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Abstract. Evapotranspiration comprises transpiration, soil evaporation, and interception. The partitioning of
evapotranspiration is challenging due to the lack of direct measurements and uncertainty of existing evapotranspiration
partitioning methods. We propose a novel method to estimate long-term mean transpiration to evapotranspiration (E/E) ratios
based on the generalized proportionality hypothesis using long-term mean hydrological observations at the watershed scale.
We tested the method using 648 watersheds in the United States classified into six vegetation types. We mitigated impacts of
the variability associated with different E, data products by rescaling their original E, values using the product E/E,, ratios in
combination with the observed E calculated from watershed water balance. With E, thus rescaled, our method produced
consistent E/E across six widely used E;, products. Shrubs (0.38) and grasslands (0.33) showed lower mean E/E than croplands
(0.46) and forests (respectively 0.73, 0.55, and 0.68 for evergreen needleleaf, deciduous broadleaf, and mixed forests). E/E
showed significant dependence on aridity, leaf area index, and other hydrological and environmental conditions. Using E/E
estimates, we calculated transpiration to precipitation ratios (E¢/P) ratios and revealed a bell-shaped curve at the watershed
scale, which conformed to the bell-shaped relationship with the aridity index (AI) observed at the field and remote-sensing
scales- (Good et al., 2017)(Geed-etal520+7). This relationship peaked at an E/P between 0.5 and 0.6, corresponding to an Al
between 2 and 3 depending on the E, dataset used. These results strengthen our understanding of the interactions between

plants and water and provide a new perspective on a long-standing challenge for hydrology and ecosystem science.

1 Introduction

Partitioning evapotranspiration is important for understanding water and energy balances of terrestrial ecosystems.

Evapotranspiration has been predicted to increase at the expense of soil moisture due to climate change (Li et al., 2022; Niu et

al., 2019)(Liet-al2022: Niu-et-al;2049) with potential implications for future projections of water, energy, and carbon

balances. Large uncertainty remains in the partitioning of evapotranspiration into its components: transpiration, interception,

and bare soil evaporation. Various methods have been developed to partition evapotranspiration based on measurements (Kool
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et al., 2014; Stoy et al., 2019)-(Keel-etal;2014:Stoyet-al2049). These include (1) flux-variance similarity methods using

high frequency (10-20 Hz) flux tower measurements, which estimate E/E based on carbon-water correlation since
transpiration and plant carbon uptake are concurrent (Scanlon and Kustas, 2010, 2012; Scanlon and Sahu, 2008; Skaggs et al.,
2018)(Seanton-andKustas; 2042 2010: Seanlonand -Sahu, 2008 Skageset-al - 2018); (2) eddy-covariance methods, which
estimate E/E using assumptions related to water use efficiency based on widely available half-hourly/hourly eddy covariance

measurements_(Berkelhammer et al., 2016; Li et al., 2019; Scott and Biederman, 2017; Yu et al., 2022; Zhou et al., 2016)

; and (3) isotopic
methods_(Griffis, 2013; Williams et al., 2004; Zhang et al., 2011)

Measurements of sap flow through plant stems have also been commonly used to more directly estimate transpiration. Sap
flow measurements are classified into three groups (Kool et al., 2014)-(Keolet-al.2014): heat balance methods (Cermak et
al., 1973; Sakuratani, 1981, 1987)(Cermék et-al1973: Sakuratani- 19871981}, heat pulse methods (Cohen et al., 1981;
Green et al., 2003; Swanson and Whitfield, 1981)-(Cohen-et-al;1981-Green-et-al; 2003 Swansen-and-Whitfield; 1981, and

constant heater methods_(Cermék et al., 2004; Granier, 1985)—6@%&%34%9@4;—@%&&%1’,—1—985}._6P0yat05 et al-. (2021)
Poyates—et-al(2021 compiled 202 sap flow datasets to form the global SAPFLUXNET dataset. Recent studies have used

remotely sensed solar-induced fluorescence (SIF) measurements (Alemohammad et al., 2017; Damm et al., 2018; Liu et al.,

2022; Lu et al., 2018; Pagén et al., 2019; Shan et al., 2019)

as-a-way-teto estimate global transpiration, relying on the close coupling

between transpiration and photosynthesis.

The ratio of transpiration to evapotranspiration (E/E) is a particularly important quantity because the controls on T (which is
tightly regulated by plants through stomatal behavieurbehavior) are substantially different from the controls on the other two
components. The evapotranspiration partitioning methods summarized above have multiple limitations and produce an
alarmingly wide range of values for the global mean E/E. {Wei et al-. (2017)-Wetet-al+2047) showed mean global E/E
varying from 0.24 to 0.90 based on a variety of remote-sensing, isotopic, and modelling studies. Another compilation by ¢Liu
et al—. (2022) Liv—etal—+2022)-showed the mean varying between 0.24 and 0.86._¢Schlesinger and Jasechko— (2014)
Sehlesingerand-Jaseehko(2044) showed that E/E ratios derived from isotopic methods tend to be systematically higher than
those produced by other methods. It has also been shown that two different evapotranspiration partitioning methods could
produce greatly different E/E values at the same site (Cavanaugh et al., 2011; Moran et al., 2009)-(Cavanaugh-et-al 2041
Meran-et-al;2009).—- Some E/E estimates at the stand scale ignore transpiration from subcanopy vegetation, resulting in
underestimation (Schlesinger and Jasechko, 2014)(Sehlesinger-andJaseehke; 2044y, There is no consensus on which method
is more accurate-{Stey-et-al; 2019} (Stoy et al., 2019); this presents a challenge for applying the E/E estimates using any of
the above methods, especially when they are developed based on data at site scale but are applied at larger (regional to global)
spatial scales.

Few studies have considered partitioning evapotranspiration based on hydrological concepts using widely available long-term

hydrological observations, which could in principle provide reliable methods to estimate E/E. ¢Gerrits et al—. (2009)-Gerrits
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etal+2009) estimated monthly and (upscaled) annual transpiration based on precipitation, interception, soil moisture, and the
aridity index. They estimated E/E by modeling interception (which includes topsoil evaporation) as a daily threshold process
(threshold is the interception storage capacity) and used rainfall distributions to upscale it to the monthly and then annual
interception. Transpiration was modeled as a monthly threshold process based on net rainfall (precipitation minus interception),
with the threshold being the soil moisture storage estimated based on a hydrological model, and upscaled it to annual
transpiration via a rainfall distribution. E/E is then calculated by assuming evapotranspiration is interception plus transpiration,
since topsoil evaporation is included in interception, and deeper soil and open water evaporations are neglected. {Mianabadi
et al-. (2019)-Mianabadi-etal2019) extended their approach and applied it globally. In this study, we propose a new method
to partition evapotranspiration based on the Generalized Proportionality Hypothesis (GPH) using long-term hydrological
observations. The GPH was initially used by the United States Soil Conservation Service (SCS) for runoff calculation (USDA
SCS, 1985)(USBA-SES;1985) --and was afterwards generalized by (Ponce and Shetty;- (1995a, b)-Penece-and-Shetty(1995a;
1995b3. Wang and Tang;- (2014)-Wangand-Fane (2044 provided a comprehensive discussion of the use of GPH and noted
its connection to various models, including the “abcd” model, the SCS direct runoff model, and the Budyko-type models. The
GPH partitions water fluxes into their components and has been implemented as a two-stage partitioning. The first stage
partitions precipitation into soil wetting and surface runoff; the second stage partitions soil wetting into baseflow and
evaporation (Ponce and Shetty, 1995a, b; Tang and Wang, 2017)Pence-and-Shetty;1995a,1995b: Tang-and-Wane 2047,
We follow an approach based on the GPH partitioning of soil wetting to estimate catchment E/E based on hydrological
observations. Due to the wider availability of hydrological observations compared to the observations required for the
techniques previously mentioned, this method has a wide potential for application in gauged watersheds across the globe.

