to crops and forests. Furthermore, our results underscore the significant 

influence of leaf area index (LAI), hydrological indices (Q/P and Qb/Q), and prevailing environmental conditions on Et/E. Our 

method also provides a realistic estimate of Et/E at a watershed scale that implicitly accounts for the heterogeneity of vegetation 570 

within the catchment. Our method can also be useful for constraining hydrological models, land surface models, and climate 

models. 
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We also explore the relationship between Et/P and aridity index, unveiling a bell-shaped curve at the watershed scale, where 

the maximum Et/P ratio occurs at an aridity index between 2 and 3, corresponding to an Et/P ratio of around 0.5 to 0.58. These 

findings provide valuable insights into the intricate interplay between hydrological processes and environmental variables, 575 

shedding light on the complex dynamics of evapotranspiration in diverse watershed ecosystems. 

Appendix A 

Table A1: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the NARR dataset 

Type 

% Change in Et/E Absolute change in Et/E 

5 cm to 

10 cm 

relative 

to 5 cm 

10 cm to 

15 cm 

relative 

to 10 cm 

5 cm to 

15 cm 

relative 

to 5 cm 

5 cm to 

10 cm 

10 cm to 

15 cm 

5 cm to 

15 cm 

Crops 10.65 9.12 20.75 0.05 0.05 0.10 

Grass 13.11 9.87 24.27 0.04 0.04 0.08 

Shrubs 9.20 6.83 16.65 0.03 0.03 0.06 

ENF 8.85 6.68 16.11 0.06 0.05 0.11 

DBF 7.84 6.71 15.08 0.04 0.04 0.08 

MF 4.91 4.33 9.45 0.03 0.03 0.05 

 

Table A2: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the MODIS dataset 580 

Type 

% Change in Et/E Absolute change in Et/E 

5 cm to 

10 cm 

relative 

to 5 cm 

10 cm to 

15 cm 

relative 

to 10 cm 

5 cm to 

15 cm 

relative 

to 5 cm 

5 cm to 

10 cm 

10 cm to 

15 cm 

5 cm to 

15 cm 

Crops 10.56 8.11 19.52 0.06 0.05 0.11 

Grass 12.95 8.51 22.56 0.04 0.03 0.08 

Shrubs 8.03 5.97 14.48 0.03 0.02 0.06 

ENF 9.47 6.03 16.08 0.07 0.05 0.11 

DBF 8.76 7.51 16.93 0.05 0.05 0.10 

MF 5.73 5.07 11.09 0.04 0.04 0.08 
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Table A3: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the GLEAM dataset 

Type 

% Change in Et/E Absolute change in Et/E 

5 cm to 

10 cm 

relative 

to 5 cm 

10 cm to 

15 cm 

relative 

to 10 cm 

5 cm to 

15 cm 

relative 

to 5 cm 

5 cm to 

10 cm 

10 cm to 

15 cm 

5 cm to 

15 cm 

Crops 10.31 9.11 20.36 0.04 0.04 0.09 

Grass 13.42 10.58 25.43 0.03 0.03 0.06 

Shrubs 9.00 7.05 16.68 0.03 0.02 0.05 

ENF 9.13 7.01 16.77 0.06 0.05 0.10 

DBF 7.52 6.40 14.40 0.04 0.03 0.07 

MF 4.99 4.40 9.62 0.03 0.03 0.06 

 

Table A4: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the Zhang dataset 

Type 

% Change in Et/E Absolute change in Et/E 

5 cm to 

10 cm 

relative 

to 5 cm 

10 cm to 

15 cm 

relative 

to 10 cm 

5 cm to 

15 cm 

relative 

to 5 cm 

5 cm to 

10 cm 

10 cm to 

15 cm 

5 cm to 

15 cm 

Crops 10.20 8.48 19.54 0.05 0.04 0.09 

Grass 13.73 10.39 25.54 0.04 0.04 0.08 

Shrubs 8.29 6.35 15.16 0.03 0.02 0.05 

ENF 10.50 7.70 19.01 0.07 0.05 0.12 

DBF 8.80 6.98 16.40 0.06 0.05 0.10 

MF 7.13 4.33 11.77 0.06 0.04 0.10 

 585 

Table A5: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the SPLASH dataset 

Type 

% Change in Et/E Absolute change in Et/E 

5 cm to 

10 cm 

relative 

to 5 cm 

10 cm to 

15 cm 

relative 

to 10 cm 

5 cm to 

15 cm 

relative 

to 5 cm 

5 cm to 

10 cm 

10 cm to 

15 cm 

5 cm to 

15 cm 
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Crops 9.78 8.60 19.22 0.04 0.04 0.07 

Grass 14.23 10.40 26.11 0.04 0.03 0.07 

Shrubs 9.56 7.53 17.82 0.03 0.02 0.05 

ENF 9.99 7.57 18.32 0.06 0.05 0.11 

DBF 7.56 6.39 14.43 0.04 0.04 0.07 

MF 5.29 4.68 10.23 0.04 0.03 0.07 

 

Table A6: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the BESS dataset 

Type 

% Change in Et/E Absolute change in Et/E 

5 cm to 

10 cm 

relative 

to 5 cm 

10 cm to 

15 cm 

relative 

to 10 cm 

5 cm to 

15 cm 

relative 

to 5 cm 

5 cm to 

10 cm 

10 cm to 

15 cm 

5 cm to 

15 cm 

Crops 8.76 7.61 17.04 0.03 0.03 0.05 

Grass 14.06 10.80 26.38 0.03 0.03 0.06 

Shrubs 9.50 7.46 17.68 0.03 0.02 0.05 

ENF 8.90 6.89 16.41 0.05 0.05 0.10 

DBF 7.40 6.33 14.19 0.04 0.04 0.07 

MF 4.87 4.29 9.37 0.03 0.03 0.06 
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