The objectives of our study are: 1) to develop a new method to estimate E/E at the catchment scale based on long-term
hydrological observations, 2) to test the method and evaluate its robustness to different data products using watersheds with
different vegetation types, 3) to find E/P (transpiration/precipitation) ratios based on E/E and to compare this to previous
studies, and 4) to understand the effect of hydrological and environmental conditions on both E/E and E¢/P. The paper is

organized as follows. Section 2 describes the newly developed method-—Seetion3 and -deseribesthe datasets used. Section 3

investigates the differences in E, data products, and the use of a rescaled E, for E/E estimation. Section 4 presents_the results
from the new method-and-compares-them-with-E/E-estimatesfrom-otherstudies. Section 5 discusses the results and investigates
their dependence on hydrological and environmental factors. Section 6 provides an insight into the variation of some existing

partitioning methods. Section 7 summarizes our conclusions.

2 Methods and Data
2.1 Theory

We present a new method to estimate long-term mean E¢/E ratios at a watershed scale by taking advantage of long-term

available hydrological observations. The new method is based on the Generalized Proportionality Hypothesis (GPH), shown
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in equation (1¢}). the GPH equation has been previously established in the literature based on the observed relationships found
by (L'vovich; (1979) and the later mathematical derivation (and generalization) by-(Penee-and-Shetty;1995a-b)Ponee-and
Shetty1995a;-b) (Ponce and Shetty; (1995a, b).- The proportionality hypothesis of the SCS method was obtained based on
observed data from a larger number of watersheds (USDA SCS, 1985), which was then generalized by {Ponce and Shetty;
(1995a)Ponee-and-Shetty(1+995). GPH partitions an unbounded water quantity Z into an unbounded water quantity Y and a
water quantity X that is bound by its potential value X,,. The value X, is the initial quantity of X that is fulfilled prior to the
competition between X and Y; for example, interception is a portion of E that is initially lost and not accessible for baseflow:
X—X, Y
Xp—Xo Z-Xo
Ponce and Shetty (1995a, b) (Pence-and-Shetty,1995ab)}Ponce-and-Shetty,1995a—b)-applied the GPH for hydrological

partitioning. They partitioned annual precipitation over two stages: the first stage partitions precipitation into catchment

0

wetting and surface runoff; and the second stage partitions wetting (W) into evapotranspiration (E) and baseflow (Qb) as shown
in Figure 1. Both stages of partitioning follow the generalized formula in equation (1){H. The two-stage partitioning is well

established, has been proved with thermodynamic principles (Wang et al., 2015)(Wangetal; 2045y Wansetal2015), and
has been extensively used in the literature in studies-sueh-as (Abeshu and Li, 2021; Chen and Wang, 2015; Sivapalan et al.,

2011; Tang and Wang, 2017; Wang and Tang, 2014)-Sivapalan—etab—(201HSivapalan—et-ab (2011 Wangand Tang

01N Wano and Tape (2014 hen-and Wane (20 hen-and Wano (20 aneand-Wane (20 Abeshy and 0

Figure 1: Two stage partitioning of annual precipitation. E: evapotranspiration; Es: soil evaporation; Ei: interception evaporation;
E¢: transpiration; P: precipitation; W: soil wetting; Qb: baseflow; Qd: direct runoff; Q: total runoff.

In this work, we use the second stage partitioning to partition wetting into evapotranspiration and baseflow as shown in

equation (2¢2):
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E—E, Qb
E,—E, W-E @
D 0 0

where E is the initial evapotranspiration that does not compete with baseflow and E), is the potential evapotranspiration. W

can be estimated _from watershed balance as P — Q4, where P is precipitation and @ is direct runoff. E can be estimated from

watershed balance as P — Q, where Q is the total runoff (since the long-term mean soil moisture change can be ignored). Initial

evapotranspiration (E,) has been represented in different ways in the literature. {Ponce and Shetty; (1995a, b:-) and Sivapalan
et al.; (2011) i i
used AE,, to represent E,, where 4 is a coefficient (Tang and Wang (--2017) ;-and Wang and Tang; (2014)(Tang-and-Wang;

2017 WangandFane 2044 used AW, and (Abeshu and Li; (2021) (Abeshuand Li-202wused AE. In this study, we choose
AE as E; due to the interpretability of the A parameter. We alternately use k instead of A to avoid confusion with the latent heat

of vaporization, leading to equation (3(3):

E—KE  Q 3)
E, —kE W —KkE

In Abeshu and Li (2021)Abeshu—-andEi(2021), E, included interception, evaporation from surface depression, topsoil
evaporation, and shallow transpiration. In {Gerrits et al. --(2009)-Gerritset-al(2009), they assumed that interception includes

canopy and understory interception, in addition to topsoil evaporation, while deep soil evaporation is insignificant or can be
combined with interception. In_¢Savenije; (2004)-Savenije{(2004), they considered topsoil evaporation to be a part of
interception, and distinguished transpiration between fast and slow ones, where fast transpiration relies on moisture in the top
50 cm of soil, and slow transpiration relies on deeper soil moisture. Therefore, we assume that E, includes bare soil
evaporation, interception, and a portion (f) of the transpiration (E;) representing the fast transpiration from the top 10 cm of
soil (Abeshu and Li, 2021; Savenije, 2004).(Abeshu-and Li;2021-Savenife; 2004)- Since root uptake not only occurs near the
surface but also progresses downwards (Gardner, 1983)(Gardner,1983), we assume that transpiration extracted from the
topsoil occurs in a rapid manner that makes it inaccessible to the competition between baseflow and E, and therefore belongs

to E,. Therefore, E,_includes all evaporative fluxes except slow transpiration, meaning that slow transpiration is the only

evaporative flux that competes with baseflow. Slow transpiration can therefore be expressed as Ey 4, = E — E,. For

transpiration, we define fast transpiration as E; rqs = f E;, and thus slow transpiration as Ey g, = (1 — f) E;. Equating

these two E; g, _equations yields E — Ey = (1 — f)E,. Substituting E, with kE yields (1 — k)E = (1 — f)E;. and thus we

cun gel:Fheremmimneporion-of-E

f—Fhatds;
E. 1-k “4)
E 1-f
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Equation (54) indicates that E./E can be found using k and f values. The k parameter can be found by applying an

optimization technique that maximizes the non-parametric Kling-Gupta efficiency (KGE, equation 65, {Gupta et al., 2009;

Pool et al., 2018}) (Gupta-et-al2009:Poeletal;2018)-between observed soil wetting (from watershed balance, equation 6)
and simulated soil wetting (rearranging equation (3)3) to be in terms of soil wetting, equation 7).

KGE=1-/(r—-1)2+ (a—1)2+ (B —1)2 (65)

where 7 is Pearson correlation coefficient,  is relative variability in the simulated and observed values, and f is the ratio

between the mean simulated and mean observed flows.

From the water balance equation at the watershed scale, we haveobtain observed wetting as:

Wobs = P~ Qq 79
And by rearranging equation (3) to obtain simulated wetting:
E, — kE @D
Wim = Qp T_KE + kE

Since f represents the fast response of transpiration, we follow a similar approach to_tAbolafia-Rosenzweig et al.; -(2020)
Abelafia-Resenzweiget-al{2020) in defining the ratio of surface transpiration using root distribution in-and soil water stress.
We additionally distinguish between energy- and water-limited regions by constraining energy-limited fusing the aridity index
as displayed in equation (48):

f =10 XSX far (8)

Where 1y, is the root percentage in the top 10 cm of the soil, S is the soil moisture availability, and f,; represents impact of
available energy. If the aridity index (AI) is less than 1, the region is energy limited. Thus, fy;.= AL If Al = 1, then f,; = 1.
The rationale behind this is that when Al < 1, only a fraction of the transpiration from the top surface layer is quantified to be
part of the fast components due to its energy limited nature.

The literature wvariesshows variation in how defining—the-depth of where-fast transpiration eeeursis defined. For example,
Abolafia-Rosenzweig et al. (2020) Abelatia-Resenzweig—etal(2020jused the top 5 cm to estimate transpiration from the
surface soil layer(Wanget-al;202H. Wang et al. (202 1 YWangetal2021) statedindicated that evapotranspiration occurs most
rapidly eeenrsfrom the top 10 cm of soil, whereaswith deeper layer haveresponding more slewerrespensesslowly. -Similarly
{Zhang et alo—. (2022)—Zhang—etal—2022) showedreported that rapid soil moisture responses to rainfall eeeurredwere
concentrated in the top 5-10 cm, and-therefore-we-would-expectsuggesting that fast transpiration is likely driven by te-eceur
from-the-increased soil moisture within this layer. AdtheughBy contrast, f{Abeshu and Lis- (2021) Abeshu-and Li(262Hused
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50 cm as the depth of the rapid response;. we-believeWe consider that-50 cm em-isto be an everestimationoverestimation, as

sinee-for some vegetation types (e.g., grasses) thatthis depth weuldineludemay encompass nearly the entire rooting depth;zone
like—erasses—for-instance. ThereforeBased on this evidence, we ehooseadopted 10 cm as the representative depth for the-fast
transpiration. We-additionallyln addition, we conducted perform-a sensitivity analysis in section 4.4 to quantify the effect of
theis depth choice effasttranspiration-on the E, /F values.

The soil moisture availability, S, represents the moisture availability in the root zone for root water uptake. Abolafia-
Rosenzweig et al. (2020) -(AbelafiaResenzweis—etal;2020)-calculated the soil moisture availability as a function of soil

moisture, wilting point, and field capacity. To rely on hydrological observations instead of simulated or remotely sensed soil

moisture, we assume the soil moisture availability to be represented by the ratio between baseflow and total streamflow
(Q,/Q). This ratio can give an indication of water availability in the soil; and hence can be used to indicate soil moisture
availability. Since we apply this method at the watershed scale, there may be multiple vegetation types in the same watershed,

and therefore, we calculate a weighted value of f.

2.2 Data

From Equations 2-5 and the descriptions of Section 2.1, we see that one needs long-term observed precipitation, streamflow,
baseflow, estimated E,, and root distribution to estimate the E/E ratio. Watershed boundaries and precipitation data were
retrieved from the Hydrometeorological Sandbox - Ecole de technologie supérieure (HYSETS) dataset- (Arsenault et al.,
2020){Arsenanttetal2020)). The HYSETS dataset includes watershed boundaries, land cover, soil properties, meteorology,
and hydrological data for 14,425 watersheds in North American. We selected 648 watersheds_(Figure 2)«(Fie—}) across the
United States with at least 10 years of streamflow data between 1980 and 2018 from this HYSETS data source. Detailed land

cover data were retrieved from the ESA CCI Land Cover project (www.esa-landcover-cci.org, last accessed December 28,
2022).

Streamflow data were retrieved from the US Geological Survey (USGS), and their corresponding baseflow magnitudes were
estimated by separating it from the streamflow data using a one-parameter digital filter separation method (Lyne and Hollick,
1979).~(Lyne-and-Helliek;—1979): Filtering methods separate direct runoff and baseflow by differentiating them based on
frequency spectrums of the hydrograph, where low frequency flow represents baseflow and high frequency represents the
direct runoff which has rapid responses to precipitation. We employed the widely used filtering method tool developed by
Purdue University, Web-based Hydrological Analysis Tool (WHAT, (Lim et al., 2005, 2010} , (im—et-al—2005,2010);
https://engineering.purdue.edu/mapserve/ WHAT, last accessed 25 Oct 2022), to separate baseflow from the observed

streamflow. We set the value of the filter parameter to be 0.925 which is within the suggested range. We did a sensitivity
analysis (in a separate study) and used different filter values and methods available from WHAT, the results were similar.
Since other methods such as_ {Eckhardt; (2005) Eekhardt-{2005)-require knowledge of hydrogeological conditions, we chose

the one-parameter digital filter method due to its simplicity and constant parameter value, which produces plausible results
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(Eckhardt, 2008; Xie et al., 2020)-(Eekhardt, 2008:Xie-etal2026). Additional details on the baseflow separation method are
presented in-Lim-et-al 2005y im-etal(2005)- (Lim et al--. (2005)

Information related to root density functions was obtained from_(Zengs- (2001)-(Zeng; 200 (Zeng;2001), who represented
root density distribution as a two-parameter function for each vegetation type based on compiled root database. The root
density distribution from Zeng (2001) (Zeng200(Zene200H)-was validated using root information from other studies (Fan
et al., 2016; Jackson et al., 1996; Lozanova et al., 2019; Schenk and Jackson, 2002; Wallace et al., 1980)(Fan-—et-al;2016;

O0ZdH0-vd s =2 oy O -

1996:Lozanova-et-al; 2019 Schenk-and Jackson; 2002 Wallaceet-al;1980).. Soil moisture stress (Qp/Q) was calculated
based on the USGS observed streamflow and the estimated baseflow from WHAT.

3 oy

Numerous E, data products are available that satisfy our study regions and time period requirements, posing a question as to
which one should be selected — as each has its own strengths. To address this question, we examined six widely used E, data
products and assessed their impact on the estimation of E/E ratios. These data products were selected because they are (1)

widely used within the hydrological and ecological communities, (2) associated with a wide range of spatial resolutions, and

(3) derived using different methods. The six E, datasets are the Global Land Evaporation Amsterdam Model (GLEAM v3.5a,
HMartens et al., 2017)) (Martens—et-al 200 )Martens—et-al;2617), the Moderate Resolution Imaging Spectroradiometer

, the E,
dataset from_(Zhang et al--. (2010)(Zhangetal;2040);, the North American Regional Reanalysis (NARR.) (Mesinger et al.,
2006))-Mesingeret-al2006), the Simple Process-Led Algorithms for Simulating Habitats (SPLASH v1.0)-, (Davis et al.,
20173y) Pavis-etal;2647);, and the Breathing Earth System Simulator (BESS v2.) (Li et al., 2023)). (&4 = : =
20233 Details of these six products are provided in Table 1Fable-t.

Vegetation Type

@® Crops
Grass
MF

@® ENF
DBF

@® Shrubs
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Figure 2: 648 watersheds in the US, categorized into six vegetation types; crops, grass, shrubs, evergreen needleleaf forest (ENF),
deciduous broadleaf forests (DBF), and mixed forests (MF). The inset map at the bottom left shows watersheds in Alaska.

Table 11: Description of six E, products used in this study.

Dataset Ej, equation Spatial and temporal scale Remarks
GLEAM Priestley-Taylor 0.25%0.25°, Daily/Monthly, 1980-
v3.5a 2021
NARR Eta Model (Penman | 32x32 km, Daily/Monthly, 1979-
based) 2022
MODIS Combination of Penman- | 500x500m, 8-day/Yearly, 2000-
MOD16A3GF | Monteith and Priestley- | 2021
Taylor
SPLASH Priestly-Taylor 1 km, Daily, 1980-2018 Forced using daily DayMet
(Thornton et al., 2022) (Thornten-et
L0 s et 2000 data)l
BESS v2 Priestly-Taylor 5 km, Monthly, 1982-2022
Zhang Penman-Monteith 8x8 km, Daily/Monthly, 1983-2006

Environmental variables — relative humidity, downward shortwave radiation, air temperature, wind speed, and soil moisture
content — were retrieved from the NARR dataset to study the dependencies of E/E on environmental factors. Data on leaf area
index (LAI) were obtained from the Global Monthly Mean Leaf Area Index Climatology produced by ORNL DAAC (Mao
and Yan, 2019)_(Mae-and-Yan, 2019 Mae-andYan;2019)-and aggregated to obtain the long-term mean LAI at watershed
scale.

The relevant data were collected for 648 watersheds and aggregated to the annual timescale. The dominant vegetation type
was determined for each watershed from the ESA CCI land cover data, and watersheds were classified into six vegetation
types: crops, grass, shrubs, evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF). We

assume each watershed has a single mean long-term E/E value. For each dataset, due to the different time coverage of the
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datasets and the streamflow gauges, we filtered the watersheds to include only those that have available data for at least 10
years. We used optimization to find k. We then performed additional filtering for each dataset to remove watersheds with KGE
values less than zero. Using the filtered watersheds, we calculated E/E based on estimated k and f together with the other
variables. The final number of watersheds associated with each dataset used in this study, after filtering, is shown in Table

2Fable2.

Table 22: Number of filtered watersheds for each potential evapotranspiration (Ey) data product. Watersheds with less than 10 years
of data and/or with Kling-Gupta efficiencies less than zero were removed from the analysis. Numbers are shown for each of the six
vegetation types.

All GLEAM BESS

Type watersheds NARR | MODIS Zhang V3.5a v SPLASH
Crops 74 72 61 57 73 59 71

Grass 89 84 66 73 86 79 81
Shrubs 146 131 107 114 134 128 131
ENF 206 166 118 118 173 161 156
DBF 65 65 61 54 65 64 65

MF 68 63 58 52 66 51 61

Total 648 581 471 468 597 542 565

3 Impact of E, products

Figure 3Figure-3a shows mean annual E, values from six different data products for the 648 study watersheds. We observe
large differences in mean annual E, among the six different data products. The differences in E, are likely attributed to
variations in input data and parameter values used by these products, while differences in methods and resolutions used to

compute E, may play a secondary role (Hassan et al., 2024).

- Discrepancies between
the input net radiation used in different data products result in especially large variations in the computed E,. Variations in
parameter values, including the Priestly-Taylor a parameter, among different data products also result in significant differences
in the resulting E;. On the other hand, the E/E, ratios from the six different E, products are relatively consistent among the six
datasets (except for GLEAM) as shown in Figure 3Eigure3b. This is likely because within each product the same input/forcing
data and parameter values are employed for both E, and E, resulting in similar impacts on both. Such consistency is an
indication of a uniformity of the underlying physics across these five products, despite the large disparities in their individual
E, magnitudes. The GLEAM E, product, which has also been previously identified for its overestimation of E/E, ratio by
{Peng et al+-. (2019)Pengetal(2019} in comparison with FLUXNET E/E,, appears to be an exception. Rather than excluding

10
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the GLEAM data product, we opted to adjust its E/E, ratio by normalizing it with the average ratio of the other five datasets
(NARR, MODIS, Zhang, SPLASH, and BESS), yielding an adjusting factor of 0.7. This adjusting factor of 0.7 was applied to
GLEAM to adjust its E/E, values. In addition, rescaled E, values from the six data products in this study were newly derived
by applying their individual E/E, ratios, obtained from their own data products, to the watershed E values calculated based on

data—watershed balance (i.e., E = P — Q) for each watershed. The importance of deriving E, values for each data product

through this rescaling approach (referred to as rescaled E,), rather than using the original E, product, is to ensure consistency
between the E, values and the watershed-budget estimated E values for each watershed while preserving the E/E; ratios from
the individual products. This is necessary because the magnitudes of some original E, products are smaller than their
corresponding watershed-budget estimated E values.

In essence, we derive new E, values for all six products using Equation (9), maintaining the E/E, ratio for each data product

(except for GLEAM, whose E/Ep ratio is adjusted by a factor of 0.7). This approach yields consistent E; values across the 648

watersheds for each individual data product and captures the essential variations among the six E, datasets. The rescaled E,
values obtained from Equation (9) uphold the fundamental principles of individual products by preserving their respective
E/E, ratios. By doing so, the effects stemming from differences or uncertainties in their inputs/forcing data are notably
mitigated, as the new E, values are calculated using the watershed-budget estimated E and their own E/E,, ratios. This concept

is akin to the notion of emergent constraints employed by others (Green et al., 2024; Hall et al., 2019; Williamson et al., 2021).

E”d taset
_ ataset y (€))]
Prescaled Eqataset

where Egq¢qser and Ep

dataser T€ values extracted from different data products, and E, is the watershed-budget estimated E

calculated as P — Q based on observed P and Q for each watershed. Table 3Fable3 shows the correlation between the rescaled
E, values of the six data products; the correlations show good consistency between the rescaled E, values. These six rescaled
E, data products are then applied to Equations 2-5 to obtain E/E ratios for each of the six vegetation types over the 648
watersheds. With the six rescaled E,, data products, we can assess how variations in E, affect the robustness of our new method

in estimating E/E.
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Figure 3: Original E;, for six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS v2 for 648 watersheds. (a)
Ep values retrieved from the data products, and (b) E/E; ratios retrieved from the data products. Watersheds are sorted in
290 descending order according to GLEAM’s E/E,.

Table 33: Correlations between rescaled E; of six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS v2
for 648 watersheds.

MODIS | GLEAM | NARR | SPLASH | BESS | Zhang
MODIS 1
GLEAM v3.5a 0.72 1
NARR 0.81 0.83 1
SPLASH 0.80 0.84 0.83 1
BESS 0.92 0.78 0.73 0.75 1
Zhang 0.70 0.83 0.68 0.69 0.92 1

12



295

300

305

310

4 Results

4.1 k values

Figure 4 shows an example of the optimization between observed soil wetting (W,,s) and the simulated soil wetting (W;,,)

with the optimized k value for a representative watershed of each vegetation type. Figure SEigure4 shows the estimated values

of k for the 648 watersheds using each of the six input datasets based on Equations 6-8. Figure Sshows-the-comparison-between
erved-soilwetting- (W)-and-the simulated soil wetting-with-estimated-k-value for arepresentative vegetation-type-The six

datasets show similar trends, where the highest k values are observed for the shrubs and grass vegetation types. Crops have

lower k values than shrubs and grass, but equal or higher than those for forests according to the dataset used. Figure SFigure
4 illustrates that the greatest variations among the six data products occur in the mixed forest and crops. This discrepancy may
be attributed to differences in how each data product defines mixed forest and crop compositions, resulting in varying estimated
parameters. The k values observed herein our study are similar in trend to the—valuesthose reported inby (Abeshu and Li;
(2021)Abeshu-and Li(2021), but lower in magnitude;. whiehThis difference mayis likely-be due to differences in input data
to the GPH equation such as precipitation and PET values since different datasets are used for both studies. {Sivapalan et al--.
(2011)_Sivapatan—et-ab—20+Hshowedreported lower k_values (between 0 and 0.45). However,; but their definition of k is
different-thandiffers from ours: while we define E, = kE in Eq. 3, ssinee they define-initial evapetranspiration-as adopted the
formulation of E, = kEp.—while—we-define Eyz=7FFE- Since actual evapotranspiration (E) is typically much smaller than
potential evapotranspiration (Ey,), -E-<-E-it is expected that then-ourtheir k values are expeeted-to-be-lower than ourshigher.
Adseln addition, the analysis of Sivapalan et al. (2011) Sivapalan-etab(204Hwas limited to 12 watersheds #under relatively
humid conditions (—with-a-maximum aridity of 2.29), and-thuswhich does not capture the full range of climatic conditions,

particularly drier environments.
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Figure 45: Optimization of k values using observed and simulated soil wetting as explained in equations 6-8. Figure shows observed
and simulated soil wetting time series for an example watershed for each of the six vegetation types (crops, grass, shrubs, ENF, DBF,
320 MF) using NARR data.
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4.2 f values

Figure 6Figure-6 shows the values of the f parameter for 648 watersheds classified into six vegetation types. The highest f
value is observed in grass, which can be explained by their shallow rooting depths causing higher portions of fast transpiration.
The lowest f values can be observed in forests due to their deeper rooting system, which provides access to deeper soil

330 moisture, reducing the portion of fast transpiration.
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Figure 6: f values for six vegetation types for 648 watersheds

4.3 Et/E values

E/E ratios are shown in Figure 7Eigure7 and Table 4Fable4. Overall, the trend is consistent among the six datasets. Grass
and shrubs have the lowest E/E values, with mean E/E in the range of 0.19-0.39. Crops have higher mean E/E ratios, with
NARR, Zhang, and GLEAM averaging around 0.4, while MODIS and SPLASH show a higher crop mean E/E of around 0.51.
BESS has the lowest crop E/E with a value of 0.29. All datasets have similar forest E/E trend, with lowest mean E/E for DBF
(0.46-0.60), followed by ENF (0.52-0.71). The highest mean E/E is exhibited for MF (0.55-0.76).

Dataset
NARR
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GLEAM
Zhang
SPLASH
BESS

E/E

(o]
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Figure 7: E¢/E values for the watersheds using data from the six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after
rescaling, SPLASH, and BESS

Table 44: Mean E«/E values for six vegetation types using E;, data from the six data products. Minimum, maximum, and mean values
are shown for each vegetation type.

[])):(::uct Crops Grass Shrubs ENF DBF MF Mean
NARR 0.52 0.37 0.37 0.72 0.59 0.61 0.52
MODIS 0.65 0.38 0.41 0.77 0.67 0.80 0.59
Zhang 0.49 0.34 0.34 0.69 0.69 0.90 0.52
GLEAM 0.48 0.28 0.31 0.67 0.54 0.67 0.48
SPLASH 0.43 0.30 0.29 0.65 0.55 0.71 0.47
BESS 0.35 0.25 0.30 0.65 0.56 0.64 0.45
Minimum 0.35 0.25 0.29 0.65 0.54 0.61 0.45
Maximum 0.65 0.38 0.41 0.77 0.69 0.90 0.59
Mean 0.48 0.32 0.33 0.69 0.60 0.70 0.50

4.4 Sensitivity of E+/E to fvalues

We perform a sensitivity analysis to determineinvestigate the effect of the-soil depth used in estimating valae-off on the E/E

values. Since

f =119 XS X fy;.and both S and f;; are constant for the watershed, then-differences in f will-arise withfrom changinges in

110. Lherefore, we tested the effect of using different depths of rapid response (en-the-valuesof Et/EWetested-the-depth
valwesof 5 cm, 10 cm, and 15 cm) andon the resulting E/E values, which are shown in Figure 8. We ehoseselected 5- and 10

cm based onthese-depths-sinee the general consensus in the literature and extended the range to 15 cm to account for additional
uncertainty. we-believe-these-would-beThese depths represent plausible values for fast transpiration, and we-do-net-believe
larser- depths-would-contribute to-fast-transpiration-as previously-discussed in Section 2.1, we do not consider larger depths to

contribute significantly as fast transpiration.

The percentage and absolute changes efin E/E as-aresultofchangingtheresulting from variations in rapid response depth are

shewnsummarized in Table 5 as average change per vegetation type (thewith six data products were-averaged for each
vegetation-type). The full tableresults with-chaneesfor eachindividual data products isare provided in Appendix A (Tables

A1-A6). The largest percentage changes arewere observed for the grass type, with E/E wvalues-changingvarying areundby
about 10-13% ifwewhen the depth was increased or decreased thefastresponse-depth-by 5 cm from the-depth-ofthe 10 cm
reference-we-used-in-thispaper. The largest absolute differeneechange occursred when the fastrespense-depth iswas increased
from 5 cm to 15 cm for the ENF vegetation type. with a ehangedifference of 0.108. FOverall, the differences ebserved-due to

17



the-changeing inthe fast response depth are minor and remain well within the uncertainty ranges ebservedreported in the
365 literature for evapotranspiration partitioning methods, as noted in the hterature-as-showninthe-introduction.
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Figure 8: Sensitivity of Et/E to different depths of fast transpiration responses: (a) 5 cm; (b) 10 cm; and (c) €15 cm).

Table 5: Relative and absolute change in mean E¢/E values due to changes in fast transpiration depth. Results are shown as an
average of the change in the six data products for each vegetation type. Resultsfrom-thefast transpiration-at 10-cm-depth-areused
I £ . lealati I lati I ; in the Table.

% Change in Et/E Absolute change in Et/E
Type Scmto 10 cm 10cmto 15 cm Scmto 15 cm
relative to 5 cm | relative to 10 cm | relative to 5 cm semtolfem ) 10emiolsem | 3emio 13 em
Grass 13.58 10.09 25.05 0.038 0.032 0.070

5 Discussion
5.1 k and E/E ratios

Shrubs and grass showed higher k values, likely due to their occurrence in arid and semi-arid regions in the US. The high k
values could be explained by the higher bare soil evaporation expected in arid regions_(Baver et al., 1972)-(Baveretal+972),
especially due to the sparse nature of shrubs, increasing bare areas and thus bare soil evaporation (Liu et al., 2022)iuetals
2022bHi-etal2022). Also, the high aridity is expected to cause water stress, lowering the continuing transpiration (portion
of transpiration not included in k). The lower k values in crops and forests may be due to the higher vegetation coverage in

these areas which provides shade to the soil, reducing the amount of soil evaporation (Baver et al., 1972)(Baveretal—1972).

Additionally, litter contributes to reducing soil evaporation; and may even have a larger reduction effect than canopy shade
(Magliano et al., 2017)-Maghano-etal;2047). The broader leaves of DBF increase their interception compared to ENF, thus
resulting in a higher k value as well.

These estimated mean E/E ratios followed explainable trends, with shrubs and grass watersheds showing low E(/E ratios,
forests exhibiting higher E/E ratios, and crops falling in between. Given greater water availability in crops and forests, it is
expected that they would exhibit higher E/E ratios. Many crops in the US benefit from continuous irrigation, reducing water
stress and promoting transpiration. Forests, with their dense canopy cover offering shade, reduce soil evaporation (Baver et
al.. 1972)-Baveretal—1972) and consequently boost the E/E ratios. Crops also show high vegetation coverage, thereby
providing shade to the soil and increasing E/E (Baver et al., 1972)(Baveret-al5—1+972). Moreover, in arid regions dominated
by shrubs, lower soil water content is anticipated, resulting in diminished root water uptake (Gardner, 1983)(Gardner; 1983)..
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Furthermore, the shedding of leaves in deciduous forests reduces transpiration when examined over the whole year (as here),
resulting in a decreased E/E ratio for DBF.

Differences in study scale may hinder the comparison with other studies, since our method estimates E/E at the watershed
scale, while other studies are based at a plot-scale (field/eddy covariance-based methods) or grid scale (models and remote-
sensing methods). Factors affecting watershed scale E/E include the possible presence of secondary vegetation within the
watershed and the possible sparseness of the primary vegetation and presence of bare areas which can increase soil evaporation
and reduce E/E, especially for shrublands. Therefore, this method has the advantage of providing a realistic watershed E/E
ratio that accounts for multiple vegetation types and sparseness in vegetation distribution. Consistent results across different

datasets underscore the reliability of our new method, irrespective of the data product employed (see Fig. 5 and Table 3).

5.2 Effect of hydrological indices on E/E

We explore the sensitivity of E/E to two hydrological indices, namely the runoff ratio (Q/P) and the baseflow ratio (Quv/Q).
Figure 9Figure-8a shows a proportional relationship between E/E and Q/P. The relationship appears to manifest as two distinct
linear correlations, with arid catchments showing a steeper slope than humid catchments. Arid regions typically experience
minimum runoff as a significant portion of precipitation evaporates in various forms owing to elevated atmospheric demand.
This phenomenon yields high E/E ratios at relatively low Q/P values. Conversely, humid catchments often experience
substantial runoff, attributed to either saturation excess or infiltration excess runoff mechanisms, resulting in elevated Q/P
ratios compared to arid catchments at equivalent E/E values. In both cases, a higher Q/P ratio signifies increased water
availability, consequently leading to higher E/E ratios.

In Figure 9Figure-8b a non-linear positive relationship is depicted between the mean E/E and Qb/Q (baseflow ratio). The
baseflow ratio serves as an indicator of soil water availability, as higher baseflow typically corresponds to increased soil
moisture content (Hurkmans et al., 2008).-Hurkmans-etal;2008)- Consequently, a positive correlation between E/E and the
baseflow ratio is anticipated. Notably, the majority of arid catchments cluster in the low Qb/Q and low E/E region, while
transitioning toward wetter catchments naturally augments both Qb/Q and E/E.

=
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Figure 98: Relationship between mean E+/E and two hydrological indices (a) Q/P and (b) Qb/Q for 648 watersheds based on NARR
data. Plots are colored according to aridity index.

-5.3 Effect of LAI on E/E

The leaf area index (LAI), representing the leaf area per unit ground area, reflects the combined influences of leaf size and
canopy density. As shown in Figure 10Figure 9, LAI appears to exert some influence over evapotranspiration partitioning.
Arid watersheds show lower LAI values, and E/E ratios increase non-linearly with LAI. However, as watersheds transition
toward higher humidity levels, their LAI and E/E ratios increase non-linearly, albeit at different rates. In arid regions, plants
tend to reduce their leaf area to mitigate water loss_ (Chaves et al., 2003)(Chaves-etal;2003) decreasing both LAI and E/E —
a direct consequence of high aridity. This suggests that aridity plays a role in regulating E/E. Figure 10Eigure-9 illustrates a
complex relationship between LAI and E/E, characterized by substantial scatter. Our findings align with previous studies
indicating diverse dependence of E/E on LAI For instance, LAI has been shown to provide a control on E partitioning (Li et
al., 2019; Wang et al., 2014; Wei et al., 2017),
one study to another. {Wang et al-. (2014) (Wangetal;2044)-showed that LAI has a non-linear relationship with E/E during
the growing season, whereas (Li et al-. (2019)¢ Li-et-al- 2049y Liet-al(20619)-showed a weak linear relationship between
mean growing season LAI and mean annual E¢/E across sites, with the E/E and LAI relationship within the same site being
non-linear. Additionally, {Cao et al--. (2022)-Cao-et-al(2022) showed a non-linear positive relationship between annual E/E
and LAL

but that effect varies from
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Figure 109: Relationship between E«/E and LAI for 648 watersheds using E«/E calculated based on the NARR dataset.
5.4 Impacts of environmental variables on E/E ratios

We explore the effect of six environmental factors on the mean E/E ratios. They are aridity index (Al), relative humidity (RH),
air temperature (T,ir), downward shortwave radiation (DSW), soil moisture, and wind speed (WS). These factors were derived
from the NARR dataset, and the E/E ratios were calculated based on the same dataset. Since some of these environmental
variables are highly correlated (as shown in Figure 1 1Eigure1+0), we first perform variable selection using stepwise regression
and Lasso regression to identify those that are strongly correlated with each other. Stepwise regression aims to select a subset
of variables that provide the best prediction with minimum redundancy, while Lasso regression adds a penalty term to reduce
the coefficients of insignificant variables. Both methods resulted in the elimination of downward shortwave radiation, while
stepwise selection additionally eliminated relative humidity and air temperature. Table 6Fable-5 shows the coefficients of the
environmental variables and their significance for both stepwise and Lasso regression. Although the significance test shows
that air temperature and relative humidity hashave an insignificant impact on the Lasso regression, while the aridity index, soil
moisture, and wind speed are significant (Table 5), they are still included because they marginally contributes to the model's
predictive power. Additionally, they represent independent and observable dimensions, distinct from the other three significant
environmental variables.

A negative non-linear correlation between E/E and Al is present. Increased aridity prompts plants to adopt water conserving
strategies_(Chaves et al., 2003)—(Chaves—et-al;—2003), thereby reducing the transpiration ratios. In humid regions, the
relationship between E/E and Al is more discernible, with Al accounting for a significant portion of the variance of E/E.
Conversely, for arid regions, particularly those dominated by shrubs, the relationship shows greater scatter, suggesting that Al
exerts a relatively smaller effect on E/E, while other factors play a more prominent role. Furthermore, higher air temperature

contributes to lowering E/E (see- Figure 12bEis—9b), as it prompts water-conserving behaviors in plants and elevates soil
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evaporation, consequently reducing E/E ratios. Conversely, increasing soil moisture leads to enhanced water availability for
455 plant root uptake, resulting in a near linear increase in E/E, as shown in Figure 12FEiguretHc. The relationship between wind
speed (WS) and E/E is inconclusive; this finding is consistent with several previous studies (Dixon and Grace, 1984; Huang

et al., 2015; Schymanski and Or, 2016) which have

presented a mixed effect of wind speed on transpiration. Nevertheless, the effects of other environmental variables on E/E
demonstrate explainable patterns as discussed here. The other five data products (MODIS, Zhang, GLEAM, SPLASH, and
460 BESS) show similar impacts of all the environmental variables on E/E as those shown in Figure 12EigureH for NARR.
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DSW -0.59 0.08
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Tair 0.71 -0.45 -0.15 o
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RH 052 . 0.58 -0.15
Ao B @ o 0.1
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| Figure 1118: Correlation between environmental variables. Al: aridity index, RH: relative humidity, Ta: air temperature, DSW:
downward shortwave radiation, SM: soil moisture, WS: wind speed.

| Table 65: Coefficients of standardized environmental variables regressed against E«/E using stepwise selection and Lasso regression.
465  Significance levels are shown next to the coefficients (***: p<0.001, **: p<0.01, *: p<0.05, blank: p>0.1

Coefficient Coefficient
(Stepwise selection) (Lasso regression)
Al -0.105%** -0.026%**
RH 0.001
Tair -0.004
DSW
SM 0.066*** 0.0005***
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Figure 1211: Relationships between mean annual E¢/E and environmental factors (a) aridity index (Ep/P), (b) air temperature (Tair),
(c) soil moisture (SM), and (d) wind speed (WS) for 648 watersheds. E/E is calculated based on NARR data, and the environmental

470 variables are also retrieved from the NARR product. Significance of the pairwise relationships between E+/E and the environmental
variables are shown on each plot.

5.5 E«/P ratios

We computed transpiration to precipitation (E¢/P) ratios based on E¢/E values calculated from the six adjusted E, data products.

The mean E/P ratios from these six datasets range from 0.24 to 0.36, aligning closely with the global mean E¢/P of 0.39

475 estimated by (Schlesinger and Jasechko;- (2014).(SehlesingerandJasechko, 2014 (Sehlesingerand Jasechkeo, 2044}
We also compared our estimated E/P ratios to the E/P versus aridity index relationship identified by {Good et al--. (2017).

Good et al. (2017)4Good-etal; 2047 Good-et-al2017) presented this relationship based on a compilation of field studies,
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three remote-sensing based models, and an ecohydrological model, revealing good consistency among the various E/P data

sources. Figure 13Figure12 shows a similar trend to that presented in Fig. 1 of-(Geed-etal;2617) Good et al. (2017), with

the maximum Ey/P ratio close to the intersection between water and energy-limited states. This maximum E/P corresponds to

an aridity index ranging between 2 and 3 in our study, similar to the estimated aridity index range of 1.3 to 1.9 for the maximum
E/P as reported by Good et al. (2017 )(Geed-et-al;2047—. Moreover, the maximum E¢/P shown in Figure 13Eisure 12 ranges
between 0.5 and 0.58, consistent with the maximum E¢/P of 0.6 based on field data in Good et al. (2017)-(Good-etal;2047)-.

Notably, there is greater variation on the right side of the curve (indicating more arid conditions) compared to the left side
(representing wetter conditions). In arid regions, transpiration is influenced not only by aridity, but also by factors such as
groundwater table depth and soil moisture content, resulting in higher variability in the E¢/P versus aridity index (Al)
relationship. The consistency between Good et al. (2017) Geed-et-ak{26147)-and this study suggests that this relationship holds
not only at the field and remote sensing scales (as shown by Good et al., 2017Geed-et-al52617), but also at the watershed

scale, as demonstrated in this study. This relationship holds significance for studies like that of {Cai et al—-. (2023): and Zhou

et al-. (2025) (Catetal 2023 Zhouetal-2025)where E/P serves as a parameter (referred to as fj in their study) to determine
water-limited fAPAR and LAI. ¢Cai et al-. (2023) estimated E/P as a global mean using non-linear regression, with a value

of 0.62, akin to the maximum E¢/P of 0.5 to 0.58 estimated by our fitted curves depicted in Figure 13Figure12. (Zhou et al-.
(2025)Zhou—et-ak—-2025)- used a variable E/P as a function of Al, akin to our fitted curves. Their maximum Ey/P of 0.65

occurred at an Al of 1.9, similar to our fitted curves.
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Figure 1312: E«/P versus the aridity index for six datasets: (a) NARR, (b) MODIS, (c) Zhang et al. (2010), (d) GLEAM after rescaling,
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6 Variation of evapotranspiration partitioning methods

Figure 7Fisure-7 demonstrates the influence of the six adjusted E, data products on the E/E ratios by our new method for each
vegetation type, while Table 4Fable4 provides their variation range between the minimum and maximum mean E¢/E ratios.
On the other hand, as outlined in the introduction, estimated global mean values of E/E from various existing methods exhibit
a considerable variation, ranging from 0.24 to 0.9 (Liu et al., 2022; Wei et al., 2017)-(i-etal2022:- Weietal; 2047}, This
variation may be attributed to several factors, including data inconsistencies, geographical disparities, and differences in
selected time periods, apart from differences in methodology. In an effort to explore what may be the cause for the large
variation among the different methods, we have tried to mitigate these factors by using the same half-hourly eddy covariance
data from the FLUXNET and AMERIFLUX ONEFLUX towers measurements in the US for the same locations and same time
periods. Such an approach would allow us to elucidate the disparities among the existing E partitioning methods, consequently,
providing insights on influences by different E, datasets in our method versus current existing different methods on the large
range of E/E ratios.

The four methods we selected to investigate are: (1) {Zhou et al--. (2016) —Zheu—et-al—+2616), (2) (Scott and Biederman;
(2017)Seott-and Biederman{2047);, (3) (Li et al-. (2019)-Lietal2049), and (4) (Yu et al. -(2022)-Yu-etal2022). These
four methods are selected because they are based on eddy covariance measurements whose data are widely available, unlike
sap flow and isotope measurements. Since these methods are based on flux measurements, they can be considered as field-
based estimations of E/E. We apply these four methods to the same datasets from the FLUXNET and AMERIFLUX
ONEFLUX towers in the US, but the final number of flux towers included for each method depends on the filtering criteria in
each method and the limitations in applying each method.

The first method by Zhou et al. (2016) Zheu-et-al(201+6)-is based on the water use efficiency. The ratio E/E is estimated as

vpDO5
ET

the ratio between the apparent water use efficiency (WUE, = GPP X ) and the potential water use efficiency (WUE, =

vPDOS
T

quantile regression of the half-hourly scatter plot (based on all half-hourly data for the site) between GPPxVPD> and E and

GPP x ). Assuming that E/E approaches 1 at some time during the growing season, the WUE,, is estimated from the 95"

is assumed to be constant for the flux tower. WUE, is then estimated for each time step as the linear regression of the E and
GPPxVPD’3 relationship using half-hourly data for the desired time period, which can be 8-day, monthly or annually.
The second method by-Seettand Biederman{(2647)- Scott and Biederman (2017) is based on water use efficiency to estimate

multiyear monthly average Ey/E ratios. This approach estimates transpiration as the product of the inverse of the marginal water

use efficiency, the ratio between transpiration WUE and marginal WUE, and GPP. The inverse of the marginal WUE is
estimated from the linear regression of the GPP versus E scatter plot. The ratio between transpirational and marginal WUEs is
assumed to be 1. This method requires multiple years of data for its application.

The third method by-Ei-etal+2649)- Li et al. (2019) is based on the stomatal conductance model of {Lin et al-. (2018)-Lin-et

al+20648) to partition evapotranspiration. The E/E ratio is equivalent to the ratio between canopy conductance and ecosystem
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540

545

conductance. The eddy covariance data are divided into soil moisture bins to calibrate the parameters. Therefore, the method
requires soil moisture data, along with GPP, VPD, E, and three calibrated parameters to estimate the E/E ratio.

The fourth method by—Yu-et-al+2022) Yu et al. (2022) combines the water use efficiency with the {Medlyn et al+. (2011)
Medlyn-et-al(2041) stomatal conductance model. This method relies on GPP, E, C,, P,, and VPD from the flux tower data in
addition to the parameter g; from the Medlyn et al. (2011) Medbn-etal264H)-model. The authors compared their method to
other methods and showed a high correlation with the Zhou et al. (2016)-Zheu—etal{20+63} but a low correlation with the-E+
etal-2649- Li et al. (2019) method.

Additionally, we compare our results to E/E values for 20 global flux towers from (Tan et al-. (2021)-Fan-etal2621-. E/E
was calculated based on flux tower data and P-model (Stocker et al., 2020; Wang et al., 2017) (Stockeret-al; 2020 Wang-et

al5261+7-outputs.
The estimated E/E ratios from the five methods are shown in Figure 14Fi

a — e and Table 4Fable4, respectively, for
the same six different vegetation types as shown in Figure 7Figure7 with our new method.

1.0 1 = —r Method
=3 mEmm Scott
[ Zhou
[ ]
0.8 n=12 "55 - el Yu
n=13 o] —
s p I Tan
15 =24 =5 =
n=14 =2
0.6 n=11 = i
l-i:l‘: 4 n=17 o
w =1l =7
2 o
- I n=2 =l
0.4 1 * =
8]
o]
0.2 1
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Crdps Grass Shrubs ENF DBF MF

Vegetation Type

Figure 1413: E/E values based on the eddy covariance tower data with 5 methods:- (a) Zhou et al. (2016) Zhou-et-al—-2016)-(n=80),
(b) Scott and Biederman (2017)-Seott-and Biederman(2017) (n=53), (c) Li et al. (2019)-Fi-et-al2619) (n=46), (d) Yu et al. (2022) Yu
et-al+2022)-(n=60) (e)_Tan et al. (2021)-Fan-et-al—-2021 (n=15).

Table 76: Mean E/E values for six vegetation types using four evapotranspiration partitioning methods. Minimum, maximum, and
mean values are shown for each vegetation type.

Evapotranspiration

partitioning Crops Grass Shrubs ENF DBF MF Mean

method
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Zhou et al. (2016) 0.54 0.48 0.46 0.46 0.52 0.42 0.48
Scott and

Biederman (2017) 0.56 0.59 0.65 0.66 0.65 0.77 0.62
Liet al. (2019) 0.70 0.63 0.59 0.69 0.70 0.61 0.66
Yu et al. (2022) 0.34 0.37 0.38 0.43 0.46 0.44 0.39
Tan et al. (2021) 0.48 - 0.44 0.56 0.6 0.61 0.54
Minimum 0.34 0.37 0.38 0.43 0.46 0.42 0.39
Maximum 0.70 0.63 0.65 0.69 0.70 0.77 0.66
Mean 0.52 0.52 0.50 0.56 0.59 0.57 0.54

The inconsistencies among the five methods are evident, with Zhou, Yu, Li, and Tan showing minimal variation among
vegetation types, while Scott displays substantial variation. Moreover, the magnitudes and trends of E/E across these methods
are also inconsistent. These discrepancies indicate a lack of agreement on both the mean E/E values and the variation ranges
among the different methods. Consequently, these methods are not suitable as reference points for evaluating our new method.
Instead, the assessment of our new method should be based on its physical behavior and relationships with other variables, as
discussed in Section 5. It is noteworthy that compared to Figure 7Eigure-7, the variation range of E/E ratios from the five
different methods, utilizing the same data at the same locations, is significantly greater than that for our new method in which
disparity is attributed to the variations associated with the E, methods employed. Additionally, since our method is at a larger
(watershed) scale, we observe larger variations between vegetation types, which can be attributed to different vegetation

densities and bare land percentages at larger scales which is not a factor at smaller (flux tower) scales.

7 Conclusions

We have presented a new method for determining the transpiration to total evapotranspiration (E/E) ratio using long-term
hydrological observations. This method is based on the generalized proportionality hypothesis, which has wide applications in
hydrology. We applied the method to 648 watersheds in the US using six different E, data products. Our findings demonstrate
consistent E/E results across these diverse E, datasets, facilitated by a rescaling of E, derived from the E/E, ratios obtained
from each individual data product and watershed-budget estimated E computed from the watershed water balances.

Our analysis reveals that varying E/E ratios across watersheds are associated with different vegetation types, with shrubs and
grasslands exhibiting lower E/E values compared to crops and forests. Furthermore, our results underscore the significant
influence of leaf area index (LAI), hydrological indices (Q/P and Qb/Q), and prevailing environmental conditions on E/E. Our
method also provides a realistic estimate of E/E at a watershed scale that implicitly accounts for the heterogeneity of vegetation
within the catchment. Our method can also be useful for constraining hydrological models, land surface models, and climate

models.
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We also explore the relationship between E/P and aridity index, unveiling a bell-shaped curve at the watershed scale, where
the maximum Ey/P ratio occurs at an aridity index between 2 and 3, corresponding to an E/P ratio of around 0.5 to 0.58. These
575 findings provide valuable insights into the intricate interplay between hydrological processes and environmental variables,

shedding light on the complex dynamics of evapotranspiration in diverse watershed ecosystems.

Appendix A

Table Al: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the NARR dataset

% Change in Et/E Absolute change in Et/E
5 cm to|1l0cmto |5 cm to
Type 10 cm |15 cm |15 cm |5 cm to|1l0cmto|5 cm to
relative relative relative 10 cm 15 cm 15 cm
toScm |tol0cm |toScm
Crops 10.65 9.12 20.75 0.05 0.05 0.10
Grass 13.11 9.87 24.27 0.04 0.04 0.08

580 Table A2: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the MODIS dataset

% Change in Et/E Absolute change in Et/E
S cmto|10cmto |5 cm to
Type 10 cm |15 cm |15 ocm |5 cm to|10cmto |5 cm to
relative relative relative 10 cm 15 cm 15 cm
to5cm tol0cm |toS5Scm
Crops 10.56 8.11 19.52 0.06 0.05 0.11
Grass 12.95 8.51 22.56 0.04 0.03 0.08
Shrubs | 8.03 5.97 14.48 0.03 0.02 0.06
DBF 8.76 7.51 16.93 0.05 0.05 0.10




585

Table A3: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the GLEAM dataset

% Change in Et/E

Absolute change in Et/E

S cmto|l0cmto|5 cm to
Type 10 cm |15 cm |15 cocm |5 cm to|1l0cmto |5 cm to
relative relative relative 10 cm 15 cm 15 cm
to 5 cm tol0cm | toScm
Crops 10.31 9.11 20.36 0.04 0.04 0.09
Grass 13.42 10.58 25.43 0.03 0.03 0.06
Shrubs | 9.00 7.05 16.68 0.03 0.02 0.05
MF 4.99 4.40 9.62 0.03 0.03 0.06

Table A4: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the Zhang dataset

% Change in Et/E Absolute change in Et/E
S cm to|l0cmto |5 cm to
Type 10 cm |15 cm |15 cm|5 cmto|l0cmto |5 cm to
relative relative relative 10 cm 15 cm 15 cm
toScm tol0cm | toScm
Crops | 1020 | 848 1954 | 0.05 0.04 0.09
Grass 13.73 10.39 25.54 0.04 0.04 0.08
DBF 8.80 6.98 16.40 0.06 0.05 0.10

Table AS: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the SPLASH dataset

% Change in Et/E

Absolute change in Et/E

S cm to|l0cmto |5 cm to

10 cm |15 cm |15 cocm |5 cm to|10cmto |5 cm to
relative relative relative 10 cm 15 cm 15 cm
toScm tol0cm | toS5Scm

32




Crops 9.78 8.60 19.22 0.04 0.04 0.07
Grass 14.23 10.40 26.11 0.04 0.03 0.07
Shrubs 9.56 7.53 17.82 0.03 0.02 0.05
DBF 7.56 6.39 14.43 0.04 0.04 0.07

Table A6: Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the BESS dataset

% Change in Et/E Absolute change in Et/E
S cmto|l0cmto|5 cm to
Type 10 ecm |15 cm |15 cm |5 cm to|l0cmto |5 cm to
relative relative relative 10 cm 15 cm 15 cm
to5cm tol0cm |toS5cm
Crops 8.76 7.61 17.04 0.03 0.03 0.05
Grass 14.06 10.80 26.38 0.03 0.03 0.06
Shrubs | 9.50 7.46 17.68 0.03 0.02 0.05
ENF 8.90 6.89 16.41 0.05 0.05 0.10
DBF 7.40 6.33 14.19 0.04 0.04 0.07
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